JP2007178049A - Flying object guidance system and target meeting time estimating method - Google Patents

Flying object guidance system and target meeting time estimating method Download PDF

Info

Publication number
JP2007178049A
JP2007178049A JP2005375991A JP2005375991A JP2007178049A JP 2007178049 A JP2007178049 A JP 2007178049A JP 2005375991 A JP2005375991 A JP 2005375991A JP 2005375991 A JP2005375991 A JP 2005375991A JP 2007178049 A JP2007178049 A JP 2007178049A
Authority
JP
Japan
Prior art keywords
flying object
target
meeting time
relative
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005375991A
Other languages
Japanese (ja)
Other versions
JP4625766B2 (en
Inventor
Shigeaki Okazaki
維明 岡崎
Hiroyuki Hachisu
裕之 蜂須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005375991A priority Critical patent/JP4625766B2/en
Publication of JP2007178049A publication Critical patent/JP2007178049A/en
Application granted granted Critical
Publication of JP4625766B2 publication Critical patent/JP4625766B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate a meeting time with high accuracy even near a closest approach point when a misdistance at the closest approach of a flying object and a target is not zero, and to calculate a meeting time with high accuracy even far from the closest approach point when the flying object has an accelerated velocity. <P>SOLUTION: When the meeting time of the flying object and the target is estimated in guiding the flying object toward the target, the target has linear uniform motion and the flying object has linear uniformly accelerated motion on a relative coordinate system applying a position of the flying object as an origin 0, a relative position P of the target is represented by a straight line toward the closest approach point H to the flying object, the misdistance is calculated on the basis of a velocity V of the relative coordinate system of the target, and a relative velocity Vd between the flying object and the target, and the meeting time t is estimated and calculated on the basis of a value of the misdistance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、飛翔体を目標に向けて誘導する飛翔体誘導装置と、この誘導装置に用いられ、飛翔体と目標との会合時間を予測する目標会合時間予測方法に関する。   The present invention relates to a flying object guidance apparatus that guides a flying object toward a target, and a target meeting time prediction method that is used in the guidance apparatus and predicts the meeting time between the flying object and a target.

従来の飛翔体誘導装置では、飛翔体の起爆タイミングの決定等のために、飛翔体と目標との最接近点までの経過時間として「会合時間」を予測する。この予測には、「飛翔体及び目標はそれぞれ直線の軌道を移動し、その軌道がある点で交差し、その交差する点までの経過時間がそれぞれ等しい。」という前提条件、すなわち飛翔体と目標の最接近点での離隔量(以下ミスディスタンスという)がゼロという前提条件にて計算する方法が使用されている。また、飛翔体の加速度についても、加速度がない、すなわち加速度がゼロという前提条件にて計算する方法が使用されている(例えば特許文献1参照)。   In the conventional flying object guidance device, the “meeting time” is predicted as the elapsed time to the closest point between the flying object and the target in order to determine the timing of starting the flying object. In this prediction, the flying object and the target move along straight trajectories, intersect at a certain point, and the elapsed time until the intersecting point is equal, that is, the flying object and the target. The calculation method is used on the premise that the separation distance (hereinafter referred to as mis-distance) at the closest approach point is zero. In addition, a method of calculating the acceleration of the flying object under the precondition that there is no acceleration, that is, the acceleration is zero (see, for example, Patent Document 1).

このように、従来方式の会合時間の予測計算では、ミスディスタンスはゼロであることが前提条件となっている。しかしながら、実際にはミスディスタンスはゼロとならない場合がある。その場合、飛翔体と目標とが最接近点に近づくほど、会合時間の計算値と実際の会合時間との誤差が大きくなってしまう。また、従来方式のように飛翔体の加速度を考慮していないと、飛翔体に加速度がある場合には、飛翔体と目標が最接近点から遠いほど、会合時間の計算値と実際の会合時間との誤差が大きくなってしまう。   Thus, in the prediction calculation of the meeting time of the conventional method, it is a precondition that the misdistance is zero. In practice, however, the miss distance may not be zero. In that case, the error between the calculated value of the meeting time and the actual meeting time increases as the flying object and the target approach the closest point. If the acceleration of the flying object is not considered as in the conventional method, and the flying object has acceleration, the calculated value of the meeting time and the actual meeting time will be the farther the flying object and the target are from the closest point. And the error will increase.

このため、飛翔体と目標との最接近時におけるミスディスタンスがゼロでない場合に、最接近点で、従来方式よりも精度良く会合時間を計算できる方策が望まれていた。また、飛翔体に加速度がある場合に、最接近点から遠くても、従来方式よりも精度良く会合時間を計算できて、最接近点から遠くても、直撃できるどうかを判定する方策が望まれていた。
特開平04−059497公報
For this reason, when the miss distance at the time of the closest approach between the flying object and the target is not zero, there has been a demand for a method capable of calculating the meeting time at the closest point more accurately than the conventional method. In addition, when the flying object has acceleration, it is possible to calculate the meeting time more accurately than the conventional method even if it is far from the closest point, and to measure whether it can hit directly even if it is far from the closest point. It was.
Japanese Patent Laid-Open No. 04-059497

以上述べたように、従来の飛翔体誘導装置では、会合時間の推定計算において、ミスディスタンスはゼロであることが前提条件となっている。このため、実際にはミスディスタンスがゼロとならない場合には、飛翔体と目標とが最接近点に近づくほど、会合時間の計算値と実際の会合時間との誤差が大きくなってしまう。また、飛翔体の加速度が考慮されていないため、飛翔体に加速度がある場合には、飛翔体と目標が最接近点から遠いほど、会合時間の計算値と実際の会合時間との誤差が大きくなってしまう。   As described above, in the conventional flying object guidance apparatus, it is assumed that the misdistance is zero in the estimation calculation of the meeting time. For this reason, when the miss distance does not actually become zero, the error between the calculated value of the meeting time and the actual meeting time increases as the flying object and the target approach the closest point. In addition, since the acceleration of the flying object is not taken into account, if the flying object has acceleration, the error between the calculated meeting time and the actual meeting time increases as the flying object and the target are farther from the closest point. turn into.

本発明は上記の問題を解決するためになされたもので、飛翔体と目標との最接近時におけるミスディスタンスがゼロでない場合に、最接近点の近くでも精度良く会合時間を計算することができ、飛翔体に加速度がある場合に、最接近点から遠くても精度良く会合時間を計算することができ、最接近点から遠くても直撃できるどうかを判定することのできる飛翔体誘導装置とその目標会合時間予測方法を提供することを目的とする。   The present invention has been made to solve the above problem, and when the miss distance at the time of closest approach between the flying object and the target is not zero, the meeting time can be calculated accurately even near the closest point. When the flying object has acceleration, the flying object guidance device can calculate the meeting time accurately even if it is far from the closest point, and can determine whether it can hit directly even if it is far from the closest point The purpose is to provide a target meeting time prediction method.

上記問題を解決するために、本発明に係る飛翔体誘導装置及び目標会合時間予測方法は、飛翔体を目標に向けて誘導する際に、飛翔体と目標との会合時間を予測する場合に、前記飛翔体の位置を基準とする相対座標系で、目標に関しては等速直線運動をするものとし、飛翔体に関しては等加速度直線運動をするものとし、前記目標の相対位置を前記飛翔体との最接近点に向かう直線で表現し、前記目標の相対座標系の速度と前記飛翔体及び目標間の相対速度に基づいてミスディスタンスを計算し、このミスディスタンスの値を使用して会合時間を予測計算することを特徴とする。   In order to solve the above problems, the flying object guidance device and the target meeting time prediction method according to the present invention predict the meeting time between the flying object and the target when guiding the flying object toward the target. In a relative coordinate system based on the position of the flying object, the target is assumed to perform a constant velocity linear motion, the flying object is assumed to perform a uniform acceleration linear motion, and the relative position of the target is determined relative to the flying object. Expressed as a straight line toward the closest point, calculate the miss distance based on the relative coordinate system speed of the target and the relative speed between the flying object and the target, and predict the meeting time using this mis distance value It is characterized by calculating.

このように、本発明では、ミスディスタンスを使用して会合時間を計算するので、ミスディスタンスがゼロとならない場合に、最接近点近くでも、従来方式よりも精度よく会合時間の計算を行うことが可能となる。また、飛翔体に加速度がある場合に、最接近点から遠くても、従来方式よりも精度よく会合時間の計算を行うことが可能となる。   As described above, in the present invention, since the meeting time is calculated using the miss distance, the meeting time can be calculated more accurately than the conventional method even when the distance is not close to zero, even near the closest point. It becomes possible. In addition, when the flying object has acceleration, the meeting time can be calculated more accurately than the conventional method even if it is far from the closest point.

以上のように、本発明によれば、飛翔体と目標との最接近時におけるミスディスタンスがゼロでない場合に、最接近点の近くでも精度良く会合時間を計算することができ、飛翔体に加速度がある場合に、最接近点から遠くても精度良く会合時間を計算することができ、最接近点から遠くても直撃できるどうかを判定することのできる飛翔体誘導装置とその目標会合時間予測方法を提供することができる。   As described above, according to the present invention, when the miss distance at the time of the closest approach between the flying object and the target is not zero, the meeting time can be calculated accurately even near the closest point, and the flying object is accelerated. If there is a flying object guidance device that can accurately calculate the meeting time even if it is far from the closest point, and can determine whether it can hit directly even if it is far from the closest point, and its target meeting time prediction method Can be provided.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明に係る飛翔体誘導装置の一実施形態の構成を示すブロック図である。図1において、11は飛翔体本体であり、この飛翔体本体11内には目標を検出するセンサとして機能するシーカ111、このシーカ111で検出された目標Tを捕捉追尾して被搭載飛翔体と目標Tとの会合点と会合時間を推定計算し、その計算結果に基づいて誘導信号を生成する演算処理装置112、この演算処理装置112で生成された誘導信号に基づいて操舵を行う操舵制御装置113を備える。また、演算処理装置112で推定計算された会合点近傍で効果的に爆薬の起爆タイミングを決定する起爆装置114を備える。   FIG. 1 is a block diagram showing a configuration of an embodiment of a flying object guiding apparatus according to the present invention. In FIG. 1, reference numeral 11 denotes a flying body main body. In this flying body main body 11, a seeker 111 that functions as a sensor for detecting a target, and a target T detected by the seeker 111 are captured and tracked. An arithmetic processing unit 112 that estimates and calculates the meeting point and the meeting time with the target T and generates a guidance signal based on the calculation result, and a steering control device that performs steering based on the guidance signal generated by the arithmetic processing unit 112 113. In addition, a detonation device 114 that effectively determines the detonation timing of the explosive near the meeting point estimated and calculated by the arithmetic processing unit 112 is provided.

上記構成において、以下に従来方式と比較しながら本発明による方式を具体的に説明する。   In the above configuration, the method according to the present invention will be specifically described below in comparison with the conventional method.

まず、従来方式の会合時間の計算では、ミスディスタンスはゼロであることが前提条件となっている。ところが、実際にはミスディスタンスはゼロとならない場合がある。その場合、飛翔体と目標とが最接近点に近づくほど、会合時間の計算値と実際の会合時間との誤差が大きくなってしまう。また、従来方式のように飛翔体の加速度を考慮していないとすれば、飛翔体に加速度がある場合には、飛翔体と目標が最接近点から遠いほど、会合時間の計算値と実際の会合時間との誤差が大きくなってしまう。   First, in the conventional method of calculating the meeting time, it is assumed that the misdistance is zero. In reality, however, the miss distance may not be zero. In that case, the error between the calculated value of the meeting time and the actual meeting time increases as the flying object and the target approach the closest point. If the acceleration of the flying object is not considered as in the conventional method, when the flying object has acceleration, the calculated value of the meeting time and the actual The error with the meeting time will increase.

これに対し、本発明による誘導装置は、会合時間の計算時に、最接近点におけるミスディスタンスを計算し、その値を使用して会合時間の計算を行うものである。また、飛翔体の加速度を考慮して会合時間の計算を行い、その会合時間に従って正確なミスディスタンスを求め、直撃できるかどうかを判定するものである。   On the other hand, the guidance device according to the present invention calculates the miss distance at the closest point when calculating the meeting time, and calculates the meeting time using the calculated value. In addition, the meeting time is calculated in consideration of the acceleration of the flying object, and an accurate miss distance is obtained according to the meeting time, and it is determined whether or not a direct hit can be made.

以下に、本発明に係る飛翔体誘導装置の一実施形態を説明する。   Hereinafter, an embodiment of the flying object guiding apparatus according to the present invention will be described.

飛翔体及び目標の運動については、次の内容を前提条件とする。目標に関しては等速直線運動をするものとし、飛翔体に関しては等加速度直線運動をするものとする。また、飛翔体の機体の半径をRmとする。   The following are the prerequisites for the flying object and target motion. The target is assumed to perform a constant velocity linear motion, and the flying object is assumed to perform a uniform acceleration linear motion. Also, let Rm be the radius of the flying aircraft.

ここで、飛翔体と目標に関する座標系について、図2を参照して説明する。図2において、横軸は水平距離、縦軸は高度を示しており、点Oは飛翔体位置に相当する原点、点Pは目標の相対位置(x,y,z)、点Hは目標に対する飛翔体の最接近点、Vは目標の相対座標系速度ベクトル、Vdは飛翔体及び目標間の相対速度ベクトル、Dは目標位置−最接近点間距離(PH間距離)、Rは飛翔体及び目標間の相対距離(OP間距離)、Mは飛翔体及び最接近点間のミスディスタンス(OH間距離)を表している。   Here, a coordinate system related to the flying object and the target will be described with reference to FIG. In FIG. 2, the horizontal axis indicates the horizontal distance, the vertical axis indicates the altitude, the point O is the origin corresponding to the flying object position, the point P is the target relative position (x, y, z), and the point H is the target. The closest point of the flying object, V is the velocity vector of the target relative coordinate system, Vd is the relative velocity vector between the flying object and the target, D is the distance between the target position and the closest point (PH distance), R is the flying object and A relative distance between targets (distance between OPs), M represents a miss distance (distance between OH) between the flying object and the closest approach point.

上記相対座標系において、図3を参照して本発明に係る予測計算の流れを説明する。まず、目標の相対位置P(x,y,z)は(1)式のように定義する。この目標位置Pの時間経過に伴う移動については、ここでは直線上を移動するものと見なし、以下のような直線の式で表すものとする(ステップS1)。これは、飛翔体に直線方向の加速度がある場合には、この目標位置Pの移動は厳密には直線上とはならないが、実際に起爆を実施する領域内であれば、直線と見なすことによる誤差は少ないためである。

Figure 2007178049
In the relative coordinate system, the flow of prediction calculation according to the present invention will be described with reference to FIG. First, the target relative position P (x, y, z) is defined as in equation (1). The movement of the target position P over time is regarded as moving on a straight line here, and is represented by the following straight line expression (step S1). This is because the movement of the target position P is not strictly on a straight line when the flying object has a linear acceleration, but is considered to be a straight line if it is within the region where the initiation is actually performed. This is because there are few errors.
Figure 2007178049

(1)式の直線と原点O(飛翔体位置)から(1)式へ下ろした垂線との交点H(最接近点)の座標を、以下のように表す。ここで、t0 は最接近点Hに至る時刻を表している。 The coordinates of the intersection H (nearest approach point) between the straight line of equation (1) and the perpendicular line drawn from the origin O (aircraft position) to equation (1) are expressed as follows. Here, t 0 represents the time to reach the closest point H.

H座標:(Vx・t0 +X,Vy・t0 +Y,Vz・t0 +Z)
原点Oを通り、H座標を通るベクトル(OH)は、以下のように表すことができる(ステップS2)。

Figure 2007178049
H coordinate: (Vx · t 0 + X, Vy · t 0 + Y, Vz · t 0 + Z)
A vector (OH) passing through the origin O and passing through the H coordinate can be expressed as follows (step S2).
Figure 2007178049

(1)式の直線の方向ベクトルと(2)式のベクトルとは互いに直交するので、その内積結果はゼロとなり、以下の式のように表せる。

Figure 2007178049
Since the direction vector of the straight line in equation (1) and the vector in equation (2) are orthogonal to each other, the inner product result is zero and can be expressed as the following equation.
Figure 2007178049

上記の式を、t0について解くと、以下の式のようになる(ステップS3)。

Figure 2007178049
When the above equation is solved for t 0 , the following equation is obtained (step S3).
Figure 2007178049

求めたt0 の値を(1)式に代入すると以下の式となる。この式により求まる相対位置Pの座標(x0 ,y0 ,z0 )を、飛翔体と目標との最接近点Hとする(ステップS4)。

Figure 2007178049
Substituting the calculated value of t 0 into equation (1) yields the following equation. The coordinates (x 0 , y 0 , z 0 ) of the relative position P obtained from this equation are set as the closest point H between the flying object and the target (step S4).
Figure 2007178049

次に、時刻tにおける相対位置Pから最接近点Hまでの距離(D)を、以下の式により求める(ステップS6)。

Figure 2007178049
Next, the distance (D) from the relative position P to the closest point H at time t is obtained by the following equation (step S6).
Figure 2007178049

尚、時刻tにおける相対位置Pから最接近点Hまでの距離(D)は、飛翔体と目標との相対距離(R)を使用して、以下の式で計算することも可能である。

Figure 2007178049
Note that the distance (D) from the relative position P to the closest point H at time t can also be calculated by the following equation using the relative distance (R) between the flying object and the target.
Figure 2007178049

また、求めた時刻tにおける相対位置Pから最接近点Hまでの距離(D)は、時刻tにおける相対座標系速度の大きさ、相対座標系加速度の大きさ及び時刻tから、以下の式のように表される。

Figure 2007178049
In addition, the distance (D) from the relative position P to the closest point H at the time t is calculated from the magnitude of the relative coordinate system speed, the magnitude of the relative coordinate system acceleration at the time t, and the time t as follows: It is expressed as follows.
Figure 2007178049

この式を、以下の式に示すようにtについて解き、そのtの値を、会合時間とする(ステップS6)。

Figure 2007178049
This equation is solved for t as shown in the following equation, and the value of t is taken as the meeting time (step S6).
Figure 2007178049

但し、Aがゼロの場合は、以下の式によりtの値を計算する。 However, when A is zero, the value of t is calculated by the following formula.

t = D/V
上記内容にて計算した、会合時間誤差の例を図3、4に示す。図3は「飛翔体加速度なし、観測誤差なし」を想定しており、図4は「飛翔体加速度あり、観測誤差なし」を想定している。尚、比較のため、図3、図4にそれぞれ従来方式による会合時間の誤差の例を点線で示す。
t = D / V
Examples of meeting time errors calculated as described above are shown in FIGS. FIG. 3 assumes “no flying object acceleration and no observation error”, and FIG. 4 assumes “flying object acceleration and no observation error”. For comparison, FIGS. 3 and 4 show examples of errors in the meeting time according to the conventional method by dotted lines.

図3、4に示すように、本発明の予測計算によれば、飛翔体と目標との最接近点におけるミスディスタンスがゼロでない場合に最接近点に近づいても、会合時間の計算誤差は大きくならず、従来方式と比較して、より正確に会合時間を計算することが可能となる。また、飛翔体に加速度がある場合に、最接近点から遠くても、会合時間の計算誤差は大きくならず、従来方式と比較して、より正確に会合時間を計算することが可能となる。   As shown in FIGS. 3 and 4, according to the prediction calculation of the present invention, even when the distance from the closest approach point between the flying object and the target is not zero, the calculation error of the meeting time is large even when approaching the closest approach point. Instead, the meeting time can be calculated more accurately than in the conventional method. In addition, when the flying object has acceleration, the calculation error of the meeting time does not increase even if it is far from the closest point, and the meeting time can be calculated more accurately than in the conventional method.

上記の予測計算で求まった時間tを会合時間t1 として(1)式に代入すると、以下の式が成立する。この式により求まる相対位置(x1 ,y1 ,z1 )を、飛翔体と目標との最接近点Hとする(ステップS7)。

Figure 2007178049
When the time t obtained by the above prediction calculation is substituted into the equation (1) as the meeting time t 1 , the following equation is established. The relative position (x1, y1, z1) obtained by this equation is set as the closest point H between the flying object and the target (step S7).
Figure 2007178049

時刻t1 における相対位置から原点までの距離(M):ミスディスタンスは、以下の式により求める(ステップS8)。

Figure 2007178049
Distance from relative position to origin at time t 1 (M): Miss distance is obtained by the following equation (step S8).
Figure 2007178049

このミスディスタンスが下記の条件(ステップS9)を満足している場合には直撃可能と判定し(ステップS10)、満足していない場合には直撃不能と判定する(ステップS11)。
M(ミスディスタンス)≦Rm(飛翔体の半径)
以上述べたように、本発明の飛翔体誘導装置によれば、ミスディスタンスを使用して会合時間を計算することができるので、ミスディスタンスがゼロとならない場合に、最接近点近くでも、従来方式よりも精度よく会合時間の計算を行うことができる。また、飛翔体に加速度がある場合に、最接近点から遠くても、従来方式よりも精度よく会合時間の計算を行うことができる。
When this miss distance satisfies the following condition (step S9), it is determined that direct hit is possible (step S10), and when it is not satisfied, it is determined that direct hit is impossible (step S11).
M (Miss distance) ≤ Rm (Radius radius)
As described above, according to the flying object guiding apparatus of the present invention, since the meeting time can be calculated using the misdistance, the conventional method can be used even if the misdistance is not zero even near the closest point. It is possible to calculate the meeting time with higher accuracy. In addition, when the flying object has acceleration, the meeting time can be calculated more accurately than the conventional method even if it is far from the closest point.

このように、従来方式よりも精度良く求まった会合時間から、精度良いミスディスタンスを求めることができ、これによって最接近点の近くでも遠くでも、飛翔体と目標の直撃判定をより精度良く行うことができる。   In this way, it is possible to obtain accurate miss distance from the meeting time determined more accurately than the conventional method, thereby making it possible to determine the direct hit of the flying object and target more accurately even near or far from the closest point. Can do.

尚、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

図1は本発明に係る飛翔体誘導装置の一実施形態の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of an embodiment of a flying object guiding apparatus according to the present invention. 上記実施形態の予測計算に適用される飛翔体と目標に関する相対座標系を示す図。The figure which shows the relative coordinate system regarding the flying body and target applied to the prediction calculation of the said embodiment. 上記実施形態の予測計算の流れを示すフローチャート。The flowchart which shows the flow of the prediction calculation of the said embodiment. 上記実施形態において、「飛翔体加速度なし、観測誤差なし」を想定した場合の会合時間誤差の例を従来方式と比較して示す特性図。In the said embodiment, the characteristic view which shows the example of the meeting time error at the time of assuming "no flying object acceleration and no observation error" with a conventional system. 上記実施形態において、「飛翔体加速度あり、観測誤差なし」を想定した場合の会合時間誤差の例を従来方式と比較して示す特性図。In the said embodiment, the characteristic view which shows the example of the meeting time error at the time of supposing "the flying body acceleration exists and there is no observation error" with a conventional system.

符号の説明Explanation of symbols

11…飛翔体本体、111…シーカ、112…演算処理装置、113…操舵制御装置、114…起爆装置。   DESCRIPTION OF SYMBOLS 11 ... Flying-body main body, 111 ... Seeker, 112 ... Arithmetic processing apparatus, 113 ... Steering control apparatus, 114 ... Detonation apparatus.

Claims (4)

飛翔体を目標に向けて誘導する際に、飛翔体と目標との会合時間を予測する飛翔体誘導装置において、
前記飛翔体の位置を基準とする相対座標系で、目標に関しては等速直線運動をするものとし、飛翔体に関しては等加速度直線運動をするものとし、前記目標の相対位置を前記飛翔体との最接近点に向かう直線で表現し、前記目標の相対座標系の速度と前記飛翔体及び目標間の相対速度に基づいてミスディスタンスを計算し、このミスディスタンスの値を使用して会合時間を予測計算することを特徴とする飛翔体誘導装置。
In the flying object guidance device that predicts the meeting time between the flying object and the target when guiding the flying object toward the target,
In a relative coordinate system based on the position of the flying object, the target is assumed to perform a constant velocity linear motion, the flying object is assumed to perform a uniform acceleration linear motion, and the relative position of the target is determined relative to the flying object. Expressed as a straight line toward the closest point, calculate the miss distance based on the relative coordinate system speed of the target and the relative speed between the flying object and the target, and predict the meeting time using this mis distance value A flying object guidance device characterized by calculating.
さらに、前記予測計算された会合時間に基づいて前記ミスディスタンスを求め、その値を基準値と比較して直接会合するか否かを判定することを特徴とする請求項1記載の飛翔体誘導装置。   2. The flying object guiding apparatus according to claim 1, wherein the miss distance is obtained based on the predicted calculated meeting time, and the value is compared with a reference value to determine whether to meet directly. . 前記基準値は前記飛翔体の半径に相当することを特徴とする請求項2記載の飛翔体誘導装置。   The flying object guiding apparatus according to claim 2, wherein the reference value corresponds to a radius of the flying object. 飛翔体を目標に向けて誘導する際に、飛翔体と目標との会合時間を予測する目標会合時間予測方法において、
前記飛翔体の位置を基準とする相対座標系で、目標に関しては等速直線運動をするものとし、飛翔体に関しては等加速度直線運動をするものとし、前記目標の相対位置を前記飛翔体との最接近点に向かう直線で表現し、前記目標の相対座標系の速度と前記飛翔体及び目標間の相対速度に基づいてミスディスタンスを計算し、このミスディスタンスの値を使用して会合時間を予測計算することを特徴とする目標会合時間予測方法。
In the target meeting time prediction method for predicting the meeting time between the flying object and the target when guiding the flying object toward the target,
In a relative coordinate system based on the position of the flying object, the target is assumed to perform a constant velocity linear motion, the flying object is assumed to perform a uniform acceleration linear motion, and the relative position of the target is determined relative to the flying object. Expressed as a straight line toward the closest point, calculate the miss distance based on the relative coordinate system speed of the target and the relative speed between the flying object and the target, and predict the meeting time using this mis distance value A target meeting time prediction method characterized by calculating.
JP2005375991A 2005-12-27 2005-12-27 Flying object guidance device and target meeting time prediction method Expired - Fee Related JP4625766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375991A JP4625766B2 (en) 2005-12-27 2005-12-27 Flying object guidance device and target meeting time prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375991A JP4625766B2 (en) 2005-12-27 2005-12-27 Flying object guidance device and target meeting time prediction method

Publications (2)

Publication Number Publication Date
JP2007178049A true JP2007178049A (en) 2007-07-12
JP4625766B2 JP4625766B2 (en) 2011-02-02

Family

ID=38303416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375991A Expired - Fee Related JP4625766B2 (en) 2005-12-27 2005-12-27 Flying object guidance device and target meeting time prediction method

Country Status (1)

Country Link
JP (1) JP4625766B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070573A (en) * 2014-12-10 2016-06-20 국방과학연구소 Real-time prediction method of impact point of guided missile
KR101862715B1 (en) * 2017-11-17 2018-07-04 엘아이지넥스원 주식회사 Guide and Control Method for Guided Projectile
KR101862714B1 (en) * 2017-11-17 2018-07-05 엘아이지넥스원 주식회사 Control Variable Decision Apparatus for Guided Projectile and Control Device having the same
KR101938780B1 (en) * 2018-07-20 2019-01-15 엘아이지넥스원 주식회사 Impact Angle Control Method with Time Varying Continuous Biased PNG
KR101939762B1 (en) * 2018-07-20 2019-01-17 엘아이지넥스원 주식회사 Impact Angle Control Apparatus with Time Varying Continuous Biased PNG
CN112577490A (en) * 2020-12-14 2021-03-30 中国人民解放军海军潜艇学院 Low-speed target active convergence discrimination and treatment method based on equivalence and estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131399A (en) * 1974-04-03 1975-10-17
JPH0459497A (en) * 1990-06-29 1992-02-26 Mitsubishi Precision Co Ltd Simulation flight system
JPH0545450A (en) * 1991-08-20 1993-02-23 Mitsubishi Electric Corp Target-arriving-time computing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131399A (en) * 1974-04-03 1975-10-17
JPH0459497A (en) * 1990-06-29 1992-02-26 Mitsubishi Precision Co Ltd Simulation flight system
JPH0545450A (en) * 1991-08-20 1993-02-23 Mitsubishi Electric Corp Target-arriving-time computing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070573A (en) * 2014-12-10 2016-06-20 국방과학연구소 Real-time prediction method of impact point of guided missile
KR101658464B1 (en) 2014-12-10 2016-09-22 국방과학연구소 Real-time prediction method of impact point of guided missile
KR101862715B1 (en) * 2017-11-17 2018-07-04 엘아이지넥스원 주식회사 Guide and Control Method for Guided Projectile
KR101862714B1 (en) * 2017-11-17 2018-07-05 엘아이지넥스원 주식회사 Control Variable Decision Apparatus for Guided Projectile and Control Device having the same
KR101938780B1 (en) * 2018-07-20 2019-01-15 엘아이지넥스원 주식회사 Impact Angle Control Method with Time Varying Continuous Biased PNG
KR101939762B1 (en) * 2018-07-20 2019-01-17 엘아이지넥스원 주식회사 Impact Angle Control Apparatus with Time Varying Continuous Biased PNG
CN112577490A (en) * 2020-12-14 2021-03-30 中国人民解放军海军潜艇学院 Low-speed target active convergence discrimination and treatment method based on equivalence and estimation

Also Published As

Publication number Publication date
JP4625766B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
CN109564283B (en) Target object detection device
CN107710304B (en) Route prediction device
US9625911B2 (en) System and method for avoiding obstacle for autonomous vehicle
JP4625766B2 (en) Flying object guidance device and target meeting time prediction method
US8793069B2 (en) Object recognition system for autonomous mobile body
JP2996956B1 (en) Rocket trajectory estimation method using tracking device, rocket future position prediction method, rocket identification method, rocket situation detection method
KR101796322B1 (en) Apparatus and method for detecting location information using navigation algorithm
CN111645679B (en) Side collision risk estimation system for vehicle
KR101052038B1 (en) Image tracking apparatus and method for tracking target using the apparatus
JP2001229488A (en) Vehicle tracking method and traffic state tracking device
JP6706223B2 (en) MOBILE BODY CONTROL METHOD, MOBILE BODY CONTROL DEVICE, AND PROGRAM
JP4966794B2 (en) Underwater vehicle guidance method and apparatus
JP4689546B2 (en) Vehicle object detection device
FR3089926B1 (en) Consolidation of an indicator of the presence of a target object for autonomous driving
JP2008083995A (en) Map information processing apparatus and mobile robotic device
KR20140044964A (en) Apparatus for calculating distance between vehicles and method for calculating distance thereof
JP2006113627A (en) Device for determining control object for vehicle
JP5933350B2 (en) Guidance device
JP4234084B2 (en) Vehicle trajectory estimation device
JP2021032547A (en) Missile guidance device and missile guidance method
JP2001228245A (en) Apparatus and method for tracking target
JP6383817B2 (en) Flying object position measuring device, flying object position measuring method and flying object position measuring program
KR20210076411A (en) Apparatus and method for compensating vehicle sensor error
WO2005103599A1 (en) Alignment of a flicht vehicle based on recursive matrix inversion
JP2655024B2 (en) Mobile collision avoidance system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees