JP4966794B2 - Underwater vehicle guidance method and apparatus - Google Patents

Underwater vehicle guidance method and apparatus Download PDF

Info

Publication number
JP4966794B2
JP4966794B2 JP2007238234A JP2007238234A JP4966794B2 JP 4966794 B2 JP4966794 B2 JP 4966794B2 JP 2007238234 A JP2007238234 A JP 2007238234A JP 2007238234 A JP2007238234 A JP 2007238234A JP 4966794 B2 JP4966794 B2 JP 4966794B2
Authority
JP
Japan
Prior art keywords
underwater vehicle
target
course
information
mother ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007238234A
Other languages
Japanese (ja)
Other versions
JP2009068779A (en
Inventor
龍明 菊池
哲 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007238234A priority Critical patent/JP4966794B2/en
Publication of JP2009068779A publication Critical patent/JP2009068779A/en
Application granted granted Critical
Publication of JP4966794B2 publication Critical patent/JP4966794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、母船と通信を行い、母船から誘導される水中航走体の制御方法及び装置に関するものである。   The present invention relates to a control method and apparatus for an underwater vehicle that communicates with a mother ship and is guided from the mother ship.

移動する目標の方位もしくは方位と周波数のみが観測される状況において、これを利用して水中航走体を目標と会合させるように誘導する手法としては、母船に備えられたセンサで得られた観測情報のみに基づいて誘導諸元を決定する方法が提案されている。   In the situation where only the direction or direction and frequency of the moving target is observed, a method for using this to guide the underwater vehicle to associate with the target is the observation obtained with the sensor provided on the mother ship. There has been proposed a method for determining a guidance item based only on information.

特許文献1は、母船で観測した移動目標の方位に対し、距離を仮定しながら水中航走体を会合点まで誘導する方法であり、特許文献2は、母船で観測した移動目標の方位に対し水中航走体を誘導する上で、水中航走体の航走雑音が母船の観測を妨げないように航走させる方法である。   Patent Document 1 is a method of guiding the underwater vehicle to the meeting point while assuming a distance with respect to the direction of the moving target observed on the mother ship, and Patent Document 2 is based on the direction of the moving target observed on the mother ship. This is a method of navigating the underwater vehicle so that the noise of the underwater vehicle does not interfere with the observation of the mother ship.

特開平3-282200公報Japanese Patent Laid-Open No. 3-282200 特開平10-160399公報JP 10-160399 A

特許文献1及び特許文献2に記載の技術は、母船のセンサによる観測情報のみに基づいて誘導を行うものであるため、特に目標が母船から遠距離にある場合に、誘導に必要な目標の運動諸元を十分な精度で得ることができなかった。それに伴い水中航走体を高い確率で目標と会合させることが困難であった。   Since the techniques described in Patent Document 1 and Patent Document 2 perform guidance based only on observation information from the sensor of the mother ship, especially when the target is at a long distance from the mother ship, the target motion necessary for guidance The specifications could not be obtained with sufficient accuracy. As a result, it was difficult to associate the underwater vehicle with the target with a high probability.

本発明の態様の一つは、水中航走体から見た目標(体)のの方位情報を観測し、水中航走体の母船から見た目標の方位情報および周波数情報を観測し、観測した方位情報及び周波数情報に基づいて、目標の位置、針路及び速力を推定し、推定した目標の位置、針路及び速力に対応して、水中航走体の針路を決定し、決定した針路に水中航走体を誘導する水中航走体の誘導方法および装置である。   One aspect of the present invention is to observe azimuth information of the target (body) viewed from the underwater vehicle, observe azimuth information and frequency information of the target viewed from the mother ship of the underwater vehicle, and observe the observed azimuth information. The target position, course, and speed are estimated based on the frequency information, and the course of the underwater vehicle is determined in accordance with the estimated target position, course, and speed, and the underwater vehicle is located in the determined course. This is a method and apparatus for guiding an underwater vehicle.

本発明のさらに具体的な態様は、水中航走体の針路の決定に際し、推定した目標の位置および針路の推定誤差を許容するマージンをとる水中航走体の誘導方法および装置である。   A more specific aspect of the present invention is a method and apparatus for guiding an underwater vehicle with a margin for allowing an estimated target position and a heading estimation error when determining the course of the underwater vehicle.

本発明による水中航走体誘導方法及び装置によれば、遠距離の目標に対しても、会合に有効な精度の運動諸元を早期に得ることができる。したがって誘導対象の水中航走体と目標とを高い確率で会合させることが可能となる。   According to the underwater vehicle guidance method and apparatus according to the present invention, it is possible to obtain, at an early stage, motion specifications effective for a meeting even for a long-distance target. Therefore, it is possible to associate the target underwater vehicle and the target with a high probability.

[実施例]
以下、本発明を実施例の水中航走体誘導方法及び装置の形態について図面を参照して説明する。図1に実施例の構成を示す。101は母船であり、102は母船から発進し、母船101からの制御を受けつつ航走する水中航走体である。水中航走体102は音響センサ103を備え、移動する目標である104が発する音響信号を捉える。捉えた信号は通信ワイヤ等105を通じて、母船101に通知される。母船101も音響センサ106を備えており、これら2種の音響センサからの情報は母船101で解析され、目標104の運動諸元を割り出した後、誘導装置107を通して水中航走体102に制御情報が送られる。
[Example]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings with respect to embodiments of an underwater vehicle guidance method and apparatus. FIG. 1 shows the configuration of the embodiment. Reference numeral 101 denotes a mother ship, and reference numeral 102 denotes an underwater vehicle that starts from the mother ship and travels under the control of the mother ship 101. The underwater vehicle 102 includes an acoustic sensor 103 and captures an acoustic signal emitted from a moving target 104. The captured signal is notified to the mother ship 101 through the communication wire 105 or the like. The mother ship 101 also includes an acoustic sensor 106. Information from these two kinds of acoustic sensors is analyzed by the mother ship 101, and after the motion parameters of the target 104 are determined, control information is transmitted to the underwater vehicle 102 through the guidance device 107. Will be sent.

図2は水中航走体102の誘導方法を実現するための機能ブロック図である。水中航走体102の音響センサ103は目標104からの音響信号を受信し、目標104の方位情報を母船101の目標運動解析部203に送出する。母船101の音響センサ106は、同様に目標104からの音響信号を受信し、目標104の方位、周波数の情報を目標運動解析部203に送出する。目標運動解析部203は、水中航走体音響センサ103と母船音響センサ106から受信した目標104の方位、周波数の情報から、目標104の位置、針路、速力を計算する。誘導制御部204は、目標運動解析部203から入力した目標104の位置、針路、速力をもとに、水中航走体102の針路を決定する。運動制御部205は誘導制御部204からの指示により水中航走体102の舵、推進器を制御する。   FIG. 2 is a functional block diagram for realizing the method for guiding the underwater vehicle 102. The acoustic sensor 103 of the underwater vehicle 102 receives the acoustic signal from the target 104 and sends the direction information of the target 104 to the target motion analysis unit 203 of the mother ship 101. Similarly, the acoustic sensor 106 of the mother ship 101 receives an acoustic signal from the target 104 and sends information on the direction and frequency of the target 104 to the target motion analysis unit 203. The target motion analysis unit 203 calculates the position, course, and speed of the target 104 from information on the direction and frequency of the target 104 received from the underwater vehicle acoustic sensor 103 and the mother ship acoustic sensor 106. The guidance control unit 204 determines the course of the underwater vehicle 102 based on the position, course, and speed of the target 104 input from the target motion analysis unit 203. The motion control unit 205 controls the rudder and propulsion unit of the underwater vehicle 102 according to instructions from the guidance control unit 204.

目標運動解析部203及び誘導制御部204は、図示を省略するが、CPU、メモリ、及び音響センサ106や水中航走体102との通信のためのインタフェイスを備えた演算装置である。運動制御部205も同様の構成であるが、小型化のために専用装置として構成されることがある。   Although not shown, the target motion analysis unit 203 and the guidance control unit 204 are a calculation device including a CPU, a memory, and an interface for communication with the acoustic sensor 106 and the underwater vehicle 102. The motion control unit 205 has the same configuration, but may be configured as a dedicated device for miniaturization.

図3は母船101の目標運動解析部203が、水中航走体102の音響センサ観測情報と母船101の音響センサ観測情報とを利用して実行する処理のフローチャートである。処理301では、水中航走体102の音響センサ103による方位観測情報を読み込む。処理302では、母船101の音響センサ106による方位観測情報を読み込む。   FIG. 3 is a flowchart of processing executed by the target motion analysis unit 203 of the mother ship 101 using the acoustic sensor observation information of the underwater vehicle 102 and the acoustic sensor observation information of the mother ship 101. In process 301, direction observation information by the acoustic sensor 103 of the underwater vehicle 102 is read. In process 302, direction observation information by the acoustic sensor 106 of the mother ship 101 is read.

処理303では、目標104の状態ベクトル推定値の初期値を設定する。   In process 303, an initial value of the state vector estimated value of the target 104 is set.

Figure 0004966794
Figure 0004966794

処理304では、与えられた目標104の状態ベクトル推定値xと、それまでの観測時刻tiにおける水中航走体102の位置情報rmtxi、rmtyiから、観測時刻tiでの水中航走体102から見た推定目標方位gi(x)を計算する。 In the process 304, the state vector estimate x of the target 104 that has been given, so far the observation time underwater vehicle 102 at t i positional information rmt x i, from rmt y i, underwater at observation time t i The estimated target direction g i (x) viewed from the running body 102 is calculated.

Figure 0004966794
Figure 0004966794

処理305では、目標104の状態ベクトル推定値xと、観測時刻tiにおける母船101の位置情報shipxi、shipyiから、観測時刻tiでの母船センサ106から見た推定目標方位h i(x)を計算する。 In the process 305, the state vector estimate x of the target 104, measurement time t positional information ship x i mother ship 101 in i, the ship y i, measurement time t estimated target direction as seen from the mother ship sensor 106 at i h i Calculate (x).

Figure 0004966794
Figure 0004966794

処理306では、目標104の状態ベクトル推定値xと、観測時刻tiにおける母船センサ106から見た推定目標方位hi(x)と、観測時刻tiにおける母船101の針路shipciと、水中音速Cから、観測時刻tiでの母船センサ106から見た推定目標周波数ki(x)を計算する。 In the process 306, the state vector estimate x of the target 104, and the estimated target direction h i (x) as viewed from the mother ship sensor 106 at the observation time t i, and course ship c i mother ship 101 at the observation time t i, water From the sound velocity C, an estimated target frequency k i (x) viewed from the mother ship sensor 106 at the observation time t i is calculated.

Figure 0004966794
Figure 0004966794

ここで、 here,

Figure 0004966794
Figure 0004966794

Figure 0004966794
Figure 0004966794

処理307では、それまでの観測時刻tiにおける水中航走体音響センサ103の観測方位情報rmtθiと、処理304で求めた観測時刻tiの推定目標方位gi(x)との差分jg(x)を求め、それまでの観測時刻にわたってこれらの和をとったものを水中航走体センサ方位残差jgsum(x)として算出する。 In process 307, a difference between the observation direction information rmt theta i of underwater vehicle an acoustic sensor 103 at the observation time t i up to it, and the estimated target direction g i of observation time t i obtained in process 304 (x) jg (x) is obtained, and the sum of these values over the previous observation times is calculated as the underwater vehicle sensor orientation residual jg sum (x).

Figure 0004966794
Figure 0004966794

Figure 0004966794
Figure 0004966794

処理308では、観測時刻tiにおける母船音響センサ106の観測方位情報shipθiと、処理305で求めた観測時刻tiの推定目標方位h i(x)との差分jh(x)を求め、それまでの観測時刻にわたってこれらの和をとったものを母船音響センサ方位残差jhsum(x)として算出する。 In process 308 obtains the observation direction information ship theta i mother ship acoustic sensor 106 at the observation time t i, the difference jh between the estimated target direction h i of observation time t i obtained in process 305 (x) a (x), The sum of these values over the previous observation time is calculated as the mother ship acoustic sensor heading residual jh sum (x).

Figure 0004966794
Figure 0004966794

Figure 0004966794
Figure 0004966794

処理309では、観測時刻tiにおける母船音響センサ106の観測周波数情報shipfiと、処理306で求めた観測時刻tiの推定目標周波数ki(x)との差分jk(x)を求め、それまでの観測時刻にわたってこれらの和をとったものを母船音響センサ周波数残差jksum(x)として算出する。 In process 309 obtains the observation frequency information ship f i mother ship acoustic sensor 106 at the observation time t i, the difference jk between the estimated target frequency k i of the observation time t i obtained in process 306 (x) (x), The sum of these over the previous observation times is calculated as the mother ship acoustic sensor frequency residual jk sum (x).

Figure 0004966794
Figure 0004966794

Figure 0004966794
Figure 0004966794

処理310では、処理304で水中航走体音響センサ103からみた推定目標方位gi(x)を計算するのに使用した式(2)を、状態ベクトル推定値xのそれぞれの要素で偏微分した式から微係数Gを求める。 In the process 310, the equation (2) used to calculate the estimated target direction g i (x) viewed from the underwater vehicle acoustic sensor 103 in the process 304 is partially differentiated by each element of the state vector estimated value x. The derivative G is obtained from the equation.

Figure 0004966794
Figure 0004966794

処理311では、処理305で母船センサ106からみた推定目標方位h i(x)を計算するのに使用した式(3)を、状態ベクトル推定値xのそれぞれの要素で偏微分した式から微係数Hを求める。 In the process 311, the equation (3) used to calculate the estimated target direction h i (x) as viewed from the mother ship sensor 106 in the process 305 is obtained by subtracting a derivative from the expression obtained by partial differentiation with respect to each element of the state vector estimated value x. Find H.

Figure 0004966794
Figure 0004966794

処理312では、処理306で母船センサ106からみた推定目標周波数ki(x)を計算するのに使用した式(4)を、状態ベクトル推定値xのそれぞれの要素で偏微分した式から微係数Kを求める。 In the process 312, the equation (4) used to calculate the estimated target frequency k i (x) as viewed from the mother ship sensor 106 in the process 306 is derived from the partial differential of the respective elements of the state vector estimated value x. Find K.

Figure 0004966794
Figure 0004966794

処理313では、処理307で求めた水中航走体センサ方位残差jg(x)、処理310で求めた微係数G、処理308で求めた母船センサ方位残差jh(x)、処理311で求めた微係数H、処理309で求めた母船センサ周波数残差jk(x)、および処理312で求めた微係数Kから、状態ベクトルxの更新量Δxを求める。なお、λは定数、Iは単位行列である。   In process 313, the underwater vehicle sensor orientation residual jg (x) obtained in process 307, derivative G obtained in process 310, mother ship sensor orientation residual jh (x) obtained in process 308, and obtained in process 311 The update amount Δx of the state vector x is obtained from the differential coefficient H, the mother ship sensor frequency residual jk (x) obtained in the processing 309, and the differential coefficient K obtained in the processing 312. Λ is a constant and I is a unit matrix.

Figure 0004966794
Figure 0004966794

処理314では、処理313で求めた状態ベクトルの更新量Δxを使用して、状態ベクトルxの値を更新する。   In the process 314, the value of the state vector x is updated using the state vector update amount Δx obtained in the process 313.

Figure 0004966794
Figure 0004966794

分岐315において、処理313で求めた状態ベクトルの更新量Δxが所定値以下となっていれば、その段階の状態ベクトルxを解として採用し、処理を終了する。状態ベクトルの更新量Δxが所定値より大きければ、処理304以降を状態ベクトルの更新量Δxが所定値以下となるまで繰り返す。これにより、目標104の運動諸元が正確に求められる。   If the state vector update amount Δx obtained in step 313 is equal to or less than a predetermined value in the branch 315, the state vector x at that stage is adopted as a solution, and the process ends. If the state vector update amount Δx is larger than the predetermined value, the processing 304 and subsequent steps are repeated until the state vector update amount Δx becomes equal to or smaller than the predetermined value. As a result, the motion specifications of the target 104 are accurately obtained.

図4は、母船101の誘導制御部204が、目標運動解析部203で求めた目標104の位置、針路、速力をもとに水中航走体102の針路を決定する処理の概念図である。   FIG. 4 is a conceptual diagram of processing in which the guidance control unit 204 of the mother ship 101 determines the course of the underwater vehicle 102 based on the position, course, and speed of the target 104 obtained by the target motion analysis unit 203.

401は計算実行時点での水中航走体102の位置、402は水中航走体102の針路、403は水中航走体センサ103の覆閾、Φbeam/2は水中航走体センサ103のビーム幅(半角値)である。405は目標運動解析部203で求めた目標104の位置、406は目標運動解析部203で求めた目標104の針路tgtcであり、gi(x)は水中航走体102の現在位置からみた目標104の方位である。 401 is the position of the underwater vehicle 102 at the time of calculation, 402 is the course of the underwater vehicle 102, 403 is the threshold of the underwater vehicle sensor 103, and Φ beam / 2 is the beam of the underwater vehicle sensor 103 The width (half-width value). 405 is the position of the target 104 obtained by the target motion analysis unit 203, 406 is the course tgt c of the target 104 obtained by the target motion analysis unit 203, and g i (x) is seen from the current position of the underwater vehicle 102 This is the direction of the target 104.

目標104の方位gi(x)をもとに、水中航走体102への航走指示方位ccmdを算出する。水中航走体102への指示針路は、水中航走体102の現在位置からみた解析目標の方位gi(x)を、水中航走体センサ103のビーム内の所定角度Φlookに捉えるように決定する。Φlookは、水中航走体センサ103によって得られる観測方位が、目標運動解析処理203に対して有効性の大なるものとなるよう、水中航走体センサ103のビーム幅Φbeam/2に極力近い値とし、かつ目標運動解析処理の結果である、目標運動解析部203で求めた目標104の位置405及び目標運動解析部203で求めた目標104の針路tgtc406が内包する誤差、及び目標104と水中航走体102の相対運動の影響によって、目標104が水中航走体センサ103の覆閾から外れることを避けるために適切なマージンα(α≦1.0)をとり、Φbeam/2よりやや小さい角度とする。 Based on the direction g i (x) of the target 104, the navigation instruction direction c cmd to the underwater vehicle 102 is calculated. The pointing course to the underwater vehicle 102 is such that the orientation g i (x) of the analysis target viewed from the current position of the underwater vehicle 102 is captured at a predetermined angle Φ look in the beam of the underwater vehicle sensor 103. decide. Φ look is set to the beam width Φ beam / 2 of the underwater vehicle sensor 103 as much as possible so that the observation direction obtained by the underwater vehicle sensor 103 becomes more effective for the target motion analysis process 203. The position of the target 104 obtained by the target motion analysis unit 203, the error included in the course tgt c406 of the target 104 obtained by the target motion analysis unit 203, and the target 104, which are close values and are the result of the target motion analysis process And an appropriate margin α (α ≦ 1.0) in order to avoid the target 104 from deviating from the cover threshold of the underwater vehicle sensor 103 due to the relative motion of the underwater vehicle 102 and slightly more than Φ beam / 2. Use a small angle.

なお、目標運動解析処理203に対して有効性の大、すなわち、目標運動解析処理203によって高精度の結果を得るためには、水中航走体102から見た目標の方位変化率が大きいほうが良い。一般に、方位変化率を最大化する運動としては、目標を正横付近に見るように航走するのが理想であるが、一方これと同時に、水中航走体センサ103で目標を捕捉しておく必要がある。これらの条件を同時に満足するためには、センサのビーム幅内で極力正横に近い位置に目標を置くように、水中航走体の針路を決定すればよい。   It should be noted that in order to obtain a highly effective result with respect to the target motion analysis process 203, that is, to obtain a highly accurate result by the target motion analysis process 203, it is better that the direction change rate of the target viewed from the underwater vehicle 102 is large. In general, it is ideal for the movement to maximize the heading change rate, but it is ideal to sail so that the target is seen near the right side, but at the same time, the target is captured by the underwater vehicle sensor 103. There is a need. In order to satisfy these conditions at the same time, the course of the underwater vehicle may be determined so that the target is positioned as close to the front side as possible within the beam width of the sensor.

Figure 0004966794
Figure 0004966794

これより、水中航走体102への航走指示方位ccmdは、水中航走体102の現在位置からみた目標の方位gi(x)から角度Φlookを減じた方位となる。 As a result, the traveling instruction direction c cmd to the underwater vehicle 102 is a direction obtained by subtracting the angle Φ look from the target direction g i (x) viewed from the current position of the underwater vehicle 102.

Figure 0004966794
Figure 0004966794

ここで、 here,

Figure 0004966794
Figure 0004966794

410は、ccmdに対応した水中航走体102への指示針路である。これにより、水中航走体102のセンサ103が目標104を失探する確率を低く押えつつ、目標104の運動諸元を正確に求めるのに適した観測方位情報を得ることができる。
なお、式(19)に示すように、本誘導方式は、解析で求めた目標方位gi(x)に対して航走指示方位ccmdを求める方式をとっており、水中航走体102のセンサ103が目標104を失探した場合でも、外挿計算によって得られるgi(x)に基づいて誘導を継続することができる。
410 is an instruction course to underwater vehicle 102 corresponding to the c cmd. This makes it possible to obtain observation azimuth information suitable for accurately determining the motion specifications of the target 104 while keeping the probability that the sensor 103 of the underwater vehicle 102 will miss the target 104 low.
As shown in Equation (19), the present guidance method is a method for obtaining the traveling instruction direction c cmd with respect to the target direction g i (x) obtained in the analysis, and the underwater vehicle 102 Even when the sensor 103 misses the target 104, the guidance can be continued based on g i (x) obtained by extrapolation calculation.

図5は、母船101の誘導制御部204が出力する指示針路に従って、水中航走体102の運動制御部205が航走を制御した場合の、水中航走体102の航跡の概念図である。501、502及び503は各時刻における水中航走体102からみた目標104の方位、504、505及び506はそれぞれ501、502及び503に対応した水中航走体102への指示針路である。507は水中航走体の航跡である。目標104を自己の針路から一定方向にみるように水中航走体102が運動する結果、航跡507は螺旋形に近い形状となる。これにより、水中航走体102のセンサ103が目標104を失探する確率を低く押えつつ、得られた観測方位情報を使用して解析を行うことによって、目標104の正確な運動諸元を求めることができる。   FIG. 5 is a conceptual diagram of the track of the underwater vehicle 102 when the movement control unit 205 of the underwater vehicle 102 controls the traveling according to the instruction course output by the guidance control unit 204 of the mother ship 101. Reference numerals 501, 502, and 503 denote the direction of the target 104 viewed from the underwater vehicle 102 at each time, and reference numerals 504, 505, and 506 denote instruction courses to the underwater vehicle 102 corresponding to 501, 502, and 503, respectively. 507 is the track of the underwater vehicle. As a result of the underwater vehicle 102 moving so that the target 104 is seen from its own course in a certain direction, the wake 507 has a shape close to a spiral. As a result, while the probability that the sensor 103 of the underwater vehicle 102 misses the target 104 is kept low, an accurate motion specification of the target 104 is obtained by performing analysis using the obtained observation direction information. be able to.

図6〜図13に、特許文献1による誘導法による水中航走体制御の計算機シミュレーションの結果と本実施例による水中航走体制御の計算機シミュレーションの結果を示す。   6 to 13 show the results of the computer simulation of the underwater vehicle control by the guidance method according to Patent Document 1 and the results of the computer simulation of the underwater vehicle control according to this embodiment.

図6に特許文献1記載の、母船センサの観測情報のみを使った誘導法によって誘導した場合の水中航走体制御の航跡を、図7に本実施例の誘導法によって誘導した場合の水中航走体制御の航跡を示す。601、701は目標104の航跡、602、702は母船101の航跡、603、703は水中航走体102の航跡を示す。   FIG. 6 shows the track of underwater vehicle control when guided by the guidance method using only the observation information of the mother ship sensor described in Patent Document 1, and FIG. 7 shows the underwater navigation when guided by the guidance method of this embodiment. The track of the runner control is shown. Reference numerals 601 and 701 indicate the track of the target 104, 602 and 702 indicate the track of the mother ship 101, and 603 and 703 indicate the track of the underwater vehicle 102.

図8に本実施例による目標までの距離の解析状況を示す。図9に同じく目標方位の解析状況を、図10に同じく目標速力の解析状況を、図11に同じく針路の解析状況を示す。いずれの図においても、水中航走体102は600秒の時点で航走を開始しており、この時刻以降の解析結果を比較すると、母船センサ106の観測情報のみを使って解析を行った場合に比べ、母船センサ106と水中航走体センサ103の観測情報を組み合わせて解析した方が、精度が向上していることが分かる。   FIG. 8 shows the analysis status of the distance to the target according to this embodiment. FIG. 9 shows the analysis status of the target direction, FIG. 10 shows the analysis status of the target speed, and FIG. 11 shows the analysis status of the course. In both figures, the underwater vehicle 102 has started running at 600 seconds, and when the analysis results after this time are compared, the analysis is performed using only the observation information of the mother ship sensor 106. It can be seen that the accuracy is improved when the combined analysis information of the mother ship sensor 106 and the underwater vehicle detector 103 is analyzed.

図12に特許文献1記載の、母船センサ106の観測情報のみを使った誘導法によった場合の会合状況の集計結果を、図13に本実施例の誘導法によった場合の会合状況の集計結果を示す。図12及び図13はいずれも母船センサ106、水中航走体センサ103の観測方位を正規乱数によって変化させ、100回の試行を行った結果である。これと併せて、水中航走体102と目標104の間の距離が100m以下となった場合を会合成功とした場合の、会合成功となった回数の割合を会合成功率として示している。特許文献1記載の誘導法によった場合の会合成功率は24.0%、本実施例の誘導法によった場合の会合成功率は97.0%である。   FIG. 12 shows the totaling result of the meeting situation when the guidance method using only the observation information of the mother ship sensor 106 described in Patent Document 1 is shown, and FIG. 13 shows the meeting situation when the guidance method of this embodiment is used. Shows the total result. FIG. 12 and FIG. 13 both show the results of 100 trials with the observation direction of the mother ship sensor 106 and the underwater vehicle sensor 103 changed by normal random numbers. In addition, the rate of successful meetings is shown as the meeting success rate when the distance between the underwater vehicle 102 and the target 104 is 100 m or less. The association success rate when using the induction method described in Patent Document 1 is 24.0%, and the association success rate when using the induction method of this example is 97.0%.

実施例を構成を示す概念図である。It is a conceptual diagram which shows a structure of an Example. 実施例による水中航走体の誘導方法を実現するための機能ブロック図である。It is a functional block diagram for implement | achieving the underwater vehicle guidance method by an Example. 母船の目標運動解析部の処理フローチャートである。It is a process flowchart of the target motion analysis part of a mother ship. 母船の誘導制御部が水中航走体の針路を決定する処理の概念図である。It is a conceptual diagram of the process which the guidance control part of a mother ship determines the course of an underwater vehicle. 本実施例により水中航走体を制御した場合の、水中航走体の航跡の概念図である。It is a conceptual diagram of the track of an underwater vehicle when the underwater vehicle is controlled according to the present embodiment. 母船センサの観測情報のみを使った誘導法によって誘導した場合の、水中航走体の航跡を示したグラフである。It is the graph which showed the track of the underwater vehicle when it was guided by the guidance method using only the observation information of the mother ship sensor. 水中航走体の制御を本実施例によった場合の、水中航走体の航跡を示したグラフである。It is the graph which showed the track of the underwater vehicle at the time of controlling the underwater vehicle according to the present embodiment. 目標距離の解析状況を示したグラフである。It is the graph which showed the analysis situation of target distance. 目標方位の解析状況を示したグラフである。It is the graph which showed the analysis situation of the target direction. 目標速力の解析状況を示したグラフである。It is the graph which showed the analysis situation of target speed. 目標針路の解析状況を示したグラフである。It is the graph which showed the analysis situation of the target course. 母船センサの観測情報のみを使った誘導法によって誘導した場合の、目標と水中航走体の会合状況を示したグラフである。It is the graph which showed the meeting situation of a target and an underwater vehicle when it was guided by the guidance method using only the observation information of the mother ship sensor. 水中航走体の制御を本実施例によった場合の、目標と水中航走体の会合状況を示したグラフである。It is the graph which showed the meeting condition of a target and an underwater vehicle when control of an underwater vehicle is based on a present Example.

符号の説明Explanation of symbols

101…母船、102…水中航走体、103、106…音響センサ、104…目標(体)、203…目標運動解析部、204…誘導制御部、205…運動制御部。   DESCRIPTION OF SYMBOLS 101 ... Mother ship, 102 ... Underwater navigation body, 103, 106 ... Acoustic sensor, 104 ... Target (body), 203 ... Target motion analysis part, 204 ... Guidance control part, 205 ... Motion control part.

Claims (4)

水中航走体に備えた第1の音響センサにより目標の第1の方位情報を観測し、
前記水中航走体の母船に備えた第2の音響センサにより前記目標の第2の方位情報および周波数情報を観測し、
前記観測した第1の方位情報、第2の方位情報及び周波数情報に基づいて、前記目標の位置、針路及び速力を推定し、
前記推定した前記目標の位置、針路及び速力に対応して、前記水中航走体の針路を決定し、前記決定した針路に前記水中航走体を誘導する水中航走体の誘導方法。
The first direction information of the target is observed by the first acoustic sensor provided in the underwater vehicle,
The second azimuth information and frequency information of the target are observed by a second acoustic sensor provided on the mother ship of the underwater vehicle,
Based on the observed first azimuth information, second azimuth information and frequency information, estimate the target position, course and speed,
A method for guiding an underwater vehicle, wherein a course of the underwater vehicle is determined in accordance with the estimated position, course, and speed of the target, and the underwater vehicle is guided to the determined course.
前記水中航走体の針路の決定に際し、前記推定した前記目標の位置および針路の推定誤差を許容するマージンをとる請求項1記載の水中航走体の誘導方法。   The method for guiding an underwater vehicle according to claim 1, wherein a margin for allowing an error in estimation of the estimated target position and course is taken in determining the course of the underwater vehicle. 水中航走体に備え、目標の第1の方位情報を観測する第1の音響センサ、
前記水中航走体の母船に備え、前記目標の第2の方位情報および周波数情報を観測する第2の音響センサ、および
前記第1の音響センサからの前記第1の方位情報、前記第2の音響センサからの前記第2の方位情報及び周波数情報に基づいて、前記目標の位置、針路及び速力を推定し、前記推定した前記目標の位置、針路及び速力に対応して、前記水中航走体の針路を決定し、前記決定した針路に前記水中航走体を誘導する装置を有する水中航走体の誘導装置。
A first acoustic sensor for observing first target orientation information in preparation for the underwater vehicle;
In preparation for the mother ship of the underwater vehicle, a second acoustic sensor for observing the target second orientation information and frequency information, and the first orientation information from the first acoustic sensor, the second Based on the second azimuth information and frequency information from the acoustic sensor, the target position, course, and speed are estimated, and the underwater vehicle according to the estimated target position, course, and speed An underwater vehicle guidance device having a device for determining the course of the vehicle and guiding the underwater vehicle to the determined course.
前記装置は、前記水中航走体の針路の決定に際し、前記推定した前記目標の位置および針路の推定誤差を許容するマージンをとる請求項3記載の水中航走体の誘導装置。   4. The apparatus for guiding an underwater vehicle according to claim 3, wherein the device takes a margin for allowing an error in estimating the target position and the estimated course when determining the course of the underwater vehicle.
JP2007238234A 2007-09-13 2007-09-13 Underwater vehicle guidance method and apparatus Active JP4966794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007238234A JP4966794B2 (en) 2007-09-13 2007-09-13 Underwater vehicle guidance method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238234A JP4966794B2 (en) 2007-09-13 2007-09-13 Underwater vehicle guidance method and apparatus

Publications (2)

Publication Number Publication Date
JP2009068779A JP2009068779A (en) 2009-04-02
JP4966794B2 true JP4966794B2 (en) 2012-07-04

Family

ID=40605228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238234A Active JP4966794B2 (en) 2007-09-13 2007-09-13 Underwater vehicle guidance method and apparatus

Country Status (1)

Country Link
JP (1) JP4966794B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130574B1 (en) 2010-01-29 2012-03-30 국방과학연구소 Target classification method and apparatus thereof
JP2013250277A (en) * 2013-08-14 2013-12-12 Nec Corp Target motion analysis method and target motion analysis device
KR101688064B1 (en) * 2015-04-06 2016-12-20 국방과학연구소 A formation control method of multiple torpedos to deceive sensors of the target and control apparatus thereof
JP7115761B2 (en) * 2020-02-26 2022-08-09 Necネットワーク・センサ株式会社 Homing device and homing method
CN111572737B (en) * 2020-05-28 2022-04-12 大连海事大学 AUV capturing and guiding method based on acoustic and optical guidance
CN113627104B (en) * 2021-08-12 2024-02-06 北京中安智能信息科技有限公司 Underwater submarine track simulation method, device and equipment under multiple constraint conditions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161796U (en) * 1982-04-23 1983-10-27 三菱重工業株式会社 Underwater vehicle with sonar
JPH03282391A (en) * 1990-03-30 1991-12-12 Nec Corp Guiding device for underwater sailing body
JPH03282200A (en) * 1990-03-30 1991-12-12 Hitachi Ltd Launchng and guiding method for underwater sailing body
JP2666006B2 (en) * 1991-06-05 1997-10-22 日本航空電子工業株式会社 Underwater vehicle position measurement device
JP3694375B2 (en) * 1996-11-26 2005-09-14 株式会社日立製作所 Underwater vehicle navigation method and apparatus
JP3039477B2 (en) * 1997-09-03 2000-05-08 日本電気株式会社 Target speed calculation method

Also Published As

Publication number Publication date
JP2009068779A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4966794B2 (en) Underwater vehicle guidance method and apparatus
JP5041099B2 (en) Vehicle relative position estimation device and vehicle relative position estimation method
JP5968894B2 (en) Underwater vehicle position and orientation estimation based on correlated sensor data
US8442709B2 (en) Underwater investigation system providing unmanned underwater vehicle (UUV) guidance based upon updated position state estimates and related methods
JP5396873B2 (en) Driver operation prediction apparatus and program
JP6471749B2 (en) Position / orientation estimation apparatus, image processing apparatus, and position / orientation estimation method
KR101370649B1 (en) Route control method for the autonomous underwater vehicle
US11188080B2 (en) Boat and control method for same
US11243538B2 (en) Boat and control method for same
KR101789188B1 (en) An underwater integrated navigation system for tracking underwater moving objects
JP2003127983A (en) Navigation control device for autonomous underwater vehicle
JP4213518B2 (en) Control method and control apparatus for moving body
Noguchi et al. Tracking omnidirectional surfaces using a low-cost autonomous underwater vehicle
JP4625766B2 (en) Flying object guidance device and target meeting time prediction method
JP7342244B2 (en) Method and system for determining depth of an object
KR101169215B1 (en) Method for estimating passive sonar data of underwater vehicle for real-time simulation and simulating apparatus having the same
JP5040134B2 (en) Vehicle control apparatus and method
JP4882544B2 (en) TRACKING PROCESSING DEVICE, ITS METHOD, AND PROGRAM
CN115168787B (en) Flight trajectory associated tracking method based on speculative calculation
JP4689546B2 (en) Vehicle object detection device
KR20080084435A (en) Position estimation method, system and recorded media of mobile system using odometer and heading sensor
JP5933350B2 (en) Guidance device
JP2014121927A (en) Underwater vehicle
JP6757227B2 (en) Motion parameter estimation device, motion parameter estimation method and program
JP2008275206A (en) Flying object guide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Ref document number: 4966794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3