JP2007177900A - Tapered roller bearing - Google Patents

Tapered roller bearing Download PDF

Info

Publication number
JP2007177900A
JP2007177900A JP2005377354A JP2005377354A JP2007177900A JP 2007177900 A JP2007177900 A JP 2007177900A JP 2005377354 A JP2005377354 A JP 2005377354A JP 2005377354 A JP2005377354 A JP 2005377354A JP 2007177900 A JP2007177900 A JP 2007177900A
Authority
JP
Japan
Prior art keywords
ring
tapered
tapered roller
bearing
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005377354A
Other languages
Japanese (ja)
Inventor
Masatsugu Mori
正継 森
Sun-Woo Lee
ソン雨 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005377354A priority Critical patent/JP2007177900A/en
Publication of JP2007177900A publication Critical patent/JP2007177900A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/225Details of the ribs supporting the end of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • F16C33/605Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings with a separate retaining member, e.g. flange, shoulder, guide ring, secured to a race ring, adjacent to the race surface, so as to abut the end of the rolling elements, e.g. rollers, or the cage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone

Abstract

<P>PROBLEM TO BE SOLVED: To adjust a preload by a simple structure during operation without lowering the rigidity of a bearing in the rotating range between low-speed rotation and high-speed rotation. <P>SOLUTION: The large flange part of an inner ring 2 on the raceway surface 2a side is formed of a separate flange ring 6. A tapered surface 6a diverting to the end face of the tapered roller 4 on the opposite side of the large end surface 4a of a tapered roller 4 is formed on the inner diameter side of the flange ring 6. A fixed tapered ring 7 having, on the outer diameter side, a tapered surface 7a fitted to the tapered surface 6a of the flange ring 6 is secured to a bearing box 12. The flange ring 6 is axially moved along the tapered surface 7a of the fixed tapered ring 7 due to a difference in thermal expansion amount between the flange ring 6 and the fixed tapered ring 7 caused by the rotation of a bearing. Consequently, the preload can be adjusted during the operation by axially moving the flange ring 6 not receiving a tightening force by a simple structure without lowering the rigidity of the bearing in the rotating range between the low-speed rotation and the high-speed rotation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、円錐ころ軸受に関し、特に、工作機械の主軸の支持に好適な円錐ころ軸受に関する。   The present invention relates to a tapered roller bearing, and more particularly to a tapered roller bearing suitable for supporting a main shaft of a machine tool.

工作機械では、加工精度や加工面の品位の向上と加工能率の向上のために、主軸の高剛性化と高速回転化が進んでおり、主軸を支持する転がり軸受には、ラジアル荷重とアキシアル荷重を高い剛性で支持できる円錐ころ軸受が多く用いられるようになっている。工作機械の主軸を支持する円錐ころ軸受は、内輪が回転する主軸に取り付けられ、外輪が軸受箱に固定されるが、主軸が高速回転すると、内輪の温度上昇が外輪よりも大きくなり、その熱膨張量の差によって軸受隙間が減少する。このため、工作機械の運転中に軸受の予圧が過大となって、発熱や焼付き等の不具合が生じることがある。   In machine tools, the spindle has become more rigid and faster in order to improve machining accuracy, machined surface quality, and machining efficiency. Rolling bearings that support the spindle have radial and axial loads. In many cases, tapered roller bearings capable of supporting the shaft with high rigidity have been used. The tapered roller bearing that supports the main shaft of a machine tool is attached to the main shaft on which the inner ring rotates, and the outer ring is fixed to the bearing housing.When the main shaft rotates at a high speed, the temperature rise of the inner ring becomes larger than that of the outer ring, and the heat The bearing gap decreases due to the difference in expansion amount. For this reason, the preload of the bearing becomes excessive during the operation of the machine tool, and problems such as heat generation and seizure may occur.

工作機械の運転中における円錐ころ軸受の過大予圧を抑制する手段としては、ばね等によって外輪を軸方向へ押圧する定圧予圧方法や、高速回転時に適正予圧となるように、組立て時に軸受隙間を調整する定位置予圧方法がある。また、外輪を軸方向へ押圧移動させる油圧シリンダ装置を設けて、運転中に予圧を調整するようにしたものもある(例えば、特許文献1参照)。   As a means to suppress excessive preload of the tapered roller bearing during machine tool operation, a constant pressure preload method that presses the outer ring in the axial direction with a spring or the like, and adjustment of the bearing clearance during assembly to ensure proper preload during high-speed rotation There is a fixed position preload method. There is also a hydraulic cylinder device that presses and moves the outer ring in the axial direction so as to adjust the preload during operation (for example, see Patent Document 1).

実開平5−32828号公報Japanese Utility Model Publication No. 5-32828

上述したばね等で外輪を軸方向へ押圧する定圧予圧方法は、軸受剛性が低くなるので、工作機械の加工精度や加工面の品位で問題を生じる場合がある。また、高速回転時に適正予圧となるように軸受隙間を調整する定位置予圧方法は、低速回転時に軸受隙間が大きくなって軸受剛性が低下し、やはり加工精度や加工面の品位が低下する。   The constant pressure preloading method in which the outer ring is pressed in the axial direction with a spring or the like as described above may cause problems in the machining accuracy of the machine tool and the quality of the machined surface because the bearing rigidity is lowered. Further, the fixed position preloading method for adjusting the bearing clearance so as to obtain an appropriate preload during high-speed rotation increases the bearing clearance during low-speed rotation and decreases the bearing rigidity, which also decreases the processing accuracy and the quality of the processed surface.

一方、特許文献1に記載された油圧シリンダ装置で外輪を軸方向へ押圧移動させて、運転中に予圧を調整する方法は、工作機械の運転中には外輪も熱膨張するので、軸受箱による外輪の締付け力が大きくなり、スムーズに外輪を軸方向へ移動させるのが難しい問題がある。また、運転中の外輪にはラジアル荷重やアキシアル荷重等の軸受荷重も負荷されるので、外輪を軸方向へ移動させるためには大きな出力の油圧シリンダ装置を必要とする。   On the other hand, the method of adjusting the preload during operation by pressing and moving the outer ring in the axial direction with the hydraulic cylinder device described in Patent Document 1 causes the outer ring to thermally expand during operation of the machine tool. There is a problem that the tightening force of the outer ring becomes large and it is difficult to smoothly move the outer ring in the axial direction. Further, since a bearing load such as a radial load or an axial load is also applied to the outer ring during operation, a hydraulic cylinder device with a large output is required to move the outer ring in the axial direction.

そこで、本発明の課題は、低速回転から高速回転まで軸受剛性を低下させることなく、簡単な構成で運転中に予圧を調整できるようにすることである。   Accordingly, an object of the present invention is to make it possible to adjust the preload during operation with a simple configuration without reducing the bearing rigidity from low speed rotation to high speed rotation.

上記の課題を解決するために、本発明は、回転軸に取り付けられる内輪の軌道面と、軸受箱に固定される外輪の軌道面との間に複数の円錐ころを配列し、これらの円錐ころの大端面側への軸方向移動を規制する大鍔部を前記内輪の軌道面側に設けた円錐ころ軸受において、前記大鍔部を別体の鍔輪で形成して、この鍔輪の内径側に前記円錐ころの大端面と反対側の端面側へ拡径するテーパ面を設け、この鍔輪のテーパ面と嵌合するテーパ面を外径側に有する固定テーパ輪を前記軸受箱側に固定して、軸受回転中の温度上昇による前記鍔輪と固定テーパ輪との熱膨張量差によって、鍔輪を前記固定テーパ輪のテーパ面に沿って軸方向へ移動させる構成を採用した。   In order to solve the above-described problems, the present invention provides a plurality of tapered rollers arranged between a raceway surface of an inner ring attached to a rotating shaft and a raceway surface of an outer ring fixed to a bearing housing, and these tapered rollers. In the tapered roller bearing in which the large collar portion that restricts the axial movement of the inner ring toward the large end surface side is provided on the raceway surface side of the inner ring, the large collar portion is formed as a separate collar ring, and the inner diameter of the collar ring A tapered surface having a tapered surface on the outer diameter side is provided on the bearing housing side so that a tapered surface that expands toward the end surface on the side opposite to the large end surface of the tapered roller is provided. A configuration is adopted in which the saddle wheel is moved in the axial direction along the tapered surface of the fixed taper ring due to a difference in thermal expansion between the saddle wheel and the fixed taper ring due to a temperature rise during rotation of the bearing.

すなわち、内輪の軌道面側の大鍔部を別体の鍔輪で形成して、この鍔輪の内径側に円錐ころの大端面と反対側の端面側へ拡径するテーパ面を設け、この鍔輪のテーパ面と嵌合するテーパ面を外径側に有する固定テーパ輪を軸受箱側に固定して、軸受回転中の温度上昇による鍔輪と固定テーパ輪との熱膨張量差によって、鍔輪を固定テーパ輪のテーパ面に沿って軸方向へ移動させることにより、締付け力が作用しない鍔輪を簡単な構成で軸方向へ移動させて、低速回転から高速回転まで軸受剛性を低下させることなく、運転中に予圧を調整できるようにした。   That is, a large collar portion on the raceway surface side of the inner ring is formed by a separate collar, and a tapered surface is provided on the inner diameter side of the collar to expand to the end surface side opposite to the large end surface of the tapered roller. A fixed taper ring having a tapered surface on the outer diameter side that fits with the tapered surface of the saddle wheel is fixed to the bearing box side, and due to a difference in thermal expansion between the saddle wheel and the fixed tapered ring due to a temperature rise during bearing rotation, By moving the saddle wheel in the axial direction along the taper surface of the fixed taper ring, the rigid ring that does not act on the tightening force can be moved in the axial direction with a simple configuration to reduce the bearing rigidity from low speed rotation to high speed rotation. The preload can be adjusted during operation.

前記鍔輪は円錐ころの大端面と摺接するので、軸受が高速回転になるほど温度上昇量が大きくなって、固定テーパ輪よりも熱膨張量が大きくなり、この固定テーパ輪との熱膨張量差によって、鍔輪は円錐ころの大端面から逃げる方向へ軸方向移動する。また、前述したように、軸受が高速回転になるほど内輪の温度上昇が外輪よりも大きくなって、その熱膨張量の差によって軸受隙間が減少する。したがって、高速回転になって軸受隙間が減少するときに、円錐ころを鍔輪側へ逃がして運転中に予圧を調整することができる。   Since the roller ring is in sliding contact with the large end surface of the tapered roller, the temperature rise increases as the bearing rotates at a higher speed, and the thermal expansion amount becomes larger than that of the fixed tapered ring. As a result, the saddle wheel moves axially in a direction to escape from the large end face of the tapered roller. Further, as described above, as the bearing rotates at a higher speed, the temperature increase of the inner ring becomes larger than that of the outer ring, and the bearing gap decreases due to the difference in the amount of thermal expansion. Therefore, when the bearing clearance is reduced due to high-speed rotation, the preload can be adjusted during operation by letting the tapered rollers escape to the side of the saddle wheel.

前記鍔輪を前記固定テーパ輪よりも線膨張係数の大きい材料で形成することにより、固定テーパ輪との熱膨張量差をより大きくして、鍔輪を円錐ころの大端面から逃げる方向へ軸方向移動させることができる。   By forming the saddle ring with a material having a larger linear expansion coefficient than the fixed tapered ring, the difference in thermal expansion from the fixed tapered ring is further increased, and the saddle ring is moved in a direction to escape from the large end surface of the tapered roller. The direction can be moved.

前記鍔輪の内径面と前記内輪の外径面との間に隙間を設け、前記固定テーパ輪にこの隙間に向けて潤滑油を吐出する吐油孔を設けることにより、摺接する円錐ころの大端面と鍔輪との間を良好に潤滑することができる。   By providing a gap between the inner diameter surface of the saddle ring and the outer diameter surface of the inner ring, and providing a oil discharge hole for discharging lubricating oil toward the gap in the fixed tapered ring, a large tapered roller that comes into sliding contact is provided. Good lubrication can be achieved between the end face and the collar.

上述した各円錐ころ軸受は、工作機械の主軸を支持するものに好適である。   Each of the tapered roller bearings described above is suitable for supporting a spindle of a machine tool.

本発明の円錐ころ軸受は、内輪の軌道面側の大鍔部を別体の鍔輪で形成して、この鍔輪の内径側に円錐ころの大端面と反対側の端面側へ拡径するテーパ面を設け、この鍔輪のテーパ面と嵌合するテーパ面を外径側に有する固定テーパ輪を軸受箱側に固定して、軸受回転中の温度上昇による鍔輪と固定テーパ輪との熱膨張量差によって、鍔輪を固定テーパ輪のテーパ面に沿って軸方向へ移動させるようにしたので、締付け力が作用しない鍔輪を簡単な構成で軸方向へ移動させて、低速回転から高速回転まで軸受剛性を低下させることなく、運転中に予圧を調整することができる。   In the tapered roller bearing of the present invention, the large collar portion on the raceway surface side of the inner ring is formed by a separate collar, and the diameter of the inner ring is expanded to the end surface side opposite to the large end surface of the tapered roller. A taper surface is provided, and a fixed taper wheel having a taper surface on the outer diameter side to be fitted with the taper surface of the saddle wheel is fixed to the bearing box side. Due to the difference in thermal expansion, the saddle wheel is moved in the axial direction along the taper surface of the fixed taper ring. The preload can be adjusted during operation without reducing the bearing stiffness until high speed rotation.

前記鍔輪を固定テーパ輪よりも線膨張係数の大きい材料で形成することにより、固定テーパ輪との熱膨張量差をより大きくして、鍔輪を円錐ころの大端面から逃げる方向へ軸方向移動させることができる。   By forming the saddle wheel with a material having a larger linear expansion coefficient than the fixed taper ring, the difference in thermal expansion with the fixed taper ring is made larger, so that the saddle ring escapes from the large end surface of the tapered roller in the axial direction. Can be moved.

前記鍔輪の内径面と内輪の外径面との間に隙間を設け、固定テーパ輪にこの隙間に向けて潤滑油を吐出する吐油孔を設けることにより、摺接する円錐ころの大端面と鍔輪との間を良好に潤滑することができる。   By providing a gap between the inner diameter surface of the saddle wheel and the outer diameter surface of the inner ring, and providing a fixed tapered ring with oil discharge holes for discharging lubricating oil toward the gap, the large end surface of the tapered roller in sliding contact with It is possible to lubricate well between the heel rings.

以下、図面に基づき、本発明の実施形態を説明する。図1は、本発明に係る円錐ころ軸受1で支持された工作機械の主軸11を示す。この主軸11は、軸受箱12に背面側を対向させて配設された一対の円錐ころ軸受1で支持されている。軸受箱12は外筒13に内嵌され、外筒13に設けられた冷却用給油路14から冷却溝15を通って排油路16へ循環する冷却油によって外部冷却される。また、軸受箱12は両側を蓋17、18で密閉され、内部がエアオイル潤滑されるようになっており、各蓋17、18に設けられた給油孔19から、軸受箱12に設けられた給油路20を通して、各円錐ころ軸受1の正面側と背面側とにエアオイルが供給され、使用済のエアオイルは、軸受箱12に設けられた排油路21を通して、各蓋17、18に設けられた排油孔22から外部に排出される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a spindle 11 of a machine tool supported by a tapered roller bearing 1 according to the present invention. The main shaft 11 is supported by a pair of tapered roller bearings 1 arranged with the back side facing the bearing box 12. The bearing box 12 is fitted into the outer cylinder 13 and is externally cooled by cooling oil circulating from the cooling oil supply path 14 provided in the outer cylinder 13 through the cooling groove 15 to the oil discharge path 16. The bearing box 12 is sealed on both sides with lids 17 and 18 so that the inside is air-oil lubricated. The oil supply holes 19 provided on the lids 17 and 18 are used to supply oil to the bearing box 12. Air oil is supplied to the front side and the back side of each tapered roller bearing 1 through the path 20, and used air oil is provided to the lids 17 and 18 through oil drain paths 21 provided in the bearing box 12. The oil is discharged from the oil drain hole 22 to the outside.

前記一対の円錐ころ軸受1の各内輪2は、内輪間座23で背面側の間隔を開けて主軸11に取り付けられ、図1左側の内輪2は主軸11の段差部11aに軸方向を固定され、図1右側の内輪2は内輪間座24で位置決めされて、ナット25で締付け固定されている。また、各外輪3は外輪間座26を介して軸受箱12の段差部12aに背面側を位置決め固定され、外輪間座27を介して各蓋17、18で正面側を押さえ込まれている。   Each inner ring 2 of the pair of tapered roller bearings 1 is attached to the main shaft 11 with an inner ring spacer 23 spaced apart on the back side, and the inner ring 2 on the left side in FIG. 1 is axially fixed to the step portion 11 a of the main shaft 11. The inner ring 2 on the right side of FIG. 1 is positioned by an inner ring spacer 24 and is fastened and fixed by a nut 25. Each outer ring 3 is positioned and fixed to the stepped portion 12a of the bearing housing 12 via the outer ring spacer 26, and the front side is pressed by the lids 17 and 18 via the outer ring spacer 27.

図2は、前記図1左側の円錐ころ軸受1を拡大して示す。この円錐ころ軸受1は、内輪2の軌道面2aと外輪3の軌道面3aとの間に、複数の円錐ころ4を保持器5に保持して配列したものであり、内輪2の軌道面2aの正面側に、大鍔部を形成する別体の鍔輪6と固定テーパ輪7が配設されている。   FIG. 2 shows an enlarged view of the tapered roller bearing 1 on the left side of FIG. The tapered roller bearing 1 has a plurality of tapered rollers 4 held in a cage 5 between a raceway surface 2 a of an inner ring 2 and a raceway surface 3 a of an outer ring 3, and the raceway surface 2 a of the inner ring 2. A separate collar 6 and a fixed taper ring 7 that form a large collar are disposed on the front side.

前記固定テーパ輪7は線膨張係数α(2×10−6/℃)の小さいアンバーで形成され、鍔輪6はこれよりも線膨張係数α(12.5×10−6/℃)の大きい高炭素クロム軸受鋼SUJ2で形成されている。固定テーパ輪7は線膨張係数α(5×10−6/℃)の小さいコバールで形成してもよい。また、固定テーパ輪7をSUJ2で形成し、鍔輪6をこれよりも線膨張係数αの大きい銅やアルミニウムまたはこれらの合金で形成することもできる。 The fixed tapered ring 7 is formed of amber having a small linear expansion coefficient α (2 × 10 −6 / ° C.), and the saddle ring 6 has a larger linear expansion coefficient α (12.5 × 10 −6 / ° C.). It is made of high carbon chromium bearing steel SUJ2. The fixed taper ring 7 may be formed of Kovar having a small linear expansion coefficient α (5 × 10 −6 / ° C.). Alternatively, the fixed taper ring 7 can be made of SUJ2, and the eaves ring 6 can be made of copper, aluminum, or an alloy thereof having a larger linear expansion coefficient α.

前記鍔輪6は、内側端面で円錐ころ4の大端面4aと摺接し、その内径側に外側端面側へ拡径するテーパ面6aが設けられている。また、固定テーパ輪7は、軸受箱12に固定された外輪間座27にボルト8で結合され、その外径側に鍔輪6のテーパ面6aと嵌合する内向きのテーパ面7aが設けられている。したがって、軸受が高速回転になるほど、円錐ころ4の大端面4aと摺接する鍔輪6は温度上昇量が大きくなり、固定テーパ輪7との熱膨張量差が大きくなるので、円錐ころ4の大端面4aから逃げる軸方向へテーパ面7aに沿って移動し、高速回転になって軸受隙間が減少するときに円錐ころ4が鍔輪6側へ逃がされて、運転中に予圧が調整される。   The saddle ring 6 is in sliding contact with the large end surface 4a of the tapered roller 4 at the inner end surface, and a tapered surface 6a is provided on the inner diameter side thereof and is expanded toward the outer end surface side. Further, the fixed taper ring 7 is coupled to an outer ring spacer 27 fixed to the bearing housing 12 with a bolt 8, and an inward taper surface 7 a that fits the taper surface 6 a of the flange ring 6 is provided on the outer diameter side thereof. It has been. Therefore, as the bearing rotates at a higher speed, the temperature increase of the flange 6 in sliding contact with the large end surface 4a of the tapered roller 4 increases, and the difference in thermal expansion from the fixed tapered ring 7 increases. It moves along the taper surface 7a in the axial direction to escape from the end surface 4a, and when the bearing clearance is reduced due to high-speed rotation, the tapered roller 4 is released to the side of the flange 6 and the preload is adjusted during operation. .

前記軸受の正面側の外輪間座27には、軸受箱12の給油路20に連通する給油路27aが設けられ、固定テーパ輪7にはこの給油路27aに連通し、鍔輪6の内径面と内輪2の外径面との間の隙間に向けられた吐油孔7bが設けられている。したがって、吐油孔7bから吐出されるエアオイルによって、摺接する円錐ころ4の大端面4aと鍔輪6との間が良好に潤滑される。また、軸受の背面側の外輪間座26には、軸受箱12の給油路20に連通する吐油孔26aが設けられ、背面側ではこの吐油孔26aからエアオイルが吐出される。   The outer ring spacer 27 on the front side of the bearing is provided with an oil supply path 27 a that communicates with the oil supply path 20 of the bearing housing 12, and the fixed taper ring 7 communicates with the oil supply path 27 a and An oil discharge hole 7b is provided in the gap between the inner ring 2 and the outer diameter surface of the inner ring 2. Therefore, the space between the large end surface 4a of the tapered roller 4 that is in sliding contact with the flange 6 is favorably lubricated by the air oil discharged from the oil discharge hole 7b. Further, the outer ring spacer 26 on the back side of the bearing is provided with an oil discharge hole 26a communicating with the oil supply passage 20 of the bearing housing 12, and air oil is discharged from the oil discharge hole 26a on the back side.

拡大図示は省略するが、前記図1右側の円錐ころ軸受1も同様の構成とされ、正面側に配設された別体の鍔輪6が、固定テーパ輪7との熱膨張量差に伴って、そのテーパ面7aに沿って軸方向へ移動し、運転中に予圧が調整されるようになっている。   Although the enlarged illustration is omitted, the tapered roller bearing 1 on the right side of FIG. 1 has the same configuration, and a separate collar 6 disposed on the front side is accompanied by a difference in thermal expansion from the fixed tapered ring 7. Thus, it moves in the axial direction along the tapered surface 7a, and the preload is adjusted during operation.

図3は、前記鍔輪6と固定テーパ輪7の熱膨張量差δ(半径分)に伴う、各テーパ面6a、7a間の軸方向隙間ε、すなわち、鍔輪6の軸方向移動量の大きさを示す。各テーパ面6a、7aの傾斜角度をθとすると、軸方向隙間εは(1)式で表される。
ε = δ/tanθ (1)
FIG. 3 shows the axial clearance ε between the tapered surfaces 6a, 7a, that is, the axial movement amount of the saddle wheel 6 in accordance with the difference in thermal expansion δ (for the radius) between the saddle wheel 6 and the fixed tapered ring 7. Indicates the size. When the inclination angle of each taper surface 6a, 7a is θ, the axial gap ε is expressed by equation (1).
ε = δ / tan θ (1)

したがって、軸受が最高回転数になるときの熱膨張量差δと予圧調整に必要な鍔輪6の軸方向移動量、すなわち軸方向隙間εを実験や解析等によって求めれば、(1)式に基づいて、各テーパ面6a、7aの傾斜角度θを適切に決定することができる。なお、決定された傾斜角度θが摩擦角よりも小さくなる場合は、各テーパ面6a、7a間の摩擦係数を小さくして摩擦角を小さくするか、鍔輪6と固定テーパ輪7との熱膨張量差δを変えて傾斜角度θを大きくすれば、軸受停止時や低速回転時に温度が低下したときに、収縮する鍔輪6が固定テーパ輪7のテーパ面7aに沿って下降する方向に移動して、予圧が低下しないように調整される。   Therefore, if the amount of thermal expansion difference δ when the bearing reaches the maximum rotational speed and the axial movement amount of the saddle wheel 6 necessary for preload adjustment, that is, the axial clearance ε, are obtained by experiment or analysis, the equation (1) is obtained. Based on this, it is possible to appropriately determine the inclination angle θ of each tapered surface 6a, 7a. When the determined inclination angle θ is smaller than the friction angle, the friction coefficient between the tapered surfaces 6a and 7a is reduced to reduce the friction angle, or the heat between the saddle wheel 6 and the fixed tapered ring 7 is reduced. If the inclination angle θ is increased by changing the expansion amount difference δ, the shrinking saddle wheel 6 is lowered along the tapered surface 7a of the fixed taper ring 7 when the temperature is lowered when the bearing is stopped or rotated at a low speed. It moves and adjusts so that a preload does not fall.

上述した実施形態では、円錐ころ軸受を工作機械の主軸を支持するものとしたが、本発明に係る円錐ころ軸受は、高速回転で予圧が変化する他の回転軸を支持するものに適用してもよい。   In the above-described embodiment, the tapered roller bearing supports the main shaft of the machine tool. However, the tapered roller bearing according to the present invention is applied to a bearing that supports another rotating shaft whose preload changes at high speed. Also good.

また、上述した実施形態では、鍔輪を固定テーパ輪よりも線膨張係数αの大きい材料で形成したが、鍔輪は固定テーパ輪よりも温度上昇量が大きいので、両者を同じ材料か、線膨張係数αが同等の材料で形成することもできる。   In the embodiment described above, the saddle wheel is formed of a material having a larger linear expansion coefficient α than that of the fixed taper wheel. However, since the temperature of the saddle wheel is larger than that of the fixed taper wheel, It can also be formed of a material having the same expansion coefficient α.

本発明に係る円錐ころ軸受で支持した工作機械の主軸を示す縦断面図The longitudinal cross-sectional view which shows the main axis | shaft of the machine tool supported with the tapered roller bearing which concerns on this invention 図1の左側の円錐ころ軸受の部分を拡大して示す縦断面図1 is an enlarged longitudinal sectional view showing a portion of the tapered roller bearing on the left side of FIG. 図2の鍔輪と固定テーパ輪の熱膨張量差δに伴う各テーパ面間の軸方向隙間εの大きさを示す断面図Sectional drawing which shows the magnitude | size of the axial clearance gap (epsilon) between each taper surface accompanying the thermal expansion amount difference (delta) of the saddle wheel and fixed taper ring of FIG.

符号の説明Explanation of symbols

1 円錐ころ軸受
2 内輪
2a 軌道面
3 外輪
3a 軌道面
4 円錐ころ
4a 大端面
5 保持器
6 鍔輪
6a テーパ面
7 固定テーパ輪
7a テーパ面
7b 吐油孔
8 ボルト
11 主軸
11a 段差部
12 軸受箱
12a 段差部
13 外筒
14 給油路
15 冷却溝
16 排油路
17、18 蓋
19 給油孔
20 給油路
21 排油路
22 排油孔
23、24 内輪間座
25 ナット
26、27 外輪間座
26a 吐油孔
27a 給油路
DESCRIPTION OF SYMBOLS 1 Tapered roller bearing 2 Inner ring 2a Raceway surface 3 Outer ring 3a Raceway surface 4 Tapered roller 4a Large end surface 5 Cage 6 Collar ring 6a Tapered surface 7 Fixed taper ring 7a Tapered surface 7b Oil discharge hole 8 Bolt 11 Main shaft 11a Stepped part 12 Bearing box 12a Stepped portion 13 Outer cylinder 14 Oil supply path 15 Cooling groove 16 Oil discharge path 17, 18 Lid 19 Oil supply hole 20 Oil supply path 21 Oil discharge path 22 Oil discharge holes 23, 24 Inner ring spacer 25 Nut 26, 27 Outer ring spacer 26a Discharge Oil hole 27a Oil supply passage

Claims (4)

回転軸に取り付けられる内輪の軌道面と、軸受箱に固定される外輪の軌道面との間に複数の円錐ころを配列し、これらの円錐ころの大端面側への軸方向移動を規制する大鍔部を前記内輪の軌道面側に設けた円錐ころ軸受において、前記大鍔部を別体の鍔輪で形成して、この鍔輪の内径側に前記円錐ころの大端面と反対側の端面側へ拡径するテーパ面を設け、この鍔輪のテーパ面と嵌合するテーパ面を外径側に有する固定テーパ輪を前記軸受箱側に固定して、軸受回転中の温度上昇による前記鍔輪と固定テーパ輪との熱膨張量差によって、鍔輪を前記固定テーパ輪のテーパ面に沿って軸方向へ移動させるようにしたことを特徴とする円錐ころ軸受。   A plurality of tapered rollers are arranged between the raceway surface of the inner ring that is attached to the rotating shaft and the raceway surface of the outer ring that is fixed to the bearing housing, and the axial movement of these tapered rollers to the large end face side is restricted. In the tapered roller bearing in which the flange portion is provided on the raceway surface side of the inner ring, the large flange portion is formed by a separate flange ring, and the end surface opposite to the large end surface of the tapered roller is formed on the inner diameter side of the flange ring. A fixed taper ring having a tapered surface on the outer diameter side is provided on the outer diameter side to provide a tapered surface that expands to the side, and the flange is caused by a temperature rise during rotation of the bearing. A tapered roller bearing characterized in that the saddle wheel is moved in the axial direction along the taper surface of the fixed taper ring due to a difference in thermal expansion between the ring and the fixed taper ring. 前記鍔輪を前記固定テーパ輪よりも線膨張係数の大きい材料で形成した請求項1に記載の円錐ころ軸受。   The tapered roller bearing according to claim 1, wherein the saddle ring is formed of a material having a larger linear expansion coefficient than the fixed tapered ring. 前記鍔輪の内径面と前記内輪の外径面との間に隙間を設け、前記固定テーパ輪にこの隙間に向けて潤滑油を吐出する吐油孔を設けた請求項1または2に記載の円錐ころ軸受。   The gap according to claim 1 or 2 which provided a crevice between the inner diameter surface of the above-mentioned collar ring, and the outer diameter surface of the above-mentioned inner ring, and provided the oil discharge hole which discharges lubricating oil towards this gap in the above-mentioned fixed taper ring. Tapered roller bearing. 前記円錐ころ軸受が、工作機械の主軸を支持するものである請求項1乃至3のいずれかに記載の円錐ころ軸受。   The tapered roller bearing according to any one of claims 1 to 3, wherein the tapered roller bearing supports a spindle of a machine tool.
JP2005377354A 2005-12-28 2005-12-28 Tapered roller bearing Pending JP2007177900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377354A JP2007177900A (en) 2005-12-28 2005-12-28 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377354A JP2007177900A (en) 2005-12-28 2005-12-28 Tapered roller bearing

Publications (1)

Publication Number Publication Date
JP2007177900A true JP2007177900A (en) 2007-07-12

Family

ID=38303294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377354A Pending JP2007177900A (en) 2005-12-28 2005-12-28 Tapered roller bearing

Country Status (1)

Country Link
JP (1) JP2007177900A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097754A (en) * 2010-08-21 2013-05-08 谢夫勒科技股份两合公司 Tapered roller bearing having a cage
CN105692336A (en) * 2016-02-15 2016-06-22 江苏永鼎股份有限公司 Damping device for optical fiber disk
CN106122282A (en) * 2016-08-29 2016-11-16 无锡三立轴承股份有限公司 The lubrication mounting structure of bearing
JP2021076127A (en) * 2019-11-05 2021-05-20 株式会社ジェイテクト Rolling bearing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097754A (en) * 2010-08-21 2013-05-08 谢夫勒科技股份两合公司 Tapered roller bearing having a cage
CN105692336A (en) * 2016-02-15 2016-06-22 江苏永鼎股份有限公司 Damping device for optical fiber disk
CN106122282A (en) * 2016-08-29 2016-11-16 无锡三立轴承股份有限公司 The lubrication mounting structure of bearing
JP2021076127A (en) * 2019-11-05 2021-05-20 株式会社ジェイテクト Rolling bearing device

Similar Documents

Publication Publication Date Title
US10329952B2 (en) Bearing assembly, in particular for a turbomachine, and turbomachine having such a bearing assembly
JP6012980B2 (en) Bearing device preload adjustment structure
KR20160113271A (en) Main shaft device
US10634186B2 (en) Ball bearing, spindle device, and machine tool
US3698777A (en) Tapered roller bearing with minimum heat generating characteristics
JP2004316757A (en) Cylindrical roller bearing and retainer for cylindrical roller bearing
JP2008157340A (en) Rolling bearing
JP2007177900A (en) Tapered roller bearing
JP5675263B2 (en) Rolling bearing
JP2012026496A (en) Angular ball bearing, and bearing installation structure
JP2008002659A (en) High-speed rotation single row cylindrical roller bearing
WO2020050337A1 (en) Rolling bearing and spindle device equipped with rolling bearing
JP2007177850A (en) Tapered roller bearing
JP2009138896A (en) Rolling bearing and its lubrication method
JP2011133000A (en) Cylindrical roller bearing device
JP2006300079A (en) Roller bearing
JP2007024258A (en) Lubricating device of rolling bearing
JP2011064209A (en) Cylindrical roller bearing
JP2008110426A (en) Spindle device
JP2007177855A (en) Tapered roller bearing
JP2009008211A (en) Roller bearing-bearing housing assembling body
JP4853419B2 (en) Spindle device
JP2005106214A (en) Rolling bearing device
US20220186777A1 (en) Tapered roller bearing
JP2008030132A (en) Spindle bearing structure of nc automatic lathe