JP2007177294A - Method for producing molten pig iron, and converter steelmaking method - Google Patents

Method for producing molten pig iron, and converter steelmaking method Download PDF

Info

Publication number
JP2007177294A
JP2007177294A JP2005377693A JP2005377693A JP2007177294A JP 2007177294 A JP2007177294 A JP 2007177294A JP 2005377693 A JP2005377693 A JP 2005377693A JP 2005377693 A JP2005377693 A JP 2005377693A JP 2007177294 A JP2007177294 A JP 2007177294A
Authority
JP
Japan
Prior art keywords
melting
iron
converter
hot metal
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377693A
Other languages
Japanese (ja)
Other versions
JP4781812B2 (en
Inventor
Tsutomu Yamazaki
強 山崎
Hiroshi Hirata
浩 平田
Hiroki Mifuku
浩樹 御福
Yuki Kuwauchi
祐輝 桑内
Wataru Nagai
渉 永井
Akira Nobemoto
明 延本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005377693A priority Critical patent/JP4781812B2/en
Publication of JP2007177294A publication Critical patent/JP2007177294A/en
Application granted granted Critical
Publication of JP4781812B2 publication Critical patent/JP4781812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing molten pig iron, which can melt a ferruginous cold charge which is partially or entirely composed of reduced iron containing unreduced iron oxides while adequately keeping unit consumptions of a carbonaceous material and oxygen, and to provide a condition of forming the optimal molten slag for melting the ferruginous cold charge with high productivity. <P>SOLUTION: This method for producing the molten pig iron by supplying the reduced iron, the carbonaceous material and oxygen to a melting furnace containing seed molten iron includes controlling an index Rsm to 0.6 to 0.85, which is determined by a relationship between the depth of a molten pig iron bath containing only the seed molten iron before the melting operation starts and the depth of the molten iron bath after the melting operation has been completed, expressed by depth of molten iron bath before melting operation/depth of molten pig iron bath after completion of melting operation. The method also includes controlling the quantity of slag existing in the melting furnace so that an index Rss can be in between 0.1 and 0.5, which is determined by a relationship between the quantity of remaining slag before the melting operation starts and the quantity of the slag after the melting operation has been finished, expressed by quantity of remaining slag before melting operation starts/quantity of slag after melting operation has been finished. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄分を主成分とするダストを還元した還元鉄を原料とする溶銑製造方法及びその溶銑を用いた転炉製鋼方法に関するものである。   The present invention relates to a hot metal manufacturing method using reduced iron obtained by reducing dust containing iron as a main component, and a converter steelmaking method using the hot metal.

粒銑、型銑、製鉄所発生スクラップ等の固形含鉄冷材を原料とする転炉製鋼法として、従来、種湯の存在する溶解専用転炉に含鉄冷材、炭材、酸素を供給して、溶解専用転炉での所要種湯量と別の精錬専用転炉での所要精錬量の合計量の高炭素溶鉄を得、この高炭素溶鉄を原料として精錬専用転炉で酸素精錬することにより所要成分の溶鋼を得る転炉製鋼法が知られており、また、溶解専用転炉で使用する炭材の硫黄含有量が高くて、高炭素溶鉄の硫黄含有量が高い場合、精錬専用転炉で酸素精錬前に、取鍋で脱硫処理することも知られている(特許文献1)。   As a converter steelmaking method using solid iron-containing cold materials such as granule, mold and scrap generated from steelworks, conventionally iron-containing cold materials, carbonaceous materials, and oxygen are supplied to a melting-only converter where seed water is present. The required amount is obtained by obtaining the total amount of high-carbon molten iron of the required amount of seed water in the converter dedicated to melting and the required amount of refining in another converter dedicated to refining, and oxygen refining in the converter dedicated to refining using this high-carbon molten iron as a raw material. The converter steelmaking method to obtain the molten steel of the component is known, and if the sulfur content of the carbon material used in the melting dedicated converter is high and the sulfur content of the high carbon molten iron is high, It is also known to desulfurize with a ladle before oxygen refining (Patent Document 1).

このような全量含鉄冷材を原料とする溶解専用転炉と精錬専用転炉からなる製鋼法において、溶解専用転炉と精錬専用転炉で鉄分を主成分するダストの発生を皆無にできない。従って、溶解専用転炉と精錬専用転炉で発生する鉄分を主成分するダストを効率的にリサイクルすることにより、ダストの処理問題を解決すると共に鉄歩留りを向上させる必要がある。   In such a steelmaking method consisting of a melting-only converter and a refining-only converter using the entire iron-containing cold material as a raw material, the generation of dust containing iron as a main component cannot be completely eliminated in the melting-only converter and the refining-only converter. Therefore, it is necessary to efficiently recycle dust mainly composed of iron generated in a melting-dedicated converter and a refining-dedicated converter to solve the dust processing problem and improve the iron yield.

特許文献2には、溶解専用転炉と精錬専用転炉で発生するダストと15%までの石灰分あるいは、35%までの炭材を複合させて皿型造粒法、圧縮成形法等で塊成化し、転炉上方より自然落下により装入、再使用するに際し、転炉内ガス発生による上昇ガス流のために転炉外に逸散を防止するため、溶解専用転炉では粒度10mm以上、精錬専用転炉では粒度5mm以上の塊成化ダストを再使用する方法が提案されている。この方法によれば、発生ダストの処理の問題を解決できると共に発生ダストを鉄分として効率的に回収可能であり、有益である。   In Patent Document 2, dust generated in a melting-dedicated converter and a refining-dedicated converter and lime content up to 15% or carbon material up to 35% are combined to form a lump by dish-type granulation method, compression molding method, etc. In order to prevent dissipation outside the converter due to the rising gas flow due to gas generation inside the converter when it is charged and reused by natural fall from the upper part of the converter, the particle size of 10 mm or more in the melting-only converter, In a refining converter, a method of reusing agglomerated dust having a particle size of 5 mm or more has been proposed. According to this method, the problem of processing the generated dust can be solved, and the generated dust can be efficiently recovered as iron, which is beneficial.

溶解専用転炉や精錬専用転炉で発生するダストは純酸素を供給、例えば上吹きを行っていることから、鉄分の大部分は酸化されている。酸化鉄、例えば酸化第一鉄を還元して溶融するには、純鉄の約4倍の熱量が理論的に必要となる。従って、酸化鉄を含む塊成化ダストを、例えば溶解専用転炉にリサイクルすると、溶鉄を製造するために必要な熱量は、塊成化ダストをリサイクルしない場合に比べて増加する。   Dust generated in a melting-only converter or a refining-only converter supplies pure oxygen, for example, by performing top blowing, so that most of iron is oxidized. In order to reduce and melt iron oxide, for example, ferrous oxide, a heat amount about four times that of pure iron is theoretically required. Therefore, when the agglomerated dust containing iron oxide is recycled to, for example, a melting-only converter, the amount of heat necessary for producing the molten iron is increased as compared with the case where the agglomerated dust is not recycled.

一方、酸素供給設備能力、炭材供給設備能力、集塵排ガス処理設備能力によって、溶解専用転炉の炉内熱供給速度(酸素供給速度、炭材供給速度)の上限は固定されているので、溶鉄を製造するために必要な熱量の増加により溶鉄の生産速度は低下してくる、という問題点がある。また、上述の還元に必要な熱源として純酸素と炭材、例えば石炭との燃焼熱を用いるために、その分だけ酸素、炭材原単位が増加し、炭材例えば石炭中のSによる製造溶鉄中〔S〕の増加が問題となる。   On the other hand, the upper limit of the furnace heat supply rate (oxygen supply rate, carbon material supply rate) of the melting-dedicated converter is fixed by the oxygen supply facility capability, the carbon material supply facility capability, and the dust collection exhaust gas treatment facility capability. There is a problem that the production rate of molten iron decreases due to an increase in the amount of heat necessary to produce molten iron. In addition, since the heat of combustion of pure oxygen and a carbonaceous material, such as coal, is used as a heat source necessary for the above-described reduction, oxygen and the carbonaceous basic unit increase by that amount, and the manufactured molten iron by S in the carbonaceous material such as coal An increase in medium [S] is a problem.

特許文献3には、図5にフローを示すように、溶解専用転炉1及び精錬専用転炉3で発生するダストに炭材を内装させて塊成化し、予備還元炉8で高温加熱して内装炭材を還元材として予備還元後、高温状態で含鉄冷材の一部として種湯の存在する溶解専用転炉1に供給し再使用するダスト利用方法が開示されている。これにより、塊成化ダストを予備還元後、高温状態で溶解専用転炉に供給するため、溶解専用転炉1に還元熱源としての酸素と炭材の供給量が低減され、酸素、炭材原単位が低減されるので、溶鉄の生産性の低下を抑制でき、また製造溶鉄中〔S〕の増加を抑制できる。   In Patent Document 3, as shown in the flow in FIG. 5, carbon material is agglomerated and agglomerated with dust generated in the melting converter 1 and the refining converter 3, and heated at a high temperature in the preliminary reduction furnace 8. A dust utilization method is disclosed in which after the internal carbonaceous material is preliminarily reduced as a reducing material, it is supplied to the melting-only converter 1 where seed hot water is present as a part of the iron-containing cold material at a high temperature and reused. As a result, after the agglomerated dust is preliminarily reduced and supplied to the melting-dedicated converter in a high temperature state, the supply amount of oxygen and carbon as a reduction heat source to the melting-dedicated converter 1 is reduced. Since a unit is reduced, the fall of the productivity of molten iron can be suppressed and the increase in [S] in manufactured molten iron can be suppressed.

種湯が存在する転炉内で屑鉄を溶解する溶解方法において、特許文献4においては、上吹き酸素吹錬時の炉内スラグ量と酸素ジェットによるスラグ凹み深さの好適な関係について開示している。屑鉄溶解時に、上吹き酸素によるスラグの凹み深さLとスラグ厚みLS0の比を0.5〜1に制御することにより、高着熱効率を維持したままで二次燃焼率を大幅に向上し、屑鉄溶解に必要な炭材及び酸素の原単位を顕著に低減する。 In a melting method for melting scrap iron in a converter where seed water is present, Patent Document 4 discloses a preferable relationship between the amount of slag in the furnace during top blowing oxygen blowing and the slag dent depth by the oxygen jet. Yes. By controlling the ratio of slag depth L and slag thickness L S0 by top blowing oxygen to 0.5-1 when scrap iron is melted, the secondary combustion rate is greatly improved while maintaining high heat receiving efficiency. , Remarkably reduce the carbon and oxygen consumption necessary for scrap iron dissolution.

特公平4−11603号公報Japanese Examined Patent Publication No. 4-11603 特公平4−38813号公報Japanese Patent Publication No. 4-38813 特開2000−45012号公報JP 2000-45012 A 特開平8−260022号公報JP-A-8-260022

特許文献3に記載の方法において、予備還元した還元鉄の金属化率は100%ではない。特許文献3には、還元温度を上げる、あるいはダストへの内装石炭量比率を上げることで金属化率を上げられることが記載されているが、還元温度を上げることは予備還元炉の生産性低下や予備還元に要するエネルギー原単位の悪化を引き起こし、内装石炭量比率を上げることは還元鉄塊の粉化を引き起こし、更にそれに伴い溶解炉への還元鉄投入時の飛散ロスの増加を引き起こす。予備還元炉の生産性確保、還元鉄の溶解炉への投入時の飛散ロス防止を両立するには、原料ダスト成分にもよるが、金属化率を80〜85%程度とすることが好ましい。そうすると、たとえ80〜85%まで金属化されているとはいっても、還元鉄を溶解専用転炉に供給して溶解するに際し、金属化されていない残りの15〜20%分を還元して金属化するためには余剰の熱量が必要となる。このため、装入含鉄冷材として還元鉄を用いる場合は、スクラップを用いる場合と比較して余剰の酸素と炭材を供給することが必要となる。   In the method described in Patent Document 3, the metallization rate of the prereduced reduced iron is not 100%. Patent Document 3 describes that the metallization rate can be increased by increasing the reduction temperature or increasing the ratio of the amount of interior coal to dust, but increasing the reduction temperature reduces the productivity of the preliminary reduction furnace. As a result, the basic unit of energy required for pre-reduction is deteriorated and the ratio of the amount of coal in the interior increases, which leads to pulverization of the reduced iron lump, and further increases the scattering loss when reducing iron is fed into the melting furnace. In order to ensure both the productivity of the preliminary reduction furnace and the prevention of scattering loss when the reduced iron is charged into the melting furnace, it is preferable that the metallization rate is about 80 to 85%, although it depends on the raw material dust component. Then, even if it is said that it is metalized to 80-85%, when supplying reduced iron to a melting exclusive converter and melting it, the remaining 15-20% for the non-metallized part is reduced to a metal In order to achieve this, an excessive amount of heat is required. For this reason, when reduced iron is used as the charged iron-containing cold material, it is necessary to supply surplus oxygen and carbon material as compared with the case of using scrap.

含鉄冷材の溶解にあたっては、溶解及び温度上昇のために必要な熱量を、供給した炭材と酸素との燃焼熱によって補っている。また、含鉄冷材の溶解は主に浸炭反応により進行するので、溶解により消費された溶銑中の炭素濃度を補うための炭材供給が必要となる。さらに未還元の酸化鉄分を含有する還元鉄を用いる場合は、上記のとおり余剰の炭材が必要となる。   In melting the iron-containing cold material, the amount of heat necessary for melting and increasing the temperature is supplemented by the combustion heat of the supplied carbon material and oxygen. Moreover, since the melting of the iron-containing cold material proceeds mainly by carburization reaction, it is necessary to supply a carbon material to supplement the carbon concentration in the hot metal consumed by the melting. Furthermore, when using the reduced iron containing an unreduced iron oxide content, an excess carbon material is required as described above.

溶解炉における炭材の供給については、底吹きによる供給が有効である。炭材の比重は軽いので、上方から溶銑に供給したのでは効率よく溶銑中に炭素を溶解させることができないのに対し、底吹きによる供給であれば溶銑浴との接触機会が多く、効率よく炭素を供給することが可能だからである。   Regarding the supply of the carbon material in the melting furnace, supply by bottom blowing is effective. Since the specific gravity of the carbon material is light, it is not possible to efficiently dissolve carbon in the hot metal if it is supplied to the hot metal from above, whereas if it is supplied by bottom blowing, there are many opportunities for contact with the hot metal bath and it is efficient. This is because it is possible to supply carbon.

未還元の酸化鉄分を含有する還元鉄を含鉄冷材の一部又は全部として含鉄冷材の溶解を行ったところ、溶解を完了するまでに必要とする炭材原単位及び酸素原単位が、物質バランス・熱バランスから計算される所要量を超えて必要とすることが判明した。   When iron-containing cold material is dissolved using reduced iron containing unreduced iron oxide as part or all of the iron-containing cold material, the carbon material basic unit and oxygen basic unit required to complete the dissolution are substances. It was found that the required amount exceeds the amount calculated from the balance and heat balance.

本発明は、未還元の酸化鉄分を含有する還元鉄を含鉄冷材の一部又は全部として含鉄冷材の溶解を行うに際し、炭材原単位及び酸素原単位を良好に保って溶解を行うことのできる溶銑製造方法を提供することを第1の目的とする。   In the present invention, when the iron-containing cold material is dissolved by using reduced iron containing unreduced iron oxide as a part or all of the iron-containing cold material, the carbon material basic unit and the oxygen basic unit are kept in good condition and are dissolved. It is a first object to provide a hot metal manufacturing method capable of manufacturing.

種湯の存在する溶解炉で含鉄冷材を溶解するに際し、特許文献4にも記載の通り、上吹き酸素による火点が溶融スラグ層を突き破らない範囲で酸素吹き込みを行うことが好適であり、そのために溶解炉内の溶銑の上に溶融スラグ層を形成する。   When melting iron-containing cold material in a melting furnace in which seed water is present, as described in Patent Document 4, it is preferable to perform oxygen blowing in a range in which the fire point due to top blowing oxygen does not break through the molten slag layer. Therefore, a molten slag layer is formed on the hot metal in the melting furnace.

ところで、還元鉄を含鉄冷材として溶解する場合においては、溶解炉における前ヒートの溶解が終了した後、種湯を残して溶銑を出銑した後に、溶解炉内の溶融スラグは基本的に排滓し、その後次のヒートの溶解に移行していた。溶融スラグを残しておくと、フォーミングやスロッピングなどにより操業が不安定になったり、還元鉄がスラグに巻かれて浸炭溶解を阻害すると考えるためである。このような考え方に基づいて還元鉄を含鉄冷材として溶解を行ったところ、溶解に要する時間が増大し、そのために溶解の生産性が十分に向上しないという問題が生じた。   By the way, when reducing iron is melted as an iron-containing cold material, after the melting of the pre-heat in the melting furnace is completed, the molten slag in the melting furnace is basically discharged after leaving the hot water and leaving the hot metal. After that, it was shifted to melting of the next heat. This is because if the molten slag is left, the operation becomes unstable due to forming or slopping, or reduced iron is wound around the slag and inhibits carburization and dissolution. When the reduced iron was melted as an iron-containing cold material based on such a concept, the time required for the dissolution increased, which caused a problem that the dissolution productivity was not sufficiently improved.

本発明は、未還元の酸化鉄分を含有する還元鉄を含鉄冷材の一部又は全部として含鉄冷材の溶解を行うに際し、生産性の高い溶解を行うための最適な溶融スラグ生成条件を提供することを第2の目的とする。   The present invention provides optimum molten slag generation conditions for high-productivity melting when melting iron-containing cold material using reduced iron containing unreduced iron oxide as part or all of the iron-containing cold material. This is the second purpose.

前述の通り、還元鉄の金属化率はせいぜい80〜85%である。還元鉄を溶解炉に供給して溶解するに際し、金属化されていない残りの15〜20%分を金属化しかつ必要な熱を確保するために余剰の酸素と炭材を供給することが必要となり、溶鉄の生産速度を低下させる要因となる。   As described above, the metallization rate of reduced iron is at most 80 to 85%. When the reduced iron is supplied to the melting furnace and melted, it is necessary to metallize the remaining 15 to 20% which is not metallized and to supply surplus oxygen and carbonaceous material to ensure the necessary heat. This is a factor that reduces the production rate of molten iron.

本発明は、固形含鉄冷材を原料とし溶解専用転炉と精錬専用転炉を用いて溶鋼を得るに際し、これら転炉で発生するダストを予備還元して溶鉄原料とする転炉精錬法において、溶鉄の生産速度を低下させずに還元鉄を用いることのできる方法を提供することを第3の目的とする。   The present invention, when obtaining molten steel using a solid iron-containing cold material as a raw material using a melting-dedicated converter and a refining-dedicated converter, in a converter refining method in which dust generated in these converters is pre-reduced and used as a molten iron raw material, A third object is to provide a method capable of using reduced iron without reducing the production rate of molten iron.

第1の発明について説明する。   The first invention will be described.

溶銑への炭材の供給を底吹きによって行うこととすれば、前述の通り炭材と溶銑浴との接触機会が多く、溶銑浴中に効率よく炭素を供給することが可能となる。   If the carbon material is supplied to the hot metal by bottom blowing, there are many contact opportunities between the carbon material and the hot metal bath as described above, and carbon can be efficiently supplied into the hot metal bath.

種湯の存在する溶解炉に含鉄冷材を装入したとき、スクラップなどについては比重が7.8程度であって、溶銑の比重6.6〜7.0よりも大きいため、スクラップは種湯である溶銑浴中に沈み込み、結果として溶銑浴の深さは深くなる。一方、還元鉄は、スラグ、未還元の酸化鉄、気孔を多く含むため、比重が2〜4程度と溶銑に比べ小さい。そのため、装入された還元鉄は種湯である溶銑浴表面に浮かんでしまい、還元鉄装入後でも溶銑浴の深さは深くならない。即ち、含鉄冷材としてスクラップを装入したときに比較し、還元鉄を装入したときは装入後の溶銑浴深さが浅くなる。   When iron-containing cold material is charged into the melting furnace where the seed hot water is present, the specific gravity of the scrap is about 7.8, which is larger than the specific gravity of the hot metal 6.6 to 7.0. As a result, the hot metal bath is deepened. On the other hand, reduced iron contains a lot of slag, unreduced iron oxide, and pores, and therefore has a specific gravity of about 2 to 4 and smaller than hot metal. For this reason, the charged reduced iron floats on the surface of the hot metal bath, which is the seed hot water, and the depth of the hot metal bath does not increase even after the reduced iron is charged. That is, compared with the case where scrap is charged as the iron-containing cold material, the hot metal bath depth after charging becomes shallow when reduced iron is charged.

従って、含鉄冷材として主に還元鉄を用いて溶解を行う場合であって、特に種湯量が少ない場合には、溶解の初期段階において溶銑浴深さが浅くなり、炭材と溶銑浴との接触機会が不足し、供給した炭材の一部は溶銑中に溶解せず、溶銑浴表面から吹き抜けてしまう。還元鉄を含鉄冷材の一部又は全部として含鉄冷材の溶解を行ったときに、溶解を完了するまでに必要とする炭材原単位及び酸素原単位が過剰に必要になる現象が見られたのは、溶解初期の溶銑浴深さが浅すぎたことが原因であると判明した。   Therefore, in the case of melting mainly using reduced iron as an iron-containing cold material, especially when the amount of the seed water is small, the hot metal bath depth becomes shallow at the initial stage of melting, and the charcoal and hot metal bath The contact opportunity is insufficient, and a part of the supplied charcoal is not dissolved in the hot metal and blows off from the hot metal bath surface. When iron-containing cold material is dissolved using reduced iron as part or all of the iron-containing cold material, a phenomenon that excessive carbon material unit and oxygen basic unit are required to complete the melting is observed. It was found that the hot metal bath depth at the initial stage of dissolution was too shallow.

本発明の第1は、鉄分を主成分とするダストを還元した還元鉄であって未還元の酸化鉄分を含有するものを溶解して溶銑を得る方法であって、種湯の存在する溶解炉に上記還元鉄、炭材、酸素を供給して溶銑を得るに際し、種湯のみ存在する溶解前溶銑浴深さと、溶解完了時の溶解後溶銑深さとの関係が、下記(1)式により定まる指標Rsmを0.6〜0.85に制御することを特徴とする溶銑製造方法である。
Rsm=溶解前溶銑浴深さ/溶解後溶銑浴深さ (1)
A first aspect of the present invention is a method for obtaining molten iron by melting reduced iron containing iron as a main component and containing unreduced iron oxide, and a melting furnace containing seed hot water In order to obtain hot metal by supplying reduced iron, carbonaceous material and oxygen to the above, the relationship between the hot metal bath depth before melting, where only seed water exists, and the hot metal depth after melting at the time of melting is determined by the following formula (1) The hot metal production method is characterized in that Rsm is controlled to 0.6 to 0.85.
Rsm = depth of hot metal bath before melting / depth of hot metal bath after melting (1)

本発明はこれにより、溶解初期から溶銑浴深さを十分に保持することができるので、底吹きで供給した炭材を安定して溶銑中に溶解させることが可能となり、溶解に必要とする酸素原単位、炭材原単位を低減することができる。また1ヒート当たりの製造溶銑量が増すと、炉内空間を占有する割合が増すため、燃焼空間が減少し、二次燃焼率が低下する。従って、100t規模の炉で溶解を行う場合においては、1ヒート当たりの溶銑製造量は最大30t程度が望ましい。   In this way, the present invention can sufficiently maintain the hot metal bath depth from the beginning of dissolution, so that the carbon material supplied by bottom blowing can be stably dissolved in the hot metal, and the oxygen source required for dissolution is obtained. Units and carbon material basic units can be reduced. Moreover, when the amount of hot metal produced per heat increases, the ratio of occupying the furnace space increases, so the combustion space decreases and the secondary combustion rate decreases. Therefore, when melting in a 100 t scale furnace, the maximum amount of hot metal produced per heat is preferably about 30 t.

次に、第2の発明について説明する。   Next, the second invention will be described.

前述のとおり、還元鉄を含鉄冷材として溶解する場合においては、溶解炉における前ヒートの溶解が終了した後、種湯を残して溶銑を出銑した後に、溶解炉内の溶融スラグは基本的に排滓し、その後次のヒートの溶解に移行していた。含鉄冷材を装入し、上吹き送酸を開始すると同時あるいはそれ以降にスラグ改質材として生石灰やドロマイトを添加する。これらスラグ改質材及び還元鉄に含まれるスラグ分が滓化することによって溶融スラグが形成される。   As described above, in the case of melting reduced iron as an iron-containing cold material, after the melting of the pre-heat in the melting furnace is completed, the molten slag in the melting furnace is basically left after leaving the hot metal and leaving the hot metal. And then moved to melting of the next heat. When the iron-containing cold material is charged and the top blowing acid is started, quick lime or dolomite is added as a slag modifier at the same time or thereafter. Molten slag is formed by hatching the slag contained in these slag modifier and reduced iron.

ところが、これらスラグ成分の滓化速度が遅く、含鉄冷材の溶解が終了すべき時刻に到達してもまだスラグ分が完全には溶解しないという状況にあることが判明した。これに対し、前ヒート終了時に溶解炉内に存在する溶融スラグの一部を炉内に残し、この残留スラグを次ヒートのスラグとして活用すると、新たに添加するスラグ改質材の量が減少することもあり、スラグの滓化は急速に進行し、その結果として供給酸素が無駄に消費される度合いが減少し、生産性の向上が得られることがわかった。   However, it has been found that the hatching rate of these slag components is slow, and the slag component is not completely dissolved even when the time at which the melting of the iron-containing cold material is to be completed is reached. On the other hand, when a part of the molten slag existing in the melting furnace is left in the furnace at the end of the preheating, and this residual slag is used as the slag for the next heat, the amount of the newly added slag modifier is reduced. As a result, it has been found that hatching of slag proceeds rapidly, and as a result, the degree of wasteful consumption of supplied oxygen is reduced and productivity is improved.

本発明の第2は、上記第1の発明に加え、溶解炉内に存在するスラグ量について、溶解開始前の残留スラグ量と溶解終了時のスラグ量との関係が、下記(2)式により定まる指標Rssを0.1〜0.5に制御することを特徴とする溶銑製造方法である。
Rss=溶解開始前の残留スラグ量/溶解終了時のスラグ量 (2)
In the second aspect of the present invention, in addition to the above first aspect, the relationship between the amount of residual slag before the start of melting and the amount of slag at the end of melting is expressed by the following equation (2). It is a hot metal manufacturing method characterized by controlling a fixed index Rss to 0.1 to 0.5.
Rss = residual slag amount before melting / slag amount at the end of melting (2)

本発明はこれにより、スラグの溶融状態の維持、即ち、スラグの流動性を確保し、還元鉄の溶解及び還元鉄中に含まれる未還元の酸化鉄分の還元反応の確保が可能となる。   Accordingly, the present invention can maintain the molten state of the slag, that is, ensure the fluidity of the slag, and ensure the dissolution of the reduced iron and the reduction reaction of the unreduced iron oxide contained in the reduced iron.

最後に、第3の発明について説明する。   Finally, the third invention will be described.

固形含鉄冷材を原料とし溶解専用転炉と精錬専用転炉を用いて溶鋼を得る溶解・精錬方法において、溶解専用転炉1と精錬専用転炉3として、同じ炉容の転炉を用いる場合が一般的である。同一炉容の転炉を3基有する転炉工場において、そのうちの2基を溶解専用転炉1として用い、残りの1基を精錬専用転炉3として用いた場合、2基の溶解専用転炉1を用いての溶鉄の生産能力は、1基の精錬専用転炉3をフル生産した場合の溶鉄所要量を賄う能力に足りない。従って、特許文献3に記載の方法においては、精錬専用転炉3が生産余力を残した状態での製造を余儀なくされる。このような場合において、溶解原料としての含鉄冷材に未還元の酸化鉄分を含む還元鉄を用いることとすると、この酸化鉄分を還元するために余分の酸素と炭材を消費するため、溶解・精錬全体の生産性を低下させる原因となる。   In the melting and refining method for obtaining molten steel using a solid iron-containing cold material as a raw material using a melting-dedicated converter and a refining-dedicated converter, when using a converter with the same furnace capacity as the melting-dedicated converter 1 and the refining-dedicated converter 3 Is common. In a converter plant having three converters of the same furnace capacity, when two of them are used as the converter 1 for melting and the other one is used as the converter 3 for refining, two converters dedicated for melting The production capacity of molten iron using 1 is insufficient to cover the required amount of molten iron when a single refining converter 3 is fully produced. Therefore, in the method described in Patent Document 3, the refining-only converter 3 is forced to be manufactured in a state where the production capacity remains. In such a case, if reduced iron containing unreduced iron oxide is used for the iron-containing cold material as the melting raw material, excess oxygen and carbonaceous materials are consumed to reduce the iron oxide. It causes the productivity of the entire refining to decrease.

これに対し、スクラップなどの含鉄冷材を溶解する溶解炉(以下「第1溶解専用転炉」ともいう。)とは別に、還元鉄を溶解する専用溶解炉(以下「第2溶解専用転炉」ともいう。)を設けることとすれば、第1溶解専用転炉2基のみで溶鉄を生産した場合と比較して合計溶鉄生産量を増大することができ、それでも精錬専用転炉3については生産余力を用いることによってすべての生産溶鉄を原料として精錬を行うことが可能である。結果として、既存の3基転炉を保有する転炉工場において3基の転炉をより有効活用して溶鋼生産能力を増大することが可能となる。   On the other hand, apart from a melting furnace for melting iron-containing cold materials such as scrap (hereinafter also referred to as “first melting exclusive converter”), a dedicated melting furnace for melting reduced iron (hereinafter referred to as “second melting dedicated converter”). )), The total molten iron production can be increased as compared with the case where the molten iron is produced only with the two first melting-only converters. By using the production capacity, it is possible to perform refining using all production molten iron as a raw material. As a result, it becomes possible to increase the molten steel production capacity by more effectively utilizing the three converters in the converter factory having the existing three converters.

即ち、本発明の第3は、第1溶解専用転炉、還元鉄溶解専用転炉(第2溶解専用転炉)、精錬専用転炉、予備還元炉を設け、種湯の存在する第1溶解専用転炉に含鉄冷材、炭材、酸素を供給して、第1溶解専用転炉での所要種湯量と精錬専用転炉に供給する溶銑量の合計量の高炭素溶鉄を得、第2溶解専用転炉において還元鉄を溶解して第2溶解専用転炉での所要種湯量と精錬専用転炉に供給する溶銑量の合計量の高炭素溶鉄を得、これら高炭素溶鉄を原料として精錬専用転炉で酸素精錬することにより所要成分の溶鋼を得るに際し、第2溶解専用転炉での還元鉄の溶解に際して上記第1、第2の発明の溶銑製造方法を用いることを特徴とする転炉製鋼方法である。   That is, the third of the present invention is provided with a first melting-dedicated converter, a reduced iron-dedicated converter (second melting-dedicated converter), a refining-dedicated converter, and a preliminary reduction furnace. Supplying iron-containing cold material, charcoal, and oxygen to the dedicated converter, obtaining the total amount of high-carbon molten iron of the required amount of seed water in the first melting dedicated converter and the amount of hot metal supplied to the refining dedicated converter, The reduced iron is melted in the melting-only converter to obtain the total amount of high-carbon molten iron required for the second melting-only converter and the amount of hot metal to be supplied to the refining-only converter. When obtaining molten steel of the required components by oxygen refining in a dedicated converter, the hot metal production method of the first and second inventions is used for melting reduced iron in the second melting dedicated converter. It is a furnace steelmaking method.

本発明の溶銑製造方法は第1に、鉄分を主成分とするダストを還元した還元鉄であって未還元の酸化鉄分を含有するものを溶解して溶銑を得る方法において、種湯のみ存在する溶解前溶銑浴深さと、溶解完了時の溶解後溶銑深さとの関係を調整することにより、底吹きで供給した炭材を安定して溶銑中に溶解させることが可能となり、溶解に必要とする酸素原単位、炭材原単位を低減することができる。   First, the hot metal production method of the present invention is a method in which a hot metal is obtained by dissolving reduced iron, which contains iron as a main component, and which contains unreduced iron oxide. By adjusting the relationship between the hot metal bath depth and the post-melting hot metal depth at the completion of melting, the carbon material supplied by bottom blowing can be stably dissolved in the hot metal, and the oxygen source required for melting is reduced. Units and carbon material basic units can be reduced.

本発明の溶銑製造方法は第2に、上記第1の発明に加え、溶解開始前の残留スラグ量と溶解終了時のスラグ量との関係を調整することにより、スラグの流動性を確保し、還元鉄の溶解及び還元鉄中に含まれる未還元の酸化鉄分の還元反応の確保が可能となる。   Secondly, in addition to the first invention, the hot metal production method of the present invention ensures the fluidity of the slag by adjusting the relationship between the amount of residual slag before the start of melting and the amount of slag at the end of melting, It is possible to ensure the reduction reaction of the unreduced iron oxide contained in the reduced iron by dissolving the reduced iron.

本発明の転炉製鋼方法は、スクラップなどの含鉄冷材を溶解する溶解炉(第1溶解専用転炉)とは別に、還元鉄を溶解する専用溶解炉(第2溶解専用転炉)を設けることにより、第1溶解専用転炉で還元鉄を完全金属化するために余剰に酸素・炭材を使用する必要がなくなり、第1溶解専用転炉の溶鉄生産速度を向上することが可能となる。   In the converter steelmaking method of the present invention, a dedicated melting furnace (second melting dedicated converter) for melting reduced iron is provided separately from a melting furnace (first melting dedicated converter) for melting iron-containing cold materials such as scrap. As a result, it is not necessary to use excessive oxygen / carbon material in order to completely metallize the reduced iron in the first melting converter, and it is possible to improve the molten iron production rate of the first melting converter. .

第1の発明について説明する。   The first invention will be described.

含鉄冷材の溶解は主に浸炭反応により進行するため、溶解の進行に伴って溶銑中の炭素濃度が低下する。この溶銑中炭素濃度を補うための炭材供給と炭材含有炭素分の溶銑浴への効率的な溶解が重要である。さらに本発明のように未還元の酸化鉄を含有する還元鉄を溶解する場合、この酸化鉄分の還元を行うための炭素供給、及び吸熱反応である還元反応によって低下した溶銑浴温度を上昇させるための燃焼用炭素の供給が必要となり、スクラップのような含鉄冷材を溶解する場合に比較してより多くの炭材の供給が必要となる。   Since the melting of the iron-containing cold material proceeds mainly by the carburization reaction, the carbon concentration in the hot metal decreases as the melting proceeds. It is important to supply a carbon material to supplement the carbon concentration in the hot metal and to efficiently dissolve the carbon material-containing carbon in the hot metal bath. Further, when dissolving reduced iron containing unreduced iron oxide as in the present invention, to increase the hot metal bath temperature lowered by the carbon supply for reducing the iron oxide content and the reduction reaction which is an endothermic reaction. Therefore, it is necessary to supply more carbonaceous material than when melting iron-containing cold material such as scrap.

炭材の供給に際し、供給された炭材が効率よく溶銑に溶解するためには、底吹きによる供給が必要である。炭材の比重は軽く、上方から供給したのでは溶銑浴の上部に浮いてしまい、溶銑浴との接触機会が少なく効率が低いのに対し、底吹きによる供給であれば溶銑浴との接触機会が多く、効率の良い炭素供給が可能だからである。   When supplying the carbonaceous material, in order for the supplied carbonaceous material to be efficiently dissolved in the hot metal, it is necessary to supply by bottom blowing. The specific gravity of the carbon material is light, and if it is supplied from above, it floats at the top of the hot metal bath, and there are few opportunities for contact with the hot metal bath and the efficiency is low. This is because it is possible to supply carbon efficiently.

底吹きによって多量の炭材を供給するに際しては、多量のキャリアガスが必要であり、底吹きガスが溶銑浴上部へ直接吹き抜けしてしまわないためには、底吹きからの炭材供給量に応じ、吹き抜けしない溶銑浴深さが必要である。   When supplying a large amount of carbonaceous material by bottom blowing, a large amount of carrier gas is required, and in order for the bottom blowing gas not to blow directly to the upper part of the hot metal bath, it depends on the amount of carbonaceous material supplied from the bottom blowing. A hot metal bath depth that does not blow through is necessary.

ところが前述のとおり、種湯の存在する溶解炉に還元鉄を装入したとき、還元鉄は、スラグ、未還元の酸化鉄、気孔を多く含むため、比重が2〜4程度と溶銑に比べ小さい。そのため、装入された還元鉄は種湯である溶銑浴表面に浮かんでしまい、還元鉄装入後でも溶銑浴の深さは深くならない。即ち、含鉄冷材としてスクラップを装入したときに比較し、還元鉄を装入したときは装入後の溶銑浴深さが浅くなる。   However, as described above, when reducing iron is charged into a melting furnace in which seed hot water is present, the reduced iron contains a lot of slag, unreduced iron oxide, and pores, so the specific gravity is about 2 to 4 and smaller than the hot metal. . For this reason, the charged reduced iron floats on the surface of the hot metal bath, which is the seed hot water, and the depth of the hot metal bath does not increase even after the reduced iron is charged. That is, compared with the case where scrap is charged as the iron-containing cold material, the hot metal bath depth after charging becomes shallow when reduced iron is charged.

このように、スクラップに比べ多量の炭材を消費する一方で、溶銑浴深さを増大させにくい還元鉄の溶解において効率の良い炭材供給を行うためには、溶銑浴の深さを最適化することが不可欠である。   In this way, the depth of the hot metal bath is optimized in order to efficiently supply carbonaceous material in the melting of reduced iron, which consumes a larger amount of charcoal than scrap, but is difficult to increase the hot metal bath depth. It is essential to do.

含鉄冷材投入前の溶解炉内における種湯の量が少ないと、溶解前の溶銑浴深さが浅くなり、溶解開始直後の溶銑浴深さが不足し、供給した炭材が有効に溶銑に着炭せずに吹き抜ける比率が高くなる。それに対し、種湯の量を多くして溶解前の溶銑浴深さを深くすれば、溶解開始直後から溶銑浴深さを十分に確保し、供給した炭材を有効に溶銑に溶解させることが可能となる。   If the amount of the seed hot water in the melting furnace before introducing the iron-containing cold material is small, the hot metal bath depth before melting becomes shallow, the hot metal bath depth immediately after the start of melting becomes insufficient, and the supplied charcoal material effectively becomes hot metal. The ratio of blowing through without charring increases. On the other hand, if the amount of the seed hot water is increased to deepen the hot metal bath depth before melting, the hot metal bath depth can be sufficiently secured immediately after the start of melting, and the supplied carbon material can be effectively dissolved in the hot metal. It becomes possible.

一方、種湯の量が多すぎると、溶解炉炉壁と炉内溶銑との接触面積が多くなり、溶解炉炉壁を通して外部へ逃げる熱ロスが増大する。その結果、溶解作業の熱効率が低下するので、余剰の炭材及び酸素の供給を必要とすることとなる。   On the other hand, if the amount of seed water is too large, the contact area between the melting furnace wall and the molten iron in the furnace increases, and the heat loss that escapes to the outside through the melting furnace wall increases. As a result, since the thermal efficiency of the melting operation is lowered, it is necessary to supply surplus carbon materials and oxygen.

本発明においては、種湯のみ存在する溶解前溶銑浴深さと、溶解完了時の溶解後溶銑深さとの関係が、下記(1)式により定まる指標Rsmを0.6〜0.85に制御する。
Rsm=溶解前溶銑浴深さ/溶解後溶銑浴深さ (1)
In the present invention, the index Rsm determined by the following equation (1) is controlled to 0.6 to 0.85 for the relationship between the pre-melting hot metal bath depth in which only the seed hot water exists and the post-melting hot metal bath depth at the completion of the melting.
Rsm = depth of hot metal bath before melting / depth of hot metal bath after melting (1)

種湯の存在する溶解炉に、未還元の酸化鉄分をFeOとして約20%含有する還元鉄、炭材、酸素を供給して溶銑を得るに際し、還元鉄を炉上から投入しつつ、上吹き酸素と底吹きあるいは上方からの炭材供給を行った。炭材供給量と酸素供給量の比率を一定に維持しつつ、種湯量を変化させることによって(1)式のRsmを種々の値に変化させ、一定量の還元鉄を溶解するのに要した酸素量(酸素原単位)を比較した。図1には、Rsmの値と酸素原単位との関係を示す。   To obtain molten iron by supplying reduced iron containing about 20% of unreduced iron oxide as FeO, carbonaceous material, and oxygen to a melting furnace where seed hot water is present, Oxygen and bottom blowing or carbon material supply from above were performed. While maintaining the ratio of the carbon material supply amount and the oxygen supply amount constant, changing the amount of seed hot water changed the Rsm in the formula (1) to various values and required to dissolve a certain amount of reduced iron. The amount of oxygen (oxygen basic unit) was compared. FIG. 1 shows the relationship between the value of Rsm and the oxygen intensity.

図1において、Rsmが0.6未満であると、酸素原単位の値が増大している。還元鉄の溶解初期における溶銑浴深さが浅すぎ、供給した炭材の一部が吹き抜けて有効に溶銑に溶解しなかったためである。一方、Rsmが0.85を超えると、種湯の量が多すぎて炉壁からの熱ロスが増大し、その結果溶解に要する酸素原単位が増大する結果となった。   In FIG. 1, the value of oxygen basic unit increases when Rsm is less than 0.6. This is because the hot metal bath depth at the initial stage of dissolution of the reduced iron was too shallow, and a part of the supplied carbon material was blown through and was not effectively dissolved in the hot metal. On the other hand, when Rsm exceeded 0.85, the amount of seed hot water was too large, resulting in an increase in heat loss from the furnace wall, resulting in an increase in oxygen intensity required for melting.

一方、Rsmが0.6以上0.85以下であれば、酸素原単位が少なく、効率の良い溶解を行うことができる。Rsmをこの範囲に制御すれば、反応によって消費された溶銑浴中の炭素分を速やかに補って溶銑浴上に浮遊する還元鉄に十分な炭素を供給しつつ、熱効率が良く生産性が高い溶解が可能となる。酸素原単位が少なくて済むということから、炭材原単位もこれに連動して低減することができる。また、溶解炉の酸素供給速度が設備制約から定まっているので、酸素原単位が少ないということは溶解に要する時間を短縮することができ、溶解の生産性を向上させることができる。   On the other hand, if Rsm is 0.6 or more and 0.85 or less, there are few oxygen basic units, and efficient melt | dissolution can be performed. If Rsm is controlled within this range, the carbon content in the hot metal bath consumed by the reaction is quickly compensated, and sufficient carbon is supplied to the reduced iron floating on the hot metal bath, while the thermal efficiency is high and the productivity is high. Is possible. Since the oxygen basic unit is small, the carbonaceous basic unit can be reduced in conjunction with this. In addition, since the oxygen supply rate of the melting furnace is determined due to equipment restrictions, the fact that the oxygen basic unit is small can shorten the time required for melting and improve the melting productivity.

さらに、好ましくはRsmが0.6〜0.80であると更に生産性が増大する。Rsmが0.62〜0.75程度であるとさらに好ましい。   Further, preferably, when Rsm is 0.6 to 0.80, the productivity is further increased. Rsm is more preferably about 0.62 to 0.75.

第2の発明について説明する。   The second invention will be described.

前述のとおり、本発明の第2は、上記第1の発明に加え、溶解炉内に存在するスラグ量について、溶解開始前の残留スラグ量と溶解終了時のスラグ量との関係が、下記(2)式により定まる指標Rssを0.1〜0.5に制御することを特徴とする溶銑製造方法である。
Rss=溶解開始前の残留スラグ量/溶解終了時のスラグ量 (2)
As described above, in the second aspect of the present invention, in addition to the first aspect, the relationship between the amount of residual slag before the start of melting and the amount of slag at the end of melting is as follows. 2) A hot metal production method characterized by controlling the index Rss determined by the equation to 0.1 to 0.5.
Rss = residual slag amount before melting / slag amount at the end of melting (2)

前ヒートの溶解が完了し種湯を残して溶銑を出銑した後、前ヒートの溶融スラグの一部を排滓すると、溶解炉内に一部の溶融スラグが残留する。この残留スラグが上記(2)式における溶解開始前の残留スラグ量である。そして、当該ヒートの溶解において、スラグ改質材として投入した生石灰やドロマイト、及び還元鉄中に含まれるスラグ分が溶解してスラグ量が増大し、(2)式における溶解終了時のスラグ量が定まる。   After melting of the previous heat is completed and the hot metal is discharged while leaving the seed hot water, when a part of the molten slag of the previous heat is discharged, a part of the molten slag remains in the melting furnace. This residual slag is the amount of residual slag before the start of dissolution in the above equation (2). And in melting | dissolving of the said heat | fever, the slag content contained in the quicklime and dolomite input as slag modifier and reduced iron melt | dissolves, slag amount increases, and the slag amount at the time of completion | finish of melt | dissolution in (2) Formula Determined.

種湯の存在する溶解炉に、未還元の酸化鉄分をFeOとして約20%含有する還元鉄、炭材、酸素を供給して溶銑を得るに際し、還元鉄を炉上から投入しつつ、上吹き酸素と底吹きあるいは上方からの炭材供給を行った。溶解開始前の残留スラグ量を調整し、併せて溶解中におけるスラグ改質材の投入量を調整し、これによって上記(2)式のRssを種々の値に変化させ、溶解処理を行った。   To obtain molten iron by supplying reduced iron containing about 20% of unreduced iron oxide as FeO, carbonaceous material, and oxygen to a melting furnace where seed hot water is present, Oxygen and bottom blowing or carbon material supply from above were performed. The amount of residual slag before the start of melting was adjusted, and the amount of slag modifier added during melting was also adjusted, whereby the Rss in the above equation (2) was changed to various values to perform the melting treatment.

この際、溶解終了時のスラグ滓化状況を評価するため、「実塩基度/装入塩基度」の比を評価した。実塩基度とは、溶解終了時にサンプリングした溶融スラグの分析値から求めた塩基度(CaO/SiO2)である。又装入塩基度とは、溶解操業時に装入した原料・副原料の成分から計算される塩基度であり、残留スラグの成分影響を考慮するため、前溶解後のスラグ成分と残留スラグ量を考慮し求めた値である。サンプリングしたスラグは溶融したスラグであり、実塩基度/装入塩基度の比が1に近いほど、スラグの溶融化(滓化)が進んでいることを示している。 At this time, in order to evaluate the state of slag hatching at the end of dissolution, the ratio of “actual basicity / charging basicity” was evaluated. The actual basicity is the basicity (CaO / SiO 2 ) obtained from the analysis value of the molten slag sampled at the end of dissolution. Charge basicity is the basicity calculated from the ingredients of raw materials and auxiliary materials charged during the melting operation. In order to take into account the effects of residual slag components, the slag components and residual slag amounts after pre-melting are calculated. It is a value obtained by considering it. The sampled slag is melted slag, and the closer the ratio of actual basicity / charging basicity is to 1, the more slag is melted (hatched).

また同時に、二次燃焼率を評価した。二次燃焼率は(3)式で定義し、実際には煙道ガスの分析値に基づいて、炉口での侵入空気による燃焼の影響を差し引いた下記(4)式によって計算した。煙道ガスの分析は、CO,CO2,N2,H2,O2はガスクロマトグラフィーで、H2Oは吸収法(JIS Z8808)で行った。
PCR = [(CO2%) + (H2O%)]/[(CO2%) + (CO%) + (H2O%) + (H2%)]×100(%) (3)
PCR = [ (CO2%)i + (H2O%)i - { (O2%)a / (N2%)a ×2・((N2%)i - QN2 / Qi ×100) - 2・(O2%)i }] / [ (CO2%)i +(CO%)i + (H2O%)i +(H2%)i ] ×100 (%) (4)
Qi : 煙道ガス風量 (Nm3/h)
QN2:炉内窒素ガス吹き込み量 (Nm3/h)
(X%):炉内ガス中X成分の濃度 (vol%)
(X%)a:空気中X成分の濃度 (vol%)
(X%)i:煙道ガス中のX成分の濃度 (vol%)
At the same time, the secondary combustion rate was evaluated. The secondary combustion rate was defined by the equation (3), and was actually calculated by the following equation (4) subtracting the influence of combustion due to the intruding air at the furnace opening based on the analysis value of the flue gas. The flue gas was analyzed by gas chromatography for CO, CO 2 , N 2 , H 2 and O 2 , and H 2 O by an absorption method (JIS Z8808).
PCR = [(CO 2%) + (H 2 O%)] / [(CO 2%) + (CO%) + (H 2 O%) + (H 2%)] × 100 (%) (3)
PCR = [(CO 2 %) i + (H 2 O%) i -((O 2 %) a / (N 2 %) a × 2 ・ ((N 2 %) i -QN 2 / Q i × 100 )-2 ・ (O 2 %) i }] / [(CO 2 %) i + (CO%) i + (H 2 O%) i + (H 2 %) i ] × 100 (%) (4)
Q i : Flue gas flow rate (Nm 3 / h)
QN 2 : Amount of nitrogen gas blown into the furnace (Nm 3 / h)
(X%): Concentration of X component in furnace gas (vol%)
(X%) a : Concentration of X component in air (vol%)
(X%) i : Concentration of X component in flue gas (vol%)

結果を図2に示す。横軸にRssを指標に取り、実塩基度/装入塩基度の値と二次燃焼率の値の変化を表示している。   The results are shown in FIG. Rss is taken as an index on the horizontal axis, and the change in the value of the actual basicity / charging basicity and the secondary combustion rate is displayed.

Rssが小さくなると、特にRssが0.1未満となると、実塩基度/装入塩基度の比が目に見えて1より小さい値となっている。溶解終了時においてスラグが十分に滓化していないことを示している。指標Rssが小さいとき、即ち、残留スラグ量が少ないときは、還元鉄に含有されるスラグ分やスラグ改質材として添加されるCaOやMgOの滓化(溶融化)速度が小さく、スラグの流動性が低い状況となる。その結果、還元鉄に含有されるスラグ分の剥離性が阻害され還元鉄の溶解・還元速度の低下が生じる。   When Rss becomes small, particularly when Rss becomes less than 0.1, the ratio of actual basicity / charge basicity is visibly smaller than 1. It shows that the slag is not sufficiently hatched at the end of melting. When the index Rss is small, that is, when the amount of residual slag is small, the slag content contained in the reduced iron and the hatching (melting) rate of CaO and MgO added as a slag modifier are small, and the flow of slag The situation becomes low. As a result, the peelability of the slag contained in the reduced iron is inhibited, and the reduced rate of dissolution and reduction of the reduced iron occurs.

一方で、Rssが大きくなり、特にRssが0.5を超えると、二次燃焼率が低下している。指標Rssが大きいとき、スラグの流動性は確保されるが、炉内のスラグ量が多いためガス燃焼の空間が狭くなることで二次燃焼比率の低下が生じるからである。二次燃焼率の低下は溶銑中Cの燃焼により発生したガスの発生熱量の低下となり、炭材原単位の増大に伴う酸素原単位の増大へと繋がり生産性を低下させてしまう。   On the other hand, when Rss becomes large, especially when Rss exceeds 0.5, the secondary combustion rate is lowered. This is because when the index Rss is large, the slag fluidity is ensured, but since the amount of slag in the furnace is large, the space for gas combustion is narrowed, resulting in a decrease in the secondary combustion ratio. A decrease in the secondary combustion rate results in a decrease in the amount of heat generated by the gas generated by the combustion of C in the hot metal, leading to an increase in the oxygen consumption rate accompanying an increase in the carbon material consumption rate, thereby reducing productivity.

従って、Rssの値を0.1〜0.5の範囲に制御することにより、スラグの溶融状態の維持、即ち、スラグの流動性を確保し、還元鉄の溶解及び還元鉄中に含まれる未還元の酸化鉄分の還元反応の確保が可能となる。即ち、Rsmを0.65程度に制御することに加え、Rssを0.1〜0.5の範囲に制御することでスラグの溶融状態と二次燃焼率を維持した生産性の高い溶銑製造が可能である。さらに、好ましくはRss:0.15〜0.40であると更に生産性が増大する。   Therefore, by controlling the value of Rss within the range of 0.1 to 0.5, it is possible to maintain the molten state of the slag, that is, to ensure the fluidity of the slag, to dissolve the reduced iron and to prevent the slag from being contained in the reduced iron. It is possible to ensure the reduction reaction of the reduced iron oxide content. That is, in addition to controlling Rsm to about 0.65, by controlling Rss in the range of 0.1 to 0.5, high productivity hot metal production that maintains the molten state of the slag and the secondary combustion rate is achieved. Is possible. Further, the productivity is preferably further increased when Rss is 0.15 to 0.40.

第3の発明について説明する。   The third invention will be described.

図3に本発明の実施の形態の一例を示すプロセスフローを示す。   FIG. 3 shows a process flow showing an example of the embodiment of the present invention.

種湯の溶融鉄および溶融スラグが存在している第1溶解専用転炉1の炉内に、粒銑、型銑、製鉄所発生スクラップ等の固形含鉄冷材を供給し、例えば酸素上吹きランスから酸素が、底吹きノズルから非酸化性ガス、例えば窒素ガスをキャリアーガスとして石炭が吹き込まれ、これによって供給した固形含鉄冷材を溶解する。   Solid iron-containing cold material such as granule, mold, and steelworks generated scrap is supplied into the furnace for the first melting converter 1 where the molten iron and molten slag of the seed hot water exist. Then, oxygen is blown from the bottom blowing nozzle, and coal is blown from the bottom blowing nozzle using a non-oxidizing gas such as nitrogen gas as a carrier gas, thereby dissolving the supplied solid iron-containing cold material.

この第1溶解専用転炉1にて製造した高炭素溶鉄は、種湯分を炉内に残湯させて取鍋に出湯する。必要に応じて溶融スラグの一部を排滓する。出湯、排滓のための傾動時、含鉄冷材の一括装入時等の含鉄冷材の非溶解時には、底吹きノズルの閉塞を防止するため、底吹きノズルから非酸化性ガスが吹き込まれる。   The high-carbon molten iron produced in the first melting-only converter 1 leaves the seed hot water in the furnace and pours it into a ladle. Exclude part of the molten slag as needed. When the iron-containing cold material is not melted, such as when tilting for pouring and draining, or when the iron-containing cold material is charged all at once, non-oxidizing gas is blown from the bottom blowing nozzle to prevent the bottom blowing nozzle from being blocked.

本発明では、種湯の存在する還元鉄溶解炉(第2溶解専用転炉9)に還元鉄、炭材、酸素を供給し、第2溶解専用転炉9での所要種湯量と精錬専用転炉3に供給する溶銑量の合計量の高炭素溶鉄を得る。この第2溶解専用転炉9については後で詳述する。   In the present invention, reduced iron, carbonaceous material, and oxygen are supplied to a reduced iron melting furnace (second melting dedicated converter 9) in which seed hot water exists, and the required amount of seed hot water and the refining dedicated conversion in the second melting dedicated converter 9 are supplied. The total amount of molten iron supplied to the furnace 3 is obtained. The second melting only converter 9 will be described in detail later.

第1溶解専用転炉1から取鍋に出湯された高炭素溶鉄は、第2溶解専用転炉9で溶解した高炭素溶鉄とともに、KR、インジェクション等の脱硫設備2にて脱硫される。脱硫後の高炭素溶鉄は、精錬専用転炉3に装入されて酸素供給され脱炭処理する。この精錬専用転炉3は、例えば一般的な上底吹き転炉を用いている。   The high-carbon molten iron discharged from the first melting-only converter 1 to the ladle is desulfurized together with the high-carbon molten iron melted in the second melting-only converter 9 in the desulfurization equipment 2 such as KR and injection. The high-carbon molten iron after desulfurization is charged into the refining converter 3 and supplied with oxygen for decarburization. For example, a general top-bottom blowing converter is used as the refining converter 3.

このような第1溶解専用溶転炉1、第2溶解専用転炉9、精錬専用転炉3でそれぞれ発生するダストは、図3のプロセスフローに示すように、OG方式の湿式集塵装置4にて回収され、ダストスラリーとなり、さらにフィルタープレス5による脱水後、塊成化装置6、例えばパンペレタイザーにバインダーとして石灰、還元材として石炭を追加混合して供給し、これによって、ペレット化される。この際、後述する、乾燥、加熱還元後、熱間にて溶解専用転炉に装入する際、炉内上昇ガス流で飛散してロスとならない粒径、例えば10mm以上にする。製造ペレットは、乾燥炉7に装入される。乾燥後、引き続き、例えば、予備還元炉8として回転炉床型予備還元炉を用い、空気−LNGバーナー加熱雰囲気で内装石炭を還元材として加熱還元され、還元鉄が製造される。なお、本発明においては複数の予備還元炉8を装備していても溶鉄の生産能力を増大させることが可能である。   As shown in the process flow of FIG. 3, the dust generated in each of the first melting-dedicated converter 1, the second melting-dedicated converter 9, and the refining-dedicated converter 3 is OG type wet dust collector 4. In addition, after being dehydrated by the filter press 5, lime as a binder and coal as a reducing material are additionally mixed and supplied to an agglomeration device 6, for example, a pan pelletizer, and thereby pelletized. . At this time, after drying and heat reduction, which will be described later, when charging into a melting-dedicated converter in the hot state, the particle size is set to be 10 mm or more, for example, which is not lost due to scattering by the rising gas flow in the furnace. The production pellets are charged into the drying furnace 7. After drying, for example, a rotary hearth type prereduction furnace is used as the prereduction furnace 8, and heat reduction is performed using the internal coal as a reducing material in an air-LNG burner heating atmosphere to produce reduced iron. In the present invention, even if a plurality of prereduction furnaces 8 are provided, the production capacity of molten iron can be increased.

例えば、ダスト組成:T.Fe=62%、M.Fe=21%、FeO=34%,Fe23 =22%のダストを用い、石炭内装量を10%、バインダー(石灰)量:10%、粒径:10〜15mm、水分:1%以下のダストペレットとし、回転炉床型予備還元炉にて1200〜1300℃で予備還元すれば、金属化率80〜85%前後に予備還元された還元鉄を製造することができる。 For example, the dust composition: T.I. Fe = 62%, M.I. Using dust of Fe = 21%, FeO = 34%, Fe 2 O 3 = 22%, coal interior amount is 10%, binder (lime) amount: 10%, particle size: 10-15mm, moisture: 1% or less If reduced to 1200 to 1300 ° C. in a rotary hearth type prereduction furnace, reduced iron preliminarily reduced to a metalization rate of about 80 to 85% can be produced.

このように製造した還元鉄を、特許文献3に記載のように第1溶解専用転炉1の原料の一部として使用する場合を考える。   Consider the case where the reduced iron produced in this way is used as part of the raw material of the first melting-dedicated converter 1 as described in Patent Document 3.

第1溶解専用転炉1での還元鉄使用原単位を100kg/ton、還元鉄の装入温度を1000℃としたとき、還元鉄の金属化率と第1溶解専用転炉1での酸素原単位、石炭原単位との関係を図4に示す。図4から明らかなように、還元鉄の金属化率が100%のときと比較し、金属化率が低くなるほど第1溶解専用転炉1での酸素原単位と石炭原単位が増大することが明らかである。第1溶解専用転炉1での溶解所要時間は、酸素原単位や石炭原単位が増大するにともなって増大するから、投入する還元鉄の金属化率が80〜85%程度であるということは、それによって第1溶解専用転炉1の酸素原単位と石炭原単位が増大し、結果として溶解所要時間が増大して第1溶解専用転炉1の生産性を悪化させる原因となることがわかる。   When the reduced iron use basic unit in the first melting-only converter 1 is 100 kg / ton and the reduced iron charging temperature is 1000 ° C., the metallization rate of the reduced iron and the oxygen source in the first melting-only converter 1 Fig. 4 shows the relationship between units and coal intensity. As apparent from FIG. 4, the oxygen unit and the coal unit in the first melting exclusive converter 1 increase as the metallization rate becomes lower than when the metallization rate of reduced iron is 100%. it is obvious. Since the time required for melting in the first melting-only converter 1 increases as the oxygen intensity and the coal intensity increase, the metallization rate of the reduced iron to be added is about 80 to 85%. As a result, it is understood that the oxygen unit and the coal unit of the first melting-only converter 1 are increased, and as a result, the time required for melting is increased and the productivity of the first melting-only converter 1 is deteriorated. .

本発明においては、第1溶解専用転炉1とは別に還元鉄溶解炉(第2溶解専用転炉9)を用意し、還元鉄はこの第2溶解専用転炉9において溶解することを特徴とする。第1溶解専用転炉1では還元鉄を溶解しないため、還元鉄に含まれる酸化鉄起因の酸素原単位の増大及び石炭原単位の増大を防止することができるので、第1溶解専用転炉1での溶鉄生産性を向上することが可能となる。   In the present invention, a reduced iron melting furnace (second melting dedicated converter 9) is prepared separately from the first melting dedicated converter 1, and the reduced iron is melted in the second melting dedicated converter 9. To do. Since the reduced iron is not melted in the first melting converter 1, it is possible to prevent an increase in oxygen intensity and coal intensity due to iron oxide contained in the reduced iron. This makes it possible to improve the productivity of molten iron.

さらに、本発明においては、溶鉄の生産を第1溶解専用転炉1と第2溶解専用転炉9の2つで分担し、還元鉄以外の含鉄冷材については第1溶解専用転炉1で溶解し、還元鉄はもっぱら第2溶解専用転炉9で溶解するので、第1溶解専用転炉1のみで還元鉄を含む含鉄冷材のすべてを溶解する特許文献3に記載の方法と比較し、溶鉄の生産能力を増大する結果を得ることができる。   Furthermore, in the present invention, the production of molten iron is shared by the first melting-only converter 1 and the second melting-only converter 9, and the iron-containing cold material other than reduced iron is the first melting-only converter 1. Since the reduced iron is melted exclusively in the second melting converter 9, it is compared with the method described in Patent Document 3 in which all of the iron-containing cold material containing reduced iron is melted only in the first melting converter 1. The result of increasing the production capacity of molten iron can be obtained.

第1溶解専用転炉1と精錬専用転炉3として、同じ炉容の転炉を用いる場合が一般的である。同一炉容の転炉を3基有する転炉工場において、そのうちの2基を第1溶解専用転炉1として用い、残りの1基を精錬専用転炉3として用いた場合、2基の第1溶解専用転炉1を用いての溶鉄の生産能力は、1基の精錬専用転炉3をフル生産した場合の溶鉄所要量を賄う能力に足りない。従って、特許文献3に記載の方法においては、精錬専用転炉3が生産余力を残した状態での製造を余儀なくされる。このような場合、本発明のように第2溶解専用転炉9を用意して還元鉄の溶解を第2溶解専用転炉9に任せることとすると、第1溶解専用転炉2基のみで溶鉄を生産した場合と比較して合計溶鉄生産量を増大することができ、それでも精錬専用転炉3については生産余力を用いることによってすべての生産溶鉄を原料として精錬を行うことが可能である。結果として、既存の3基転炉を保有する転炉工場において3基の転炉をより有効活用して溶鋼生産能力を増大することが可能となる。   In general, a converter having the same furnace capacity is used as the first melting-dedicated converter 1 and the refining-dedicated converter 3. In a converter factory having three converters of the same furnace capacity, when two of them are used as the first melting converter 1 and the remaining one is used as the refining converter 3, two first The molten iron production capacity using the melting-only converter 1 is insufficient to cover the required amount of molten iron when one full-scale refining converter 3 is produced. Therefore, in the method described in Patent Document 3, the refining-only converter 3 is forced to be manufactured in a state where the production capacity remains. In such a case, if the second melting-dedicated converter 9 is prepared as in the present invention and the melting of the reduced iron is left to the second melting-dedicated converter 9, only two first melting-dedicated converters are used. The total molten iron production can be increased as compared with the case of producing the smelting iron. However, the refining converter 3 can be smelted using all the produced molten iron as a raw material by using the production capacity. As a result, it becomes possible to increase the molten steel production capacity by more effectively utilizing the three converters in the converter factory having the existing three converters.

(実施例1)
種湯の存在する溶解炉に含鉄冷材、炭材、酸素を供給して溶銑を製造した。含鉄冷材として、本発明例は鉄分を主成分とするダストを還元した還元鉄であって未還元の酸化鉄分を含有するものを用い、比較としてスクラップを用いた。
Example 1
Iron-containing cold material, carbonaceous material, and oxygen were supplied to the melting furnace in which seed hot water was present to produce hot metal. As the iron-containing cold material, the present invention example uses reduced iron that is reduced from dust containing iron as a main component and contains unreduced iron oxide, and scrap is used as a comparison.

還元鉄は主原料として溶解炉、転炉、電気炉等から発生するダストを、還元材としてCを含有する炭材を配合、混錬し、造粒したものを、還元炉にて加熱、還元処理して製造した。主原料としては、他にスラッジを混合しても良い。また、造粒は双ロール型のブリケットマシーンを使用して行ったが、転動法によるペレット造粒でも良い。還元炉は炉直径20mの回転床炉型の炉を使用し、LNGバーナーで還元温度を1300〜1400℃に制御し、還元を行った。還元鉄中の鉄分の金属化率は78〜83%である。   Reduced iron is mainly produced by mixing, kneading, and granulating dust generated from melting furnaces, converters, electric furnaces, etc. as the main raw material, carbon material containing C as the reducing material, and reducing and heating them in the reduction furnace. Processed and manufactured. As a main raw material, sludge may be mixed. The granulation was performed using a twin roll briquette machine, but pellet granulation by a rolling method may be used. The reduction furnace used was a rotary bed furnace having a furnace diameter of 20 m, and the reduction temperature was controlled to 1300 to 1400 ° C. with an LNG burner to carry out the reduction. The metallization rate of iron in the reduced iron is 78 to 83%.

溶解操業では炉上から還元鉄の投入を行い、上吹きランスから8000Nm3/hrで酸素供給をするとともに、溶解後の温度が1390〜1410℃、溶銑のC濃度が4.0〜4.3に維持できるように、底吹きノズルからN2ガスをキャリアーガスとして炭材供給を行った。スラグは溶解終了後のスラグ排出量を調整するとともに、石炭や還元鉄から発生するスラグの成分調整を行うため石灰やMgOを添加し、スラグの塩基度が1.5〜1.7になるように副材添加量を調整し、溶解開始前と溶解終了後のスラグの重量比が一定になるように制御した。また、スラグの過度のフォーミング状態を抑制することや、スラグ内の酸化鉄分の還元を促進するため、一定量の石炭を炉上より添加した。 In the melting operation, reduced iron is charged from the furnace, oxygen is supplied from the top blowing lance at 8000 Nm 3 / hr, the temperature after melting is 1390 to 1410 ° C., and the C concentration of the molten iron is 4.0 to 4.3. The carbonaceous material was supplied from the bottom blowing nozzle using N 2 gas as a carrier gas. Slag adjusts the amount of slag discharged after completion of melting and adds lime and MgO to adjust the components of slag generated from coal and reduced iron so that the basicity of slag becomes 1.5 to 1.7. The amount of secondary material added was adjusted to control the slag weight ratio before and after dissolution to be constant. Moreover, in order to suppress the excessive forming state of slag and to promote the reduction of iron oxide in the slag, a certain amount of coal was added from the furnace.

表1に製造結果を示す。表1のNo.1〜4が含鉄冷材にスクラップを用いた比較例、No.5〜7は含鉄冷材に還元鉄を用いたがRsmの値が本発明範囲から外れる比較例、No.8〜11は含鉄冷材に還元鉄を用いた本発明例である。Rsmが本発明範囲を外れるものにアンダーラインを付している。   Table 1 shows the production results. No. in Table 1 Nos. 1 to 4 are comparative examples in which scraps are used as iron-containing cold materials. In Comparative Examples Nos. 5 to 7, in which reduced iron was used for the iron-containing cold material, the value of Rsm deviated from the scope of the present invention. 8 to 11 are examples of the present invention in which reduced iron is used as the iron-containing cold material. Rsm is outside the scope of the present invention with an underline.

Figure 2007177294
Figure 2007177294

含鉄冷材がスクラップの場合、Rsmの範囲が本願範囲外であっても、スクラップが溶銑浴に沈み込むことで深い溶銑浴深さが確保でき、高い生産性を維持できている。含鉄冷材が還元鉄の場合、溶銑浴の深さを、指標Rsmが0.6〜0.85の範囲になるように制御すれば、溶解速度の低下を回避した生産性の確保が可能である。   When the iron-containing cold material is scrap, even if the range of Rsm is outside the scope of the present application, a deep hot metal bath depth can be secured by sinking the hot metal bath into the hot metal bath, and high productivity can be maintained. When the iron-containing cold material is reduced iron, if the depth of the hot metal bath is controlled so that the index Rsm is in the range of 0.6 to 0.85, it is possible to ensure productivity while avoiding a decrease in dissolution rate. is there.

(実施例2)
前記(1)式におけるRsmが0.65程度になるように溶解量を調整し、還元鉄の溶解・還元による溶銑製造を行った。上吹きランスから酸素を8000Nm3/hrで供給するとともに底吹きノズルから石炭を供給しつつ、金属化率78〜83%の還元鉄を炉口から溶銑浴に投入し、一回の吹錬につき29〜31tonの溶銑溶解・還元操業を実施した。溶解後の溶銑C濃度を4.0〜4.3質量%に維持しつつ、溶解後の溶銑温度は1390〜1410℃になるように操業を行った。
(Example 2)
The amount of dissolution was adjusted so that Rsm in the formula (1) was about 0.65, and hot metal was produced by dissolution and reduction of reduced iron. While supplying oxygen from the top blowing lance at 8000 Nm 3 / hr and supplying coal from the bottom blowing nozzle, reduced iron with a metallization rate of 78-83% was introduced into the hot metal bath from the furnace port, 29-31 ton hot metal dissolution / reduction operation was carried out. The operation was performed so that the hot metal temperature after melting was 1390 to 1410 ° C. while the hot metal C concentration after melting was maintained at 4.0 to 4.3% by mass.

前ヒート溶解終了後の溶融スラグ排滓量を調整し、Rssを0.05〜0.55の範囲で変化させた。石炭や還元鉄から発生するスラグの成分調整を行うため石灰やMgOを添加し、スラグの塩基度が1.5〜1.7になるように調整した。また、スラグの過度のフォーミング状態を抑制することや、スラグ内の酸化鉄分の還元を促進するため、一定量の石炭を炉上より添加した。   The amount of molten slag discharged after completion of pre-heat melting was adjusted, and Rss was changed in the range of 0.05 to 0.55. In order to adjust the components of slag generated from coal and reduced iron, lime and MgO were added to adjust the basicity of the slag to 1.5 to 1.7. Moreover, in order to suppress the excessive forming state of slag and to promote the reduction of iron oxide in the slag, a certain amount of coal was added from the furnace.

表2に結果を示す。Rssが本発明範囲を外れるものにアンダーラインを付している。   Table 2 shows the results. The Rss is outside the scope of the present invention with an underline.

Figure 2007177294
Figure 2007177294

No.1〜7のいずれも、Rsmが上記第1の発明範囲内に入っているため、従来に比較すると良好な生産性を実現している。一方、No.2〜6は、さらにRssが上記第2の発明の範囲内にも入っているため、さらに高い生産性を実現するとともに、高い二次燃焼率を実現することができた。   No. In all of Nos. 1 to 7, Rsm is within the range of the first invention, and therefore, better productivity is realized as compared with the prior art. On the other hand, no. In Nos. 2 to 6, since Rss is also included in the range of the second invention, it was possible to achieve higher productivity and higher secondary combustion rate.

表2のNo.1は、Rssが本発明範囲を下限側に外れており、No.2〜6と比較して溶解時間が長く、生産性が低い値となっている。Rssが0.1以下であるため、図2に示すように溶解終了時においてもスラグは十分に滓化されていない。そのためスラグの流動性が低く、還元鉄に含有されるスラグ分の剥離性が阻害され還元鉄の溶解・還元速度が低下し、結果として溶解に要する時間が長くなったものと考えられる。   No. in Table 2 No. 1, Rss deviates from the lower limit side of the present invention range. Compared with 2-6, dissolution time is long and productivity is low. Since Rss is 0.1 or less, as shown in FIG. 2, the slag is not sufficiently hatched even at the end of dissolution. Therefore, the fluidity of the slag is low, the peelability of the slag contained in the reduced iron is inhibited, and the dissolution / reduction rate of the reduced iron is lowered, resulting in an increase in the time required for dissolution.

表2のNo.7は、溶解前の残留スラグ量が多かったため、溶解の全工程を通じて炉内のスラグ量が多く、そのため炉内でのガスの燃焼空間を狭めることとなり、二次燃焼率の低下を招いた。そのため、溶解に要する炭材原単位の増大に伴って酸素原単位も増大し、生産性を低下させる結果となった。   No. in Table 2 No. 7 had a large amount of residual slag before melting, so that the amount of slag in the furnace was large throughout the melting process, so that the gas combustion space in the furnace was narrowed, leading to a reduction in the secondary combustion rate. Therefore, as the carbon material basic unit required for dissolution increased, the oxygen basic unit also increased, resulting in a decrease in productivity.

(実施例3)
2基の第1溶解専用転炉で溶銑を製造し1基の精錬専用転炉で溶鋼を製造するプロセスにおいて、新しい第2溶解専用転炉を使用して還元鉄の専用溶解を実施した。各溶解炉の操業条件を表3に示す。
(Example 3)
In the process of producing hot metal with two first melting converters and producing molten steel with one refining converter, dedicated melting of reduced iron was carried out using a new second melting converter. Table 3 shows the operating conditions of each melting furnace.

Figure 2007177294
Figure 2007177294

比較例1においては、図5に示すように、第2溶解専用転炉を用いず、還元鉄を含む含鉄冷材を種湯が存在する第1溶解専用転炉1に供給し、炉内に石炭を吹き込むと共に酸素を供給し含鉄冷材を溶解し高炭素溶鉄を得る。予備還元炉8で製造した還元鉄は、取鍋によって第1溶解専用転炉まで運ばれる。   In Comparative Example 1, as shown in FIG. 5, the iron-containing cold material containing reduced iron is supplied to the first melting-only converter 1 containing seed hot water without using the second melting-only converter, Coal is blown in and oxygen is supplied to melt the iron-containing cold material to obtain high-carbon molten iron. The reduced iron produced in the preliminary reduction furnace 8 is transported to the first melting exclusive converter by a ladle.

本発明例及び比較例2については、図3に示すように、還元鉄を除く含鉄冷材(スクラップなど)を種湯が存在する第1溶解専用転炉1に供給し、炉内に石炭を吹き込むと共に酸素を供給し含鉄冷材を溶解し高炭素溶鉄を得ると共に、還元鉄を種湯が存在する第2溶解専用転炉9に供給し、炉内に石炭を吹き込むと共に酸素を供給し含鉄冷材を溶解し高炭素溶鉄を得る。得られた高炭素溶鉄について引き続き脱硫設備2で脱硫処理を行い、精錬専用転炉3にて脱炭処理を実施した。   For the present invention example and comparative example 2, as shown in FIG. 3, iron-containing cold material (scrap, etc.) excluding reduced iron is supplied to the first melting exclusive converter 1 in which seed hot water exists, and coal is supplied into the furnace. Blowing and supplying oxygen to melt iron-containing cold material to obtain high-carbon molten iron, supplying reduced iron to the second melting-only converter 9 where seed water is present, blowing coal into the furnace and supplying oxygen to iron-containing The cold material is melted to obtain high carbon molten iron. The obtained high carbon molten iron was subsequently desulfurized in the desulfurization facility 2 and decarburized in the refining converter 3.

本発明例、比較例1、比較例2の操業条件及び操業成績を、表4に一覧表として示す。   Table 4 shows the operating conditions and operating results of the inventive example, comparative example 1 and comparative example 2.

Figure 2007177294
Figure 2007177294

本発明例では、第2溶解専用転炉9において、Rsm、RssをRsm=0.65、Rss=0.2に制御し操業を実施した。比較例2では、第2溶解専用転炉9において、Rsm、RssをRsm=0.58、Rss=0.55に制御し操業を実施した。その結果、第2溶解専用転炉9の溶銑製造能力を、本発明例は比較例2と比較して1.5倍にまで増大させることが可能となり、2基の第1溶解専用転炉1の溶銑製造能力を1.1に第2溶解専用転炉9の溶銑製造能力0.15を加え従来比1.25の溶銑製造が可能となり、予備還元炉8から連続鋳造機に至るプロセス全体の生産性を1.25倍にすることが可能となった。即ち、製鋼工程一貫での能力増大を図ることが可能となり、25%の生産性増大を達成することができた。   In the example of the present invention, in the second melting only converter 9, Rsm and Rss were controlled to Rsm = 0.65 and Rss = 0.2, and the operation was performed. In Comparative Example 2, in the second melting-only converter 9, Rsm and Rss were controlled to Rsm = 0.58 and Rss = 0.55, and the operation was performed. As a result, the hot metal production capacity of the second melting-only converter 9 can be increased to 1.5 times that of the present invention example as compared with the comparative example 2, and the two first melting-only converters 1 The hot metal production capacity of 1.1 is added to the hot metal production capacity of 0.15 of the second melting exclusive converter 9 to enable the production of hot metal of 1.25 compared to the prior art, and the entire process from the prereduction furnace 8 to the continuous casting machine can be performed. Productivity can be increased 1.25 times. That is, it was possible to increase the capacity in the steelmaking process, and a 25% increase in productivity could be achieved.

なお、比較例2においては、第2溶解専用転炉9を導入することによって、還元鉄使用に起因した酸素使用量増大による溶解時間の増大を回避し2基の第1溶解専用転炉1の溶銑製造能力を1.1にすることで、第2溶解専用転炉9の溶銑製造能力とあわせて従来比1.2の溶銑製造が可能となり、予備還元炉8から連続鋳造機に至るプロセス全体の生産性を、比較例1に比較して1.2倍にすることが可能となった。   In Comparative Example 2, the introduction of the second melting-dedicated converter 9 avoids an increase in melting time due to an increase in the amount of oxygen used due to the use of reduced iron, and the two first melting-dedicated converters 1 By setting the hot metal production capacity to 1.1, the hot metal production of 1.2 compared with the conventional hot metal production capacity of the second melting exclusive converter 9 becomes possible, and the entire process from the prereduction furnace 8 to the continuous casting machine is possible. Productivity can be increased to 1.2 times that of Comparative Example 1.

Rsmと酸素原単位との関係を示す図である。It is a figure which shows the relationship between Rsm and oxygen basic unit. Rssと実塩基度/装入塩基度及び二次燃焼率との関係を示す図である。It is a figure which shows the relationship between Rss, real basicity / charge basicity, and a secondary combustion rate. 本発明のプロセスフローを示す図である。It is a figure which shows the process flow of this invention. 予備還元ダストの金属化率と溶解専用転炉での酸素原単位、石炭原単位、生産性との関係を示す図である。It is a figure which shows the relationship between the metallization rate of pre-reduction dust, and the oxygen basic unit, coal basic unit, and productivity in a converter only for melting. 従来のプロセスフローを示す図である。It is a figure which shows the conventional process flow.

符号の説明Explanation of symbols

1 第1溶解専用転炉(溶解専用転炉)
2 脱硫設備
3 精錬専用転炉
4 湿式集塵装置
5 フィルタープレス
6 塊成化装置
7 乾燥炉
8 予備還元炉
9 第2溶解専用転炉
1 First melting-only converter (melting-only converter)
2 Desulfurization equipment 3 Refining converter 4 Wet dust collector 5 Filter press 6 Agglomeration device 7 Drying furnace 8 Prereduction furnace 9 Second melting dedicated converter

Claims (3)

鉄分を主成分とするダストを還元した還元鉄であって未還元の酸化鉄分を含有するものを溶解して溶銑を得る方法であって、
種湯の存在する溶解炉に上記還元鉄、炭材、酸素を供給して溶銑を得るに際し、種湯のみ存在する溶解前溶銑浴深さと、溶解完了時の溶解後溶銑深さとの関係が、下記(1)式により定まる指標Rsmを0.6〜0.85に制御することを特徴とする溶銑製造方法。
Rsm=溶解前溶銑浴深さ/溶解後溶銑浴深さ (1)
It is a method of obtaining hot metal by dissolving reduced iron that contains iron-based dust and containing unreduced iron oxide,
When obtaining the hot metal by supplying the reduced iron, carbonaceous material and oxygen to the melting furnace where the seed hot water is present, the relationship between the hot metal bath depth before melting and the hot metal bath depth after melting when melting is complete is as follows. (1) The hot metal manufacturing method characterized by controlling the index Rsm determined by the equation to 0.6 to 0.85.
Rsm = depth of hot metal bath before melting / depth of hot metal bath after melting (1)
溶解炉内に存在するスラグ量について、溶解開始前の残留スラグ量と溶解終了時のスラグ量との関係が、下記(2)式により定まる指標Rssを0.1〜0.5に制御することを特徴とする請求項1に記載の溶銑製造方法。
Rss=溶解開始前の残留スラグ量/溶解終了時のスラグ量 (2)
For the amount of slag present in the melting furnace, the relationship between the amount of residual slag before the start of melting and the amount of slag at the end of melting is controlled to an index Rss determined by the following equation (2) to 0.1 to 0.5. The hot metal manufacturing method according to claim 1, wherein:
Rss = residual slag amount before melting / slag amount at the end of melting (2)
第1溶解専用転炉、還元鉄溶解専用転炉(以下「第2溶解専用転炉」ともいう)、精錬専用転炉、予備還元炉を設け、
種湯の存在する第1溶解専用転炉に含鉄冷材、炭材、酸素を供給して、第1溶解専用転炉での所要種湯量と精錬専用転炉に供給する溶銑量の合計量の高炭素溶鉄を得、第2溶解専用転炉において還元鉄を溶解して第2溶解専用転炉での所要種湯量と精錬専用転炉に供給する溶銑量の合計量の高炭素溶鉄を得、これら高炭素溶鉄を原料として精錬専用転炉で酸素精錬することにより所要成分の溶鋼を得るに際し、
第2溶解専用転炉での還元鉄の溶解に際して請求項1又は2に記載の溶銑製造方法を用いることを特徴とする転炉製鋼方法。
The first melting converter, the reduced iron melting converter (hereinafter also referred to as the “second melting converter”), the refining converter, and the preliminary reduction furnace,
Supply iron-containing cold material, carbonaceous material, and oxygen to the first melting dedicated converter where seed hot water exists, and the total amount of the required seed hot water in the first melting dedicated converter and the amount of hot metal supplied to the refining dedicated converter Obtaining high-carbon molten iron, obtaining the total amount of high-carbon molten iron by melting the reduced iron in the second melting-dedicated converter and adding the required amount of hot water in the second melting-dedicated converter and the amount of hot metal supplied to the refining-dedicated converter, By using these high carbon molten iron as a raw material and oxygen refining in a special refining converter,
A converter steelmaking method, wherein the molten iron production method according to claim 1 or 2 is used for melting reduced iron in a second melting-dedicated converter.
JP2005377693A 2005-12-28 2005-12-28 Converter steelmaking method Active JP4781812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377693A JP4781812B2 (en) 2005-12-28 2005-12-28 Converter steelmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377693A JP4781812B2 (en) 2005-12-28 2005-12-28 Converter steelmaking method

Publications (2)

Publication Number Publication Date
JP2007177294A true JP2007177294A (en) 2007-07-12
JP4781812B2 JP4781812B2 (en) 2011-09-28

Family

ID=38302761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377693A Active JP4781812B2 (en) 2005-12-28 2005-12-28 Converter steelmaking method

Country Status (1)

Country Link
JP (1) JP4781812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503029A (en) * 2011-12-06 2015-01-29 テクノロジカル リソーシーズ プロプライエタリー リミテッドTechnological Resources Pty.Limited Starting the smelting process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213310A (en) * 1985-03-18 1986-09-22 Nippon Steel Corp Production of molten ferrous alloy
JPH02141513A (en) * 1988-11-22 1990-05-30 Nippon Steel Corp Smelting reduction iron making method
JPH0387307A (en) * 1989-08-29 1991-04-12 Nippon Steel Corp Smelting reduction method for iron
JP2000045012A (en) * 1998-05-22 2000-02-15 Nippon Steel Corp Method for utilizing dust in converter steel making

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213310A (en) * 1985-03-18 1986-09-22 Nippon Steel Corp Production of molten ferrous alloy
JPH02141513A (en) * 1988-11-22 1990-05-30 Nippon Steel Corp Smelting reduction iron making method
JPH0387307A (en) * 1989-08-29 1991-04-12 Nippon Steel Corp Smelting reduction method for iron
JP2000045012A (en) * 1998-05-22 2000-02-15 Nippon Steel Corp Method for utilizing dust in converter steel making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503029A (en) * 2011-12-06 2015-01-29 テクノロジカル リソーシーズ プロプライエタリー リミテッドTechnological Resources Pty.Limited Starting the smelting process

Also Published As

Publication number Publication date
JP4781812B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US6149709A (en) Method of making iron and steel
EP2380995B1 (en) Smelting vessel, steel making plant and steel production method
JP5954551B2 (en) Converter steelmaking
US6503289B2 (en) Process for manufacturing molten metal iron
KR101606255B1 (en) Method of refining molten iron
CN102965463B (en) Efficient dephosphorization process for converter
JPWO2002022891A1 (en) Refining agent and refining method
CN104313309A (en) Technology and system for producing stainless steel by submerged arc furnace and AOD furnace duplex process
US6843828B2 (en) Method for treating slags or slag mixtures on an iron bath
CN110079665B (en) Preparation method of high-carbon metallized pellets for electric furnace
JP4781813B2 (en) Manufacturing method of molten iron
JP4540172B2 (en) Production of granular metallic iron
JP2002517607A (en) Sustained iron production and solid waste minimization by enhanced direct reduction of iron oxide
JP4060986B2 (en) How to use dust in converter steelmaking.
JP4781812B2 (en) Converter steelmaking method
JP3509072B2 (en) Iron and steel making
JP5000593B2 (en) Manufacturing method of granular metallic iron and manufacturing method of molten steel using the metallic iron
JP4097010B2 (en) Molten steel manufacturing method
JP4772436B2 (en) How to use dust in converter steelmaking and how to operate a dust melting converter
CN115537491B (en) Converter converting method of low-temperature low-silicon molten iron
WO2024023660A1 (en) A method of manufacturing molten pig iron into an electrical smelting unit
JPS62167809A (en) Production of molten chromium iron
JPH032933B2 (en)
JPS61139614A (en) Manufacture of steel
JPS6249346B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4781812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350