JP2007176944A - Nitric oxide decomposing agent - Google Patents

Nitric oxide decomposing agent Download PDF

Info

Publication number
JP2007176944A
JP2007176944A JP2007006780A JP2007006780A JP2007176944A JP 2007176944 A JP2007176944 A JP 2007176944A JP 2007006780 A JP2007006780 A JP 2007006780A JP 2007006780 A JP2007006780 A JP 2007006780A JP 2007176944 A JP2007176944 A JP 2007176944A
Authority
JP
Japan
Prior art keywords
nitric oxide
platinum
decomposing agent
transition metal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007006780A
Other languages
Japanese (ja)
Inventor
Arimasa Miyamoto
有正 宮本
Naoki Toshima
直樹 戸嶋
Takao Asano
孝雄 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APUTO KK
Original Assignee
APUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APUTO KK filed Critical APUTO KK
Priority to JP2007006780A priority Critical patent/JP2007176944A/en
Publication of JP2007176944A publication Critical patent/JP2007176944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for efficient quenching of nitric oxide among the reactive oxygen species generated in a living body, and to cancel an excessive state of these reactive oxygen species in vivo. <P>SOLUTION: The invention relates to the decomposing agent of nitric oxide comprising fine powder of a transition metal such as platinum or platinum alloy. The decomposing agent is preferably provided as an aqueous solution containing transition metal colloid at a ratio of 1 mM or less per 1,000 ml. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一酸化窒素の分解剤に関する。   The present invention relates to a nitric oxide decomposing agent.

生体内、特にミトコンドリア、ミクロソーム、白血球などにおいて、O2 -(スーパーオキサイドアニオン)、H22(過酸化水素)、HO・(ヒドロキシラジカル)、および励起分子種である12(一重項酸素)などの高い反応性を示す活性酸素種(ラジカル)が多く発生しており、生態防御、生化学反応などを含めた生体制御に関与していると言われている。また、一酸化窒素(NO)は短寿命の不安定ラジカル種であり、この物質も活性酸素の一種として生体内で重要な機能を有していることが明らかにされている(現代化学, 1994年 4月号特集)。 In vivo, particularly in mitochondria, microsomes, leukocytes, etc., O 2 (superoxide anion), H 2 O 2 (hydrogen peroxide), HO. (Hydroxy radical), and 1 O 2 (singlet) which is an excited molecular species Many active oxygen species (radicals) exhibiting high reactivity such as (oxygen) are generated and are said to be involved in biological control including ecological defense and biochemical reaction. Nitric oxide (NO) is a short-lived unstable radical species, and it has been clarified that this substance also has an important function in vivo as a kind of active oxygen (Modern Chemistry, 1994). April special issue).

正常な細胞では、これら活性酸素種の生成量は主反応である酸化還元反応等量の1%程度であり、分解酵素などによって順次代謝されている。ヒトが呼吸で体内に入れた酸素の95%以上は、通常の代謝過程を経て水となるが、残りの数%はミトコンドリアやミクロソームの電子伝達系において活性酸素となり、それらは多くの場合、ス−パーオキサイドデスミューテス(superoxide dismutase)、カタラーゼ、グルタチオンペルオキシデーなどの抗酸化酵素により消去されている。   In normal cells, the amount of these reactive oxygen species produced is about 1% of the equivalent amount of the redox reaction, which is the main reaction, and is sequentially metabolized by degrading enzymes and the like. More than 95% of the oxygen that humans breathe into the body becomes water through normal metabolic processes, while the remaining few percent become active oxygen in the mitochondrial and microsomal electron transport systems, which are often -Eliminated by antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide.

しかしながら、これらの抗酸化酵素によっては全ての活性酸素を除去できず、活性酸素の一部はタンパク質、脂質、核酸等を酸化してしまう。これらの酸化された物質は、別の生体防衛機構により一部修復がなされるものの、徐々に不可逆的に酸化損傷された物質が生成する。その結果、疾病や老化に繋がっていくとされている。   However, not all active oxygens can be removed by these antioxidant enzymes, and some of the active oxygens oxidize proteins, lipids, nucleic acids and the like. Although these oxidized substances are partially repaired by another biological defense mechanism, gradually irreversibly oxidatively damaged substances are generated. As a result, it is said to lead to illness and aging.

さらに、加齢とともにス−パーオキサイドデスミューテスなどの抗酸化酵素の発現量が減少することはよく知られている。老化による活性酸素種代謝能の低下や病気による活性酸素種の過剰生成によってこれらの酸化物の代謝が間に合わず蓄積してしまうと、非特異的に脂質等の細胞成分を酸化し、その障害から細胞死を導くこともある。これが老化やアルツハイマーなど多くの病気の一因となっている。   Furthermore, it is well known that the expression level of antioxidant enzymes such as superoxide desmutes decreases with age. If the metabolism of these oxides accumulates in time due to a decrease in reactive oxygen species metabolic capacity due to aging or excessive production of reactive oxygen species due to illness, cell components such as lipids are oxidized non-specifically, resulting in damage It can lead to cell death. This contributes to many diseases such as aging and Alzheimer's.

活性酸素が関与する疾病として、ガン、糖尿病、アトピー性皮膚炎、アルツハイマー、網膜色素変性症等が挙げられるが、ヒトの病気の90%には何らかのかたちで過剰状態の活性酸素が関与していると言われている。特に、生体内のミトコンドリアでは、酸素の90%以上が代謝され、細胞内で最も多く活性酸素が生成される。ミトコンドリア内で生成される活性酸素と抗酸化系とのバランスが遺伝病や加齢によって保てなくなると、ミトコンドリアから処理しきれなかった活性酸素が漏れ出して細胞に損傷を与え、老化やアポトーシスによる細胞死が引き起こされる。   Diseases involving active oxygen include cancer, diabetes, atopic dermatitis, Alzheimer, retinitis pigmentosa, etc., but over 90% of human illnesses involve excess oxygen in some way It is said. In particular, in the mitochondria in the living body, 90% or more of oxygen is metabolized, and active oxygen is generated most in the cell. If the balance between the active oxygen produced in mitochondria and the antioxidant system cannot be maintained due to genetic disease or aging, active oxygen that could not be processed from the mitochondria leaks and damages cells, resulting in aging and apoptosis. Cell death is caused.

活性酸素を消去させる手段として、水を電気分解して酸化還元電位を最大で−200mV〜−250mVにしたものが還元水として開発されており、また、電気分解によりpHを9〜11したアルカリイオン水が開発されている(例えば、谷腰欣司著、「今日からモノ知りシリーズ−とことんやさしい水の本」、初版、日刊工業新聞社、2001年11月、p.100−124)。また、高活性金属微粒子、例えば白金コロイドは、活性酸素の一種であるH22(過酸化水素)を分解させることが知られている(例えば、特開平10−68008号公報、0040段落)。しかしながら、白金コロイドが生体内でスーパーオキサイドや一酸化窒素の消去作用を有することに関して報告した文献はない。 As means for erasing active oxygen, water having electrolysis of water with an oxidation-reduction potential of -200 mV to -250 mV has been developed as reduced water, and alkaline ions having a pH of 9 to 11 by electrolysis are developed. Water has been developed (for example, Koji Tanikoshi, “Today's Mono-Knowing Series-A Book of Easy Water”, first edition, Nikkan Kogyo Shimbun, November 2001, p. 100-124). Highly active metal fine particles, such as platinum colloids, are known to decompose H 2 O 2 (hydrogen peroxide), which is a kind of active oxygen (for example, JP-A-10-68008, paragraph 0040). . However, there is no literature reporting that platinum colloids have a scavenging action on superoxide and nitric oxide in vivo.

なお、高活性金属微粒子の製造方法については、古くから種々知られている(例えば特公昭57−43125号公報、特公昭59−120249号公報、及び特開平9−225317号公報など)。   Various methods for producing highly active metal fine particles have been known for a long time (eg, Japanese Patent Publication No. 57-43125, Japanese Patent Publication No. 59-120249, and Japanese Patent Application Laid-Open No. 9-225317).

本発明者らは、生体内で生成する活性酸素のうちO2 -(スーパーオキサイドアニオン)及び一酸化窒素を効率よく消失させ、生体内におけるこれらの活性酸素の過剰状態を解消するための手段を提供すべく鋭意研究を行った。本発明者らは、遷移金属微粉末、特に貴金属である白金微粉末に着目し、これらの微粉末が細胞内に侵入可能であり、ミトコンドリアの内部にも侵入できること、及びこれらの微粉末がミトコンドリアの内部でスーパーオキサイドアニオン及び一酸化窒素を消失する能力を有することを見出した。本発明は上記の知見を基にして完成された。 The inventors of the present invention provide a means for efficiently eliminating O 2 (superoxide anion) and nitric oxide among the active oxygens generated in the living body and eliminating the excess state of these active oxygens in the living body. We conducted earnest research to provide it. The present inventors have focused on transition metal fine powder, particularly platinum fine powder, which is a noble metal, and these fine powders can invade cells and can enter the inside of mitochondria. Was found to have the ability to dissipate superoxide anions and nitric oxide. The present invention has been completed based on the above findings.

すなわち、本発明により、遷移金属の微粉末を含むスーパーオキサイドアニオン分解剤が提供される。この発明の好ましい態様によれば、遷移金属が貴金属の微粉末である上記のスーパーオキサイド分解剤が提供される。この分解剤は、生体内においてスーパーオキサイドアニオンを分解できる。   That is, according to the present invention, a superoxide anion decomposing agent containing a fine powder of a transition metal is provided. According to a preferred embodiment of the present invention, there is provided the above superoxide decomposition agent wherein the transition metal is a fine powder of a noble metal. This decomposing agent can decompose the superoxide anion in vivo.

別の観点からは、本発明により、遷移金属の微粉末を含む一酸化窒素分解剤が提供される。この発明の好ましい態様によれば、遷移金属が貴金属の微粉末である上記の一酸化窒素分解剤が提供される。   From another aspect, the present invention provides a nitric oxide decomposing agent comprising a fine powder of a transition metal. According to a preferred aspect of the present invention, there is provided the above-mentioned nitric oxide decomposing agent, wherein the transition metal is a fine powder of a noble metal.

これらの発明の好ましい態様によれば、上記微粉末が白金微粉末又は白金合金の微粉末である上記分解剤;遷移金属コロイドを含む水性の上記分解剤;1000ml中に1mM以下の割合で遷移金属コロイドを含む水性の上記分解剤が提供される。   According to a preferred embodiment of these inventions, the above-mentioned decomposition agent in which the fine powder is a fine powder of platinum or a platinum alloy; the aqueous decomposition agent containing a transition metal colloid; An aqueous degradation agent comprising a colloid is provided.

さらに別の観点からは、ヒトを含む哺乳類動物の生体内でスーパーオキサイド又は一酸化窒素を消去する方法であって、遷移金属の微粉末を生体に投与する工程を含む方法が提供される。この発明の好ましい態様によれば、遷移金属コロイドを含む水を投与することができる。   From still another aspect, there is provided a method for eliminating superoxide or nitric oxide in the living body of mammals including humans, the method comprising the step of administering a fine powder of transition metal to the living body. According to a preferred embodiment of the present invention, water containing a transition metal colloid can be administered.

本発明の分解剤における遷移金属の種類は特に限定されず、具体的な金属としては、金、ニッケル、白金、ロジウム、パラジム、イリジウム、ルテニウム、オスミウムなどの金属又はそれらの合金が上げられる。遷移金属としては貴金属であることが好ましい。貴金属の種類は特に限定されず、金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジム、又は白金のいずれを用いてもよいが、好ましい貴金属はルテニウム、ロジウム、パラジウム、又は白金である。特に好ましい貴金属は白金である。貴金属の微粒子は2種以上の貴金属を含んでいてもよい。また、少なくとも1種の貴金属を含む合金の微粒子、あるいは1種又は2種以上の貴金属の微粒子と貴金属以外の1種又は2種以上の金属の微粒子を含む混合物を用いることもできる。例えば、金及び白金からなる合金などを用いてもよい。これらのうち好ましいのは白金又は白金を含む合金であり、特に好ましいのは白金である。   The kind of transition metal in the decomposition agent of the present invention is not particularly limited, and specific metals include metals such as gold, nickel, platinum, rhodium, paradium, iridium, ruthenium, osmium, and alloys thereof. The transition metal is preferably a noble metal. The type of the noble metal is not particularly limited, and any of gold, ruthenium, rhodium, palladium, osmium, iridium, or platinum may be used, but a preferable noble metal is ruthenium, rhodium, palladium, or platinum. A particularly preferred noble metal is platinum. The noble metal fine particles may contain two or more kinds of noble metals. Further, it is also possible to use fine particles of an alloy containing at least one kind of noble metal, or a mixture containing fine particles of one or more kinds of noble metals and fine particles of one or more kinds of metals other than noble metals. For example, an alloy made of gold and platinum may be used. Of these, platinum or an alloy containing platinum is preferable, and platinum is particularly preferable.

貴金属の微粒子としては、比表面積が大きく、表面反応性に優れたコロイド状態を形成可能な微粒子が好ましい。微粒子の粒径は特に限定されないが、50 nm以下の平均粒径を有する微粒子を用いることができ、好ましくは平均粒径が20 nm以下、さらに好ましくは平均粒径が10 nm以下、特に好ましくは平均粒径が1〜6 nm程度の微粒子を用いることができる。特にミトコンドリア内部への侵入のためには平均粒径が1〜6 nm程度であることが好ましい。さらに細かな微粒子を用いることも可能であり、生体内への取り込みを高めるために好ましい。これらの微粒子を水性媒体中に安定な懸濁状態で含む分解剤も好ましい。水性媒体としては、水のほか、生体に対する毒性が低く水と任意の割合で混じり合う有機溶媒、例えば、エタノール、エチレングリコールなどを用いることができる。好ましくは水性媒体として水を用いることができる。   As the noble metal fine particles, fine particles having a large specific surface area and capable of forming a colloidal state excellent in surface reactivity are preferable. The particle size of the fine particles is not particularly limited, but fine particles having an average particle size of 50 nm or less can be used, preferably the average particle size is 20 nm or less, more preferably the average particle size is 10 nm or less, and particularly preferably Fine particles having an average particle diameter of about 1 to 6 nm can be used. In particular, the average particle diameter is preferably about 1 to 6 nm for entry into the mitochondria. Finer fine particles can also be used, which is preferable in order to enhance the uptake into the living body. A decomposition agent containing these fine particles in a stable suspension in an aqueous medium is also preferred. As the aqueous medium, in addition to water, an organic solvent having low toxicity with respect to a living body and mixed with water at an arbitrary ratio, for example, ethanol, ethylene glycol, or the like can be used. Preferably, water can be used as the aqueous medium.

貴金属微粒子の製造方法は種々知られており(例えば、特公昭57-43125号公報、特公昭59-120249号公報、及び特開平9-225317号公報、特開平10-176207号公報、特開2001-79382号公報、特開2001-122723号公報など)、当業者はこれらの方法を参照することによって微粒子を容易に調製することができる。例えば、貴金属微粒子の製造方法として、沈殿法又は金属塩還元反応法と呼ばれる化学的方法、あるいは燃焼法と呼ばれる物理的方法などを利用できる。本発明の分解剤としては、いずれの方法で調製された微粒子を用いてもよいが、製造の容易性と品質面から金属塩還元反応法で調製された微粒子を用いることが好ましい。   Various methods for producing noble metal fine particles are known (for example, JP-B-57-43125, JP-B-59-120249, JP-A-9-225317, JP-A-10-176207, JP-A-2001). -79382, JP-A-2001-122723, etc.), those skilled in the art can easily prepare fine particles by referring to these methods. For example, as a method for producing noble metal fine particles, a chemical method called a precipitation method or a metal salt reduction reaction method, a physical method called a combustion method, or the like can be used. As the decomposing agent of the present invention, fine particles prepared by any method may be used, but it is preferable to use fine particles prepared by a metal salt reduction reaction method from the viewpoint of ease of production and quality.

金属塩還元反応法では、例えば、水溶性若しくは有機溶媒可溶性の貴金属塩又は貴金属錯体の水溶液又は有機溶媒溶液を調製し、この溶液に水溶性高分子を加えた後、溶液のpHを9〜11に調節し、不活性雰囲気下で加熱還流することにより還元して金属微粒子を得ることができる。貴金属の水溶性又は有機溶媒可溶性の塩の種類は特に限定されないが、例えば、酢酸塩、塩化物、硫酸塩、硝酸塩、スルホン酸塩、又はリン酸塩などを用いることができ、これらの錯体を用いてもよい。   In the metal salt reduction reaction method, for example, an aqueous solution or an organic solvent solution of a water-soluble or organic solvent-soluble noble metal salt or noble metal complex is prepared, and after adding a water-soluble polymer to this solution, the pH of the solution is adjusted to 9 to 11. And fine particles can be obtained by reduction by heating to reflux in an inert atmosphere. The kind of the water-soluble or organic solvent-soluble salt of the noble metal is not particularly limited. For example, acetate, chloride, sulfate, nitrate, sulfonate, or phosphate can be used. It may be used.

金属塩還元反応法に用いる水溶性高分子の種類は特に限定されないが、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸、シクロデキストリン、アミノペクチン、又はメチルセルロースなどを用いることができ、これらを2種以上組み合わせて用いてもよい。好ましくはポリビニルピロリドンを用いることができ、より好ましくはポリ(1-ビニル-2-ピロリドン)を用いることができる。また、水溶性高分子に替えて、あるいは水溶性高分子とともに各種の界面活性剤、例えばアニオン性、ノニオン性、又は脂溶性等の界面活性剤を使用することも可能である。還元をアルコールを用いて行う際には、エチルアルコール、n-プロピルアルコール、n-ブチルアルコール、n-アミルアルコール、又はエチレングリコールなどが用いられる。もっとも、貴金属微粒子の調製方法は上記に説明した方法に限定されることはない。   The type of water-soluble polymer used in the metal salt reduction reaction method is not particularly limited. For example, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid, cyclodextrin, aminopectin, or methylcellulose can be used. A combination of the above may be used. Polyvinylpyrrolidone can be preferably used, and poly (1-vinyl-2-pyrrolidone) can be more preferably used. Moreover, it is also possible to use various surfactants, for example, anionic, nonionic, or fat-soluble surfactants in place of the water-soluble polymer or together with the water-soluble polymer. When the reduction is performed using alcohol, ethyl alcohol, n-propyl alcohol, n-butyl alcohol, n-amyl alcohol, ethylene glycol, or the like is used. However, the method for preparing the noble metal fine particles is not limited to the method described above.

以上の方法で調製された金属微粉末は、通常、使用した溶媒を媒体とするコロイド状態で得られるので、それをそのまま本発明のスーパーオキサイドアニオン分解剤又は一酸化窒素分解剤として用いることができる。使用した有機溶媒を除く場合には、加熱により有機溶剤を除去し、本発明の分解剤を金属微粉末として調製することもできる。加熱乾燥により得られた金属微粉末が、スーパーオキサイドアニオン分解剤又は一酸化窒素分解剤としての特性を消失することはない。   Since the metal fine powder prepared by the above method is usually obtained in a colloidal state using the solvent used as a medium, it can be used as it is as the superoxide anion decomposer or nitric oxide decomposer of the present invention. . When the organic solvent used is removed, the organic solvent is removed by heating, and the decomposition agent of the present invention can be prepared as a metal fine powder. The metal fine powder obtained by heating and drying does not lose its properties as a superoxide anion decomposer or nitric oxide decomposer.

本発明の分解剤は還元水の形態として調製することができる。還元水とは、生体内で酸化物質を還元する作用を有する水のことである。本発明に従って、添加した分解剤の量に応じてスーパーオキサイドアニオン及び/又は一酸化窒素を分解する還元水を調製することができるが、例えば、水1000ml当たり0.033mM程度の分解剤を添加した還元水でも十分な還元効果、すなわちスーパーオキサイドアニオン及び/又は一酸化窒素の分解効果が得られる。例えば、本発明の還元水は、上記の分解剤を1mM以下の割合で含むことが好ましい。上記の割合で含む還元水をヒトを含む哺乳類動物に投与することにより、生体内における過剰なスーパーオキサイドアニオン及び/又は一酸化窒素の大部分は消失する。   The decomposing agent of the present invention can be prepared in the form of reduced water. Reduced water is water having an action of reducing an oxidizing substance in vivo. According to the present invention, reduced water that decomposes the superoxide anion and / or nitric oxide can be prepared according to the amount of the added decomposition agent. For example, about 0.033 mM decomposition agent was added per 1000 ml of water. Even with reduced water, a sufficient reduction effect, that is, a decomposition effect of superoxide anion and / or nitric oxide can be obtained. For example, the reduced water of the present invention preferably contains the above decomposing agent at a ratio of 1 mM or less. By administering reduced water containing the above ratio to mammals including humans, most of the superoxide anion and / or nitric oxide in the body disappears.

本発明の分解剤の好ましい態様では、ナノメーター(nm)オーダーの粒径の金属微粉末を含んでおり、該金属微粉末は生体内に投与された後に細胞内に取り込まれ、さらにミトコンドリア内に侵入してミトコンドリア内で生成されるスーパーオキサイドアニオン又は一酸化窒素を消失させる。従って、本発明の分解剤は、活性酸素に起因するとされる前記の疾病、特に筋萎縮性側索硬化症(FALS)などの予防又は治療に有効であると期待される。また、還元水の形態として提供される本発明の分解剤は、健康食品としての飲料水又はスポーツドリンクとして用いることができ、それ自体を医薬又は化粧料として使用できるほか、健康食品の製造や医薬又は化粧料などの製造に用いることもできる。   In a preferred embodiment of the decomposing agent of the present invention, a metal fine powder having a particle size of nanometer (nm) order is included, and the metal fine powder is taken into a cell after being administered into a living body, and further into the mitochondria. Invades the superoxide anion or nitric oxide generated in the mitochondria. Therefore, the degradation agent of the present invention is expected to be effective for the prevention or treatment of the above-mentioned diseases caused by active oxygen, particularly amyotrophic lateral sclerosis (FALS). In addition, the decomposition agent of the present invention provided as a form of reduced water can be used as drinking water or sports drink as health food, and can be used as a medicine or cosmetic, as well as production of health food and medicine. Or it can also be used for manufacture of cosmetics.

さらに、本発明の一酸化窒素分解剤を、例えば、タバコなどのフィルターに配合することにより、タバコの煙に含まれる一酸化窒素を効率よく分解することができる。例えば、タバコのフィルター中に活性炭などとともに、あるいは活性炭に替えて本発明の分解剤の微粒子を固体状態で配合しておくことができる。あるいは、水性コロイド状態の本発明の分解剤を水パイプ中に充填しておき、タバコの煙を該水パイプ中に誘導することによって、タバコの煙に含まれる一酸化窒素を効率よく除去できる。   Furthermore, by adding the nitric oxide decomposing agent of the present invention to a filter such as tobacco, it is possible to efficiently decompose nitric oxide contained in tobacco smoke. For example, fine particles of the decomposing agent of the present invention can be blended in a solid state together with activated carbon in a tobacco filter or in place of activated carbon. Alternatively, the nitric oxide contained in the tobacco smoke can be efficiently removed by filling the water pipe with the decomposing agent of the present invention in the form of an aqueous colloid and guiding the tobacco smoke into the water pipe.

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1
アリール冷却管と三方コックを接続した、100ml二口ナス底フラスコに、和光純薬株式会社製の試薬である、ポリ(1−ビニル−2−ピロリドン)を0.1467g入れ、蒸留水23mlで溶解させ、10分間スターラーチップで撹拌した後、塩化白金酸結晶(H2PtCl6・6H2O:和光純薬株式会社製試薬)を蒸留水に溶解し、濃度を1.66×10-2Mに調整した塩化白金酸水溶液を2ml加え、さらに30分間撹拌した。反応系内を窒素置換し、特級エタノール25ml加え、窒素雰囲気下を保ちながら温度100℃で2時間還流した。反応液のUVを測定して、白金イオンピークが消失し、金属固体特有の散乱によるピークの飽和を確認し、還元反応が完了したことを確認した。溶媒をエバポレーターで除いた後、さらに12時間かけて凍結乾燥して白金微粉末(本発明の分解剤)を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
Example 1
In a 100 ml two-necked eggplant bottom flask connected with an aryl condenser and a three-way cock, 0.1467 g of poly (1-vinyl-2-pyrrolidone), a reagent made by Wako Pure Chemical Industries, Ltd., is added and dissolved in 23 ml of distilled water. After stirring for 10 minutes with a stirrer chip, chloroplatinic acid crystals (H 2 PtCl 6 .6H 2 O: Reagents manufactured by Wako Pure Chemical Industries, Ltd.) are dissolved in distilled water to a concentration of 1.66 × 10 −2 M 2 ml of the chloroplatinic acid aqueous solution adjusted to 1 was added, and the mixture was further stirred for 30 minutes. The reaction system was purged with nitrogen, 25 ml of special grade ethanol was added, and the mixture was refluxed at 100 ° C. for 2 hours while maintaining a nitrogen atmosphere. By measuring the UV of the reaction solution, the platinum ion peak disappeared, the saturation of the peak due to the scattering characteristic of the metal solid was confirmed, and the reduction reaction was completed. After removing the solvent with an evaporator, it was further lyophilized over 12 hours to obtain a fine platinum powder (decomposing agent of the present invention).

得られた分解剤を、予めpHを7.8に調整した濃度0.1Mのリン酸ナトリウム緩衝液に溶解し、0.66mM、0.495mM、0.330mM、0.165mM、0.083mM、0.033mMの濃度でコロイド状態の分解剤を含む分散液を得た。顕微鏡下で観察したところ、この白金微粒子の粒径は6ナノメーター以下であった。   The obtained decomposing agent was dissolved in a 0.1 M sodium phosphate buffer whose pH was adjusted to 7.8 in advance, and 0.66 mM, 0.495 mM, 0.330 mM, 0.165 mM, 0.083 mM, A dispersion containing colloidal degradation agent at a concentration of 0.033 mM was obtained. When observed under a microscope, the particle size of the platinum fine particles was 6 nanometers or less.

例2
ヒポキサンチン/キサンチンオキシダーゼの組合せ及びフェナジエンメトサルフェイト/NADH(還元型ニコチンアミドアデニンジヌクレオチド)の組合せでそれぞれ発生するO2 -(スーパーオキサイドアニオン)を用いて、得られた分解剤のスーパーオキサイドアニオン分解能を以下のようにして測定した。
Example 2
Superoxide of the resulting degradation agent using O 2 (superoxide anion) generated by the combination of hypoxanthine / xanthine oxidase and the combination of phenadiene methosulfate / NADH (reduced nicotinamide adenine dinucleotide), respectively Anion resolution was measured as follows.

(A)ヒポキサンチン/キサンチンオキシダーゼ系
試料容器に、濃度8.8MのDMPO(5,5−ジメチル−1−ピロリン−N−オキサイド:ラボテック社製スピントラップ剤)20μl、濃度1mMのヒポキサンチン(シグマ社製)50μl、MilliQ(精製水:ミリポア社製)50μl、濃度の異なる上記の各サンプル5種の50μlを、それぞれ順次加えて混合した後、濃度0.04U/mlのキサンチンオキシダーゼ(ロッシュ社製)50μlを加え、45秒後にESR測定装置(日本電子株式会社製JES−FA200)を用いて、ESRスペクトルを測定した。標準物質(マンガン)との対比でO2 -(スーパーオキサイドアニオン)量を測定した。、得られた結果を表1に示す。括弧内の数値は、濃度0のときの値を100としたときの相対値である。
(A) Hypoxanthine / xanthine oxidase system In a sample container, 20 μl of DMPO (5,5-dimethyl-1-pyrroline-N-oxide: spin trap agent manufactured by Labotech) at a concentration of 8.8 M and hypoxanthine (Sigma) at a concentration of 1 mM. 50 μl, MilliQ (purified water: manufactured by Millipore) 50 μl, and 50 μl of each of the above five samples having different concentrations were sequentially added and mixed, and then xanthine oxidase (Roche) at a concentration of 0.04 U / ml. 50 μl was added, and after 45 seconds, an ESR spectrum was measured using an ESR measuring apparatus (JES-FA200 manufactured by JEOL Ltd.). The amount of O 2 (superoxide anion) was measured in comparison with the standard substance (manganese). The results obtained are shown in Table 1. The numerical value in the parenthesis is a relative value when the value when the density is 0 is 100.

(B)フェナジエンメトサルフェイト/NADH系
上記サンプルの内4種(濃度0.033mM、0.083mM、0.165mM及び0.330mM)について、試料容器に濃度8.8MのDMPO20μl、NADH(フナコシ株式会社製)、フェナジンメトサルフェイト(和光純薬株式会社製)、上記サンプル50μlを順次加えて混合した後、1分後に上記と同様にして、ESRスペクトルを測定した結果を表2に示す。括弧内の数値は濃度0のときの値を100としたときの相対値である。
(B) Phenadiene methosulfate / NADH system For 4 types (concentrations 0.033 mM, 0.083 mM, 0.165 mM and 0.330 mM) of the above samples, 20 μl of DMPO with a concentration of 8.8 M, NADH (Funakoshi) Table 2 shows the results of measuring the ESR spectrum in the same manner as described above after 1 minute after sequentially adding and mixing 50 μl of the above sample and phenazine methosulfate (manufactured by Wako Pure Chemical Industries, Ltd.) and the above sample. The numerical value in the parenthesis is a relative value when the value when the density is 0 is 100.

比較例1
ポリ(1−ビニル−2−ピロリドン)そのもの、又は白金錯体であるシスプラチン(PtCl2(NH3)2)を用いて、ポリ(1−ビニル−2−ピロリドン)又は白金濃度を実施例と同一にして、O2 -(スーパーオキサイドアニオン)量を測定したが、ブランク(白金濃度=0)との間に差異は認められなかった。
Comparative Example 1
Using poly (1-vinyl-2-pyrrolidone) itself or cisplatin (PtCl 2 (NH 3 ) 2 ), which is a platinum complex, the poly (1-vinyl-2-pyrrolidone) or platinum concentration is the same as in the examples. Then, the amount of O 2 (superoxide anion) was measured, but no difference was observed from the blank (platinum concentration = 0).

例2
分析用キットとしてNO2/NO3 Assay Kit-C II(株式会社同仁化学研究所)を用いて、白金コロイドによるNOの消去能を検討した。このキットはNOが加水分解し生じたNO2を測定するものである。マイクロプレートリーダー(BIO RAD 製 Model 550)を用い、検出波長を 570 nm に設定して、各サンプルについて3回測定を行った。マイクロプレートには96穴マイクロプレートを使用した。また、NOドナーとしてはNOC7(株式会社同仁化学研究所)を用いた。分析は基本的にキットに付属していたマニュアルに従って行い、若干修正を加えた。マイクロプレートの各ウェルにサンプル8μLを加え、緩衝溶液84μLとNOC7 8μLを混和し、30 分間放置した。試薬A 50μLを混和して5 分間放置し、さらに試薬B 50μLを混和して10 分間放置した後、マイクロプレートリーダーにて検出波長570 nmで検出を行った。NOから発生するNO2と白金ナノコロイドが反応してしまうとNOの消去が観測できないことになる。そこで、NO2と白金ナノコロイドを混合して吸光度分析を行った。この結果、白金ナノコロイドが含まれると、わずかに吸光度が上昇するものの、NO2の分解などは起きていないことが明らかとなった。各サンプルについて、それぞれNO消去能を分析した。結果を図1に示す。この結果から、白金ナノコロイドにはNO消去能があることが明らかとなった。
Example 2
NO 2 / NO 3 Assay Kit-C II (Dojindo Laboratories, Inc.) was used as an analysis kit to examine the ability to eliminate NO by platinum colloid. This kit measures NO 2 produced by hydrolysis of NO. Using a microplate reader (Model 550 manufactured by BIO RAD), the detection wavelength was set to 570 nm, and each sample was measured three times. A 96-well microplate was used as the microplate. Moreover, NOC7 (Dojindo Laboratories Inc.) was used as the NO donor. The analysis was basically performed according to the manual that came with the kit, with some modifications. 8 μL of sample was added to each well of the microplate, 84 μL of buffer solution and 8 μL of NOC7 were mixed, and left for 30 minutes. Reagent A (50 μL) was mixed and allowed to stand for 5 minutes. Reagent B (50 μL) was further mixed and allowed to stand for 10 minutes, and then detected with a microplate reader at a detection wavelength of 570 nm. If NO 2 generated from NO reacts with platinum nanocolloid, the elimination of NO cannot be observed. Therefore, NO 2 and platinum nanocolloid were mixed and the absorbance analysis was performed. As a result, it was clarified that when platinum nanocolloid was contained, the absorbance slightly increased but NO 2 decomposition did not occur. Each sample was analyzed for NO elimination ability. The results are shown in FIG. From this result, it was clarified that the platinum nanocolloid has NO elimination ability.

本発明のスーパーオキサイドアニオン分解剤及び一酸化窒素分解剤は、生体に投与することにより、生体内の過剰なスーパーオキサイドアニオン及び/又は一酸化窒素を分解することができる。   The superoxide anion decomposing agent and nitric oxide decomposing agent of the present invention can decompose excessive superoxide anion and / or nitric oxide in the living body by being administered to the living body.

第1図は、本発明の一酸化窒素分解剤の作用を示した図である。FIG. 1 is a diagram showing the action of the nitric oxide decomposing agent of the present invention.

Claims (5)

遷移金属の微粉末を含む一酸化窒素の分解剤。 Decomposing agent for nitric oxide containing fine powder of transition metal. 遷移金属が貴金属である請求項1に記載の分解剤。 The decomposition agent according to claim 1, wherein the transition metal is a noble metal. 白金微粉末又は白金合金の微粉末を含む請求項1に記載の分解剤。 The decomposition agent of Claim 1 containing the fine powder of a platinum fine powder or a platinum alloy. 遷移金属コロイドを含む水性の請求項1ないし3のいずれか1項に記載の分解剤。 The decomposition agent according to any one of claims 1 to 3, comprising an aqueous transition metal colloid. 1000mlあたり1mM以下の割合の遷移金属を含む請求項4に記載の分解剤。 The decomposition agent according to claim 4, comprising a transition metal at a ratio of 1 mM or less per 1000 ml.
JP2007006780A 2003-02-20 2007-01-16 Nitric oxide decomposing agent Pending JP2007176944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006780A JP2007176944A (en) 2003-02-20 2007-01-16 Nitric oxide decomposing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003042452 2003-02-20
JP2007006780A JP2007176944A (en) 2003-02-20 2007-01-16 Nitric oxide decomposing agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005502741A Division JP4058072B2 (en) 2003-02-20 2004-02-18 Superoxide anion decomposer

Publications (1)

Publication Number Publication Date
JP2007176944A true JP2007176944A (en) 2007-07-12

Family

ID=38302455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006780A Pending JP2007176944A (en) 2003-02-20 2007-01-16 Nitric oxide decomposing agent

Country Status (1)

Country Link
JP (1) JP2007176944A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254497A (en) * 1999-03-09 2000-09-19 Jisedai Haigas Shokubai Kenkyusho:Kk Exhaust gas purification catalyst and its production
JP2001122723A (en) * 1999-10-27 2001-05-08 I Betsukusu:Kk Cosmetic
JP2002212102A (en) * 2001-01-23 2002-07-31 Ainobekkusu Kk Electrochemically bioactive fine particle
WO2004039735A1 (en) * 2002-04-26 2004-05-13 Miz Co., Ltd. Method of inhibiting oxidation, water capable of inhibiting oxidation and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254497A (en) * 1999-03-09 2000-09-19 Jisedai Haigas Shokubai Kenkyusho:Kk Exhaust gas purification catalyst and its production
JP2001122723A (en) * 1999-10-27 2001-05-08 I Betsukusu:Kk Cosmetic
JP2002212102A (en) * 2001-01-23 2002-07-31 Ainobekkusu Kk Electrochemically bioactive fine particle
WO2004039735A1 (en) * 2002-04-26 2004-05-13 Miz Co., Ltd. Method of inhibiting oxidation, water capable of inhibiting oxidation and use thereof

Similar Documents

Publication Publication Date Title
Kong et al. MnO 2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood
JP4058072B2 (en) Superoxide anion decomposer
Chen et al. Colorimetric assay for lead ions based on the leaching of gold nanoparticles
MacCormack et al. Inhibition of enzyme activity by nanomaterials: potential mechanisms and implications for nanotoxicity testing
Pokhrel et al. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay
Shang et al. Enzyme mimic nanomaterials and their biomedical applications
Ma et al. Copper (II) ions enhance the peroxidase-like activity and stability of keratin-capped gold nanoclusters for the colorimetric detection of glucose
Tran et al. Functionalized bimetallic IrPt alloy nanoparticles: Multi-enzyme mimics for colorimetric and fluorometric detection of hydrogen peroxide and glucose
Zhong et al. Aggregation and dissolution of engineering nano Ag and ZnO pretreated with natural organic matters in the simulated lung biological fluids
Wang et al. Size-dependent acute toxicity and oxidative damage caused by cobalt-based framework (ZIF-67) to Photobacterium phosphoreum
Arputharaj et al. Visible fluorescent sensing of Cu2+ ions in urine by reusable chitosan/L-histidine–stabilized silicon nanoparticles integrated thin layer chromatography sheet
Mendez-Alvarez et al. Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants
Housaindokht et al. A novel nanocomposite (g-C3N4/Fe3O4@ P2W15V3) with dual function in organic dyes degradation and cysteine sensing
JP2007176944A (en) Nitric oxide decomposing agent
EP3321014B1 (en) Method for producing platinum colloid, and platinum colloid produced using such method
KR100842070B1 (en) Nano platinum ginsenoside particle and production method thereof
US8637319B2 (en) Method and a kit for determining human or animal blood on a surface
CN110026562B (en) Synthesis method and application of near-infrared fluorescent probe iron nanocluster
Das et al. Kinetics of palladium nano-particles catalyzed reduction of methylene green by hydrazine: role of induction period in determining mechanistic pathway
Mikheev et al. In vitro antioxidant potential evaluation of non-functionalized fullerenes and endofullerene
Li et al. Au–Ag nanoclusters/3, 3′, 5, 5′ tetramethylbenzidine complex as a sensitive “turn-on” fluorescent nanoplatform for mercury (II) ions sensing
JP6251590B2 (en) Arsenic oxidation method
Polaczek et al. Influence of modified nano-copper oxide particles on the reaction between nitrocobalamin and ascorbic acid
CN112916863B (en) Water-soluble luminescent silver nanocluster and preparation method and application thereof
Medeiros et al. Insight into the relevance of dinitrosyl iron complex (DNIC) formation in the absence of thiols in aqueous media

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124