JP2007175773A - Laser cutting machine - Google Patents

Laser cutting machine Download PDF

Info

Publication number
JP2007175773A
JP2007175773A JP2006348075A JP2006348075A JP2007175773A JP 2007175773 A JP2007175773 A JP 2007175773A JP 2006348075 A JP2006348075 A JP 2006348075A JP 2006348075 A JP2006348075 A JP 2006348075A JP 2007175773 A JP2007175773 A JP 2007175773A
Authority
JP
Japan
Prior art keywords
laser
substrate
cutting
optical path
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006348075A
Other languages
Japanese (ja)
Inventor
Chen Tsu Fu
承祖 傅
Shungai Ko
俊凱 黄
Hsien Tang Chen
献堂 陳
Ming-Hui Chang
明輝 張
Sofu Kyo
宗富 許
Hosen Tei
訪▲せん▼ 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foxsemicon Integrated Technology Inc
Original Assignee
Foxsemicon Integrated Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Technology Inc filed Critical Foxsemicon Integrated Technology Inc
Publication of JP2007175773A publication Critical patent/JP2007175773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser cutting machine which enhances cutting quality of a substrate. <P>SOLUTION: The laser cutting machine is used for cutting a brittle substrate, and comprises a pre-cutting system 78 for forming a pre-cutting plane line on the substrate, a laser beam system for generating a laser beam which heats and thermally expands the substrate along the pre-cutting plane line, and a cooling system 79 for cooling the thermally expanded substrate. The laser beam system has a hollow body 7 which generates the laser beam, and an optical path distance adjusting system 75. The optical path distance adjusting system is placed in an optical path where the substrate is irradiated with the laser beam and is used to adjust the optical path distance. The laser cutting machine can meet different cutting requirements by placing the optical path distance adjusting system in the optical path of the laser beam to adjust the size of a light spot where the substrate is irradiated with the laser beam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザー切断装置に関して、特に、例えば、液晶表示装置のガラス面板などの脆性材料の切断に利用するレーザー切断装置に関する。   The present invention relates to a laser cutting device, and more particularly to a laser cutting device used for cutting a brittle material such as a glass face plate of a liquid crystal display device.

表示技術の発展につれて、液晶表示装置は、自身の性質によって従来の陰極線管(Cathode Ray Tube)の表示装置に取って代わり、消費領域に広く応用されている。   With the development of display technology, the liquid crystal display device has been widely applied in the consumption area, replacing the conventional cathode ray tube display device due to its own properties.

液晶表示装置は、一般的に二つのガラス基板、該二つのガラス基板の間に収容される液晶、及び複数の回路から成る。液晶は、電界の影響を受けて配向方式を変えることによって表示を行う。寸法が異なる液晶面板を製造するためには、大きい液晶面板を切断することにより、異なる寸法の液晶面板の需要を満足する必要がある。   A liquid crystal display device generally includes two glass substrates, a liquid crystal accommodated between the two glass substrates, and a plurality of circuits. The liquid crystal displays by changing the alignment method under the influence of an electric field. In order to manufacture liquid crystal face plates with different dimensions, it is necessary to satisfy the demand for liquid crystal face plates with different dimensions by cutting large liquid crystal face plates.

従来、ガラス基板をレーザー切断装置で切断する時には、ホイールカッター又はダイヤモンドカッターでガラス基板表面に予め切断線を形成した後に、レーザー光で前記基板表面を加熱し、冷却液で前記基板表面を冷却する。前記基板は、急激な温度差で応力の変化が生じるので、その表面に形成された予め切断線から生じた亀裂が伸展して基板断面を貫通し、これによって該基板が完全に分離される。   Conventionally, when a glass substrate is cut with a laser cutting device, a cutting line is previously formed on the glass substrate surface with a wheel cutter or a diamond cutter, and then the substrate surface is heated with a laser beam and the substrate surface is cooled with a cooling liquid. . Since stress changes due to a rapid temperature difference in the substrate, a crack generated from a pre-cut line formed on the surface of the substrate extends and penetrates the substrate cross section, whereby the substrate is completely separated.

図1は、従来のレーザー切断装置の構成を示す概略図である。該レーザー切断装置は、二酸化炭素レーザー光を発生する二酸化炭素レーザー光ユニット1と、反射鏡2と、フォーカスレンズ組立体3と、ホイールカッター4と、冷却システム5と、を含む。切断方向Aに沿って、基板6を切断する時には、ホイールカッター4が基板6の表面に切断を行い、所定の深さの予め切断線を形成する。反射鏡2とフォーカスレンズ組立体3を介して、基板6の表面に照射する二酸化炭素レーザー光は、前記予め切断線に沿って基板を加熱した後、冷却システム5が加熱された予め切断線に沿って前記基板を冷却する。加熱した直後に冷却することにより、ガラス面板には温度差が生じる。この温度差によってガラス面板の内部に生じる応力が、基板を完全に分離させる。基板6は金属の真空チャックに載置台に吸い付けられる。   FIG. 1 is a schematic view showing a configuration of a conventional laser cutting apparatus. The laser cutting device includes a carbon dioxide laser light unit 1 that generates carbon dioxide laser light, a reflecting mirror 2, a focus lens assembly 3, a wheel cutter 4, and a cooling system 5. When the substrate 6 is cut along the cutting direction A, the wheel cutter 4 cuts the surface of the substrate 6 to form a cutting line having a predetermined depth in advance. The carbon dioxide laser light applied to the surface of the substrate 6 through the reflecting mirror 2 and the focus lens assembly 3 heats the substrate along the cutting line in advance, and then the cooling system 5 heats the cutting line in advance. The substrate is cooled along. By cooling immediately after heating, a temperature difference occurs in the glass face plate. The stress generated inside the glass face plate due to this temperature difference completely separates the substrates. The substrate 6 is sucked onto the mounting table by a metal vacuum chuck.

図1によって、伝統的なレーザー切断装置において、レーザー光の光路構成システムが固定光路であり、レーザー光がレーザー光ユニット1から出射し、所定の距離L1を通って反射鏡2に入射した後に、所定の距離L2を通ってフォーカスレンズ3に反射した後、基板6に照射することがわかる。   According to FIG. 1, in a traditional laser cutting device, the optical path configuration system of laser light is a fixed optical path, and after the laser light is emitted from the laser light unit 1 and incident on the reflecting mirror 2 through a predetermined distance L1, It can be seen that the substrate 6 is irradiated after being reflected by the focus lens 3 through a predetermined distance L2.

しかし、上述光路構成システムにおいて、L1とL2が所定の距離に構成されるので光学素子が簡単であるが、基板6の寸法が変化する場合に、上述光路構成システムは基板6の変化によってレーザー光点の大きさ及び形状を適時に調整できず、切断特性の要求を満足できない。   However, in the optical path configuration system described above, the optical elements are simple because L1 and L2 are configured at a predetermined distance. However, when the dimensions of the substrate 6 change, the optical path configuration system changes the laser beam according to the change in the substrate 6. The size and shape of the points cannot be adjusted in a timely manner, and the requirements for cutting characteristics cannot be satisfied.

伝統的なホイールカッター4は、大体において、気圧によって直接に駆動され、ホイールカッター4を使用して基板6を切断する時には、基板の平坦性の影響を受けて切断深さは均一ではない。気体が圧縮性を有し、且つコントロールの始動より遅れるので、気圧に駆動されるホイールカッター4は基板表面の平坦性に対する敏感度が低い。従って、切断深さを均一になすことができない。   The traditional wheel cutter 4 is largely driven directly by atmospheric pressure, and when the substrate 6 is cut using the wheel cutter 4, the cutting depth is not uniform due to the influence of the flatness of the substrate. Since the gas is compressible and lags behind the start of control, the wheel cutter 4 driven by atmospheric pressure is less sensitive to the flatness of the substrate surface. Therefore, the cutting depth cannot be made uniform.

また、伝統的な金属の真空チャックが基板を吸着する吸着力は真空源の位置によって均一ではないので、基板が変形しやすい。従って、基板の切断深さを均一にならせる。その他には、伝統的な金属の真空チャックは、切断の過程で残る冷却液を速く排除できない。   Further, the suction force with which the traditional metal vacuum chuck sucks the substrate is not uniform depending on the position of the vacuum source, so that the substrate is easily deformed. Therefore, the cutting depth of the substrate is made uniform. In addition, traditional metal vacuum chucks cannot quickly remove the coolant remaining in the cutting process.

本発明の目的は、基板の切断品質を高めるレーザー切断装置を提供することにある。   An object of the present invention is to provide a laser cutting apparatus that improves the cutting quality of a substrate.

本発明のレーザー切断装置は、基板に予切断線を形成する予切断システムと、前記予切断線に沿って、基板を加熱して熱膨張させるレーザー光を発生させるレーザー光システムと、前記熱膨張した基板を冷却する冷却システムと、を含む、脆性基板を切断するために利用されるレーザー切断装置において、前記レーザー光システムは、前記レーザー光を発生するレーザー腔体と、光路距離調整システムと、を含み、前記光路距離調整システムは、前記レーザー光が前記基板に照射する光路に配置され、前記光路距離を調整するために利用される。   The laser cutting device of the present invention includes a pre-cutting system that forms a pre-cut line on a substrate, a laser light system that generates laser light that heats and heat-expands the substrate along the pre-cut line, and the thermal expansion. A laser cutting device used for cutting a brittle substrate, the laser beam system comprising: a laser cavity that generates the laser beam; an optical path distance adjustment system; The optical path distance adjustment system is disposed in an optical path that the laser beam irradiates the substrate, and is used to adjust the optical path distance.

従来技術と比べて、本発明に係るレーザー切断装置は、レーザー光路に該レーザー光が基板に照射する光点の大きさを調整するための光路距離調整システムを配置することによって、異なる切断要求を満足することができる。   Compared with the prior art, the laser cutting apparatus according to the present invention has different cutting requirements by arranging an optical path distance adjusting system for adjusting the size of the light spot irradiated to the substrate by the laser light in the laser optical path. Can be satisfied.

図2及び図3を参照すれば、本発明のレーザー切断装置は、脆性基板を切断するために利用される。該装置は、予め切断システム78、レーザー光システム、及び冷却システム79を含む。該レーザー光システムは、レーザー光を発生するレーザー腔体7と、第一反射鏡71と、光遮断器72と、第二反射鏡73と、コリメーター(collimator)74と、光路距離調整システム75と、第三反射鏡76と、フォーカスレンズ組立体77と、を含む。本実施形態において、レーザー腔体7から発生した二酸化炭素レーザー光が第一反射鏡71に反射された後、光遮断器72を通し、第二反射鏡73の反射及びコリメーター74の作用によって生成した平行な光線が、光路距離調整システム75及び第三反射鏡76の反射によって、フォーカスレンズ組立体77を通して基板に入射する。多孔性材料の真空チャック80が前記基板を吸い付けて該基板が載置台に取り付けられる。また、多孔性材料の真空チャック80を採用するから、冷却システム79で冷却する時には、残される冷却液を有効に排除でき、切断品質を高める。   2 and 3, the laser cutting apparatus of the present invention is used for cutting a brittle substrate. The apparatus includes a cutting system 78, a laser light system, and a cooling system 79 in advance. The laser light system includes a laser cavity 7 for generating laser light, a first reflecting mirror 71, a light blocker 72, a second reflecting mirror 73, a collimator 74, and an optical path distance adjusting system 75. And a third reflecting mirror 76 and a focus lens assembly 77. In the present embodiment, after the carbon dioxide laser light generated from the laser cavity 7 is reflected by the first reflecting mirror 71, it is generated by the reflection of the second reflecting mirror 73 and the action of the collimator 74 through the light breaker 72. The parallel light beams are incident on the substrate through the focus lens assembly 77 by reflection of the optical path distance adjustment system 75 and the third reflecting mirror 76. A porous material vacuum chuck 80 sucks the substrate and attaches the substrate to the mounting table. Further, since the vacuum chuck 80 made of a porous material is adopted, when cooling by the cooling system 79, the remaining cooling liquid can be effectively removed, and the cutting quality is improved.

本発明の実施形態において、冷却システム79は、単一液体、単一気体と単一液体の混合物又は一種以上の気体と液体の混合物などである。例えば、空気、純水、冷却油、液体の窒素又は液体のヘリウムなどである。   In an embodiment of the present invention, the cooling system 79 is a single liquid, a mixture of a single gas and a single liquid, or a mixture of one or more gases and liquids. For example, air, pure water, cooling oil, liquid nitrogen or liquid helium.

図2及び図3を参照すれば、切断方向に沿って、冷却システム79と、レーザー光システムと、予切断システム78と、が順に並べられている。基板を切断する時には、まず、前記予切断システム78で予切断線を基板に形成し、その後、前記フォーカスレンズ組立体77によってレーザー光のエネルギーを予切断線に沿って非フォーカスレンズ方式で基板表面に照射し、基板を熱膨張させると、これにより、基板内部で圧縮応力が生じる。   2 and 3, a cooling system 79, a laser beam system, and a pre-cutting system 78 are arranged in this order along the cutting direction. When the substrate is cut, first, a pre-cut line is formed on the substrate by the pre-cut system 78, and then the focus lens assembly 77 causes the energy of the laser light along the pre-cut line in a non-focus lens manner to the substrate surface. When the substrate is irradiated to thermally expand the substrate, a compressive stress is generated inside the substrate.

前記レーザー光で基板の予切断線を加熱した後、冷却システム79を利用して加熱された予切断線に沿って基板に霧状の冷却液を急速に噴射する。従って、前記基板表面の温度が急速に下がり、基板の内部が収縮して引張応力が生じる。   After the pre-cut line of the substrate is heated with the laser light, a mist-like cooling liquid is rapidly sprayed onto the substrate along the pre-cut line heated using the cooling system 79. Accordingly, the temperature of the substrate surface rapidly decreases, and the inside of the substrate contracts to generate tensile stress.

前記基板は、局部が短時間において急激な応力変化を発生するので、前記レーザー光から形成される予切断線に沿って亀裂を形成する。前記亀裂が切断面に沿って伸展するから、基板を完全に分離させる。これにより、基板の切断を実現する。   Since the substrate generates a sudden change in stress in a short time, a crack is formed along the pre-cut line formed from the laser beam. Since the crack extends along the cut surface, the substrate is completely separated. Thereby, the cutting of the substrate is realized.

基板を分離させる要因は多いが、主には、ガラスの内部で発生する応力である。該応力が下記の公式で表わされる。   Although there are many factors that cause the substrates to be separated, the stress is mainly generated inside the glass. The stress is expressed by the following formula.

Figure 2007175773
Figure 2007175773

Figure 2007175773
Figure 2007175773

ここで、σはガラス面板内部で発生する応力の大きさ、αはガラス面板内部の熱膨張係数、Eはガラス面板の縦弾性係数、T1はレーザー切断装置に加熱されたガラス面板の温度、T2は冷却された後のガラス面板の温度である。   Here, σ is the magnitude of the stress generated inside the glass faceplate, α is the thermal expansion coefficient inside the glass faceplate, E is the longitudinal elastic modulus of the glass faceplate, T1 is the temperature of the glass faceplate heated by the laser cutting device, T2 Is the temperature of the glass faceplate after cooling.

数1と数2とによって、ガラス面板内部の応力の大きさは、材料の熱膨張係数、縦弾性係数、及びレーザーと冷却システムとによってガラス面板に形成する温度差に対して正比例することがわかる。T1の最大値は、ガラス面板の気化温度より大きくない。   From Equations 1 and 2, it can be seen that the magnitude of the stress inside the glass face plate is directly proportional to the thermal expansion coefficient of the material, the longitudinal elastic modulus, and the temperature difference formed on the glass face plate by the laser and the cooling system. . The maximum value of T1 is not greater than the vaporization temperature of the glass face plate.

レーザー加熱装置と冷却システムとが基板に形成する応力が基板材料の破壊靭性より大きい場合には、基板表面に亀裂が形成される。前記亀裂は、製造方法によって、ガラスの表面に、例えば、基板が完全に分離するなどの異なる成長形態を呈する。   If the stress that the laser heating device and the cooling system form on the substrate is greater than the fracture toughness of the substrate material, a crack is formed on the substrate surface. The cracks exhibit different growth forms on the surface of the glass, for example, the substrate completely separates depending on the manufacturing method.

レーザー切断装置からのレーザー光が基板を照射する光点の大きさは、レーザー切断の特性に大きくの影響を及ぼす。切断する時の光点の大きさは、レーザー光の出射光線の間の角度、レーザー光の出射端での光点の直径、及び光路の長さによって決まり、下記の公式で表わされる。   The size of the light spot where the laser beam from the laser cutting device irradiates the substrate greatly affects the characteristics of laser cutting. The size of the light spot at the time of cutting is determined by the angle between the outgoing light beams of the laser light, the diameter of the light spot at the outgoing end of the laser light, and the length of the optical path, and is expressed by the following formula.

Figure 2007175773
Figure 2007175773

ここで、Dはレーザー光が光路距離Lを通った光線の直径、dはレーザー光の出射端での光点の直径、θはレーザー光の出射光線の間の角度、Lは光路距離である。θの単位はRadである。これによって、光路距離Lの大きさを調整して、レーザー光の光点の大きさを変えるにより、切断の要求を満足することができる。   Here, D is the diameter of the light beam through which the laser beam has passed through the optical path distance L, d is the diameter of the light spot at the laser beam emission end, θ is the angle between the laser beam emission beams, and L is the optical path distance. . The unit of θ is Rad. Accordingly, the cutting requirement can be satisfied by adjusting the size of the optical path distance L and changing the size of the light spot of the laser beam.

図2、図3及び図4を参照すると、本実施形態において、光路距離調整システム75は、第四反射鏡751と、第五反射鏡752と、第六反射鏡753と、第七反射鏡754と、を含む。レーザー光は、第四反射鏡751と、第五反射鏡752と、第六反射鏡753と、第七反射鏡754と、を通った後、光路距離調整システム75から出射する。第四反射鏡751と、第五反射鏡752と、第六反射鏡753と、第七反射鏡754と、が移動可能に設置される。   Referring to FIGS. 2, 3, and 4, in this embodiment, the optical path distance adjustment system 75 includes a fourth reflecting mirror 751, a fifth reflecting mirror 752, a sixth reflecting mirror 753, and a seventh reflecting mirror 754. And including. The laser light passes through the fourth reflecting mirror 751, the fifth reflecting mirror 752, the sixth reflecting mirror 753, and the seventh reflecting mirror 754, and then exits from the optical path distance adjustment system 75. A fourth reflecting mirror 751, a fifth reflecting mirror 752, a sixth reflecting mirror 753, and a seventh reflecting mirror 754 are movably installed.

図2を参照すると、レーザー光は、レーザー腔体7の出射端から第一反射鏡71までの光路距離がL1であり、第一反射鏡71から第二反射鏡73までの光路距離がL2であり、第二反射鏡73から第四反射鏡751までの光路距離がL3であり、第四反射鏡751から第五反射鏡752までの光路距離がL4であり、第五反射鏡752から第六反射鏡753までの光路距離がL5であり、第六反射鏡753から第七反射鏡754までの光路距離もL4であり、第七反射鏡754から第三反射鏡76までの光路距離がL6であり、第三反射鏡76からフォーカスレンズ組立体77までの光路距離がL7である。レーザー光がレーザー腔体7から出射し始め、フォーカスレンズ組立体77に入射する光路距離はLである。すなわち、L=L1+L2+L3+2*L4+L5+L6+L7となる。   Referring to FIG. 2, the laser light has an optical path distance L1 from the emitting end of the laser cavity body 7 to the first reflecting mirror 71, and an optical path distance from the first reflecting mirror 71 to the second reflecting mirror 73 is L2. Yes, the optical path distance from the second reflecting mirror 73 to the fourth reflecting mirror 751 is L3, the optical path distance from the fourth reflecting mirror 751 to the fifth reflecting mirror 752 is L4, and the fifth reflecting mirror 752 to the sixth reflecting mirror 752 The optical path distance from the reflecting mirror 753 is L5, the optical path distance from the sixth reflecting mirror 753 to the seventh reflecting mirror 754 is also L4, and the optical path distance from the seventh reflecting mirror 754 to the third reflecting mirror 76 is L6. The optical path distance from the third reflecting mirror 76 to the focus lens assembly 77 is L7. The optical path distance at which the laser light starts to be emitted from the laser cavity 7 and enters the focus lens assembly 77 is L. That is, L = L1 + L2 + L3 + 2 * L4 + L5 + L6 + L7.

図3を参照すれば、光路距離調整システム75において、第四反射鏡751と、第五反射鏡752との距離、及び第六反射鏡753と第七反射鏡754との距離を同時に調整する。即ち、第四反射鏡751と第五反射鏡752の光路距離L4及び第六反射753と第七反射鏡754の光路距離L4を光路距離L4´に調整する。この時に、レーザー光がレーザー腔体7から出射し始め、フォーカスレンズ組立体77に入射する光路距離はL´である。すなわち、L´=L1+L2+L3+2*L4´+L5+L6+L7となる。   Referring to FIG. 3, the optical path distance adjustment system 75 simultaneously adjusts the distance between the fourth reflecting mirror 751 and the fifth reflecting mirror 752 and the distance between the sixth reflecting mirror 753 and the seventh reflecting mirror 754. That is, the optical path distance L4 between the fourth reflecting mirror 751 and the fifth reflecting mirror 752 and the optical path distance L4 between the sixth reflecting 753 and the seventh reflecting mirror 754 are adjusted to the optical path distance L4 ′. At this time, the laser beam starts to be emitted from the laser cavity 7 and the optical path distance incident on the focus lens assembly 77 is L ′. That is, L ′ = L1 + L2 + L3 + 2 * L4 ′ + L5 + L6 + L7.

本実施形態において、光路距離を増加するために、L4´がL4より大きいように設ける。もちろん、要求に応じて光路距離を縮小してもよい。   In the present embodiment, in order to increase the optical path distance, L4 ′ is provided to be larger than L4. Of course, the optical path distance may be reduced as required.

L4´がL4より大きいので、光路距離L´が光路距離Lより大きくなる。第四反射鏡751、第五反射鏡752がそれぞれ第七反射鏡754、第六反射鏡753に対する距離を同時に調整し、即ち、第四反射鏡751と第七反射鏡754との光路距離L5及び第五反射752と第六反射鏡753との光路距離L5を光路距離L5´に調整する。レーザー光がレーザー腔体7から出射し始め、フォーカスレンズ組立体77に入射する光路距離はL´である。すなわち、L´=L1+L2+L3+2*L4´+L5´+L6+L7となる。   Since L4 ′ is larger than L4, the optical path distance L ′ becomes larger than the optical path distance L. The fourth reflecting mirror 751 and the fifth reflecting mirror 752 simultaneously adjust the distance to the seventh reflecting mirror 754 and the sixth reflecting mirror 753, that is, the optical path distance L5 between the fourth reflecting mirror 751 and the seventh reflecting mirror 754, and The optical path distance L5 between the fifth reflection 752 and the sixth reflecting mirror 753 is adjusted to the optical path distance L5 ′. The optical path distance at which the laser light starts to be emitted from the laser cavity body 7 and enters the focus lens assembly 77 is L ′. That is, L ′ = L1 + L2 + L3 + 2 * L4 ′ + L5 ′ + L6 + L7.

Figure 2007175773
Figure 2007175773

によって、図3に示す光束の直径D´が図2に示す光束の直径Dより大きいことが分かる。光路距離調整システム75によって光路距離を変えることによって、基板に照射する光点の大きさを変えることができる。このようにすると、異なる切断要求を満足できる。   3 indicates that the diameter D ′ of the light beam shown in FIG. 3 is larger than the diameter D of the light beam shown in FIG. By changing the optical path distance by the optical path distance adjustment system 75, the size of the light spot irradiated on the substrate can be changed. In this way, different cutting requirements can be satisfied.

また、図2、図3、図5、及び図6を参照すれば、レーザー光が閉じられる状態から、激励される状態、及び安定的に出力する状態まで時間をかかるので、レーザー光を安定的に出力させるために、レーザー光の光路に光遮断器72を設置する。図5に示すように、光遮断器72が閉じられる状態に、レーザー光が光遮断器72に遮断され、第二反射鏡73に入射されない。図6に示すように、光遮断器72が開く状態に、レーザー光が通ることができる。前記光遮断器72は、レーザー光が通過又は遮断されるスイッチとして、レーザー光が工作物体の表面に出力するかどうかをコントロールする。製造過程において、レーザー腔体7をコントロールせず、光遮断器72の開閉だけをコントロールし、レーザー光の出力をコントロールできる。   In addition, referring to FIGS. 2, 3, 5, and 6, since it takes time from the state where the laser light is closed to the state where it is excited and stably output, the laser light is stable. In order to output the light, a light breaker 72 is installed in the optical path of the laser light. As shown in FIG. 5, the laser light is blocked by the light breaker 72 and not incident on the second reflecting mirror 73 when the light breaker 72 is closed. As shown in FIG. 6, the laser beam can pass in a state where the light breaker 72 is opened. The light blocker 72 is a switch for passing or blocking the laser beam, and controls whether the laser beam is output to the surface of the workpiece. In the manufacturing process, it is possible to control the output of the laser light by controlling only the opening / closing of the light breaker 72 without controlling the laser cavity body 7.

図7を参照すれば、本実施形態において、予切断システム78は切削ユニットであり、もちろん、レーザーシステムでもある。切削ユニットは、モーター781と、ブレーキ782と、を含む。モーター781とブレーキ782とが協力して、切削ユニットをX軸、Y軸及びZ軸に沿って移動させる。該切削ユニットは、ブレーキ782に設置されるボイスコイルモーター(voice-coil motor)783、及び該ボイスコイルモーター783に取り付ける切削カッターヘッド784を更に含む。該ボイスコイルモーター783は、切削カッターヘッド784の動力伝送工具として使用され、何れかの機械背隙はないので、出力をコントロールすることが精確で、速くなる。従って、基板の平坦性に対する敏感度が良く、切削カッターヘッド784の予切断深さの均一性を良くコントロールできる。   Referring to FIG. 7, in the present embodiment, the pre-cutting system 78 is a cutting unit and, of course, a laser system. The cutting unit includes a motor 781 and a brake 782. The motor 781 and the brake 782 cooperate to move the cutting unit along the X, Y, and Z axes. The cutting unit further includes a voice-coil motor 783 installed on the brake 782 and a cutting cutter head 784 attached to the voice coil motor 783. The voice coil motor 783 is used as a power transmission tool for the cutting cutter head 784, and since there is no mechanical back clearance, controlling the output is precise and fast. Therefore, the sensitivity to the flatness of the substrate is good, and the uniformity of the precut depth of the cutting cutter head 784 can be well controlled.

従来技術のレーザー切断装置の構成を示す概略図である。It is the schematic which shows the structure of the laser cutting device of a prior art. 本発明の実施形態のレーザー切断装置の構成を示す概略図である。It is the schematic which shows the structure of the laser cutting device of embodiment of this invention. 図2の光路距離が増加するレーザー切断装置の構成を示す概略図である。It is the schematic which shows the structure of the laser cutting device which the optical path distance of FIG. 2 increases. 本発明の実施形態のレーザー切断装置の光路距離調整システムの立体図である。It is a three-dimensional view of the optical path distance adjustment system of the laser cutting device of embodiment of this invention. 本発明の実施形態のレーザー切断装置の光遮断器が閉じる状態にある立体図である。It is a three-dimensional figure in the state where the optical circuit breaker of the laser cutting device of an embodiment of the present invention closes. 本発明の実施形態のレーザー切断装置の光遮断器が開く状態にある立体図である。It is a three-dimensional view in the state where the optical circuit breaker of the laser cutting device of the embodiment of the present invention is opened. 本発明の実施形態のレーザー切断装置の切削モジュールの立体図である。It is a three-dimensional view of the cutting module of the laser cutting device of the embodiment of the present invention. 本発明の実施形態のレーザー切断装置の真空チャックの立体図である。It is a three-dimensional view of the vacuum chuck of the laser cutting device of the embodiment of the present invention.

符号の説明Explanation of symbols

1 レーザー光ユニット
2 反射鏡
3 フォーカスレンズ組立体
4 ホイールカッター
5 冷却システム
6 基板
7 レーザー腔体
71 第一反射鏡
72 光遮断器
73 第二反射鏡
74 コリメーター
75 光路距離調整システム
751 第四反射鏡
752 第五反射鏡
753 第六反射鏡
754 第七反射鏡
76 第三反射鏡
77 フォーカスレンズ組立体
78 予め切断システム
781 モーター
782 ブレーキ
783 ボイスコイルモーター
784 切断カッターヘッド
79 冷却システム
80 多孔性材料の真空チャック
DESCRIPTION OF SYMBOLS 1 Laser beam unit 2 Reflecting mirror 3 Focus lens assembly 4 Wheel cutter 5 Cooling system 6 Substrate 7 Laser cavity body 71 First reflecting mirror 72 Optical blocker 73 Second reflecting mirror 74 Collimator 75 Optical path distance adjustment system 751 4th reflection Mirror 752 fifth reflecting mirror 753 sixth reflecting mirror 754 seventh reflecting mirror 76 third reflecting mirror 77 focus lens assembly 78 pre-cutting system 781 motor 782 brake 783 voice coil motor 784 cutting cutter head 79 cooling system 80 of porous material Vacuum chuck

Claims (11)

基板に予切断線を形成する予切断システムと、
前記予切断線に沿って、基板を加熱して熱膨張させるレーザー光を発生させるレーザー光システムと、
前記熱膨張した基板を冷却する冷却システムと、を含む、脆性基板を切断するために利用されるレーザー切断装置において、
前記レーザー光システムは、
前記レーザー光を発生するレーザー腔体と、
光路距離調整システムと、を含み、
前記光路距離調整システムは、前記レーザー光が前記基板に照射する光路に配置され、
前記光路距離を調整するために利用されることを特徴とするレーザー切断装置。
A pre-cutting system for forming a pre-cut line on the substrate;
A laser beam system for generating a laser beam for heating and thermally expanding the substrate along the pre-cut line;
A laser cutting device utilized for cutting a brittle substrate, comprising: a cooling system for cooling the thermally expanded substrate;
The laser light system is
A laser cavity for generating the laser beam;
An optical path distance adjustment system, and
The optical path distance adjustment system is disposed in an optical path where the laser beam irradiates the substrate,
A laser cutting device used for adjusting the optical path distance.
前記光路距離調整システムは、それぞれ相対する二対の反射鏡を含むことを特徴とする、請求項1に記載のレーザー切断装置。   The laser cutting device according to claim 1, wherein the optical path distance adjustment system includes two pairs of reflecting mirrors facing each other. 前記二対の反射鏡は、移動可能であるように設置されることを特徴とする、請求項2に記載のレーザー切断装置。   The laser cutting apparatus according to claim 2, wherein the two pairs of reflecting mirrors are installed so as to be movable. 前記レーザー光システムは、前記レーザー光の焦点を集めて前記基板に照射させるフォーカスレンズ組立体を更に含むことを特徴とする、請求項1または請求項2に記載のレーザー切断装置。   The laser cutting apparatus according to claim 1, wherein the laser light system further includes a focus lens assembly that collects a focus of the laser light and irradiates the substrate with the focus. 前記レーザー光システムは、前記レーザー腔体に設置され、前記レーザー光の通過
又は遮断をコントロールする光遮断器を更に含むことを特徴とする、請求項4に記載のレーザー切断装置。
The laser cutting apparatus according to claim 4, wherein the laser beam system further includes an optical blocker that is installed in the laser cavity body and controls passage or blocking of the laser beam.
前記レーザー光システムは、前記レーザー光を、フォーカスレンズ組立体を通ることができる平行な光線に変換するコリメーターを更に含むことを特徴とする、請求項4に記載のレーザー切断装置。   The laser cutting apparatus according to claim 4, wherein the laser light system further includes a collimator that converts the laser light into parallel light beams that can pass through a focus lens assembly. 基板に予切断線を形成する予切断システムと、
前記予切断線に沿って、基板を加熱して熱膨張させるレーザー光を発生させるレーザー光システムと、
前記熱膨張した基板を冷却する冷却システムと、を含む、脆性基板を切断するために利用されるレーザー切断装置において、
前記レーザー光システムは、
前記レーザー光を発生するレーザー腔体、及び
前記レーザー腔体に設置され、レーザー光通過又は遮断をコントロールする光遮断器を含むことを特徴とするレーザー切断装置。
A pre-cutting system for forming a pre-cut line on the substrate;
A laser beam system for generating a laser beam for heating and thermally expanding the substrate along the pre-cut line;
A laser cutting device utilized for cutting a brittle substrate, comprising: a cooling system for cooling the thermally expanded substrate;
The laser light system is
A laser cutting apparatus comprising: a laser cavity that generates the laser light; and a light interrupter that is installed in the laser cavity and controls passage or blocking of the laser light.
前記レーザー光システムは、前記レーザー光の焦点を集めて前記基板に照射させるフォーカスレンズ組立体を更に含むことを特徴とする、請求項7に記載のレーザー切断装置。   The laser cutting apparatus according to claim 7, wherein the laser beam system further includes a focus lens assembly that collects a focus of the laser beam and irradiates the substrate with the focus. 前記基板は、多孔性材料の真空チャックを介して吸い付けて載置台に取り付けられることを特徴とする、請求項1または請求項7に記載のレーザー切断装置。   The laser cutting device according to claim 1, wherein the substrate is attached to a mounting table by suction through a vacuum chuck made of a porous material. 前記予切断システムは、Z軸に沿って移動できる切削ユニットであることを特徴とする、請求項1または請求項7に記載のレーザー切断装置。   The laser cutting apparatus according to claim 1, wherein the pre-cutting system is a cutting unit that can move along the Z-axis. 前記切削ユニットは、
ボイスコイルモーターと、
前記ボイスコイルモーターに取り付け、前記基板を切断し、予め切断線を形成する切削カッターヘッドと、を含むことを特徴とする、請求項10に記載のレーザー切断装置。
The cutting unit is
A voice coil motor,
The laser cutting apparatus according to claim 10, further comprising: a cutting cutter head that is attached to the voice coil motor, cuts the substrate, and previously forms a cutting line.
JP2006348075A 2005-12-26 2006-12-25 Laser cutting machine Pending JP2007175773A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094146459A TW200724276A (en) 2005-12-26 2005-12-26 Laser cutting apparatus

Publications (1)

Publication Number Publication Date
JP2007175773A true JP2007175773A (en) 2007-07-12

Family

ID=38301474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348075A Pending JP2007175773A (en) 2005-12-26 2006-12-25 Laser cutting machine

Country Status (3)

Country Link
JP (1) JP2007175773A (en)
KR (1) KR20070068248A (en)
TW (1) TW200724276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256151A (en) * 2008-04-18 2009-11-05 Toshiba Mobile Display Co Ltd Method of dividing glass substrate and method of manufacturing display panel
CN114193005A (en) * 2022-01-23 2022-03-18 刘伟华 Stabilizer for laser cutting

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187556B2 (en) * 2007-10-19 2013-04-24 澁谷工業株式会社 Laser cleaving device
KR101225783B1 (en) * 2009-03-26 2013-01-23 현대제철 주식회사 Laser cutter
US9260337B2 (en) 2014-01-09 2016-02-16 Corning Incorporated Methods and apparatus for free-shape cutting of flexible thin glass
TWI741448B (en) * 2019-12-13 2021-10-01 上儀股份有限公司 Laser device with synchronous optical path delay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0155076B2 (en) * 1984-03-22 1989-11-22 Mitsubishi Electric Corp
JPH09192868A (en) * 1996-01-19 1997-07-29 Honda Motor Co Ltd Laser beam machining method and equipment
JP2003154474A (en) * 2001-11-19 2003-05-27 Sumitomo Heavy Ind Ltd Method and device for discriminating data fetch starting time for laser beam machining
JP2003534132A (en) * 1999-11-24 2003-11-18 アプライド・フォトニクス・インコーポレーテッド Method and apparatus for separating non-metallic materials
JP2004122173A (en) * 2002-10-02 2004-04-22 Nippon Sharyo Seizo Kaisha Ltd Laser microjet working apparatus
JP2004158859A (en) * 2002-11-05 2004-06-03 New Wave Research Apparatus and method for cutting off element from substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0155076B2 (en) * 1984-03-22 1989-11-22 Mitsubishi Electric Corp
JPH09192868A (en) * 1996-01-19 1997-07-29 Honda Motor Co Ltd Laser beam machining method and equipment
JP2003534132A (en) * 1999-11-24 2003-11-18 アプライド・フォトニクス・インコーポレーテッド Method and apparatus for separating non-metallic materials
JP2003154474A (en) * 2001-11-19 2003-05-27 Sumitomo Heavy Ind Ltd Method and device for discriminating data fetch starting time for laser beam machining
JP2004122173A (en) * 2002-10-02 2004-04-22 Nippon Sharyo Seizo Kaisha Ltd Laser microjet working apparatus
JP2004158859A (en) * 2002-11-05 2004-06-03 New Wave Research Apparatus and method for cutting off element from substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256151A (en) * 2008-04-18 2009-11-05 Toshiba Mobile Display Co Ltd Method of dividing glass substrate and method of manufacturing display panel
CN114193005A (en) * 2022-01-23 2022-03-18 刘伟华 Stabilizer for laser cutting
CN114193005B (en) * 2022-01-23 2023-11-21 阳江市皓殷智造科技有限公司 Stabilizer for laser cutting

Also Published As

Publication number Publication date
TW200724276A (en) 2007-07-01
KR20070068248A (en) 2007-06-29

Similar Documents

Publication Publication Date Title
KR101998761B1 (en) Method and apparatus for performing laser filamentation within transparent materials
JP6422033B2 (en) Laser-based machining method and apparatus for sheet-like substrates using laser beam focal lines
JP4551086B2 (en) Partial machining with laser
JP2007152958A (en) Laser cutting apparatus
US8791385B2 (en) High speed laser scribing method of fragile material
JP2019064916A (en) Method and apparatus for cutting transparent and translucent substrate by laser
JP5380986B2 (en) Laser scribing method and laser scribing apparatus
JP2007175773A (en) Laser cutting machine
JP2004528991A5 (en)
US20080070378A1 (en) Dual laser separation of bonded wafers
JP6012186B2 (en) Processing object cutting method
WO2009023224A1 (en) Method and system for cutting solid materials using short pulsed laser
JP2008006652A (en) Method for partitioning processing of rigid and brittle material plate
WO2012063348A1 (en) Laser processing method and device
JP2007260749A (en) Laser beam machining method and apparatus, and machined product of brittle material
CN100531998C (en) Laser cutting device
KR100843411B1 (en) Laser beam machining system and method for cutting of substrate using the same
JP2023079907A (en) Method for cutting substrate and method for manufacturing small piece of substrate
Tamhankar et al. Optimization of UV laser scribing process for led sapphire wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605