JP2007175767A - Method for shear-joining continuously hot-rolled low-carbon steel material, and continuous hot-rolling apparatus - Google Patents
Method for shear-joining continuously hot-rolled low-carbon steel material, and continuous hot-rolling apparatus Download PDFInfo
- Publication number
- JP2007175767A JP2007175767A JP2006289616A JP2006289616A JP2007175767A JP 2007175767 A JP2007175767 A JP 2007175767A JP 2006289616 A JP2006289616 A JP 2006289616A JP 2006289616 A JP2006289616 A JP 2006289616A JP 2007175767 A JP2007175767 A JP 2007175767A
- Authority
- JP
- Japan
- Prior art keywords
- metal bar
- joining
- less
- shear
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005304 joining Methods 0.000 title claims abstract description 150
- 229910001209 Low-carbon steel Inorganic materials 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000005098 hot rolling Methods 0.000 title claims abstract description 57
- 239000000463 material Substances 0.000 title claims abstract description 30
- 238000005096 rolling process Methods 0.000 claims abstract description 49
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract 2
- 239000002184 metal Substances 0.000 claims description 165
- 229910052751 metal Inorganic materials 0.000 claims description 165
- 238000010008 shearing Methods 0.000 claims description 19
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010962 carbon steel Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 239000000109 continuous material Substances 0.000 claims 1
- 230000008569 process Effects 0.000 description 25
- 239000007790 solid phase Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/04—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/3073—Fe as the principal constituent with Mn as next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
- B23K37/047—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B15/00—Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B15/0007—Cutting or shearing the product
- B21B2015/0014—Cutting or shearing the product transversely to the rolling direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Metal Rolling (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、熱間圧延工程で熱間圧延材を互いに接合して連続的に熱間圧延する連続熱間圧延材の剪断接合方法及び連続熱間圧延設に関し、より詳しくは、低炭素鋼を連続に熱間圧延するにあたって、熱間圧延材等の接合条件を制御して仕上圧延段階で板破断が発生することなく、通板可能な連続熱間圧延材の剪断接合方法及びそのための連続熱間圧延設備に関する。 TECHNICAL FIELD The present invention relates to a continuous hot rolled material shear joining method and continuous hot rolling for continuous hot rolling by joining hot rolled materials to each other in a hot rolling process. In continuous hot rolling, a method for shear joining continuous hot rolled material that can be passed without controlling the joining conditions of the hot rolled material, etc. and causing plate breakage in the finish rolling stage, and continuous heat for the same It relates to hot rolling equipment.
金属板材を熱間圧延で生産する技術分野において、仕上圧延を連続化することにより生産性と品質の向上、そして製品の製造可能サイズの拡大に対する要求が強く起こっている。
このような連続熱間圧延分野において重要な点は、先行する熱間圧延板材(以下、「金属バー」という)の後端と後行する金属バーを互いに接合する金属バーの接合技術にある。
In the technical field of producing metal sheet materials by hot rolling, there is a strong demand for improving productivity and quality and increasing the manufacturable size of products by continuing finish rolling.
An important point in the field of such continuous hot rolling is a metal bar joining technique in which a rear end of a preceding hot-rolled sheet (hereinafter referred to as “metal bar”) and a subsequent metal bar are joined to each other.
熱間圧延工程において金属バーの接合は、粗圧延機と仕上圧延機との間で行われており、このように粗圧延機以降の工程で金属バーを接合させるようになれば、仕上圧延工程で圧延される金属バーを連続的に圧延することができるようになる。 In the hot rolling process, the joining of the metal bars is performed between the roughing mill and the finishing mill, and if the metal bars are joined in the process after the roughing mill, the finishing rolling process is performed. It becomes possible to continuously roll the metal bar that is rolled in step (b).
従って、仕上圧延を連続的に行うためには走行中の金属バーと金属バーとを高速に接合する必要があり、このような接合のために多様な技術が提案されている。
今まで知られている接合技術としては、溶融接合法と固相接合法とに大別される。
Therefore, in order to perform finish rolling continuously, it is necessary to join the running metal bar and the metal bar at high speed, and various techniques have been proposed for such joining.
Conventionally known joining techniques are roughly classified into a melt joining method and a solid phase joining method.
溶融接合法によって金属バーを互いに接合する場合、溶融された接合部の温度が隣接部分の温度より高いため、溶融接合部の軟化現象が発生して接合部の接合強度が母材部に比べて劣るという短所がある。 When the metal bars are joined together by the melt joining method, the melted joint is softened due to the fact that the temperature of the melted joint is higher than the temperature of the adjacent part, and the joint strength of the joint is higher than that of the base metal part There is a disadvantage of being inferior.
そして、固相接合法で知られている技術としては、特許文献1に開示された金属板の接合方法がある。
この特許文献1の発明は、先行金属バーの後端部と後行金属バーの先端部を上下に重ね合わせて、重ねられた二つの金属バーを同時に剪断することで剪断過程にて生成される二つの金属バーの剪断面を直接接触させて接合する技術である。
As a technique known in the solid phase bonding method, there is a metal plate bonding method disclosed in Patent Document 1.
The invention of this Patent Document 1 is generated in a shearing process by overlapping the rear end portion of the preceding metal bar and the front end portion of the subsequent metal bar vertically and shearing the two superimposed metal bars simultaneously. This is a technique in which the shear surfaces of two metal bars are directly contacted and joined.
このような特許文献1の発明は、剪断によって接合が行われるので、簡単でありながら短時間に接合できて、必要空間も小さい上に仕上圧延時の温度低下が少ないなど、連続熱間圧延設備として多くの長所を有している。 Since the invention of Patent Document 1 is joined by shearing, it is simple and can be joined in a short time, and the required space is small and the temperature drop during finish rolling is small. As having many advantages.
しかし、このような特許文献1の発明は、接合された接合部の形状が不均一で接合された表面に表面スケールが混入して接合部の接合強度を顕著に低下させてしまうという短所がある。 However, the invention of Patent Document 1 has a disadvantage in that the shape of the joined part is non-uniform and the surface scale is mixed into the joined surface, thereby significantly reducing the joint strength of the joined part. .
また、特許文献1の発明を適用して金属バーを接合する場合、接合部断面の上下部と幅方向の両端部に未接合部が発生して接合力の弱い部位が存在してしまうなどの問題点があると共に、接合面にも表面スケールが混入して接合強度を低下させてしまうという問題点がある。 In addition, when the metal bar is joined by applying the invention of Patent Document 1, unjoined portions are generated at the upper and lower portions of the joint section and both ends in the width direction, and there are portions where the joining force is weak. In addition to the problems, there is a problem that the surface strength is mixed into the bonding surface and the bonding strength is lowered.
一方、低炭素鋼はCを0.30質量%以下、Mnを1.8質量%以下、Siを0.55質量%以下、Pを0.50質量%以下、Sを0.50質量%以下含み、その他の不可避な不純物と残りのFeからなる鋼であって、汎用的に使用されている。また、低炭素鋼は低炭素鋼の基本組成に強度や耐食性などのような多様な特性を確保するためにCr、Cu、Ni、Mo、Alなどの元素またはV、Nb、B、Tiなどのような特殊元素を各々1.0質量%以下添加して製造することもある。 On the other hand, low carbon steel has C of 0.30 mass% or less, Mn of 1.8 mass% or less, Si of 0.55 mass% or less, P of 0.50 mass% or less, and S of 0.50 mass% or less. This steel is composed of other inevitable impurities and the remaining Fe, and is used for general purposes. In addition, low-carbon steel has a basic composition of low-carbon steel, such as elements such as Cr, Cu, Ni, Mo, and Al, or V, Nb, B, Ti, etc. in order to ensure various properties such as strength and corrosion resistance. Such special elements may be produced by adding 1.0% by mass or less.
低炭素鋼は船舶、建築、橋梁など各種構造物や圧力容器等の多様な分野で広く使用される最も汎用的な鋼種である。
このような低炭素鋼に接合技術を適用して連続熱間圧延を行う場合、生産性増加及び薄物化ができる等多くの長所がある。
Low carbon steel is the most versatile steel type widely used in various fields such as various structures such as ships, buildings, bridges, and pressure vessels.
When continuous hot rolling is performed by applying a joining technique to such a low carbon steel, there are many advantages such as an increase in productivity and a reduction in thickness.
しかし、このような汎用的な低炭素鋼を連続熱間圧延工程で接合する場合、その接合条件について詳細に知られていない。 However, when joining such general-purpose low carbon steel in a continuous hot rolling process, the joining conditions are not known in detail.
従って、本発明は前述のような問題点を解決するためのものであって、本発明の目的は、低炭素鋼に対して連続熱間圧延を適用することができる剪断接合方法及び連続熱間圧延設備を提供することである。 Therefore, the present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a shear bonding method and continuous hot rolling capable of applying continuous hot rolling to low carbon steel. It is to provide rolling equipment.
本発明の他の目的は、低炭素鋼の金属バーを接合する時、仕上圧延工程で金属バーの接合部が仕上圧延の荷重を十分に負担することができて、仕上圧延スタンド間の引張張力に耐えることができる引張特性を確保する剪断接合方法及び連続熱間圧延設備を提供することである。 Another object of the present invention is that when joining a low carbon steel metal bar, the joint of the metal bar can sufficiently bear the load of the finish rolling in the finish rolling process, and the tensile tension between the finish rolling stands. It is intended to provide a shear bonding method and continuous hot rolling equipment that ensure tensile properties that can withstand.
上記の目的を達成するための本発明に係る低炭素鋼連続熱間圧延材の剪断接合方法は、Cを0.30質量(wt)%以下、Mnを1.8%質量以下、Siを0.55質量%以下、Pを0.50質量%以下、Sを0.50質量%以下含み、その他の不可避な不純物と残りのFeからなる低炭素鋼金属バー、またはCを0.30質量%以下、Mnを1.8質量%以下、Siを0.55質量%以下、Pを0.50質量%以下、Sを0.50質量%以下にCr、Cu、Ni、MoまたはAlのいずれか一つ以上の元素が1.0質量%以下含まれていて、その他の不可避な不純物と残りのFeからなる低炭素鋼金属バーを、熱間圧延設備列の中で後行する金属バーの先端と先行する金属バーの後端を重ねて接合する接合機を利用して剪断接合し、接合された金属バーの接合面が前記金属バーの厚さ方向から傾斜して形成されるように金属バーを互いに接合するようにしたことを特徴とする。 In order to achieve the above object, the method for shear joining of a low carbon steel continuous hot-rolled material according to the present invention is that C is 0.30 mass (wt) or less, Mn is 1.8 mass or less, and Si is 0. .55 mass% or less, P is 0.50 mass% or less, S is 0.50 mass% or less, a low carbon steel metal bar made of other inevitable impurities and the remaining Fe, or C is 0.30 mass% Hereinafter, Mn is 1.8% by mass or less, Si is 0.55% by mass or less, P is 0.50% by mass or less, S is 0.50% by mass or less, and any one of Cr, Cu, Ni, Mo, or Al. The tip of a metal bar containing at least 1.0% by mass of one or more elements, followed by a low-carbon steel metal bar consisting of other inevitable impurities and the remaining Fe in the hot rolling equipment row Are joined by shear bonding using a bonding machine that overlaps and joins the rear ends of the preceding metal bars. Wherein the bonding surface of the metal bar is so joined together metal bar to be formed to be inclined from the thickness direction of the metal bars.
また、上記の目的を達成するための本発明に係る低炭素鋼連続熱間圧延材の剪断接合方法は、前記金属バーの接合予定部を、60MPa以下の圧力でデスケーリングすることを特徴とする。 In addition, the low-carbon steel continuous hot-rolled material shear joining method according to the present invention for achieving the above object is characterized in that the joining portion of the metal bar is descaled at a pressure of 60 MPa or less. .
また、上記の目的を達成するための本発明に係る低炭素鋼連続熱間圧延材の剪断接合方法は、前記金属バーを剪断接合する場合、前記接合機の上部刃と下部刃とが重なり合う距離であるラップの範囲を2mm以上19mm以下にして剪断接合することを特徴とする。 Further, in the shear joining method of the low carbon steel continuous hot-rolled material according to the present invention for achieving the above object, the distance between the upper blade and the lower blade of the joining machine overlapping when the metal bar is shear joined. The lap range is 2 mm to 19 mm, and shear bonding is performed.
また、上記の目的を達成するための本発明に係る低炭素鋼連続熱間圧延材の剪断接合方法は、前記金属バーを剪断接合する場合、前記接合機の上部刃と下部刃とが移動した距離の合計を金属バーの厚さで割ったストローク率を1.33以上1.60以下にして剪断接合することを特徴とする。 Further, in the shear joining method of the low carbon steel continuous hot rolled material according to the present invention for achieving the above object, when the metal bar is shear joined, the upper blade and the lower blade of the joining machine are moved. A shear rate is obtained by dividing the total distance by the thickness of the metal bar to a stroke rate of 1.33 to 1.60.
そして、上記の目的を達成するための本発明に係る低炭素鋼連続熱間圧延材の剪断接合方法は、前記金属バーを剪断接合する場合、前記接合機の上部刃と下部刃双方が同時に上下移動しながら剪断接合するか、 上部刃と下部刃のいずれか一方だけが移動しながら剪断接合することを特徴とする。 And in the shear joining method of the low carbon steel continuous hot rolled material according to the present invention for achieving the above object, when the metal bar is shear joined, both the upper blade and the lower blade of the joining machine are moved up and down simultaneously. It is characterized in that it is sheared while moving or only one of the upper blade and the lower blade is sheared while moving.
また、上記の目的を達成するための本発明に係る連続熱間圧延設備は、Cを0.30質量%以下、Mnを1.8質量%以下、Siを0.55質量%以下、Pを0.50質量%以下、Sを0.50質量%以下含み、その他の不可避な不純物と残りのFeからなる低炭素鋼スラブ、または、Cを0.30質量%以下、Mnを1.8質量%以下、Siを0.55質量%以下、Pを0.50質量%以下、Sを0.50質量%以下にCr、Cu、Ni、MoまたはAlのいずれか一つ以上の元素が1.0質量%以下含まれていて、その他の不可避な不純物と残りのFeからなる低炭素鋼スラブを粗圧延する粗圧延機と、前記粗圧延された金属バーをコイル状に巻き取るコイルボックスと、前記コイルボックスのコイラーから巻き出される金属バーの接合予定部をデスケーリングするデスケーリング装置と、前記デスケーリングされた金属バーを先行金属バーの後端と後行金属バーの先端を重ね合わせて重ね合わせ部を挟んだ状態でその両側から圧入して剪断しながら剪断接合する一対の剪断刃が備えられている剪断接合装置と、前記剪断接合された金属バーを仕上圧延する仕上圧延機とを有し、低炭素鋼金属バーを連続熱間圧延するようにしたことを特徴とする。 In addition, the continuous hot rolling facility according to the present invention for achieving the above object, C is 0.30 mass% or less, Mn is 1.8 mass% or less, Si is 0.55 mass% or less, and P is added. Low carbon steel slab containing 0.50 mass% or less, S 0.50 mass% or less, other inevitable impurities and the remaining Fe, or C 0.30 mass% or less, Mn 1.8 mass %, Si is 0.55 mass% or less, P is 0.50 mass% or less, S is 0.50 mass% or less, and one or more elements of Cr, Cu, Ni, Mo, or Al are 1. A coarse rolling mill for roughly rolling a low carbon steel slab comprising 0% by mass or less and comprising other inevitable impurities and the remaining Fe; a coil box for winding the coarsely rolled metal bar into a coil; Joining metal bars unwound from the coil box coiler A descaling device for descaling the fixed part, and press-fitting the descaled metal bar from both sides in a state where the rear end of the preceding metal bar and the front end of the subsequent metal bar are overlapped to sandwich the overlapped part A low-carbon steel metal bar is continuously hot-rolled, comprising a shear joining device provided with a pair of shear blades for shear joining while shearing, and a finish rolling mill for finish-rolling the shear-joined metal bar It is characterized by doing so.
本発明による低炭素鋼連続熱間圧延材の剪断接合方法は、今まで適用されなかった低炭素鋼の熱間圧延材を剪断接合によって接合可能にして連続熱間圧延を可能にするという技術的効果がある。 The low-carbon steel continuous hot-rolled material shear joining method according to the present invention is a technical technique in which a low-carbon steel hot-rolled material that has not been applied so far can be joined by shear-joining to enable continuous hot rolling. effective.
また、本発明によって低炭素鋼の金属バーを接合する場合、仕上圧延工程で金属バーの接合部が仕上圧延の荷重を十分に負担することができる上、仕上圧延スタンド間の引張張力に耐えることができる引張特性を確保する剪断接合条件を提供するという技術的効果がある。 In addition, when joining low carbon steel metal bars according to the present invention, the joint of the metal bars can sufficiently bear the load of finish rolling in the finish rolling process and withstand the tensile tension between the finish rolling stands. There is a technical effect of providing shear bonding conditions that ensure tensile properties that can be achieved.
さらに、本発明は、低炭素鋼を連続熱間圧延する場合、金属バーを互いに接合しても後続する仕上圧延工程で板破断なしで圧延を連続的に行うことができる工程変数を提供するという技術的効果がある。 Furthermore, the present invention provides a process variable that can continuously perform rolling without sheet breakage in the subsequent finish rolling process even when the metal bars are joined together when continuously rolling low carbon steel. Has a technical effect.
以上のように、本発明の工程条件範囲を適用すれば、低炭素鋼であっても金属バーの接合部は仕上圧延による強い圧縮荷重及びスタンド間にかかる引張荷重にも十分に耐性のある性能を有しており、仕上圧延で板破断、つまり接合部破断が発生することなく連続熱間圧延が可能になる。 As described above, if the process condition range of the present invention is applied, even a low carbon steel, the joint of the metal bar is sufficiently resistant to a strong compressive load due to finish rolling and a tensile load applied between the stands. Thus, continuous hot rolling is possible without causing plate breakage, that is, joint breakage, in finish rolling.
以下、本発明の好ましい実施例について図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
本発明における低炭素鋼とは、Cを0.30質量(wt)%(%は、特記しない限り質量%を意味する)以下、Mnを1.8%以下、Siを0.55%以下、Pを0.50%以下、Sを0.50%以下含み、その他の不可避な不純物と残りのFeからなる炭素鋼、またはCを0.30%以下、Mnを1.8%以下、Siを0.55%以下、Pを0.50%以下、Sを0.50%以下にCr、Cu、Ni、MoまたはAlのいずれか一つ以上の元素が1.0%以下含まれていて、その他の不可避な不純物と残りのFeからなる炭素鋼を意味する。 The low carbon steel in the present invention is 0.30 mass (wt)% (% means mass% unless otherwise specified), Mn is 1.8% or less, Si is 0.55% or less, Carbon steel containing P of 0.50% or less, S of 0.50% or less, other inevitable impurities and the remaining Fe, or C of 0.30% or less, Mn of 1.8% or less, Si 0.55% or less, P is 0.50% or less, S is 0.50% or less, and one or more elements of Cr, Cu, Ni, Mo or Al are contained in 1.0% or less, It means carbon steel composed of other inevitable impurities and the remaining Fe.
また、本発明における剪断接合とは、重ねられた金属バーの接合部に対向する剪断刃が位置し、剪断刃で剪断する過程において接合部の剪断面が互いに押し合う圧力によって発生した塑性流動変形によって金属バーが互いに接合され、この時の接合部の接合面は、金属バーの厚さ方向から傾斜するように形成されることを意味する。 The shear bonding in the present invention is a plastic flow deformation generated by the pressure at which the shearing surfaces of the metal bars are pressed against each other in the process of shearing with the shearing blades, where the shearing blades facing the joints of the stacked metal bars are positioned. This means that the metal bars are joined to each other, and the joint surface of the joint at this time is formed so as to be inclined from the thickness direction of the metal bar.
まず、本発明に係る低炭素鋼を剪断接合して連続熱間圧延を行うための熱間圧延設備、及びこの設備を利用して低炭素鋼を剪断接合する方法を図1〜図4を参照して説明する。 First, refer to FIGS. 1 to 4 for hot rolling equipment for performing continuous hot rolling by shear joining low carbon steel according to the present invention, and a method for shear joining low carbon steel using this equipment. To explain.
図1は、本発明の一実施例に係る低炭素鋼連続熱間圧延設備の基本構成を示す構成図である。 FIG. 1 is a configuration diagram showing a basic configuration of a low carbon steel continuous hot rolling facility according to an embodiment of the present invention.
図1を参照すれば、本発明に係る低炭素鋼連続熱間圧延設備は、大別して上流側から粗圧延機10、コイルボックス20、接合装置30、複数の圧延機からなる仕上圧延機40、及びダウンコイラー50で構成される。
Referring to FIG. 1, the low-carbon steel continuous hot rolling facility according to the present invention is roughly divided into a rough rolling
低炭素鋼スラブを前記粗圧延機10で圧延して製造された低炭素鋼金属バーは、コイルボックス20のコイラーにコイル状に巻き取られる。このようなコイルボックス20は粗圧延機10と仕上圧延機40で走行する金属バーの速度差を調整する。
A low carbon steel metal bar produced by rolling a low carbon steel slab with the roughing
コイルボックス20のコイラーから巻き出される後行金属バー60は、その先端が入口側クロップシャー70によって切断された後、接合しようとする金属バーの接合予定部の表面を部分デスケーリング装置81でデスケーリングして接合装置30の重ね装置80で先行金属バー90の後端に重ねられる。この時、必要に応じて先行金属バーの端部は入口側クロップシャー70によって切断できる。
The
後行金属バー60の先端と先行金属バー90の後端が接合装置30の接合機100で接合され、接合部のクロップがクロップ処理装置120で切断される。接合装置30で接合されて連続状態になった金属バー110は、仕上圧延機40に移送される。
The leading end of the
ここで、接合装置30は、先行金属バー90の後端と後行金属バー60の先端を走行中の状態で接合する設備であって、短時間で剪断接合が可能な短時間接合装置である。
Here, the joining
そして、走行中の状態で金属バーを剪断接合するために、接合機30は金属バーの走行に追従して移動できるようになっており、接合機30が金属バーの走行に追従して揺れ動く設備を追加的に設置することができる。
And in order to carry out the shearing joining of the metal bar in the running state, the joining
例えば、接合装置30の接合機100には、後述するように、先行金属バー90の後端と後行金属バー60の先端が重ねられた重ね合わせ部を挟んだ状態で、その両側から圧入して剪断しながら剪断接合する一対の剪断刃が備えられている。
For example, as will be described later, the joining
そして、仕上圧延機40に移送された金属バー110は、複数の圧延機を通じて順次に熱間圧延されて所望の厚さに製造され、その後ダウンコイラー50に巻き取られる。
Then, the
ここで、図1において、符号130及び140は、コイルボックス20と接合装置30の各出口側に設置されたレベラーを示し、符号150は仕上圧延機40の入口側に設置されたクロップシャーを示し、符号160は前記レベラー140とクロップシャー150との間に配置されたエッジヒーターを示し、符号170はエッジヒーター160の前方に配置されたバーヒーターを示す。
Here, in FIG. 1,
このようなレベラー130、140、クロップシャー150、エッジヒーター160、及びバーヒーター170は、熱間圧延される素材及び熱間圧延条件によって選択的に配置可能であり、図1ではこれら設備の設置位置や設置有無等は一例として示したものであって、多様に変更できる。
The
そして、先行金属バー90の後端及び後行金属バー60の先端を切断するクロップシャー70は、金属バーを突合わせて接合する場合には必要であるが、金属バーを重ね合わせて剪断する過程で剪断接合する場合には、必要でないときは省略してもよい。
The
次に、図2及び図3を参照して本発明による接合機100及び剪断接合過程の低炭素鋼金属バーを詳細に説明する。
図2を参照すれば、本発明による接合機100は上部刃集合体180と下部刃集合体190、そしてこれらを移動可能に支持するハウジング101からなる。
Next, the joining
Referring to FIG. 2, the joining
ここで、上部刃集合体180は上部刃181と上部クランプ182、及び上部支持装置183からなり、これらは全て一体に構成されている。下部刃集合体190は下部刃191と下部クランプ192、及び下部支持装置193からなり、これらは全て一体に構成されている。
Here, the
そして、上部刃集合体180と下部刃集合体190は、ハウジング101のポスト部(図示せず)によって案内され、先行金属バー90及び後行金属バー60の厚さ方向(圧延面に垂直な方向)から金属バー進行方向に傾斜した方向に移動できるように支持される。また、上部刃集合体180及び下部刃集合体190はリンク機構(図示せず)によって接近及び離反できるように構成されている。なお、前記傾斜方向は、図2示される実施例が金属バー進行方向に沿った断面であるとした場合であって、他の方向に傾いてもよい。
The
このような本発明による接合機100内部に低炭素鋼の先行金属バー90の後端上に後行金属バー60の先端が重ねられた状態で案内される。
In such a joining
これにより、低炭素鋼の先行金属バー90の後端91上に後行金属バー60の先端61が重ねられるようになり、先端61と後端91が重ねられた部分は、上部刃の突起184と下部刃の突起194との間に挟まれるようになる。つまり、上部刃の突起184と下部刃の突起194が先端61及び後端91の表面に接触するようになる。
As a result, the leading
そして、先行金属バー90の後端91と後行金属バー60の先端61が重ねられた部位には、上部クランプ182と下部クランプ192が接触する。上部クランプ182は上部支持装置183によって油圧力で支持されており、下部クランプ192は下部支持装置193によって油圧力で支持されている。
The
このような状態で上部刃181と下部刃191が先行金属バー90及び後行金属バー60を剪断すれば、先行金属バー90と後行金属バー60の各剪断面が塑性流動変形によって互いに剪断接合されて一体に連結された金属バー110になる。
If the
このように低炭素鋼の端部の剪断接合が完了すれば、連結された金属バーの接合部位には、後行金属バー60の先端61から切り離された上部クロップが位置し、同様に、先行金属バー90の後端91から切り離された下部クロップが位置する。そして、金属バーが互いに接合完了すれば、上部刃181と下部刃191は一定距離だけ隔離する様に後退する。
If the shear bonding of the ends of the low carbon steel is completed in this way, the upper crop separated from the
金属バーの剪断接合によって切断された上部クロップと下部クロップは、図1に示すクロップ処理装置120によって除去され、連結された金属バー110は仕上圧延機40に連続して移送される。
The upper and lower crops cut by the metal bar shearing are removed by the
金属バーの接合部が仕上圧延機40を通過する時は、仕上圧延時の強い圧縮応力、屈曲、及び仕上圧延機の各スタンド間で屈曲または引張りなどの外力が作用するために、前記接合部は苛酷な工程条件下に置かれるようになる。
このとき、低炭素鋼金属バーの接合部は、破断せずに仕上圧延機40を通過できる程度の接合強度を維持する必要がある。
When the joint portion of the metal bar passes through the finishing
At this time, the joint portion of the low carbon steel metal bar needs to maintain a joining strength that can pass through the finishing
以下、連続熱間圧延で低炭素鋼金属バーを剪断接合する場合、接合部の接合強度を制御するための接合工程の工程変数について詳細に説明する。 Hereinafter, when the low carbon steel metal bar is shear-joined by continuous hot rolling, process variables of the joining process for controlling the joining strength of the joint will be described in detail.
まず、図4を参照して、二つの金属バーを固相接合する工程を金属熱力学的に説明する。
固相接合は二つの自由表面(free surface)が一つの界面(interface)になる工程であるといえる。この場合、熱力学的に固相接合工程における自由エネルギーγの変化を計算すると、数式1に示すようになる。
First, with reference to FIG. 4, the process of solid-phase joining two metal bars will be described in terms of metal thermodynamics.
Solid state bonding can be said to be a process in which two free surfaces become one interface. In this case, when the change of the free energy γ in the solid phase bonding process is calculated thermodynamically, it is as shown in Equation 1.
数式1において界面エネルギーは自由表面エネルギーの30%以下の値を有するので、自由エネルギーの変化は-1.7γfree surfaceで示すことができる。そして、γfree surfaceは正の値を有するので、全体エネルギーの変化は負の値を有する。これは自発反応、つまり外力が全く無くても二つの表面は自ずから接合されるということを意味する。 In Equation 1, since the interfacial energy has a value of 30% or less of the free surface energy, the change in free energy can be represented by -1.7γ free surface . And since γ free surface has a positive value, the change in overall energy has a negative value. This means a spontaneous reaction, that is, the two surfaces are naturally joined without any external force.
しかし、実際には二つの表面が大気中で外力なく自然に接合されることはない。それは板材表面の凹凸とスケールが二つの表面の接合を妨害するためである。 However, in reality, the two surfaces are not naturally joined without any external force in the atmosphere. This is because the unevenness and scale on the surface of the plate obstruct the joining of the two surfaces.
二つの金属バーが互いに接合されるためには、接合される金属バーの表面にある原子間に引力が作用しなければならない。原子間引力が作用するためには原子間距離がÅクラスでなければならない。 In order for two metal bars to be joined together, an attractive force must act between the atoms on the surface of the metal bars to be joined. In order for the attractive force between atoms to work, the interatomic distance must be Å class.
しかし、金属バーの表面は機械加工をしても凹凸が存在するため、二つの金属バーの表面の原子間距離はÅクラスよりはるかに遠い。この点を考慮して通常の固相接合では強い圧力(圧縮力)を印加し、常温では非常に大きい力が必要となるため金属バーを高温に加熱する。 However, since the surface of the metal bar is uneven even after machining, the interatomic distance between the surfaces of the two metal bars is far greater than the soot class. Considering this point, a strong pressure (compressive force) is applied in normal solid-phase bonding, and a very large force is required at room temperature, so the metal bar is heated to a high temperature.
しかし、このように強い圧力を印加しても金属バーの表面に存在したり金属バーを加熱する場合に金属バーの表面に生成されるスケールが接合力を低下させてしまう。従って、低炭素鋼の連続熱間圧延時に十分な接合部の接合強度を確保するには、必ずスケールを低減させなければならない。 However, even if such a strong pressure is applied, the scale existing on the surface of the metal bar or generated on the surface of the metal bar when the metal bar is heated reduces the bonding force. Therefore, in order to ensure a sufficient joint strength at the time of continuous hot rolling of low carbon steel, the scale must be reduced.
二つの金属バーを接合する従来の固相接合法で極めて例外的にスケールの混入を抑制する接合が可能であることもある。しかし、この場合にも1,000℃程度の高温で熱間圧延が行なわれるため、二つの金属バーが重ねられる予定面で高温酸化によるスケールが自然に発生し、これを除去するためにデスケーリングをしても瞬時に表面にスケールが生成される。 In some cases, the conventional solid-phase bonding method in which two metal bars are bonded can extremely exceptionally prevent bonding of scale. However, in this case as well, since hot rolling is performed at a high temperature of about 1,000 ° C., scale due to high-temperature oxidation naturally occurs on the surface where two metal bars are to be stacked, and descaling is performed to remove this. Even if you do, a scale is generated on the surface instantly.
また、高温では素材の軟性が非常に高いので、重ねられる予定面に存在するスケールが接合部に混入されるようになる。このようなスケールの混入は接合強度を低下させる原因として作用する。 Moreover, since the softness of the material is very high at a high temperature, scales existing on the surfaces to be stacked are mixed into the joint. Such scale contamination acts as a cause of reducing the bonding strength.
以下、図5を参照して、このように熱間で二つの金属バーを接合する場合、接合部の接合率と接合強度比を説明する。 Hereinafter, with reference to FIG. 5, in the case where two metal bars are bonded in a hot state as described above, a bonding rate and a bonding strength ratio of the bonding portion will be described.
図5において実線(直線)は接合部内にスケールが混入されなくて理論的にスケール間の接合力が全くない場合を仮定した時の接合率と接合強度との関係を示すものである。このように理論的には接合率と接合強度は線状の関係として示されるので、接合率が増加すれば接合強度比も増加しなければならない。ここで、接合率とは接合部のうちのスケールがなくて完全に接合された長さを接合部全体長さで割った百分率で示したものである。これは接合部内にスケールの混入が多くなるほど接合率は低くなり、従って、接合強度比も低くなるということを示すものである。 In FIG. 5, the solid line (straight line) shows the relationship between the bonding rate and the bonding strength when it is assumed that no scale is mixed in the bonded portion and there is theoretically no bonding force between the scales. As described above, theoretically, the bonding rate and the bonding strength are shown as a linear relationship. Therefore, if the bonding rate increases, the bonding strength ratio must also increase. Here, the joining rate is expressed as a percentage obtained by dividing the length of the joined portion that is completely scaled without the scale by the entire length of the joined portion. This indicates that the greater the amount of scale mixed in the joint, the lower the joining rate, and thus the lower the joint strength ratio.
しかし、実際の熱間圧延工程では高温の温度条件のため、スケールが必ず発生し、スケール間にも弱い接合力が存在するので、実線(直線)よりは多少高い接合強度比、つまり点線のような関係を示すようになる。 However, due to the high temperature conditions in the actual hot rolling process, scales are always generated, and there is a weak bonding force between the scales, so the bonding strength ratio is slightly higher than the solid line (straight line), that is, the dotted line. To show a good relationship.
次に、連続熱間圧延で低炭素鋼金属バーを剪断接合する場合、接合部の接合強度を制御するための接合条件について説明する。 Next, the joining conditions for controlling the joining strength of the joint when shearing the low carbon steel metal bar by continuous hot rolling will be described.
図6を参照して本発明による接合機100の剪断接合過程を説明する。
A shear joining process of the joining
図6(a)のように、二つの金属バーを剪断接合によって接合させる力は、上部刃121と下部刃131が押す圧縮荷重のうちの接合部に垂直な方向の力である。また、剪断によって発生する二つの新生面同士の摩擦が接合性を向上させる。
このような力によって図6(b)に示すように対向する圧力が作用して接合が発生する。
As shown in FIG. 6A, the force for joining the two metal bars by shear joining is a force in a direction perpendicular to the joining portion of the compression loads pressed by the upper blade 121 and the lower blade 131. Also, the friction between the two new surfaces generated by shearing improves the bondability.
Such a force causes opposing pressures to act as shown in FIG.
この時、この力は接合機100と工程条件の関数であって、これが不足すれば接合部が十分な接合強度を有することができない。一方、上部刃と下部刃に存在する突起184、194は、金属バーの剪断時に金属の流動を防止する役割を果たして接合力を堅固にする。
At this time, this force is a function of the
また、図7のように金属バーの幅方向において、中央部は周囲の拘束で全く問題がないが、両端部は全く拘束がない自由表面状態になる。 Further, as shown in FIG. 7, in the width direction of the metal bar, the central portion has no problem with the surrounding restraint, but the both end portions are in a free surface state without any restraint.
このように金属バーの接合時に自由表面状態である両端部は、図7のように外側方向に隙間ができるために対向する方向の力が傾くようになる。
その結果、金属バーの両端部は接合強度が落ちてしまい、図7の右側に示すように、接合時にこの部分には部分酸化も起こる。これが後続する仕上圧延時に亀裂発生原因になって、亀裂が大きくなれば連続鋼板の連続部破断が発生する。
In this way, the ends in the free surface state at the time of joining the metal bars have a gap in the outer direction as shown in FIG.
As a result, the joining strength of both ends of the metal bar is reduced, and as shown on the right side of FIG. This causes cracks during the subsequent finish rolling, and if the cracks become large, continuous part breakage of the continuous steel sheet occurs.
また、接合部の形状も接合強度に影響を与える。剪断接合を適用する場合には接合方法の特性上接合部断面の上下部に未接合部が存在し、この未接合部の位置及び大きさによって接合強度が変わる。 The shape of the joint also affects the joint strength. When shear bonding is applied, unbonded portions exist at the upper and lower portions of the cross section of the bonded portion due to the characteristics of the bonding method, and the bonding strength varies depending on the position and size of the unbonded portion.
以上のような説明を考慮して接合部の性能に影響を与える各種制御因子を整理すれば図8に示すようになる。 Considering the above description, various control factors that affect the performance of the joint are arranged as shown in FIG.
図8に示すように、金属バー接合部の性能には素材特性、工程変数、及び接合装置全てが接合部の接合強度に影響を与えることが分かる。 As shown in FIG. 8, it can be seen that the material characteristics, process variables, and joining device all affect the joint strength of the metal bar joint performance.
しかし、ここで素材特性と接合装置は制御が困難であるので、実際に金属バーを接合する場合には工程変数を調節することが接合条件を制御するのに容易であって、その効果が確かである。 However, it is difficult to control the material properties and the joining device here, so when actually joining metal bars, it is easy to adjust the process variables to control the joining conditions, and the effect is certain. It is.
このような工程変数としてはデスケーリング条件と接合条件がある。
デスケーリング条件としてはデスケーリング時の温度及び圧力を制御してスケールの混入を抑制することができる。接合条件としては金属バー接合時の温度、ラップ、及びストローク率を制御して接合部の接合力と形状を調節することができる。
Such process variables include descaling conditions and joining conditions.
As the descaling condition, the temperature and pressure at the time of descaling can be controlled to suppress the scale mixture. As the joining conditions, the joining force and shape of the joint can be adjusted by controlling the temperature, lap, and stroke rate during joining of the metal bars.
以上のような5つの工程変数を適切に調節することによって接合強度を低下させる要因であるスケールの混入と接合力不足、及び接合部の形状を制御することができる。また、このような工程変数を制御することによって金属バー接合部の強度低下を抑制することができる。 By appropriately adjusting the five process variables as described above, it is possible to control the mixing of scale, insufficient bonding force, and the shape of the bonded portion, which are factors that decrease the bonding strength. Moreover, the strength reduction of the metal bar joint can be suppressed by controlling such process variables.
ここで、工程変数の接合条件であるストローク率及びラップの定義について図9を参照して説明する。
ストローク率とは接合機100の上部刃181と下部刃191とが重なり合う金属バーに接触してから上下に動いた距離の合計(ΔlU+ΔlL)を金属バーの厚さ(t)で割った値である。
Here, the definition of the stroke rate and the lap, which are the joining conditions of the process variables, will be described with reference to FIG.
The stroke rate is obtained by dividing the total distance (Δl U + Δl L ) moved up and down after contacting the metal bar where the
従って、ストローク率=((ΔlU+ΔlL)/t)が大きくなれば接合部の相対的厚さは減少する。 Therefore, as the stroke rate = ((Δl U + Δl L ) / t) increases, the relative thickness of the joint decreases.
そして、ラップとは上部刃181と下部刃191とが重なり合う距離である。しかし、剪断刃(上部刃と下部刃)が所定の角を有しており、剪断刃が剪断した後にはストローク率によって設定値と少しの差が生じることもある。従って、実際に金属バーを剪断接合する場合には実際測定が不可能であるので、接合機の設定値で制御することが好ましい。
The lap is a distance at which the
以上説明した本発明による熱間圧延設備及びこれを利用した接合方法は、剪断接合をするので、低炭素鋼に適用することが可能である。 Since the hot rolling equipment and the joining method using the same according to the present invention described above perform shear joining, they can be applied to low carbon steel.
さらに、本発明による接合方法は固相接合であるので、熱間圧延設備ライン上で別途の熱源を供給しなくても熱間状態に加熱されている金属バー自体の温度範囲内で剪断接合を行うことができる。従って、予熱及び後熱が不必要であり、別途の熱源導入をすることなしに金属バー接合部の亀裂を防止することができる。 Furthermore, since the joining method according to the present invention is solid phase joining, shear joining is performed within the temperature range of the metal bar itself heated to a hot state without supplying a separate heat source on the hot rolling equipment line. It can be carried out. Therefore, preheating and post-heating are unnecessary, and cracking of the metal bar joint can be prevented without introducing a separate heat source.
また、従来の溶接接合方法とは異なって剪断力だけを利用するので、低炭素鋼の接合工程時にスケールの混入問題及び気孔混入問題を根本的に防止できる技術的効果がある。 Further, unlike the conventional welding joining method, only the shearing force is used, so that there is a technical effect that the problem of mixing scale and pores can be fundamentally prevented during the joining process of low carbon steel.
従って、本発明による剪断接合方法は連続熱間圧延工程で低炭素鋼の接合に非常に有用な方法であり、工程変数だけを適切に制御すれば接合部の仕上圧延通板性を確保することができる。 Therefore, the shear joining method according to the present invention is a very useful method for joining low carbon steels in a continuous hot rolling process, and it is possible to ensure finish rolling plateability of the joint part by appropriately controlling only the process variables. Can do.
以下、このような点を考慮して低炭素鋼の剪断接合時の工程変数及び工程条件について評価を通じて検討する。 In the following, considering such points, process variables and process conditions during shear bonding of low carbon steel will be examined through evaluation.
[評価]
下記表1の組成を有する低炭素鋼の金属バーを用いて図1〜図3に示す連続熱間圧延設備で金属バーの剪断接合時の工程変数を変化させて実験した。
[Evaluation]
Experiments were carried out using a low carbon steel metal bar having the composition shown in Table 1 below with the continuous hot rolling facility shown in FIGS.
以下、図10〜図16に示す実験グラフは、表1に示す鋼種類の全種平均実験値を示すものである。低炭素鋼の場合、表1に示す各鋼種による組成を有していれば、接合強度比(後述)等の特性が類似したパターンを示すことが実験結果として現れた。 Hereinafter, the experimental graphs shown in FIGS. 10 to 16 show the all-type average experimental values of the steel types shown in Table 1. In the case of low carbon steel, if it has the composition by each steel type shown in Table 1, it showed as an experimental result that the characteristics, such as joining strength ratio (after-mentioned), show similar patterns.
図10は、本発明の一実施例に係る低炭素鋼連続熱間圧延設備が具備する接合機によるデスケーリング温度と接合強度比及び亀裂率の関係(接合強度比と金属バーエッジの亀裂率に対するデスケーリング温度の影響)を示すグラフである。
ここで、接合強度比とは下記数式2のようである。
FIG. 10 shows the relationship between the descaling temperature, the bond strength ratio, and the crack rate by the bonding machine provided in the low-carbon steel continuous hot rolling facility according to one embodiment of the present invention (the bond strength ratio and the crack ratio of the metal bar edge). It is a graph which shows the influence of scaling temperature.
Here, the bonding strength ratio is as shown in Equation 2 below.
そして、エッジ亀裂率は下記数式3のようである。
And the edge crack rate is like the following
図10のように、低炭素鋼の場合、金属バーを剪断接合すれば、接合強度比とエッジ亀裂率に対するデスケーリング温度変数の影響が大きくないことが分かる。 As shown in FIG. 10, in the case of low carbon steel, it can be seen that if the metal bar is shear bonded, the influence of the descaling temperature variable on the bonding strength ratio and the edge crack rate is not large.
そして、仕上圧延時、接合強度比が低ければ第1または第2パスで板破断が発生し、エッジ亀裂率が高まれば後段部で板破断が発生する傾向がある。 During finish rolling, if the bond strength ratio is low, the plate breaks in the first or second pass, and if the edge crack rate increases, the plate breaks in the subsequent stage.
図11は、本発明の一実施例に係る低炭素鋼連続熱間圧延設備が具備する接合機によるデスケーリング圧力と接合強度比及び亀裂率の関係(接合強度比と金属バーエッジの亀裂率に対するデスケーリング圧力の影響)を示すグラフである。
図11に示すように、接合された金属バーを仕上圧延機で仕上圧延して通板性を試験した結果、接合強度比は52%以上であれば、金属バーの接合部破断なしで仕上圧延が可能であることが分かる。そして、エッジ亀裂率の場合、30%までは通板が可能であった。
FIG. 11 shows the relationship between the descaling pressure, the joint strength ratio, and the crack rate by the joining machine of the low carbon steel continuous hot rolling facility according to one embodiment of the present invention (the joint strength ratio and the crack ratio of the metal bar edge). It is a graph which shows the influence of scaling pressure.
As shown in FIG. 11, when the joined metal bars are finish-rolled with a finish rolling mill and tested for sheet-passability, if the joining strength ratio is 52% or more, finish rolling without breaking the joints of the metal bars is performed. It is understood that is possible. In the case of the edge crack rate, up to 30% could be passed.
低炭素鋼の場合、デスケーリング圧力が0MPaである場合にも仕上圧延工程で通板可能な接合強度と低いエッジ亀裂率が得られるので、デスケーリングを省略してもよい。 In the case of low carbon steel, even when the descaling pressure is 0 MPa, the joining strength that can be passed through in the finish rolling process and the low edge crack rate can be obtained, so descaling may be omitted.
また、図11に示すように、デスケーリング圧力は、増加するほど接合部へのスケールの混入が減少するので、接合部の接合強度が増加して幅方向の両端部の未接合部の面積が減少し、エッジ亀裂率も減少する。 Further, as shown in FIG. 11, as the descaling pressure increases, the amount of scale mixed into the joint portion decreases, so the joint strength of the joint portion increases and the area of the unjoined portion at both ends in the width direction increases. The edge crack rate is also reduced.
しかし、デスケーリング圧力が高過ぎれば、水噴射量が多くなって接合部の温度が大幅に低下し、後続工程である仕上圧延で必要な温度を確保しにくくなる。 However, if the descaling pressure is too high, the amount of water injection increases and the temperature of the joint portion decreases significantly, making it difficult to secure the temperature required for finish rolling, which is a subsequent process.
また、過度なデスケーリング圧力によって高温強度の弱い金属バーの母材が著しく損傷して接合部の表面に多くの凹凸が発生し、接合性を低下させる。 Moreover, the base material of the metal bar having a weak high-temperature strength is significantly damaged due to excessive descaling pressure, and many irregularities are generated on the surface of the joint portion, thereby deteriorating the bondability.
以上のような実験をした結果、低炭素鋼を接合機で剪断接合する場合、接合機100直前のデスケーリング装置81でのデスケーリング圧力は60MPa以下に制御するのが好ましいということを分かる。
As a result of the above experiments, it can be seen that when low-carbon steel is shear-joined with a joining machine, the descaling pressure in the
図12は、本発明の一実施例に係る低炭素鋼連続熱間圧延設備が具備する接合機による接合温度と接合強度比の関係(低炭素鋼を剪断接合した時の接合温度に対応する接合強度比)を示すグラフである。
この図12に示すように、低炭素鋼を剪断接合した時の接合温度は、接合強度比に殆ど影響を与えないことが分かる。また、図示してないが、エッジ亀裂率にも影響を与えないことが分かる。
FIG. 12 shows the relationship between the bonding temperature and the bonding strength ratio by the bonding machine provided in the low-carbon steel continuous hot rolling facility according to one embodiment of the present invention (the bonding corresponding to the bonding temperature when the low-carbon steel is shear-bonded). It is a graph which shows intensity ratio.
As shown in FIG. 12, it can be seen that the bonding temperature when shear bonding low carbon steel has little effect on the bonding strength ratio. Although not shown, it can be seen that the edge crack rate is not affected.
図13は、本発明の一実施例に係る低炭素鋼連続熱間圧延設備が具備する接合機によるラップと接合強度比の関係(低炭素鋼を剪断接合した時のラップの変化による接合強度比)を示すグラフである。
図13に示すように、ラップと接合強度比はガウス分布、つまり放物線の関係を示していることが分かる。
FIG. 13 shows a relationship between a lap and a joining strength ratio by a joining machine provided in a low-carbon steel continuous hot rolling facility according to an embodiment of the present invention (a joining strength ratio due to a change in lap when low-carbon steel is shear-joined. ).
As shown in FIG. 13, it can be seen that the lap and the bonding strength ratio show a Gaussian distribution, that is, a parabola relationship.
これはラップが増加、つまり、上部刃181と下部刃191が金属バー60、90の上面または下面に接した時の重なり長さが広がれば接合強度比が増加して2mm以上では通板基準(後述)を満たし始め、19mm以上では再び減少し始めて21mmを越えれば通板基準を満たせなかった。なお、前記重なり長さは、接合機100の傾斜角によって決定される。
This is because the lap increases, that is, if the overlap length when the
このようにラップの範囲が2mm以上19mm以下で通板基準を満たす理由は以下の通りである。
つまり、ラップが増加するようになれば接合強度が増加する理由は、ラップが増加するにつれて、圧延面からの接合面の立ち上がり角度が小さくなって、これによって剪断刃の押圧力のうちの接合面に垂直な方向の分力が増加するためであり、ラップ量が所定の値より大きくなれば必要な荷重が大きくなるので、接合強度が減少する。
The reason why the lap range is 2 mm or more and 19 mm or less and satisfies the sheet passing standard is as follows.
In other words, the reason why the bonding strength increases as the lap increases is that the rising angle of the bonding surface from the rolling surface becomes smaller as the wrap increases, thereby the bonding surface of the pressing force of the shearing blade. This is because the component force in the direction perpendicular to the direction increases, and if the amount of wrap is greater than a predetermined value, the required load increases, and the bonding strength decreases.
従って、ラップの範囲は2mm以上19mm以下であるのが好ましい。 Therefore, the wrapping range is preferably 2 mm or more and 19 mm or less.
一方、エッジ亀裂率はデスケーリング圧力によって大きく影響を受けたが、ラップによる影響はほとんど認められなかった。これはラップの増加によって接合力が増加するが、エッジ部では幅方向に隙間ができる現象が発生して接合力が低下し、その結果、エッジ部の酸化が起きてその効果が顕著に微小となるためである。 On the other hand, the edge crack rate was greatly influenced by the descaling pressure, but almost no influence by wrapping was observed. This is because the bonding force increases due to the increase of the lap, but the phenomenon that a gap is formed in the width direction occurs at the edge portion and the bonding force is lowered.As a result, the edge portion is oxidized and the effect is remarkably small. Because it becomes.
図14は、本発明の一実施例に係る低炭素鋼連続熱間圧延設備が具備する接合機によるストローク率と破断荷重の関係(低炭素鋼の剪断接合時にストローク率による金属バーの破断荷重)を示すグラフである。 FIG. 14 shows the relationship between the stroke rate and the breaking load by the joining machine provided in the low-carbon steel continuous hot rolling facility according to one embodiment of the present invention (the breaking load of the metal bar due to the stroke rate when shearing low-carbon steel). It is a graph which shows.
図14に示すように、ストローク率が増加することによって接合部の破断荷重は徐々に増加している途中で、1.33にて通板基準を満たし、1.50以上ではほとんど飽和現象を示していたが、再び減少した。しかし、1.60まで通板基準を満たしていることが分かる。 As shown in FIG. 14, the breaking load of the joint portion gradually increases as the stroke rate increases, and satisfies the passing plate standard at 1.33, and almost exhibits a saturation phenomenon at 1.50 or more. Had decreased again. However, it can be seen that the plate passing standard is satisfied up to 1.60.
従って、低炭素鋼の場合、剪断接合時に接合機100のストローク率は1.33〜1.60であるのが好ましい。
Therefore, in the case of low carbon steel, the stroke rate of the joining
この時、ストロークは接合機100の上部刃と下部刃を同時に上下に移動させて剪断接合をすることもできて、上部刃と下部刃のうちのいずれか一つだけを移動させて剪断接合をすることもできる。
At this time, the stroke can be sheared by simultaneously moving the upper blade and the lower blade of the
他の接合条件とは異なってストローク率は接合部の厚さに影響を与える。つまり、ストローク率が増加すれば接合部の厚さが薄くなる。これによって接合強度は上がっても破断荷重が減少することもあるので、ストローク率と接合部の破断荷重との関係を調査した。図14から分かるように、ストローク率が増加すれば接合部の厚さが薄くなるにもかかわらず破断荷重が増加しており、これは接合強度比はストローク率が増加するにつれて顕著に上昇することを意味している。 Unlike other joining conditions, the stroke rate affects the thickness of the joint. That is, if the stroke rate increases, the thickness of the joint becomes thinner. As a result, even if the joining strength increases, the breaking load may decrease, so the relationship between the stroke rate and the breaking load at the joint was investigated. As can be seen from FIG. 14, when the stroke rate is increased, the breaking load is increased even though the thickness of the joint portion is reduced, and this indicates that the joint strength ratio is significantly increased as the stroke rate is increased. Means.
また、ストローク率が増加すれば延伸率も増加したが、エッジ亀裂率に与える影響は大きくなかった。このようにストローク率が増加するにつれて破断応力及び破断荷重が増加する現象は、ストローク率の増加と、図15に示すように板の厚さ方向の上下部の未接合部の位置及び形状が異なって現れることに起因する。 In addition, the stretch rate increased as the stroke rate increased, but the effect on the edge crack rate was not significant. The phenomenon in which the breaking stress and the breaking load increase as the stroke rate increases in this way is due to the increase in the stroke rate and the position and shape of the unjoined portion at the upper and lower portions in the thickness direction of the plate as shown in FIG. It is caused by appearing.
図16は、本実施例による低炭素鋼を熱間圧延設備で剪断接合して仕上圧延機で通板実験をした結果を示しており、図16によって本発明による通板基準を確認することができる。 FIG. 16 shows the results of a sheet passing experiment using a finishing mill after shear bonding of the low carbon steel according to the present embodiment with a hot rolling facility, and FIG. 16 confirms the sheet passing standard according to the present invention. it can.
図16は、表1に示す成分組成を有する低炭素鋼鋼材を利用して剪断接合した後、接合された金属バーを熱延工場の仕上圧延機で圧延した結果を示したグラフである。 FIG. 16 is a graph showing the result of shear joining using a low-carbon steel material having the component composition shown in Table 1 and then rolling the joined metal bars with a finishing mill in a hot rolling factory.
図16のグラフに示す実験材は、450mmの幅の低炭素鋼金属バーを剪断接合した後、接合された実験材二組を側面溶接して840〜900mmの幅にした後、再び前後面に同一な厚さのバーを溶接して作られた9000mmの長さの金属バーである。このような金属バーを加熱炉で加熱した後、仕上圧延を実施した結果について、この図16に示している。 The experimental material shown in the graph of FIG. 16 is obtained by shear bonding a low carbon steel metal bar having a width of 450 mm, then welding the two sets of the experimental material joined to each other to obtain a width of 840 to 900 mm, and then again on the front and rear surfaces. A 9000 mm long metal bar made by welding bars of the same thickness. FIG. 16 shows the result of finishing rolling after heating such a metal bar in a heating furnace.
このような試験をした結果、接合強度比が52%未満である金属バーでは、仕上圧延で全て板破断が起こり、接合強度比が52%以上の金属バーでは通板に成功した(図16(b)参照)。 As a result of such a test, in the metal bar having a bonding strength ratio of less than 52%, all the plates were broken by finish rolling, and in the metal bar having a bonding strength ratio of 52% or more, the plate was successfully passed (FIG. 16 ( b)).
このように仕上圧延の通板に成功した金属バーの接合部エッジ亀裂は15%以下であった。 Thus, the joint edge crack of the metal bar that was successfully passed through the finish rolling was 15% or less.
一方、ストローク率が固定された場合には、接合強度比で通板基準を設定しても問題ないが、ストローク率が変われば接合部の厚さが変わるので、これを勘案して整理した結果を図16(b)に示した。ここで、接合荷重比とは以下の数式4に示すようであり、このような接合荷重比に対する通板基準は31.5%である。 On the other hand, if the stroke rate is fixed, there is no problem even if the threading standard is set by the joint strength ratio, but if the stroke rate changes, the thickness of the joint will change. Is shown in FIG. Here, the bonding load ratio is as shown in Equation 4 below, and the threading plate standard for such a bonding load ratio is 31.5%.
以上、図16に示すように、仕上圧延段階での通板基準は、金属バーの破断なしで仕上圧延の接合強度比及び破断荷重を満たすことを意味する。 As described above, as shown in FIG. 16, the sheet passing standard in the finish rolling stage means that the joining strength ratio and the breaking load of the finish rolling are satisfied without breaking the metal bar.
以上、本発明の好ましい実施例について説明したが、本発明は以上のような低炭素鋼の連続熱間圧延時の接合部での接合条件に限定されるものではなく、このような低炭素鋼の連続熱間圧延の剪断接合に必要な多様な接合方法に適用することができる。 As mentioned above, although the preferable Example of this invention was described, this invention is not limited to the joining conditions in the junction part at the time of continuous hot rolling of the above low carbon steel, Such such a low carbon steel The present invention can be applied to various joining methods necessary for shear joining in continuous hot rolling.
従って、本願発明は特許請求の範囲と発明の詳細な説明の範囲内で多様に変更及び実施するのができて、これもまた本発明の範囲に属するものである。 Accordingly, the present invention can be variously modified and implemented within the scope of the claims and the detailed description of the invention, and these also belong to the scope of the present invention.
10 粗圧延機
20 コイルボックス
30 接合装置
40 仕上圧延機
50 ダウンコイラー
60 後行金属バー
61 後行金属バーの先端
70 入口側クロップシャー
80 重ね装置
81 デスケーリング装置
90 先行金属バー
91 先行金属バーの後端
100 接合機
101 ハウジング
110 金属バー
120 クロップ処理装置
130、140 レベラー
150 出口側クロップシャー
160 エッジヒーター
170 バーヒーター
180 上部刃集合体
181 上部刃
182 上部クランプ
183 上部支持装置
184 突起
190 下部刃集合体
191 下部刃
192 下部クランプ
193 下部支持装置
194 突起
DESCRIPTION OF
Claims (7)
前記粗圧延された金属バーをコイル状に巻き取るコイルボックスと、
前記コイルボックスのコイラーから巻き出される金属バーの接合予定部をデスケーリングするデスケーリング装置と、
前記デスケーリングされた金属バーを先行金属バーの後端と後行金属バーの先端を重ね合わせて重ね合わせ部を挟んだ状態でその両側から圧入して剪断しながら剪断接合する一対の剪断刃が備えられている剪断接合装置と、
前記剪断接合された金属バーを仕上圧延する仕上圧延機とを有し、
低炭素鋼金属バーを連続熱間圧延するようにした
ことを特徴とする連続熱間圧延設備。 C is 0.30 mass% or less, Mn is 1.8 mass% or less, Si is 0.55 mass% or less, P is 0.50 mass% or less, S is 0.50 mass% or less, and other inevitable Low carbon steel slab composed of impurities and remaining Fe, or C is 0.30 mass% or less, Mn is 1.8 mass% or less, Si is 0.55 mass% or less, P is 0.50 mass% or less, 0.5% by mass or less of S is contained at least one element of Cr, Cu, Ni, Mo or Al in an amount of 1.0% by mass or less, and is composed of other inevitable impurities and the remaining Fe. A rough rolling machine for rough rolling a carbon steel slab;
A coil box that winds the roughly rolled metal bar into a coil;
A descaling device for descaling a joint portion of a metal bar unwound from a coiler of the coil box;
A pair of shearing blades that shear-join the descaled metal bar while being sheared by press-fitting from both sides in a state where the rear end of the preceding metal bar and the front end of the subsequent metal bar are overlapped to sandwich the overlapped portion. A shear bonding device provided; and
A finish rolling mill for finishing and rolling the shear bonded metal bar,
Continuous hot rolling equipment characterized by continuous hot rolling of low carbon steel metal bars.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2005-0130100 | 2005-12-26 | ||
KR1020050130100A KR100765037B1 (en) | 2005-12-26 | 2005-12-26 | Joining method of low carbon steel for endless hot rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007175767A true JP2007175767A (en) | 2007-07-12 |
JP5041783B2 JP5041783B2 (en) | 2012-10-03 |
Family
ID=38301469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006289616A Active JP5041783B2 (en) | 2005-12-26 | 2006-10-25 | Shear joining method and continuous hot rolling equipment for low carbon steel continuous hot rolled material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5041783B2 (en) |
KR (1) | KR100765037B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020533181A (en) * | 2017-09-13 | 2020-11-19 | ポスコPosco | Continuous hot rolling equipment and methods for difficult-to-join materials |
WO2022091709A1 (en) * | 2020-10-30 | 2022-05-05 | Jfeスチール株式会社 | Hot-rolled steel sheet and method for producing same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6643279B2 (en) * | 2016-08-10 | 2020-02-12 | ポスコPosco | High-grade steel continuous hot rolling method |
KR101778160B1 (en) * | 2016-08-10 | 2017-09-14 | 주식회사 포스코 | Method for increasing efficiency for surface modification of hot rolling material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04105701A (en) * | 1990-08-27 | 1992-04-07 | Hitachi Ltd | Method and equipment for continuous hot rolling of thin sheet |
JPH07178416A (en) * | 1993-12-22 | 1995-07-18 | Sumitomo Metal Ind Ltd | Method for joining hot steel materials |
JPH10146603A (en) * | 1996-11-18 | 1998-06-02 | Nippon Steel Corp | Manufacture of hot rolled steel sheet reducing dispersion in material using continuous hot rolling process |
JP2001232403A (en) * | 1999-12-14 | 2001-08-28 | Hitachi Ltd | Method and device for joining metallic sheet and hot- rolling equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61144285A (en) | 1984-12-18 | 1986-07-01 | Ishikawajima Harima Heavy Ind Co Ltd | Joining method of rolled material |
KR100241315B1 (en) | 1991-04-26 | 2000-03-02 | 가나이 쓰도무 | Method and apparatus for joining hot strips |
JP3596626B2 (en) * | 1994-04-07 | 2004-12-02 | 石川島播磨重工業株式会社 | Rolled material joining apparatus and joining method |
-
2005
- 2005-12-26 KR KR1020050130100A patent/KR100765037B1/en active IP Right Grant
-
2006
- 2006-10-25 JP JP2006289616A patent/JP5041783B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04105701A (en) * | 1990-08-27 | 1992-04-07 | Hitachi Ltd | Method and equipment for continuous hot rolling of thin sheet |
JPH07178416A (en) * | 1993-12-22 | 1995-07-18 | Sumitomo Metal Ind Ltd | Method for joining hot steel materials |
JPH10146603A (en) * | 1996-11-18 | 1998-06-02 | Nippon Steel Corp | Manufacture of hot rolled steel sheet reducing dispersion in material using continuous hot rolling process |
JP2001232403A (en) * | 1999-12-14 | 2001-08-28 | Hitachi Ltd | Method and device for joining metallic sheet and hot- rolling equipment |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020533181A (en) * | 2017-09-13 | 2020-11-19 | ポスコPosco | Continuous hot rolling equipment and methods for difficult-to-join materials |
WO2022091709A1 (en) * | 2020-10-30 | 2022-05-05 | Jfeスチール株式会社 | Hot-rolled steel sheet and method for producing same |
JPWO2022091709A1 (en) * | 2020-10-30 | 2022-05-05 | ||
JP7298777B2 (en) | 2020-10-30 | 2023-06-27 | Jfeスチール株式会社 | Hot-rolled steel sheet and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20070068220A (en) | 2007-06-29 |
JP5041783B2 (en) | 2012-10-03 |
KR100765037B1 (en) | 2007-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5041782B2 (en) | Shear joining method and continuous hot rolling equipment for high carbon steel continuous hot rolled material | |
JP6593609B2 (en) | Cold rolling method and cold rolling equipment for steel strip | |
JP5041783B2 (en) | Shear joining method and continuous hot rolling equipment for low carbon steel continuous hot rolled material | |
JP6643279B2 (en) | High-grade steel continuous hot rolling method | |
JP4958514B2 (en) | Austenitic stainless steel continuous hot-rolled shear joining method and continuous hot-rolling equipment | |
KR101990946B1 (en) | Equipment and method for endless hot strip rolling of difficult-to-joining steel | |
JP3806173B2 (en) | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process | |
KR101778179B1 (en) | Method for preventing curve of hot rolling material | |
KR101778171B1 (en) | Endless hot rolling method of high grade steel | |
KR101778160B1 (en) | Method for increasing efficiency for surface modification of hot rolling material | |
JP3103496B2 (en) | Joining method of hot rough bar | |
JP3461669B2 (en) | Manufacturing method of hot continuous rolled steel sheet | |
JP3629120B2 (en) | Rolling fracture prevention method for different width bonded plates | |
JP4214334B2 (en) | Hot rolling method for stainless steel | |
JP3202569B2 (en) | Continuous hot rolling method for hot steel | |
JP3466419B2 (en) | Method of manufacturing hot-rolled steel sheet using steel material for hot-rolled steel sheet manufacturing in hot-rolling continuous process | |
JP3345284B2 (en) | Method and apparatus for manufacturing hot-rolled steel sheet | |
JPH04367302A (en) | Hot rolling method for billet | |
JPH07178418A (en) | Method for joining steel slab | |
JPH09174107A (en) | Continuous rolling method for hot steel | |
JPH04288906A (en) | Method for continuous hot rolling slab | |
JPH07314005A (en) | Method for hot-rolling joined slab having different width |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120710 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5041783 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150720 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |