JP2007175594A - Facility for recovering gas emitted to atmospheric air and removing malodorous component - Google Patents

Facility for recovering gas emitted to atmospheric air and removing malodorous component Download PDF

Info

Publication number
JP2007175594A
JP2007175594A JP2005375729A JP2005375729A JP2007175594A JP 2007175594 A JP2007175594 A JP 2007175594A JP 2005375729 A JP2005375729 A JP 2005375729A JP 2005375729 A JP2005375729 A JP 2005375729A JP 2007175594 A JP2007175594 A JP 2007175594A
Authority
JP
Japan
Prior art keywords
gas
crude oil
absorption
tower
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005375729A
Other languages
Japanese (ja)
Inventor
Shiro Nishizuka
史郎 西塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA PLANT CONSTRUCTIO
Ishikawajima Plant Construction Co Ltd
Original Assignee
ISHIKAWAJIMA PLANT CONSTRUCTIO
Ishikawajima Plant Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA PLANT CONSTRUCTIO, Ishikawajima Plant Construction Co Ltd filed Critical ISHIKAWAJIMA PLANT CONSTRUCTIO
Priority to JP2005375729A priority Critical patent/JP2007175594A/en
Publication of JP2007175594A publication Critical patent/JP2007175594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a facility for recovering a gas emitted to atmospheric air and removing a malodorous component which is capable of simultaneous carrying out the recovery and removal for a large quantity of gas by economical facility installation investment. <P>SOLUTION: In emission of a replacement gas released from a tanker or a tank at a time of loading or unloading petroleum to atmospheric air while removing hydrocarbons and malodorous components contained in the replacement gas, the facility comprises an absorption tower 16 for removing hydrocarbons by bringing the replacement gas from a tanker or the like into gas-liquid contact with crude oil, a hydrocarbon adsorption tower 17 for introducing the replacement gas from the absorption tower 16 into and removing the hydrocarbons from the replacement gas by adsorption, and a malodor adsorption tower 18 for introducing the replacement gas from from the hydrocarbon adsorption tower 17 and removing the malodorous components from the replacement gas by adsorption, and the crude oil absorbing the hydrocarbons and other low boiling point component gases is turned back to have prior properties and made repeatedly usable as an absorption oil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンカーや陸上タンクに石油などを積載する際に発生する置換ガスを大気放出する際、その大気放出ガス中の炭化水素や臭気成分を回収除去するための大気放出ガスの回収と臭気成分の除去設備に関するものである。   The present invention relates to the recovery and odor recovery of atmospheric emission gas for recovering and removing hydrocarbons and odorous components in the atmospheric emission gas when the replacement gas generated when oil or the like is loaded on a tanker or onshore tank is released into the atmosphere. The present invention relates to a component removal facility.

石油を陸上タンクからタンカーに積載する場合、或はタンカーから陸上タンクに荷揚する場合に、受入れる容器から石油の充填に伴い置換ガスが排出される。
この置換ガスは、積載側の陸上タンクあるいはタンカーに戻せる場合は支障がないが、陸上タンクの屋根がフローテング形式である場合は、屋根部分に殆ど気相部がないので、タンカーからの置換ガスを陸上タンクに返送出来ない。
When the oil is loaded from the onshore tank into the tanker, or when the tanker is unloaded from the tanker to the onshore tank, the replacement gas is discharged from the receiving container as the oil is filled.
This replacement gas has no problem if it can be returned to the onshore tank or tanker on the loading side, but if the roof of the onshore tank is a floating type, there is almost no gas phase on the roof, so the replacement gas from the tanker Cannot be returned to the onshore tank.

このため積載時には、タンカーから置換ガスを大気中に大量に放出することになる。   For this reason, at the time of loading, a large amount of replacement gas is released from the tanker into the atmosphere.

またタンカーから陸上タンクに荷揚する場合には、陸上タンクがコーンルーフ等の固定屋根形式でタンカーとの間にガス相を連結する配管がない場合は、陸上タンクから置換ガスが大気に放出される。   In addition, when unloading from a tanker to an onshore tank, if the onshore tank has a fixed roof type such as a cone roof and there is no piping connecting the gas phase to the tanker, replacement gas is released from the onshore tank to the atmosphere. .

このように大気に放出される置換ガスには大量の炭化水素ガスが含まれると共に、原油の場合には、高い濃度の臭気成分(硫化水素、メチルメルカプタン、硫化メチル、二硫化メチル)を含有している。このために環境を汚染する問題があると共に、貴重な資源を損失しているのが現状である。   In this way, the replacement gas released to the atmosphere contains a large amount of hydrocarbon gas, and in the case of crude oil, it contains a high concentration of odor components (hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide). ing. For this reason, there is a problem of polluting the environment, and at present, valuable resources are lost.

地域によっては規制しているところもあるが、国内では未だ完全には実施されていないが、対策が必要である。   Some regions have regulations, but they are not fully implemented in the country, but countermeasures are necessary.

従来、置換ガスとして放出されるガス中の炭化水素や臭気成分を除去するには、吸着、吸収、再液化、焼却など種々の方法が提案されている。   Conventionally, various methods, such as adsorption, absorption, reliquefaction, and incineration, have been proposed to remove hydrocarbons and odor components in a gas released as a replacement gas.

特開平10−33933号公報JP 10-33933 A 特開平6−269633号公報JP-A-6-269633 特開平9−215908号公報JP-A-9-215908 特開平9−57060号公報JP-A-9-57060

しかしながら、大量の置換ガス中の炭化水素と臭気成分を効率よく除去する設備は未だ開発されていない。   However, equipment for efficiently removing hydrocarbons and odorous components in a large amount of replacement gas has not been developed yet.

以下に従来の方法と問題点を列記する。   The conventional methods and problems are listed below.

(1)吸着による方法
この吸着による方法では、ガスの処理量が少ない場合或はガス濃度が薄い場合は、吸着剤によるガス吸着装置で除去し、吸着剤の再生を温度加熱法或は圧力スイングによる真空脱着法によって行うことができる。
(1) Method by adsorption In this method by adsorption, when the amount of gas processed is small or the gas concentration is low, it is removed by a gas adsorption device using an adsorbent, and the regeneration of the adsorbent is performed by a temperature heating method or pressure swing. The vacuum desorption method can be used.

しかし、置換ガス量が多く濃度が濃い場合は、吸着による方法では、設備費と再生のためのランニングコスト(加熱費、真空ポンプ電力費等)が高くなって不経済な設備となり、実用的ではない。   However, if the amount of replacement gas is large and the concentration is high, the adsorption method increases the equipment costs and running costs for regeneration (heating costs, vacuum pump power costs, etc.), making the equipment uneconomical. Absent.

(2)吸収による方法
吸収による方法は、ガソリン等の積載時に置換ガスに含有されている気化ガスを回収するために、発生源のガソリンか他の揮発性の低い油に吸収させて回収する方法である。
(2) Method by absorption The method by absorption is a method of recovering the vaporized gas contained in the replacement gas when gasoline is loaded by absorbing it in the source gasoline or other low-volatile oil. It is.

吸収油は吸収効率が良く揮発性の低い特別な吸収油を使用して回収する場合もある。この方法では揮発性が低い吸収液を使用するのでガス濃度を低くすることができる。吸収油は繰返し使用すると性能が劣化するので、耐久性を持たせるために添加剤等を加えている。吸収油の再生と吸収ガスの回収は吸収油を加熱するか、或は真空脱気して行い、発生ガスは元油等に吸収回収する。また必要に応じて加圧下で吸収させる場合もある。   Absorbed oil may be recovered using a special absorbent oil with high absorption efficiency and low volatility. In this method, an absorbing liquid having low volatility is used, so that the gas concentration can be lowered. Absorption oil degrades its performance when used repeatedly, so additives are added to provide durability. The regeneration of the absorbing oil and the recovery of the absorbing gas are performed by heating the absorbing oil or by vacuum degassing, and the generated gas is absorbed and recovered in the base oil or the like. Further, it may be absorbed under pressure as necessary.

しかし、この吸収による方法では通常置換ガスの濃度を5〜8vol%程度に低下させるのが経済的な限界であり、また大量に吸収油を必要とする問題がある。
さらに、この方法だけでは臭気成分を環境基準値に下げることは出来ないので他の装置との組合せが必要となる。
However, in this method by absorption, it is an economical limit to reduce the concentration of the replacement gas to about 5 to 8 vol%, and there is a problem that a large amount of absorption oil is required.
Furthermore, since this method alone cannot reduce the odor component to the environmental standard value, a combination with other devices is required.

(3)再液化方法
ガスを加圧下で冷却して凝縮する方法であるが、空気と混在しているガス濃度が薄い場合、或はメタン等の凝縮し難い成分がある場合にはガスの濃度を低くすることが難しく、設備費も高くなり、通常は適用されない。
(3) Reliquefaction method This is a method of condensing by cooling the gas under pressure. If the concentration of gas mixed with air is low, or if there is a component that is difficult to condense, such as methane, the concentration of the gas It is difficult to reduce the cost and the equipment cost is high, and it is not usually applied.

この方法だけでは臭気成分を環境基準値に下げることは出来ないので他の装置(吸着法、焼却法、薬剤吸収法等)との組合せが必要となる。   Since this method alone cannot reduce the odor component to the environmental standard value, a combination with other devices (an adsorption method, an incineration method, a chemical absorption method, etc.) is required.

(4)焼却方法
燃焼性のガス濃度が薄い場合に置換ガスを完全に燃焼させて、大量の炭化水素ガスと臭気成分を除く設備は高価になり、助燃剤等の燃料費が高くなる。
(4) Incineration method When the combustible gas concentration is low, the replacement gas is completely combusted, and equipment that removes a large amount of hydrocarbon gas and odor components becomes expensive, and the cost of fuel such as a combustion aid increases.

焼却方法には直接焼却、触媒燃焼、蓄熱燃焼等いろいろあるが、いずれも高価でありランニングコストも高くなる。   There are various incineration methods such as direct incineration, catalytic combustion, heat storage combustion, etc., all of which are expensive and increase the running cost.

焼却法は大量のCO2 を発生するので環境上良い方法とは云えない。 The incineration method generates a large amount of CO 2 and cannot be said to be an environmentally good method.

そこで、本発明の目的は、このような背景の下に大量のガスを安価な設備投資により回収と除去を同時に行うことができる大気放出ガスの回収と臭気成分の除去設備を提供することにある。   Accordingly, an object of the present invention is to provide a facility for recovering atmospheric emission gas and removing odorous components capable of simultaneously recovering and removing a large amount of gas with an inexpensive capital investment under such a background. .

上記目的を達成するために請求項1の発明は、石油の積荷や揚荷時にタンカーやタンクから放出される窒素、酸素、二酸化炭素、炭化水素ガス及び臭気成分からなる置換ガス中に含まれる炭化水素や臭気成分を除去して大気放出するための大気放出ガスの回収と臭気成分の除去設備において、タンカー等からの置換ガスを原油と気液接触させて炭化水素を除去する吸収塔と、吸収塔からの置換ガスを導入し、置換ガス中の炭化水素を吸着除去する炭化水素吸着塔と、炭化水素吸着塔からの置換ガスを導入し、置換ガス中の臭気成分を吸着除去する臭気吸着塔とを備えたことを特徴とする大気放出ガスの回収と臭気成分の除去設備である。   In order to achieve the above object, the invention of claim 1 is characterized in that the carbonization contained in the replacement gas composed of nitrogen, oxygen, carbon dioxide, hydrocarbon gas and odor components released from a tanker or tank when loading or unloading petroleum. Absorption tower that removes hydrocarbons by bringing the replacement gas from tankers etc. into contact with crude oil in a gas-liquid contact in the recovery of atmospheric emission gas and odor component removal equipment for removing hydrogen and odor components and releasing them to the atmosphere, and absorption A hydrocarbon adsorption tower that introduces substitution gas from the tower and adsorbs and removes hydrocarbons in the substitution gas, and an odor adsorption tower that introduces substitution gas from the hydrocarbon adsorption tower and removes odor components in the substitution gas by adsorption A facility for collecting atmospheric emission gas and removing odorous components.

請求項2の発明は、吸収塔には、タンカー等からの置換ガスを圧縮して供給する圧縮機が接続される請求項1記載の大気放出ガスの回収と臭気成分の除去設備である。   The invention according to claim 2 is the facility for recovering atmospheric emission gas and removing odorous components according to claim 1, wherein the absorption tower is connected with a compressor that compresses and supplies the replacement gas from a tanker or the like.

請求項3の発明は、吸収塔には、吸収液として供給する原油の冷却器が接続される請求項1記載の大気放出ガスの回収と臭気成分の除去設備である。   According to a third aspect of the present invention, there is provided the facility for recovering atmospheric emission gas and removing the odorous component according to the first aspect, wherein a cooler for crude oil supplied as an absorbing liquid is connected to the absorption tower.

請求項4の発明は、吸収塔には、炭化水素を吸収除去した原油を導入する脱気器が接続され、脱気器で、窒素等の不活性ガスと炭化水素とを吸収した原油中の窒素等の不活性ガスからなる軽沸点成分が除去され、その軽沸点成分除去後の原油が吸収塔に吸収液として循環される請求項1記載の大気放出ガスの回収と臭気成分の除去設備である。   In the invention of claim 4, a deaerator for introducing crude oil from which hydrocarbons have been absorbed and removed is connected to the absorption tower, and the degasser absorbs an inert gas such as nitrogen and hydrocarbons. The facility for recovering atmospheric emission gas and removing odorous components as claimed in claim 1, wherein light boiling components composed of inert gas such as nitrogen are removed, and the crude oil after removal of the light boiling components is circulated as absorption liquid in an absorption tower. is there.

請求項5の発明は、脱気器には、吸収液を設備内で使用済みの冷却水で加熱する加熱器を有し、原油中の軽沸点成分が除去され、その軽沸点成分除去後の原油が吸収塔に吸収液として循環される請求項1記載の大気放出ガスの回収と臭気成分の除去設備である。   In the invention of claim 5, the deaerator has a heater for heating the absorption liquid with the used cooling water in the facility, and the light boiling point component in the crude oil is removed, and after the light boiling point component is removed. The facility for recovering atmospheric emission gas and removing odorous components according to claim 1, wherein crude oil is circulated in the absorption tower as absorption liquid.

本発明は置換ガス中の炭化水素ガスと臭気成分を原油による吸収と吸着剤による吸着回収、及び最終的に臭気成分を除去する化学薬品処理の吸着剤による除去装置を組合わせた設備である。   The present invention is a facility that combines a hydrocarbon gas and an odorous component in a replacement gas with a crude oil absorption and adsorption recovery with an adsorbent, and a chemical treatment adsorbent removal device that finally removes the odorous component.

原油によるガスの吸収は圧力をかけて行うと共に、ガスの含有量と組成に応じて吸収温度を変えて巾広く運転条件を選択出来るようにすることにより効率的(省エネ)な運転が出来る。又、大量のガスを回収する。   Gas absorption by crude oil is carried out under pressure, and efficient (energy saving) operation can be performed by changing the absorption temperature according to the gas content and composition so that a wide range of operating conditions can be selected. A large amount of gas is recovered.

吸収操作で残留した濃度の薄いガス成分は吸着剤で吸着回収する。吸着装置の小型化を図るためにPTSA(圧力温度スイング吸着)の適用も考えられる。   A gas component having a low concentration remaining in the absorption operation is adsorbed and recovered by an adsorbent. In order to reduce the size of the adsorption device, application of PTSA (pressure temperature swing adsorption) is also conceivable.

上述したような大量の置換ガスを扱う場合にはそれぞれのユニットの特徴を生かすことにより安価な設備を提供出来る。又、置換ガス中のガス濃度は一定濃度ではないので、これに対応して使用ユニットを選定すること、及び設備の適切な運転条件を決めて運転することにより効率的にガス成分の回収或は除去を行うものである。   When handling a large amount of replacement gas as described above, it is possible to provide inexpensive facilities by taking advantage of the characteristics of each unit. Also, since the gas concentration in the replacement gas is not a constant concentration, it is possible to recover the gas component efficiently or to select the unit to be used corresponding to this, and to determine and operate the appropriate operating conditions for the equipment. The removal is performed.

吸収原油の性質によっては原油を大型タンクから循環使用する場合には、原油の飽和圧力が高くなって吸収効率が下がり、置換ガス中の炭化水素ガス濃度を所定値に下げることができなくなる。このために吸収油から吸収ガスの一部或いは全量を抜き出して吸収油の飽和圧力を下げる脱気器で処理する。   Depending on the properties of the absorbed crude oil, when the crude oil is circulated and used from a large tank, the saturation pressure of the crude oil becomes high, the absorption efficiency is lowered, and the hydrocarbon gas concentration in the replacement gas cannot be lowered to a predetermined value. For this purpose, a part or all of the absorption gas is extracted from the absorption oil and processed by a deaerator that lowers the saturation pressure of the absorption oil.

本発明は陸上タンクとタンカー間の石油の移送のみに限るものではなく、容器間の移送に関しても適用し得るものである。   The present invention is not limited to the transfer of oil between an onshore tank and a tanker, but can also be applied to transfer between containers.

本発明によれば、置換ガスを直接原油に吸収させるので、間接吸収法のように中間に吸収油を使用しないので、安価な吸収油が使用でき容易に吸収油の交換が出来るので連続運転が容易に出来る。又、適切な温度と圧力を組み合わせることにより、総合効率を高められる。   According to the present invention, since the replacement gas is directly absorbed by the crude oil, the absorption oil is not used in the middle as in the indirect absorption method, so that it is possible to use an inexpensive absorption oil and easily replace the absorption oil so that continuous operation is possible. Easy to do. Also, the overall efficiency can be increased by combining the appropriate temperature and pressure.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

本発明の説明では陸上の大型フローティングタンクからタンカーに原油を積載する際に、タンカーから排出される置換ガスの処理について説明する。   In the explanation of the present invention, the processing of the replacement gas discharged from the tanker when the crude oil is loaded on the tanker from the large floating tank on land will be described.

図1、図2は、原油積載時にタンカーから排出される酸素濃度の薄い不活性空気と混合している置換ガスを、陸上或は海上に設置されるガス処理設備を示し、従来の装置では出来なかった大容量の置換ガスを処理して、低濃度の炭化水素ガスの含有量とし、且つ臭気成分については環境基準以下にする設備である。又、ガス量と濃度がタンカー毎に変わると共に運転中にも変動するが、これらの変動に対して自動的に省エネ運転が出来る設備である。   Fig. 1 and Fig. 2 show gas processing equipment installed on land or at sea, where the replacement gas mixed with inert air with a low oxygen concentration discharged from a tanker when loading crude oil is loaded. This is a facility that treats a large volume of replacement gas that has not been used to obtain a low-concentration hydrocarbon gas content, and the odor component is below the environmental standard. In addition, the gas amount and concentration change for each tanker and change during operation, but the equipment can automatically save energy in response to these changes.

図1により、本発明の概略構成を説明するが、図2は脱気を2段操作する例であり、他は図1と同じであるため、図2も併せて説明し、脱気操作については、図1と図2に分けて以下に説明する。   The schematic configuration of the present invention will be described with reference to FIG. 1, but FIG. 2 is an example in which degassing is operated in two stages, and the others are the same as in FIG. 1, so FIG. Will be described below separately in FIG. 1 and FIG.

10は、タンカーから排出される置換ガスを導入する置換ガスラインで、その置換ガスライン10に、爆轟を防止するデトネーションアレスター11、サクションドラム12、排気ガス圧縮機13、冷却器14、15、吸収塔16、炭化水素吸着塔17、臭気吸着塔18が順次接続される。   Reference numeral 10 denotes a replacement gas line for introducing a replacement gas discharged from the tanker. A detonation arrester 11, a suction drum 12, an exhaust gas compressor 13, a cooler 14, 15, An absorption tower 16, a hydrocarbon adsorption tower 17, and an odor adsorption tower 18 are sequentially connected.

置換ガスは、濃度分析器AIC−1で、炭化水素や硫化水素の濃度が検出され、遮断弁SV−1から圧力検知器PIC−1で圧力が検知された後、デトネーションアレスター11を通過後、遮断弁SV−2からサクションドラム12に導入され、圧縮機13によって所定の圧力に加圧される。   The replacement gas is detected by the concentration analyzer AIC-1, the concentration of hydrocarbons and hydrogen sulfide, the pressure is detected by the pressure detector PIC-1 from the shutoff valve SV-1, and after passing through the detonation arrester 11, It is introduced into the suction drum 12 from the shut-off valve SV-2 and pressurized to a predetermined pressure by the compressor 13.

加圧された置換ガスは、冷却器14で冷却後、必要に応じて冷凍機20からの冷媒により冷却される低温冷却器15で所定の温度迄冷却される。   The pressurized replacement gas is cooled by the cooler 14 and then cooled to a predetermined temperature by the low-temperature cooler 15 that is cooled by the refrigerant from the refrigerator 20 as necessary.

冷却された置換ガスは、吸収塔16に入る。吸収塔16の上部には原油供給ライン21から所定の温度に冷却された循環原油と置換ガスとが接触して炭化水素ガスが吸収される。   The cooled replacement gas enters the absorption tower 16. The circulating crude oil cooled to a predetermined temperature from the crude oil supply line 21 and the replacement gas come into contact with the upper portion of the absorption tower 16 to absorb hydrocarbon gas.

吸収塔16内で炭化水素ガス及び臭気成分濃度はかなり低下するが、吸収油(原油)の蒸気圧以下にはならないので、後述する炭化水素吸着塔17、臭気吸着塔18で吸着処理される。   Although the hydrocarbon gas and odor component concentrations in the absorption tower 16 are considerably reduced, they do not become lower than the vapor pressure of the absorption oil (crude oil), so that they are adsorbed by the hydrocarbon adsorption tower 17 and the odor adsorption tower 18 described later.

吸収塔16の吸収原油は、原油タンク22に返送される。   Absorbed crude oil in the absorption tower 16 is returned to the crude oil tank 22.

吸収原油を原油タンク22に返送し、これを再度循環使用する場合は、使用と共に原油の飽和圧力が高くなるので、圧力を下げるために脱気器23により吸収原油から軽沸点成分が除去される。   When the absorbed crude oil is returned to the crude oil tank 22 and reused again, the saturation pressure of the crude oil increases as the oil is used. Therefore, the light boiling components are removed from the absorbed crude oil by the deaerator 23 in order to reduce the pressure. .

吸収塔16を通過した置換ガスは、炭化水素吸着塔17に入り、炭化水素ガス及び臭気成分が吸着除去されて更に濃度が低くなる。炭化水素ガス濃度はこの装置内で目標値迄除去される。   The replacement gas that has passed through the absorption tower 16 enters the hydrocarbon adsorption tower 17, where the hydrocarbon gas and odor components are adsorbed and removed, and the concentration is further lowered. The hydrocarbon gas concentration is removed to the target value in the apparatus.

しかし、臭気成分濃度は環境基準迄は下がらないので、臭気成分特に硫化水素濃度を低くするために臭気吸着塔18に入り、この臭気吸着塔18内で目標値迄除去される。   However, since the odor component concentration does not fall to the environmental standard, it enters the odor adsorption tower 18 to lower the odor component, particularly hydrogen sulfide concentration, and is removed to the target value in the odor adsorption tower 18.

炭化水素吸着塔17内の吸着剤に吸着されたガス及び臭気成分は加熱或は真空ポンプ24により吸引して脱着して吸収塔16に送り、原油に吸収回収する。但し、ボイラ等が設置されている場合は、原油に吸収回収しないで燃料として使用してもよい。真空ポンプ24で引く場合は、脱着を効果的に行うために、また脱着熱を補給するために、多少加熱することが必要となる。   The gas and odor components adsorbed by the adsorbent in the hydrocarbon adsorption tower 17 are sucked by the heating or vacuum pump 24 and desorbed and sent to the absorption tower 16 to be absorbed and recovered in crude oil. However, when a boiler or the like is installed, it may be used as fuel without being absorbed and recovered by crude oil. In the case of pulling with the vacuum pump 24, in order to perform desorption effectively and to replenish desorption heat, it is necessary to slightly heat.

臭気成分の再生脱着は、吸着面で化学変化を伴う吸着では簡単に出来ないので、生産工場で再生する。   Regeneration and desorption of odorous components cannot be easily achieved by adsorption with chemical changes on the adsorption surface, so they are regenerated at the production plant.

回収ガスを吸収した原油は設備に新しく流入する原油と熱交換して冷熱を回収して、脱気設備30に送られ、吸収ガスを放出して略元の性状に戻されて、タンク或は積載原油に返送される。   The crude oil that has absorbed the recovered gas is heat-exchanged with the crude oil newly flowing into the equipment to recover the cold heat, sent to the deaeration equipment 30, releases the absorbed gas, and is returned to its original state, and then the tank or Returned to loaded crude oil.

以上が、基本的処理であるがさらに図1、図2により本発明のプロセスを詳細に説明する。   The above is the basic processing, but the process of the present invention will be described in detail with reference to FIGS.

1)排気ガス圧縮機の操作
積載開始と共にタンカーから排出された置換ガスは置換ガスライン10で本発明のガス処理設備に導入される。
1) Operation of exhaust gas compressor The replacement gas discharged from the tanker at the start of loading is introduced into the gas processing facility of the present invention through the replacement gas line 10.

タンカーに原油の積載を開始する前にガス処理の必要性の確認情報をタンカー側から受けた後、設備入口の遮断弁SV−1が閉の状態でガス処理設備の各ユニットを起動するか、起動が出来るようにして待機運転の状態を維持する。   After receiving confirmation information on the necessity of gas processing from the tanker before starting to load crude oil into the tanker, each unit of the gas processing facility is started with the shut-off valve SV-1 at the facility inlet closed. Maintain standby operation so that it can be started.

この場合、ユニット内の機器が設計容量に対して複数の機器で構成されている機器例えば、排気ガス圧縮機13A、13B或は冷凍機20を起動し、桟橋からの情報或はガス処理設備入口の圧力制御器PIC−1、流量制御器FIC−1、濃度分析器AIC−1等で必要に応じて次の1台を順に、或いは能力を自動的に追起動出来るような待機状態にする。   In this case, the equipment in the unit is composed of a plurality of equipment with respect to the design capacity, for example, the exhaust gas compressors 13A, 13B or the refrigerator 20 is activated, and information from the jetty or the gas processing facility entrance The pressure controller PIC-1, the flow rate controller FIC-1, the concentration analyzer AIC-1, etc. are put into a standby state so that the next one can be sequentially activated or the capacity can be automatically started as required.

桟橋からの積載開始情報により遮断弁SV−1が開となる。   The shutoff valve SV-1 is opened by the loading start information from the pier.

桟橋からの積載開始情報或は設備入口の圧力検知器PIC−1により、遮断弁SV−2が自動的に開となる。   The shutoff valve SV-2 is automatically opened by the loading start information from the pier or the pressure detector PIC-1 at the facility entrance.

圧縮機13は、待機運転中は、吸込側と吐出側に接続された圧力検知器PICA−2−1、PICA−2−2とバイパス調節弁PCV−1によりバイパス運転状態で待機運転となっている。   During the standby operation, the compressor 13 is in the standby operation in the bypass operation state by the pressure detectors PICA-2-1 and PICA-2-2 connected to the suction side and the discharge side and the bypass control valve PCV-1. Yes.

待機運転状態ではバイパス調節弁PCV−1の作動により、吸込側圧力検知器PICA−2−1の圧力は一定以上になるように制御される。   In the standby operation state, the pressure of the suction side pressure detector PICA-2-1 is controlled to be a certain level or higher by the operation of the bypass control valve PCV-1.

排気ガス圧縮機13Aの1台運転では、吸込側圧力検知器PICA−2−1の圧力が高くなる場合は、自動的に順に、次の1台を起動する。   In the operation of one exhaust gas compressor 13A, when the pressure of the suction side pressure detector PICA-2-1 becomes high, the next one is automatically started in sequence.

置換ガス量が減少した場合は、吸込側圧力検知器PICA−2−1が減圧するのでバイパス調節弁PVC−1の作動により圧力の低下が防止される。   When the amount of replacement gas decreases, the suction side pressure detector PICA-2-1 depressurizes, so that the pressure is prevented from being lowered by the operation of the bypass control valve PVC-1.

このケースでは置換ガスは、排気ガス圧縮機13で0.44MPaAに加圧され、冷却器(アフタ−クーラ)14で常温迄冷却される。   In this case, the replacement gas is pressurized to 0.44 MPaA by the exhaust gas compressor 13 and cooled to room temperature by the cooler (after-cooler) 14.

排気ガス(置換ガス)は桟橋情報或はガス処理設備の入口に設置されているガス分析器AIC−1によりガス含有量が分かっているので、含有量が少ない場合は吸収塔16での処理はしない。   Since the gas content of the exhaust gas (substitution gas) is known by the pier information or the gas analyzer AIC-1 installed at the entrance of the gas processing facility, if the content is small, the treatment in the absorption tower 16 is performed. do not do.

この場合、下流側に設置されている遮断弁SV−5を閉にし、遮断弁SV−3を開いてライン19から臭気吸着塔18に、或いは遮断弁SV−4を開にして吸収塔16の下流側の置換ガスライン10を介して炭化水素吸着塔17に供給する。   In this case, the shut-off valve SV-5 installed on the downstream side is closed, the shut-off valve SV-3 is opened, and the odor adsorbing tower 18 is opened from the line 19 or the shut-off valve SV-4 is opened and the absorption tower 16 is opened. It supplies to the hydrocarbon adsorption tower 17 through the downstream replacement gas line 10.

ガス濃度が極度に低く臭気成分だけの除去の場合は遮断弁SV−3を開いて臭気吸着塔18に供給し、炭化水素ガスを多少回収しなければならない場合は、遮断弁SV−3を開にし、遮断弁SV−4を開いて、炭化水素吸着塔17に供給する。   When the gas concentration is extremely low and only the odor component is removed, the shut-off valve SV-3 is opened and supplied to the odor adsorption tower 18, and when some hydrocarbon gas must be recovered, the shut-off valve SV-3 is opened. Then, the shutoff valve SV-4 is opened and supplied to the hydrocarbon adsorption tower 17.

この操作により吸収塔16内で濃度の薄いガスと原油との接触をなくし、原油からガス中への逆蒸発による下流ユニット(吸着等)に無駄な負荷がかからなく省エネ運転となる。   This operation eliminates contact between the gas having a low concentration and the crude oil in the absorption tower 16, and a downstream unit (adsorption, etc.) due to back evaporation from the crude oil into the gas is not subjected to a wasteful load, resulting in an energy saving operation.

ガス濃度が高い場合は遮断弁SV−3、SV−4が閉となり、遮断弁SV−5が開となって、加圧された置換ガスが低温冷却器15に流入する。   When the gas concentration is high, the shut-off valves SV-3 and SV-4 are closed, the shut-off valve SV-5 is opened, and the pressurized replacement gas flows into the low-temperature cooler 15.

これら遮断弁SV−3、SV−4、SV−5の開閉は、濃度変化パターンと濃度分析器AIC−1の指示により自動的に操作される。   Opening and closing of these shut-off valves SV-3, SV-4, SV-5 is automatically operated according to the density change pattern and the instruction of the density analyzer AIC-1.

吸収塔16に流入した圧縮ガスは、炭化水素吸着塔17で回収されたガスと合流して、低温冷却器15に流入する。低温冷却器15では、ガス含有量或は吸収原油の性質に応じて、予め設定された温度まで冷却される。   The compressed gas flowing into the absorption tower 16 merges with the gas recovered by the hydrocarbon adsorption tower 17 and flows into the low-temperature cooler 15. The low-temperature cooler 15 is cooled to a preset temperature according to the gas content or the properties of the absorbed crude oil.

低温冷却器15の冷却媒体は冷凍機20から供給されるアンモニア液等を使用する。但し、ここでは低温冷却器15を吸収塔16とは別個に設置したが、ガス濃度が薄い場合は吸収塔16内に設置するか、吸収油の温度を調整することにより低温冷却器15を設置しなくても良い。   As a cooling medium for the low-temperature cooler 15, an ammonia solution or the like supplied from the refrigerator 20 is used. However, although the low-temperature cooler 15 is installed separately from the absorption tower 16 here, if the gas concentration is low, the low-temperature cooler 15 is installed in the absorption tower 16 or by adjusting the temperature of the absorbing oil. You don't have to.

低温冷却器15で使用された冷媒は気化してガスとして冷凍機20に返送され、再液化されて冷媒として循環使用される。   The refrigerant used in the low-temperature cooler 15 is vaporized and returned to the refrigerator 20 as gas, re-liquefied and circulated and used as the refrigerant.

冷凍機20には、冷却水塔26からの冷却水循環ライン27が接続され、循環ポンプ28にて冷凍機20に冷却水が供給されて冷凍機20の冷却媒体が再液化されるようになっている。   A cooling water circulation line 27 from the cooling water tower 26 is connected to the refrigerator 20, and cooling water is supplied to the refrigerator 20 by a circulation pump 28 so that the cooling medium of the refrigerator 20 is reliquefied. .

2)吸収塔操作
低温冷却器15での冷却温度は本実施の形態では約5℃であるが、この温度はガス濃度或は原油の性状によって異なる。
2) Absorption tower operation The cooling temperature in the low-temperature cooler 15 is about 5 ° C. in the present embodiment, but this temperature varies depending on the gas concentration or the properties of the crude oil.

吸収塔16はラシヒリング等の充填材16aが充填されていて、ガスと原油が良く接触して吸収効率が高くなるようにしてある。接触促進構造は充填材16aに限らなく、他の充填剤でも良く、或いはトレイ構造でも良い。   The absorption tower 16 is filled with a filler 16a such as Raschig ring so that the gas and the crude oil are in good contact with each other to increase the absorption efficiency. The contact promoting structure is not limited to the filler 16a, but may be other fillers or a tray structure.

低温冷却器15の流出ガスは吸収塔16に充填材16aの下部から入る。一方冷凍機20からの冷媒は、原油供給ライン21に接続した原油冷却器25で所定の温度まで吸収原油を冷却する。所定温度まで冷却された吸収原油は、充填材16aの上部から吸収塔16に入り、下部から上昇する置換ガスと充填材16aの表面で接触して炭化水素を吸収する。   The outflow gas of the low-temperature cooler 15 enters the absorption tower 16 from the lower part of the filler 16a. On the other hand, the refrigerant from the refrigerator 20 cools the absorbed crude oil to a predetermined temperature by the crude oil cooler 25 connected to the crude oil supply line 21. Absorbed crude oil cooled to a predetermined temperature enters the absorption tower 16 from the upper part of the filler 16a, contacts the replacement gas rising from the lower part on the surface of the filler 16a, and absorbs hydrocarbons.

原油量或は吸収温度は、原油の吸収性能、ガス濃度、ガス量に対応して適切な量或は温度に濃度分析器AIC−1の指示により制御され、省エネ運転が出来るようになっている。   The amount of crude oil or the absorption temperature is controlled by an instruction of the concentration analyzer AIC-1 to an appropriate amount or temperature corresponding to the absorption performance, gas concentration, and gas amount of crude oil, so that energy saving operation can be performed. .

吸収塔16では、原油温度は3℃、量は約300t/hで、ガス量は18,000m3 /hで、炭化水素20体積%から4体積%迄減少させている。
ガスを吸収した液は、吸収塔16の下部から返送ポンプ30により昇圧されて冷熱回収熱交換器31に送出されて熱回収され、冷水塔26に返送される使用済みの温かい冷却水が供給される加熱器32で加熱され、さらにスチーム加熱器33にて加熱されて脱気器23に供給される。
In the absorption tower 16, the crude oil temperature is 3 ° C., the amount is about 300 t / h, the gas amount is 18,000 m 3 / h, and the hydrocarbon is reduced from 20 vol% to 4 vol%.
The liquid that has absorbed the gas is pressurized from the lower part of the absorption tower 16 by the return pump 30 and sent to the cold heat recovery heat exchanger 31 for heat recovery, and used warm cooling water returned to the cold water tower 26 is supplied. And heated by a steam heater 33 and supplied to the deaerator 23.

返送ポンプ30の送出量は、吸収塔16の液面制御計(図示せず)で制御されて、吸収原油が冷熱回収熱交換器31に送出され、液面が低くなると、流量が絞られる。またポンプ運転を継続するために必要な最小流量まで流量が絞られる場合は、運転を維持するために、流量制御計FIC−3と流量制御弁FCV−3にて最低流量で運転を継続する。   The delivery amount of the return pump 30 is controlled by a liquid level controller (not shown) of the absorption tower 16, and the absorbed crude oil is sent to the cold heat recovery heat exchanger 31. When the liquid level becomes low, the flow rate is reduced. When the flow rate is reduced to the minimum flow rate necessary for continuing the pump operation, the operation is continued at the minimum flow rate with the flow rate controller FIC-3 and the flow rate control valve FCV-3 in order to maintain the operation.

吸収塔16の頂部からガス濃度の薄くなったガスは更に濃度を下げるために、置換ガスライン10を介して炭化水素吸着塔17に供給される。   The gas whose gas concentration has been reduced from the top of the absorption tower 16 is supplied to the hydrocarbon adsorption tower 17 via the replacement gas line 10 in order to further reduce the concentration.

3)図1、図2の脱気操作(脱気による吸収原油の再生)
i)図1の1段減圧フラッシュ
冷熱回収熱交換器31では吸収塔16の塔底油(温度が低い)と温度の高い新しい原油(約30℃)の熱交換を行い冷熱を回収する。冷熱回収熱交換器31により温度が約26℃迄上昇した吸収油は、更に加熱器32で冷水塔26に返送される使用済の温かい冷却水で約30℃〜33℃に加熱される。
3) Degassing operation of Figs. 1 and 2 (Regeneration of absorbed crude oil by degassing)
i) One-stage vacuum flash in FIG. 1 In the cold heat recovery heat exchanger 31, heat is exchanged between the bottom oil (low temperature) of the absorption tower 16 and new crude oil (about 30 ° C.) having a high temperature to recover cold heat. The absorbed oil whose temperature has been raised to about 26 ° C. by the cold heat recovery heat exchanger 31 is further heated to about 30 ° C. to 33 ° C. with used warm cooling water returned to the cold water tower 26 by the heater 32.

これ等の操作は次の脱気器23での脱気を容易にするために行うと共に、使用済の冷却水の温度を下げて冷水塔26での冷却水の損失を少なくし省エネを図っている。この効果で夏期に約30%の冷却水の損失防止が期待出来る。   These operations are performed in order to facilitate the deaeration in the next deaerator 23, and the temperature of the used cooling water is lowered to reduce the loss of the cooling water in the chilled water tower 26 to save energy. Yes. This effect can be expected to prevent about 30% of cooling water loss in summer.

加熱器32で加熱された吸収油は、更にスチーム加熱器33により約35℃に加熱されて脱気器23の吸収原油フラッシドラム30に入り減圧フラッシュする。脱気器23の圧力は吸収ガスの量、吸収油の入口温度及び吸収油の性状により異なるが、約0.02〜0.1MPaAに減圧された状態を脱気圧縮機35により維持されている。   The absorption oil heated by the heater 32 is further heated to about 35 ° C. by the steam heater 33 and enters the absorption crude oil flash drum 30 of the deaerator 23 and is flashed under reduced pressure. The pressure of the deaerator 23 varies depending on the amount of absorbed gas, the inlet temperature of the absorbed oil, and the properties of the absorbed oil, but the depressurized state is maintained by the degassing compressor 35 at about 0.02 to 0.1 MPaA. .

吸収油はこの条件下で吸収したガスの殆どを蒸発放出する。この結果吸収原油の性状は略元の状態に復帰するので、循環再使用しても元の吸収性能を発揮することが出来る。   Absorbing oil evaporates most of the gas absorbed under these conditions. As a result, the properties of the absorbed crude oil are restored to the original state, so that the original absorption performance can be exhibited even if it is recycled.

再生原油は、脱気原油返送ポンプ36で昇圧して原油供給ライン21に循環され、また適宜原油タンク22に返送される。返送ポンプ36の吐出量は脱気器23の液面が一定になるように吐出側にある制御弁PCV−2で制御される。   The regenerated crude oil is pressurized by the deaerated crude oil return pump 36 and circulated to the crude oil supply line 21, and is also returned to the crude oil tank 22 as appropriate. The discharge amount of the return pump 36 is controlled by the control valve PCV-2 on the discharge side so that the liquid level of the deaerator 23 is constant.

脱気器23の流入液は飽和圧力に近い圧力条件下にあるので、液量が少ない時には返送ポンプ36の吐出制御弁PCV−2が絞られてポンプ36内でガスが発生しポンプがキャビテーションを起す。これを防止するためにポンプ36には、図示していないがミニマムフローラインを設置し、ポンプ36が正常に運転出来る最低限の流量をミニマムフローの制御弁PCV−2で確保している。制御弁PCV−2はこのシステムではポンプ36の吸入側と吐出側の差圧を検出(ΔP)して制御する。ΔPからポンプの性能曲線によりミニマム流量を算出して、この値以下にならないように制御する。   Since the inflowing liquid of the deaerator 23 is under a pressure condition close to the saturation pressure, when the liquid amount is small, the discharge control valve PCV-2 of the return pump 36 is throttled to generate gas in the pump 36, and the pump cavitates. cause. In order to prevent this, the pump 36 is provided with a minimum flow line (not shown), and a minimum flow rate at which the pump 36 can be normally operated is secured by the minimum flow control valve PCV-2. In this system, the control valve PCV-2 detects (ΔP) the differential pressure between the suction side and the discharge side of the pump 36 and controls it. The minimum flow rate is calculated from the ΔP from the performance curve of the pump, and control is performed so that it does not fall below this value.

ΔPの検出による以外に流量計、電流計等他の方法でミニマム流量を検出して制御することも出来る。   Besides detecting ΔP, the minimum flow rate can be detected and controlled by other methods such as a flow meter and an ammeter.

ii)図2の2段減圧フラッシュ
冷熱回収熱交換器31では吸収塔16の塔底油(温度が低い)と温度の高い新しい原油(約30℃)の熱交換を行い冷熱を回収する。冷熱回収熱交換器31により温度が約26℃迄上昇した吸収油は、更に加熱器32で冷水塔26に返送される使用済の温かい冷却水で約30℃〜33℃に加熱される。
ii) Two-stage vacuum flash in FIG. 2 The cold heat recovery heat exchanger 31 exchanges heat between the bottom oil (low temperature) of the absorption tower 16 and new crude oil (about 30 ° C.) having a high temperature to recover cold heat. The absorbed oil whose temperature has been raised to about 26 ° C. by the cold heat recovery heat exchanger 31 is further heated to about 30 ° C. to 33 ° C. with used warm cooling water returned to the cold water tower 26 by the heater 32.

これ等の操作は次の脱気器23A,23Bでの脱気を容易にするために行うと共に、使用済の冷却水の温度を下げて冷水塔26での冷却水の損失を少なくし省エネを図っている。この効果で夏期に約30%の冷却水の損失防止が期待出来る。   These operations are performed to facilitate the deaeration in the next deaerators 23A and 23B, and the temperature of the used cooling water is lowered to reduce the cooling water loss in the chilled water tower 26, thereby saving energy. I am trying. This effect can be expected to prevent about 30% of cooling water loss in summer.

加熱器32で加熱された吸収油は、更にスチーム加熱器33により約35℃に加熱されて脱気器23Aの1段吸収原油フラッシドラム30に入り減圧フラッシュする。脱気器23Aの圧力は吸収ガスの量、吸収油の入口温度及び吸収油の性状により異なるが、約0.1MPaAに減圧された状態を脱気圧縮機34により維持されている。   The absorption oil heated by the heater 32 is further heated to about 35 ° C. by the steam heater 33 and enters the first-stage absorption crude oil flash drum 30 of the deaerator 23A and is flashed under reduced pressure. The pressure of the deaerator 23A varies depending on the amount of absorbed gas, the inlet temperature of the absorbed oil, and the properties of the absorbed oil, but the depressurized compressor 34 maintains the pressure reduced to about 0.1 MPaA.

吸収油はこの条件下で吸収した窒素、酸素、炭酸ガス、メタン、エタン等の低沸点成分のガスを主体として放出する。   Absorbed oil releases mainly low-boiling component gases such as nitrogen, oxygen, carbon dioxide, methane, and ethane absorbed under these conditions.

脱気器23Aで脱気された吸収油は、脱気器23Bの2段フラッシュドラム30に入り、更に減圧フラッシュする。本実施の形態で使用している原油では、約0.03MPaAに減圧された状態を脱気圧縮機35により維持されている。   The absorption oil deaerated by the deaerator 23A enters the two-stage flash drum 30 of the deaerator 23B, and further flashes under reduced pressure. In the crude oil used in the present embodiment, a state where the pressure is reduced to about 0.03 MPaA is maintained by the deaeration compressor 35.

吸収油は、脱気器23A、23Bの条件下で吸収したガスの殆どを蒸発放出する。   Absorbed oil evaporates and releases most of the gas absorbed under the conditions of the deaerators 23A and 23B.

再生原油は、脱気原油返送ポンプ36で昇圧して原油供給ライン21に循環され、また適宜原油タンク22に返送される。返送ポンプ36の吐出量は脱気器23の液面が一定になるように吐出側にある制御弁PCV−2で制御される。   The regenerated crude oil is pressurized by the deaerated crude oil return pump 36 and circulated to the crude oil supply line 21, and is also returned to the crude oil tank 22 as appropriate. The discharge amount of the return pump 36 is controlled by the control valve PCV-2 on the discharge side so that the liquid level of the deaerator 23 is constant.

脱気器23の流入液は飽和圧力に近い圧力条件下にあるので、液量が少ない時には返送ポンプ36の吐出制御弁PCV−2が絞られてポンプ36内でガスが発生しポンプがキャビテーションを起す。これを防止するためにポンプ36には、図示していないがミニマムフローラインを設置し、ポンプ36が正常に運転出来る最低限の流量をミニマムフローの制御弁PCV−2で確保している。制御弁PCV−2はこのシステムではポンプ36の吸入側と吐出側の差圧を検出(ΔP)して制御する。ΔPからポンプの性能曲線によりミニマム流量を算出して、この値以下にならないように制御する。   Since the inflowing liquid of the deaerator 23 is under a pressure condition close to the saturation pressure, when the liquid amount is small, the discharge control valve PCV-2 of the return pump 36 is throttled to generate gas in the pump 36, and the pump cavitates. cause. In order to prevent this, the pump 36 is provided with a minimum flow line (not shown), and a minimum flow rate at which the pump 36 can be normally operated is secured by the minimum flow control valve PCV-2. In this system, the control valve PCV-2 detects (ΔP) the differential pressure between the suction side and the discharge side of the pump 36 and controls it. The minimum flow rate is calculated from the ΔP from the performance curve of the pump, and control is performed so that it does not fall below this value.

4)脱気ガスの回収
i)図1の1段フラッシュ
脱気器23の圧力は、脱気圧縮機35により所定の圧力(0.02〜0.1MPaA)になるように吸収油から発生したガスを吸引して脱気器23から排除する。脱気器23内のフラッシュガス量が少ない場合には脱気器23内の圧力が極度に減圧するので、脱気圧縮機35にバイパスライン(図示せず)を設置して脱気器23に戻す量を制御する。
4) Recovery of degassing gas i) One-stage flash in FIG. 1 The pressure of the deaerator 23 was generated from the absorbed oil by the deaeration compressor 35 so as to be a predetermined pressure (0.02 to 0.1 MPaA). The gas is sucked and removed from the deaerator 23. When the amount of flush gas in the deaerator 23 is small, the pressure in the deaerator 23 is extremely reduced. Therefore, a bypass line (not shown) is installed in the deaerator compressor 35 to the deaerator 23. Control the amount to return.

脱気圧縮機35で加圧された脱気ガスはアフタークーラー37に入り冷却水により常温迄冷却される。   The degassed gas pressurized by the degassing compressor 35 enters the aftercooler 37 and is cooled to room temperature with cooling water.

次にガスは低温凝縮器38で更に、圧力計PIC−5により冷媒流量を制御して所定の圧力になるように冷却されて凝縮液と未凝縮に分離し、回収液貯蔵ドラム40で気−液分離する。   Next, the gas is further cooled by a low-temperature condenser 38 and the refrigerant flow rate is controlled by a pressure gauge PIC-5 to be cooled to a predetermined pressure, separated into condensate and non-condensed, and gas is collected in a recovered liquid storage drum 40. Separate the liquid.

未凝縮ガスはボイラー燃料等に使用する。   Uncondensed gas is used as boiler fuel.

回収液貯蔵ドラム40で分離された凝縮液は凝縮液払出ポンプ41で積載原油、或は吸収に使用しない原油タンクにライン42で送出される。   The condensate separated by the recovered liquid storage drum 40 is sent by a condensate discharge pump 41 to a loaded crude oil or a crude oil tank not used for absorption via a line 42.

回収液貯蔵ドラム40の容量は原油の積載が無い時のボイラー燃料を確保出来る容積とする。   The capacity of the recovered liquid storage drum 40 is a volume that can secure boiler fuel when there is no crude oil loaded.

ii)図2の2段減圧フラッシュ
1段脱気器23Aの圧力は、脱気圧縮機34により所定の圧力(約0.1MPaA)になるように吸収油から発生したガスを吸引して脱気器23Aから排除する。脱気器23内のフラッシュガス量が少ない場合には脱気器23内の圧力が極度に減圧するので、脱気圧縮機34にバイパスライン(図示せず)を設置して脱気器23Aに戻す量を制御する。
ii) Two-stage decompression flash in FIG. 2 The pressure of the first-stage deaerator 23A is degassed by sucking the gas generated from the absorption oil so that the deaeration compressor 34 has a predetermined pressure (about 0.1 MPaA). Eliminate from vessel 23A. When the amount of flash gas in the deaerator 23 is small, the pressure in the deaerator 23 is extremely reduced. Therefore, a bypass line (not shown) is installed in the deaerator compressor 34 to the deaerator 23A. Control the amount to return.

脱気圧縮機34で加圧された脱気ガスはアフタークーラー36に入り冷却水により常温迄冷却される。   The degassed gas pressurized by the degassing compressor 34 enters the aftercooler 36 and is cooled to room temperature with cooling water.

次にガスは低温凝縮器37で更に、圧力計PIC−5により冷媒流量を制御して所定の圧力になるように冷却されて凝縮液と未凝縮に分離し、回収液貯蔵ドラム40で気−液分離する。   Next, the gas is further cooled by a low-temperature condenser 37 and the refrigerant flow rate is controlled by a pressure gauge PIC-5 so as to reach a predetermined pressure, separated into condensed liquid and non-condensed, and gas is recovered by a recovered liquid storage drum 40. Separate the liquid.

未凝縮ガスはボイラー燃料等に使用する。   Uncondensed gas is used as boiler fuel.

1段回収液分離ドラム40で分離された凝縮液は、2段回収液貯蔵ドラム41に減圧されて送出される。   The condensate separated by the first-stage recovered liquid separation drum 40 is decompressed and sent to the second-stage recovered liquid storage drum 41.

2段脱気器23Bの圧力は、脱気圧縮機35により所定の圧力(約0.03MPaA)になるように吸収油から発生したガスを吸引して脱気器23Bから排除する。脱気器23B内のフラッシュガス量が少ない場合には脱気器23B内の圧力が極度に減圧するので、脱気圧縮機35にバイパスライン(図示せず)を設置して脱気器23Bに戻す量を制御する。   The pressure of the two-stage deaerator 23B is removed from the deaerator 23B by sucking the gas generated from the absorption oil so that the deaeration compressor 35 has a predetermined pressure (about 0.03 MPaA). When the amount of flash gas in the deaerator 23B is small, the pressure in the deaerator 23B is extremely reduced. Therefore, a bypass line (not shown) is installed in the deaerator compressor 35 to the deaerator 23B. Control the amount to return.

脱気圧縮機35で加圧された脱気ガスはアフタークーラー38に入り冷却水により常温迄冷却される。   The degassed gas pressurized by the degassing compressor 35 enters the aftercooler 38 and is cooled to room temperature by cooling water.

次にガスは低温凝縮器39で更に、圧力計PIC−6と圧力調整弁PCV−6により冷媒流量を制御して所定の圧力になるように冷却されて凝縮液と未凝縮に分離し、回収液貯蔵ドラム41で気−液分離する。   Next, the gas is further cooled by the low-temperature condenser 39 and further cooled to a predetermined pressure by controlling the flow rate of the refrigerant by the pressure gauge PIC-6 and the pressure regulating valve PCV-6, separated into condensed liquid and non-condensed, and recovered. Gas-liquid separation is performed by the liquid storage drum 41.

未凝縮ガスはボイラー燃料等に使用する。   Uncondensed gas is used as boiler fuel.

回収液貯蔵ドラム41で分離された凝縮液は凝縮液払出ポンプ42で積載原油、或は吸収に使用しない原油タンクにライン42で送出される。   The condensate separated by the recovered liquid storage drum 41 is sent by a condensate discharge pump 42 to a loaded crude oil or a crude oil tank not used for absorption via a line 42.

回収液貯蔵ドラム41の容量は原油の積載が無い時のボイラー燃料を確保出来る容積とする。   The capacity of the recovered liquid storage drum 41 is set to a volume that can secure boiler fuel when there is no crude oil loaded.

5)炭化水素吸着操作
炭化水素吸着塔17は、3塔17A、17B、17Cで構成される。炭化水素吸着塔17には、排気ライン44が接続され、そのライン44に真空ポンプ24、真空ポンプアフタークーラ45、ブースター圧縮機46、ブスター圧縮機アフタークーラ47が接続される。
5) Hydrocarbon adsorption operation The hydrocarbon adsorption tower 17 includes three towers 17A, 17B, and 17C. An exhaust line 44 is connected to the hydrocarbon adsorption tower 17, and a vacuum pump 24, a vacuum pump after cooler 45, a booster compressor 46, and a booster compressor after cooler 47 are connected to the line 44.

吸着塔17A、17B、17Cには、活性炭或いはその他の炭化水素ガスを吸着出来る吸着剤が充填されている。   The adsorption towers 17A, 17B, and 17C are filled with an adsorbent capable of adsorbing activated carbon or other hydrocarbon gas.

置換ガスは吸着塔17A、17B、17Cの下部(吸着剤充填下部)から入り、吸着剤で、吸収塔16で吸収しきれなかった炭化水素ガスが吸着される。なおガスの出入り口は上記の反対でも良い。   The replacement gas enters from the lower part of the adsorption towers 17A, 17B, 17C (lower part filled with the adsorbent), and the adsorbent adsorbs the hydrocarbon gas that could not be absorbed by the absorption tower 16. The gas outlet may be the opposite of the above.

炭化水素吸着塔17では、再生にPSAを使用しているのでガスの入口を下部、出口を上部とした。   In the hydrocarbon adsorption tower 17, PSA is used for regeneration, so the gas inlet is the lower part and the outlet is the upper part.

ガスは4体積%で入り3体積%迄濃度を減少させる。吸着塔17A、17B、17Cはガス濃度が薄いため、吸着熱が多くないので充填層の温度は余り上昇しないので、冷却出来る構造としないが、脱着を容易にするためにスチーム等の加熱流体で間接加熱が出来るようにスチームライン50が設けられた構造となっている。ガス濃度が高く吸着量が多い場合には、吸着温度も高くなるので冷却装置も必要となる。   The gas enters at 4% by volume and reduces the concentration to 3% by volume. Since the adsorption towers 17A, 17B, and 17C have a low gas concentration and do not have much heat of adsorption, the temperature of the packed bed does not rise so much. Therefore, the structure cannot be cooled, but a heating fluid such as steam is used to facilitate desorption. The steam line 50 is provided so that indirect heating is possible. When the gas concentration is high and the amount of adsorption is large, the adsorption temperature is also high, so a cooling device is also required.

吸着塔17A、17B、17Cは2塔吸着運転、1塔再生運転とし、各塔の吸着時間は1時間連続とする。従って、再生時間は30分としている。吸収と再生の運転の切換えはタイマーで行っているが、出口ガスの濃度を検出して切替えても良い。タイマーでの切換では、省エネのために濃度分析器AIC−1で分析されたデータをべ−スにして吸着剤の飽和時間を算出し、切換時間を自動的に調整出来るようにしている。   The adsorption towers 17A, 17B, and 17C are a two-column adsorption operation and a one-column regeneration operation, and the adsorption time of each tower is one hour continuous. Therefore, the playback time is 30 minutes. Switching between the absorption and regeneration operation is performed by a timer, but it may be switched by detecting the concentration of the outlet gas. In order to save energy, the switching by the timer calculates the adsorbent saturation time based on the data analyzed by the concentration analyzer AIC-1, so that the switching time can be automatically adjusted.

タイマーで自動的に1塔の再生が指示されると吸着塔17C(17Aor17B)は減圧操作に入る。仮に再生運転に入る吸着塔17Cとすると、スチームライン50からのスチームを吸着塔17Cに供給して間接加熱し、真空ポンプ24で吸着塔17Cを吸引排気する。この際、弁U−Cを開から閉、弁V−Cは閉から開、弁S−Uは閉から開、弁W−Cは閉とする。   When the regeneration of one tower is instructed automatically by the timer, the adsorption tower 17C (17A or 17B) enters a pressure reducing operation. Assuming that the adsorption tower 17 </ b> C enters the regeneration operation, steam from the steam line 50 is supplied to the adsorption tower 17 </ b> C and indirectly heated, and the vacuum tower 24 sucks and exhausts the adsorption tower 17 </ b> C. At this time, the valve UC is closed from the open, the valve VC is opened from the closed, the valve SU is opened from the closed, and the valve WC is closed.

これにより、吸着塔17Cはスチームで間接加熱され、また真空ポンプ24により吸着塔17Cが真空にされるため脱着が行われる。   As a result, the adsorption tower 17C is indirectly heated with steam, and since the adsorption tower 17C is evacuated by the vacuum pump 24, desorption is performed.

図1では、脱着ガスは、排気ライン44からブースター圧縮機46で圧縮されて吸収塔16側に戻される。   In FIG. 1, the desorption gas is compressed by the booster compressor 46 from the exhaust line 44 and returned to the absorption tower 16 side.

図2では、脱気圧縮機34で圧縮されて分離ドラム40を介してボイラー燃料に使用される。   In FIG. 2, it is compressed by the deaeration compressor 34 and used as boiler fuel via the separation drum 40.

吸着運転圧は約0.35MPaAなので、真空ポンプ24の吸入側から分岐して圧縮機13の吸入側の置換ガスライン10に接続しているライン52の遮断弁SV−6を開にして大気圧付近迄落圧する。開状態は排気ライン44の圧力検知器PIC−3の指示により開閉は自動的に行われる。   Since the adsorption operating pressure is about 0.35 MPaA, the atmospheric pressure is reached by opening the shut-off valve SV-6 of the line 52 branched from the suction side of the vacuum pump 24 and connected to the replacement gas line 10 on the suction side of the compressor 13. Reduce pressure to near. In the open state, opening and closing is automatically performed according to an instruction from the pressure detector PIC-3 in the exhaust line 44.

しかし、桟橋情報或は濃度分析器AIC−1の分析によりガスの含有量が少なく、臭気成分も多く含まれない場合は吸着塔17の大気圧迄の落圧ガス濃度は大気放出への制限値以下なので、濃度分析器AIC−1の指示により遮断弁SV−7を自動的に開き、ライン53より落圧ガスを大気放出とし、圧縮機13の負荷を軽減して省エネ運転を図る。遮断弁SV−7の開閉は圧力検知器PIC−3の指示で行われる。この場合遮断弁SV−6は閉とする。   However, if the gas content is low and the odor component is not included as a result of analysis by jetty information or the concentration analyzer AIC-1, the pressure drop gas concentration up to the atmospheric pressure of the adsorption tower 17 is the limit value for atmospheric release. Therefore, the shutoff valve SV-7 is automatically opened in accordance with an instruction from the concentration analyzer AIC-1, the reduced pressure gas is released into the atmosphere from the line 53, the load on the compressor 13 is reduced, and an energy saving operation is performed. The shut-off valve SV-7 is opened and closed according to an instruction from the pressure detector PIC-3. In this case, the shutoff valve SV-6 is closed.

大気圧力迄の落圧時間約3分である。これらの操作は圧縮機13の負荷削減と同時に真空ポンプ24の負荷も軽減して省エネを計るものである。   The pressure drop time to atmospheric pressure is about 3 minutes. These operations are intended to save energy by reducing the load on the compressor 13 and reducing the load on the vacuum pump 24 at the same time.

圧力検知器PIC−3の検知圧力が大気圧付近に低下した時点で遮断弁SV−6或はSV−7は自動閉とする。   The shut-off valve SV-6 or SV-7 is automatically closed when the pressure detected by the pressure detector PIC-3 drops to near atmospheric pressure.

5)臭気成分除去ユニット
炭化水素吸着塔17で所定のガス濃度迄除去されたガス中には目標値以下迄除去されない臭気成分、特に硫化水素が除去されないので、これらを除去する為に下流側の置換ガスライン10より臭気吸着塔18に送られて吸着により除去する。吸着剤は活性炭を化学薬品処理した吸着剤を触媒とし化学反応により吸着捕捉するために、多量の吸着が可能である。
5) Odor component removal unit In the gas removed to a predetermined gas concentration in the hydrocarbon adsorption tower 17, odor components that are not removed to a target value or less, particularly hydrogen sulfide, are not removed. It is sent to the odor adsorption tower 18 from the replacement gas line 10 and removed by adsorption. Since the adsorbent is adsorbed and captured by a chemical reaction using an adsorbent obtained by treating activated carbon with a chemical as a catalyst, a large amount of adsorption is possible.

臭気吸着塔18は、2塔18A、18B設置しているが、設置基数はこれに限るものではない。   The odor adsorbing tower 18 is installed in two towers 18A and 18B, but the number of installed bases is not limited to this.

臭気吸着塔18では硫化水素濃度を0.01ppm、その他の臭気成分メチルメルカプタン0.002ppm、硫化メチル0.05ppm、二硫化メチル0.05ppm以下にする。薬品処理或は硫酸等の排出のために塔内では再生出来ないので1年使用後に交換する。   In the odor adsorption tower 18, the hydrogen sulfide concentration is 0.01 ppm, the other odor components methyl mercaptan 0.002 ppm, methyl sulfide 0.05 ppm, and methyl disulfide 0.05 ppm or less. Since it cannot be regenerated in the tower due to chemical treatment or sulfuric acid discharge, it must be replaced after one year of use.

臭気吸着塔18で処理されたガスは、圧力検知器PIC−4と制御弁PCV−4により設備内圧力を0.35MPaAに保持しながら大気に放出される。   The gas processed in the odor adsorption tower 18 is released to the atmosphere while maintaining the pressure in the facility at 0.35 MPaA by the pressure detector PIC-4 and the control valve PCV-4.

圧力検知器PIC−4の設定値は排気ガス圧縮機13の変動可能圧力範囲で変えることができる。   The set value of the pressure detector PIC-4 can be changed within the variable pressure range of the exhaust gas compressor 13.

従って、吸収及び吸着量を増加したい場合は圧力を高くセットして回収効率を上げ、ガス濃度が薄い場合は圧力を下げて省エネ運転が出来る。   Accordingly, when it is desired to increase the amount of absorption and adsorption, the pressure can be set high to increase the recovery efficiency, and when the gas concentration is low, the pressure can be decreased to save energy.

5)吸収原油の冷却と返送ユニット
吸収に使用される原油量は濃度分析器AIC−1と流量検知器FIC−1の検出値をべースにしてステップ状に変動させる。
5) Cooling and returning unit of absorbed crude oil The amount of crude oil used for absorption is changed in steps based on the detection values of the concentration analyzer AIC-1 and the flow rate detector FIC-1.

流量検知器FIC−1からの信号は、原油流量を調節する流量調整弁FCV−3に伝えられて流量が調節される。   A signal from the flow rate detector FIC-1 is transmitted to a flow rate adjustment valve FCV-3 that adjusts the crude oil flow rate to adjust the flow rate.

2隻同時荷揚時の設計流量は350m3 /hであるが、1隻積載の場合は半分(175m3 /h)の流量として省エネ運転が出来るようにする。又、流量が、1隻分でもガス濃度が設計値よりも濃い場合は流量を2隻分とする。流量の配分は固定的ではなく、データの演算により適切な量を算出して選定する。 The design flow rate for simultaneous unloading of two vessels is 350 m 3 / h, but when one vessel is loaded, the flow rate is halved (175 m 3 / h) so that energy-saving operation is possible. If the gas concentration is higher than the design value even if the flow rate is one vessel, the flow rate is set to two vessels. The distribution of the flow rate is not fixed, but an appropriate amount is calculated and selected by data calculation.

流量を制御された原油は冷熱回収熱交換器31に流入して、吸収に使用済みの温度の低い原油により冷却される。   The crude oil whose flow rate is controlled flows into the cold heat recovery heat exchanger 31 and is cooled by the low-temperature crude oil used for absorption.

例えば夏期では30℃の原油は約9.5℃迄冷却され、一方温度の低い吸収済み原油は8℃から26℃になる。   For example, in summer, crude oil at 30 ° C is cooled to about 9.5 ° C, while absorbed crude oil at low temperatures goes from 8 ° C to 26 ° C.

冷熱を回収した原油は原油冷却器25に流入し約3℃に冷却される。原油冷却器25では冷凍機20の冷凍用冷媒(アンモニア)で冷却される。冷媒は原油冷却器25のシェル側に溜められ、吸収塔16の液面調節器(図示せず)によって原油の冷却による蒸発冷媒の補給をする。原油の流量の変動により原油の温度が極度に低下する場合(この場合は2℃以下)は、原油冷却器25の出口に設置されている温度調節計(図示せず)により蒸発液面のレベル設定値を下げて、液に浸漬した伝熱面積を減少させることにより温度が低下するのを防止する。この制御により氷結防止或は蝋成分等の凝固を防止している。従って、使用する原油の性状が蝋分等凝固し易い成分の場合には冷却温度の設定値を高くする。   The crude oil recovered from the cold heat flows into the crude oil cooler 25 and is cooled to about 3 ° C. The crude oil cooler 25 is cooled by the freezing refrigerant (ammonia) of the refrigerator 20. The refrigerant is stored on the shell side of the crude oil cooler 25, and the evaporative refrigerant is replenished by cooling the crude oil by a liquid level controller (not shown) of the absorption tower 16. When the temperature of the crude oil drops extremely due to fluctuations in the flow rate of the crude oil (in this case, 2 ° C. or lower), the level of the evaporated liquid level is measured by a temperature controller (not shown) installed at the outlet of the crude oil cooler 25 The temperature is prevented from lowering by lowering the set value and reducing the heat transfer area immersed in the liquid. This control prevents icing or coagulation of wax components. Therefore, when the property of the crude oil used is a component that easily solidifies such as wax, the set value of the cooling temperature is increased.

冷媒の蒸発温度は約−1℃で蒸発後冷凍機に返送され再液化後循環される。   The evaporating temperature of the refrigerant is about −1 ° C., and after evaporating, it is returned to the refrigerator and circulated after re-liquefaction.

低温の原油は吸収塔16の頂部に入り、上述のように炭化水素等のガスを吸収する。   The low temperature crude oil enters the top of the absorption tower 16 and absorbs gases such as hydrocarbons as described above.

吸収塔16から出た原油は返送ポンプ30で、冷熱回収熱交換器31に送出されて熱回収され、冷水塔26に返送される使用済みの温かい冷却水が供給される加熱器32で加熱され、さらにスチーム加熱器33にて加熱されて脱気器23に供給される。   Crude oil from the absorption tower 16 is sent by a return pump 30 to a cold heat recovery heat exchanger 31 where it is heat recovered and heated by a heater 32 to which used warm cooling water returned to the cold water tower 26 is supplied. Further, it is heated by the steam heater 33 and supplied to the deaerator 23.

次に、実施例を説明する。   Next, examples will be described.

(1)一例として排気ガスの処理量が下記の場合について実施例を説明する
処理排ガス量 15,000 m3 /h
運転時間 18 h/D
平均炭化水素ガス濃度 20 vol%
(2)排気ガス性状
1)炭化水素ガス&イナ−トガス成分
成分 組成vo1%
C1 0.48
C2 1.0
C3 7.88
C4(i+n) 5.64
C5(i+n) 3.22
C6 1.58
C7 0.10
C8+ 0.00
2 65.00
2 6.00
CO2 9.00
合計 100.00
2)臭気成分
成分 平均濃度ppm
硫化水素(H2 S) 40
メチルメルカプタン(MM) 10
硫化メチル(DMS) 50
二硫化メチル(DMDS) 2
(3)達成除去率
1)炭化水素ガスC成分
除去率vol%
回収率 > 90
2)臭気成分
成分 除去低減値(ppm)
2 S < 0.010
MM < 0.002
DMS < 0.050
DMDS < 0.050
(4)使用吸収原油性状
吸収原油の使用例
吸収原油飽和圧 at37.8 MPa 0.024
蒸留性状
液vol% ℃
IBP 19
5% 76.5
10% 110
15% 135
20% 160
25% 185
30% 210
35% 239
40% 262
45%
50%
流動点 −30℃以下
比重 0.8595
粘度 cSt at30℃ 7.85
(1) As an example, the embodiment will be described in the case where the exhaust gas treatment amount is as follows. Treated exhaust gas amount 15,000 m 3 / h
Operating time 18 h / D
Average hydrocarbon gas concentration 20 vol%
(2) Exhaust gas properties 1) Hydrocarbon gas & inert gas component Component composition vo1%
C1 0.48
C2 1.0
C3 7.88
C4 (i + n) 5.64
C5 (i + n) 3.22
C6 1.58
C7 0.10
C8 + 0.00
N 2 65.00
O 2 6.00
CO 2 9.00
Total 100.00
2) Odor components
Component Average concentration ppm
Hydrogen sulfide (H 2 S) 40
Methyl mercaptan (MM) 10
Methyl sulfide (DMS) 50
Methyl disulfide (DMDS) 2
(3) Achieved removal rate 1) Hydrocarbon gas C component
Removal rate vol%
Recovery rate> 90
2) Odor component Component removal reduction value (ppm)
H 2 S <0.010
MM <0.002
DMS <0.050
DMDS <0.050
(4) Absorbed Crude Oil Properties Absorbed Crude Oil Usage Absorbed Crude Oil Saturation Pressure at 37.8 MPa 0.024
Distillation properties Liquid vol% ℃
IBP 19
5% 76.5
10% 110
15% 135
20% 160
25% 185
30% 210
35% 239
40% 262
45%
50%
Pour point -30 ° C or less Specific gravity 0.8595
Viscosity cSt at 30 ° C. 7.85

本発明の一実施の形態を示す図である。It is a figure which shows one embodiment of this invention. 本発明の他の実施の形態を示す図である。It is a figure which shows other embodiment of this invention.

符号の説明Explanation of symbols

10 置換ガスライン
13 排気ガス圧縮機
16 吸収塔
17 炭化水素吸着塔
18 臭気吸着塔
DESCRIPTION OF SYMBOLS 10 Replacement gas line 13 Exhaust gas compressor 16 Absorption tower 17 Hydrocarbon adsorption tower 18 Odor adsorption tower

Claims (5)

石油の積荷や揚荷時にタンカーやタンクから放出される窒素、酸素、二酸化炭素、炭化水素ガス及び臭気成分からなる置換ガス中に含まれる炭化水素や臭気成分を除去して大気放出するための大気放出ガスの回収と臭気成分の除去設備において、タンカー等からの置換ガスを原油と気液接触させて炭化水素を除去する吸収塔と、吸収塔からの置換ガスを導入し、置換ガス中の炭化水素を吸着除去する炭化水素吸着塔と、炭化水素吸着塔からの置換ガスを導入し、置換ガス中の臭気成分を吸着除去する臭気吸着塔とを備えたことを特徴とする大気放出ガスの回収と臭気成分の除去設備。   Atmosphere for removing hydrocarbons and odor components contained in replacement gas consisting of nitrogen, oxygen, carbon dioxide, hydrocarbon gas and odor components released from tankers and tanks when loading and unloading petroleum and releasing them into the atmosphere In the equipment for recovery of released gas and removal of odorous components, an absorption tower that removes hydrocarbons by bringing the replacement gas from a tanker or the like into gas-liquid contact with crude oil, and the replacement gas from the absorption tower are introduced to carbonize the replacement gas. Recovering atmospheric emission gas comprising a hydrocarbon adsorption tower for adsorbing and removing hydrogen, and an odor adsorption tower for introducing and removing a substitution gas from the hydrocarbon adsorption tower to adsorb and remove odor components in the substitution gas And odor component removal equipment. 吸収塔には、タンカー等からの置換ガスを圧縮して供給する圧縮機が接続される請求項1記載の大気放出ガスの回収と臭気成分の除去設備。   The facility for recovering atmospheric emission gas and removing odorous components according to claim 1, wherein the absorption tower is connected with a compressor that compresses and supplies replacement gas from a tanker or the like. 吸収塔には、吸収液として供給する原油の冷却器が接続される請求項1記載の大気放出ガスの回収と臭気成分の除去設備。   The facility for recovering atmospheric emission gas and removing odorous components according to claim 1, wherein the absorption tower is connected to a cooler for crude oil supplied as an absorption liquid. 吸収塔には、炭化水素を吸収除去した原油を導入する脱気器が接続され、脱気器で、窒素等の不活性ガスと炭化水素とを吸収した原油中の窒素等の不活性ガスからなる軽沸点成分が除去され、その軽沸点成分除去後の原油が吸収塔に吸収液として循環される請求項1記載の大気放出ガスの回収と臭気成分の除去設備。   The absorption tower is connected to a deaerator for introducing crude oil from which hydrocarbons have been absorbed and removed. From the inert gas such as nitrogen and the inert gas such as nitrogen in the crude oil that has absorbed hydrocarbons by the deaerator, The facility for recovering atmospheric emission gas and removing odorous components according to claim 1, wherein the light boiling component is removed, and the crude oil after removal of the light boiling component is circulated in the absorption tower as an absorption liquid. 脱気器には、吸収液を設備内で使用済みの冷却水で加熱する加熱器を有し、原油中の軽沸点成分が除去され、その軽沸点成分除去後の原油が吸収塔に吸収液として循環される請求項1記載の大気放出ガスの回収と臭気成分の除去設備。
The deaerator has a heater that heats the absorption liquid with the used cooling water in the equipment, and the light boiling components in the crude oil are removed, and the crude oil after the removal of the light boiling components is absorbed into the absorption tower. The facility for recovering atmospheric emission gas and removing odorous components according to claim 1 circulated as:
JP2005375729A 2005-12-27 2005-12-27 Facility for recovering gas emitted to atmospheric air and removing malodorous component Pending JP2007175594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375729A JP2007175594A (en) 2005-12-27 2005-12-27 Facility for recovering gas emitted to atmospheric air and removing malodorous component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375729A JP2007175594A (en) 2005-12-27 2005-12-27 Facility for recovering gas emitted to atmospheric air and removing malodorous component

Publications (1)

Publication Number Publication Date
JP2007175594A true JP2007175594A (en) 2007-07-12

Family

ID=38301306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375729A Pending JP2007175594A (en) 2005-12-27 2005-12-27 Facility for recovering gas emitted to atmospheric air and removing malodorous component

Country Status (1)

Country Link
JP (1) JP2007175594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061402A (en) * 2007-09-06 2009-03-26 Nippon Oil Corp Pier facilities and hydrocarbon recovery system
JP2009067851A (en) * 2007-09-11 2009-04-02 Nippon Oil Corp Hydrocarbon recovery system, deaeration apparatus used therefor and hydrocarbon recovery method
JP2015158334A (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Exhaust gas recirculation system, ship boiler equipped with the same, and exhaust gas recirculation method
JP7155460B1 (en) * 2021-11-30 2022-10-18 日揮グローバル株式会社 Liquefied gas receiving facility and its control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930276A (en) * 1972-07-19 1974-03-18
JPS5090606A (en) * 1973-12-17 1975-07-19
JPS5477290A (en) * 1977-12-01 1979-06-20 Takeda Chem Ind Ltd Removal of offensive odors
JPH1033933A (en) * 1996-07-29 1998-02-10 I H I Plantec:Kk Hydrocarbon recovery apparatus
JP2007099817A (en) * 2005-09-30 2007-04-19 Nippon Oil Corp Method for recovering volatile organic compound and system for recovering volatile organic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930276A (en) * 1972-07-19 1974-03-18
JPS5090606A (en) * 1973-12-17 1975-07-19
JPS5477290A (en) * 1977-12-01 1979-06-20 Takeda Chem Ind Ltd Removal of offensive odors
JPH1033933A (en) * 1996-07-29 1998-02-10 I H I Plantec:Kk Hydrocarbon recovery apparatus
JP2007099817A (en) * 2005-09-30 2007-04-19 Nippon Oil Corp Method for recovering volatile organic compound and system for recovering volatile organic compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061402A (en) * 2007-09-06 2009-03-26 Nippon Oil Corp Pier facilities and hydrocarbon recovery system
JP2009067851A (en) * 2007-09-11 2009-04-02 Nippon Oil Corp Hydrocarbon recovery system, deaeration apparatus used therefor and hydrocarbon recovery method
JP2015158334A (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Exhaust gas recirculation system, ship boiler equipped with the same, and exhaust gas recirculation method
WO2015129536A1 (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Exhaust gas recirculation system, ship boiler provided with same, and exhaust gas recirculation method
JP7155460B1 (en) * 2021-11-30 2022-10-18 日揮グローバル株式会社 Liquefied gas receiving facility and its control method
WO2023100231A1 (en) * 2021-11-30 2023-06-08 日揮グローバル株式会社 Liquefied gas receiving facility and control method for same

Similar Documents

Publication Publication Date Title
CN102762701B (en) Apparatus &amp; process for treating natural gas
JP5425586B2 (en) Method and apparatus for removing carbon dioxide and hydrogen sulfide
US8282707B2 (en) Natural gas purification system
US20060248921A1 (en) Landfill gas purification and liquefaction process
JP5289427B2 (en) Apparatus and method for treating and recovering gaseous hydrocarbons
KR101444186B1 (en) Purification device of biogas and purification method thereof
WO2008097839A1 (en) Methods and apparatus for removing acid gases from a natural gas stream
JP4671940B2 (en) Gaseous hydrocarbon treatment and recovery apparatus and method
EP4122571A1 (en) Carbon dioxide recovery device
CN104096379B (en) A kind of harbour sour crude oil gas recovery processing system
CA2991985C (en) Pretreatment equipment for hydrocarbon gas to be liquefied and shipping base equipment
US9844751B2 (en) Method and apparatus for removing absorbable gases from pressurized industrial gases contaminated with absorbable gases, without supplying cooling energy
US11400409B2 (en) Process for aftertreatment of regeneration offgas
JP2007175594A (en) Facility for recovering gas emitted to atmospheric air and removing malodorous component
JP2021159816A (en) Carbon dioxide separation/collection system
JP6728875B2 (en) Carbon dioxide recovery device and natural gas combustion system
AU2014298347B2 (en) Process for capturing a heavy metal contained in a wet gas incorporating a heat pump for heating the gas introduced into a capturing body
CN113586953A (en) Carbon emission reduction system and method for LNG power ship
CN104548879B (en) A kind of oil plant sour water tank method for treating release gas and device
KR102248010B1 (en) Natural gas pretreatment facility
JP2010229248A (en) Method for deoxygenation of digestion gas and apparatus
CN115738576A (en) Volatile organic compound-containing tail gas treatment system and tail gas treatment process
NL2028603B1 (en) Method for chemical absorption and recovery of co2 with low energy consumption
JP2011068751A (en) Method and apparatus for decarboxylating and desulfurizing raw material gas
JP5693448B2 (en) Gaseous hydrocarbon recovery apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306