JP2007175559A - High pressure treatment apparatus and high pressure treatment method - Google Patents

High pressure treatment apparatus and high pressure treatment method Download PDF

Info

Publication number
JP2007175559A
JP2007175559A JP2005373845A JP2005373845A JP2007175559A JP 2007175559 A JP2007175559 A JP 2007175559A JP 2005373845 A JP2005373845 A JP 2005373845A JP 2005373845 A JP2005373845 A JP 2005373845A JP 2007175559 A JP2007175559 A JP 2007175559A
Authority
JP
Japan
Prior art keywords
pressure
pressure fluid
valve
fluid
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005373845A
Other languages
Japanese (ja)
Inventor
Kimitsugu Saito
公続 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2005373845A priority Critical patent/JP2007175559A/en
Publication of JP2007175559A publication Critical patent/JP2007175559A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure treatment apparatus capable of feeding a high pressure fluid with a high cleanliness to a treatment chamber by preventing a delivery of an unrequired substance captured by a filtration means arranged at a primary side of a treatment chamber to the high pressure fluid, and a high pressure treatment method. <P>SOLUTION: The high pressure treatment apparatus is provided with a main conduit 26 for communicating a high pressure fluid feed unit 2 with a pressure vessel 1 through a filter 24 to lead SCF (high pressure fluid) to the pressure vessel 1; and an opening/closing valve V2 and an opening/closing valve V4 fastened to the main conduit 26 and provided on a primary side and a secondary side of the filter 24 so as to clamp the filter 24. When a cleaning treatment is performed, the opening/closing valves V2, V4 are made in the opened state and the SCF is fed from a high pressure fluid feed unit 2 into the pressure vessel 1. Whereas, when a cleaning treatment is not performed, the opening/closing valves V2, V4 are made in the closed state and the SCF is closed/sealed between the opening/closing valve V2 and the opening/closing valve V4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、高圧流体あるいは高圧流体と薬剤(添加剤)との混合物を濾過手段によって濾過した濾過済処理流体、あるいは高圧流体を濾過手段によって濾過した濾過済高圧流体と薬剤(添加剤)との混合物を処理流体として基板などの被処理体の表面に接触させて該被処理体の表面に対して所定の表面処理(現像処理、洗浄処理や乾燥処理など)を施す高圧処理装置および高圧処理方法に関するものである。   The present invention relates to a filtered treated fluid obtained by filtering a high-pressure fluid or a mixture of a high-pressure fluid and a drug (additive) by a filtering means, or a filtered high-pressure fluid obtained by filtering a high-pressure fluid by a filtering means and a drug (additive). A high-pressure processing apparatus and a high-pressure processing method for bringing a mixture into contact with the surface of a target object such as a substrate as a processing fluid and performing a predetermined surface treatment (development, cleaning, drying, etc.) on the surface of the target It is about.

低粘性、高拡散性の性質を持つ超臨界流体(以下「SCF」という)を高圧流体として用いて基板などの被処理体に洗浄処理などの高圧処理を施す技術提案が従来よりなされている。例えば、被処理体を収容する処理チャンバーにSCFを供給して被処理体を洗浄する洗浄装置がある(特許文献1参照)。この装置では、処理チャンバーの一次側にフィルタ(濾過手段)を配置することにより、フィルタによって、高圧処理を実行するまでに必要な所定のレベルまでSCFに含まれているパーティクル等の不要物質を除去している。そして、フィルタを介してSCFを処理チャンバーに供給することにより、被処理体に対して洗浄や除去などの高圧処理を施している。   2. Description of the Related Art Conventionally, a technical proposal has been made to perform a high pressure process such as a cleaning process on an object to be processed such as a substrate using a supercritical fluid (hereinafter referred to as “SCF”) having a low viscosity and a high diffusibility as a high pressure fluid. For example, there is a cleaning device that supplies SCF to a processing chamber that accommodates a target object to clean the target object (see Patent Document 1). In this device, by disposing a filter (filtering means) on the primary side of the processing chamber, the filter removes unnecessary substances such as particles contained in the SCF up to a predetermined level required until high-pressure processing is performed. is doing. Then, by supplying SCF to the processing chamber through a filter, the object to be processed is subjected to high pressure processing such as cleaning and removal.

特表2003−531478号公報(図1)Japanese translation of PCT publication No. 2003-53478 (FIG. 1)

ところで、被処理体に対して高圧処理を施す際には、処理チャンバーにSCFが送り込まれ、フィルタは高圧状態におかれている。その一方で、処理チャンバーから搬入出させる際や被処理体に対する処理動作を待機させる際には、処理チャンバーの圧力を大気圧まで減圧させる必要があり、このとき、フィルタも大気圧状態(低圧状態)におかれる。したがって、被処理体に対して高圧処理を実行するたびに、処理チャンバーの一次側に配設されたフィルタに対して昇圧動作と減圧動作が繰り返され、フィルタが高圧状態と低圧状態とにおかれることとなる。   By the way, when high-pressure processing is performed on the object to be processed, SCF is fed into the processing chamber, and the filter is in a high-pressure state. On the other hand, when loading / unloading from the processing chamber or waiting for the processing operation on the object to be processed, it is necessary to reduce the pressure of the processing chamber to atmospheric pressure. At this time, the filter is also in an atmospheric pressure state (low pressure state). ) Therefore, every time high pressure processing is performed on the object to be processed, the pressure increasing operation and the pressure decreasing operation are repeated for the filter disposed on the primary side of the processing chamber, and the filter is placed in the high pressure state and the low pressure state. It will be.

一方、フィルタのパーティクル等の不要物質に対する捕捉性能は、フィルタがおかれている圧力状態、より正確には、フィルタを通る流体の密度に大きく依存する。概して、フィルタの捕捉性能は、低圧状態(低密度時)では捕捉効率が向上する傾向にあり、高圧状態(高密度時)では低圧状態に比べて捕捉効率が相対的に低下する。そこで、高圧状態に適した高圧用フィルタと低圧状態に適した低圧用フィルタの2種類のフィルタを処理チャンバーの一次側に設けて、これら2種類のフィルタに流体を流通させてパーティクルの捕捉効率を安定化させることが考えられる。   On the other hand, the trapping performance of the filter for unwanted substances such as particles greatly depends on the pressure state where the filter is placed, more precisely, the density of the fluid passing through the filter. In general, the trapping performance of the filter tends to improve the trapping efficiency in a low pressure state (low density), and the trapping efficiency is relatively lower in a high pressure state (high density) than in a low pressure state. Therefore, two types of filters, a high-pressure filter suitable for a high-pressure state and a low-pressure filter suitable for a low-pressure state, are provided on the primary side of the processing chamber, and fluid is passed through these two types of filters to increase particle capture efficiency. It is possible to stabilize.

しかしながら、このように2種類のフィルタを配置しても次のような問題が発生する場合があった。すなわち、処理チャンバーにおいて被処理体を交換しながら高圧処理を繰り返すと、昇圧動作時や減圧動作時にフィルタに捕捉されたパーティクルがフィルタを流通する流体中に吐き出され、被処理体が汚染されるという問題が発生していた。具体的には、例えば低圧状態の流体を2種類のフィルタに流通させることにより、低圧用フィルタでパーティクルを捕捉することができるものの、その後に高圧状態の流体(高圧流体)を低圧用フィルタに流通させると、低圧用フィルタで捕捉されたパーティクルが高圧状態では高圧流体中に吐き出されてしまう。そして、このようなパーティクルは高圧用フィルタで捕捉されることなく、高圧流体とともに処理チャンバーに送り込まれ、被処理体を汚染させる結果となっていた。   However, even if two types of filters are arranged in this way, the following problem may occur. That is, if high pressure processing is repeated while replacing the object to be processed in the processing chamber, particles trapped in the filter during pressure increase operation or pressure reduction operation are discharged into the fluid flowing through the filter, and the object to be processed is contaminated. There was a problem. Specifically, for example, by circulating a low-pressure fluid through two types of filters, particles can be captured by the low-pressure filter, but then a high-pressure fluid (high-pressure fluid) is circulated through the low-pressure filter. Then, particles captured by the low pressure filter are discharged into the high pressure fluid in the high pressure state. Such particles are not captured by the high-pressure filter and are sent into the processing chamber together with the high-pressure fluid, resulting in contamination of the object to be processed.

この発明は上記課題に鑑みなされたものであり、処理チャンバーの一次側に配設された濾過手段に捕捉された不要物質の高圧流体への吐き出しを防止することにより、清浄度の高い高圧流体を処理チャンバーに供給することのできる高圧処理装置および高圧処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and prevents high-pressure fluid with high cleanliness by preventing discharge of unnecessary substances trapped by the filtering means disposed on the primary side of the processing chamber to the high-pressure fluid. It is an object of the present invention to provide a high-pressure processing apparatus and a high-pressure processing method that can be supplied to a processing chamber.

この発明は、高圧流体あるいは高圧流体と薬剤との混合物を処理流体として処理チャンバーに送り込み、処理チャンバーに収容される被処理体の表面に接触させて被処理体の表面に対して所定の表面処理を施す高圧処理装置および高圧処理方法であって、上記目的を達成するため、以下のように構成している。   According to the present invention, a high-pressure fluid or a mixture of a high-pressure fluid and a chemical is sent to a processing chamber as a processing fluid, and is brought into contact with the surface of the target object accommodated in the processing chamber to perform a predetermined surface treatment on the surface of the target object In order to achieve the above object, the high-pressure processing apparatus and the high-pressure processing method for applying the above are configured as follows.

この発明にかかる高圧処理装置は、その内部に表面処理を行うための処理チャンバーを有する圧力容器と、高圧流体を圧力容器に濾過手段を介して圧送可能な高圧流体供給手段と、高圧流体供給手段から圧送される高圧流体の流路を制御する流路制御手段とを備え、 流路制御手段は、処理チャンバーの圧力状態にかかわらず、濾過手段に高圧流体を満たし続けるように高圧流体の流路を制御することで、濾過手段を常に高圧状態に保持している。また、この発明にかかる高圧処理方法は、処理チャンバーの圧力状態にかかわらず、濾過手段に高圧流体を満たし続けることによって濾過手段を常に高圧状態に保持している。   A high-pressure processing apparatus according to the present invention includes a pressure vessel having a processing chamber for performing a surface treatment therein, a high-pressure fluid supply unit capable of pumping high-pressure fluid to the pressure vessel through a filtering unit, and a high-pressure fluid supply unit A flow path control means for controlling the flow path of the high pressure fluid pumped from the flow path, the flow path control means is configured to keep the high pressure fluid filled in the filtration means regardless of the pressure state of the processing chamber. By controlling the above, the filtering means is always kept in a high pressure state. In the high-pressure treatment method according to the present invention, the filtration means is always kept in a high-pressure state by continuously filling the filtration means with the high-pressure fluid regardless of the pressure state of the processing chamber.

このように構成された発明では、処理チャンバーの圧力状態に関わらず、つまり、処理チャンバーが超臨界状態などの高圧状態あるいは大気圧状態などの低圧状態にあるとに関わりなく、濾過手段は高圧流体によって満たされ続けることによって常に高圧状態に保持されている。そのため、処理チャンバーにおいて昇圧動作と減圧動作を繰り返した場合であっても、濾過手段によって捕捉されたパーティクル等の不要物質が高圧流体中に吐き出されるのが防止される。その結果、清浄度の高い高圧流体を安定して処理チャンバーに供給することができる。   In the invention configured as described above, the filtering means is a high-pressure fluid regardless of the pressure state of the processing chamber, that is, regardless of whether the processing chamber is in a high pressure state such as a supercritical state or a low pressure state such as an atmospheric pressure state. Is always kept in a high pressure state by continuing to be satisfied by. Therefore, even when the pressure increasing operation and the pressure reducing operation are repeated in the processing chamber, unnecessary substances such as particles captured by the filtering means are prevented from being discharged into the high pressure fluid. As a result, a high-pressure fluid having a high cleanliness can be stably supplied to the processing chamber.

ここで、濾過手段に捕捉されたパーティクル等の不要物質の吐き出しを抑制するために、表面処理前に濾過手段を洗浄することも考えられるが、このような場合には、濾過手段に付着したパーティクルをどの程度まで除去できるのかといった除去率の問題、さらには、表面処理に支障がないレベルまでパーティクルを除去するために要する時間、つまり装置のスループットの劣化が問題となる。これに対して、本願発明によれば、濾過手段を常に高圧状態に保持することで、濾過手段への不要物質の捕捉ならびに吐き出しを効果的に抑制することができる。詳しくは、低圧状態(低密度時)では、粒子の拡散によって粒子が濾過材に捕捉され易くなり、濾過手段の捕捉効率は向上する傾向にあるものの、このように捕捉された粒子は高圧状態(高密度時)では濾過材から容易に脱離して高圧流体中に吐き出されてしまう。その一方で、高圧状態(高密度時)における濾過手段の濾過メカニズムは、粒子の拡散による濾過材への捕捉に代えて、濾過材の空隙による粒子の捕捉(濾過材の空隙より大きなサイズの粒子は通過できず、捕捉される)が支配的になる。したがって、濾過手段を高圧状態に保持することで、このような粒子の捕捉を抑制するとともに吐き出しを回避することができる。このように、濾過メカニズムが流体の密度に依存することは避けられないが、本願発明によれば、濾過手段に高圧流体を満たし続けることによって、濾過手段における流体密度の変動による弊害を受けることがなく、その課題を解決することができる。そのため、昇圧動作と減圧動作が必然的に繰り返され、気相と超臨界相(液体の密度に近い)とが共存することとなる高圧処理装置において、特に有用となっている。   Here, in order to suppress discharge of unnecessary substances such as particles trapped by the filtering means, it may be possible to clean the filtering means before the surface treatment. In such a case, particles adhering to the filtering means may be used. The problem of the removal rate, such as how much can be removed, and the time required to remove particles to a level that does not interfere with the surface treatment, that is, the degradation of the throughput of the apparatus. On the other hand, according to the present invention, it is possible to effectively suppress trapping and discharging of unnecessary substances to the filtering means by always maintaining the filtering means in a high pressure state. Specifically, in the low pressure state (at low density), the particles are easily trapped by the filter medium due to the diffusion of the particles, and the trapping efficiency of the filtering means tends to be improved, but the trapped particles are in the high pressure state ( At high density), it is easily detached from the filter medium and discharged into the high-pressure fluid. On the other hand, the filtration mechanism of the filtering means in the high pressure state (at high density) is not the trapping of the filter medium by the diffusion of the particles, but the trapping of the particles by the voids of the filter medium (particles larger in size than the voids of the filter medium) Cannot pass through and is captured) becomes dominant. Therefore, by holding the filtering means in a high pressure state, it is possible to suppress the trapping of such particles and avoid discharge. Thus, it is inevitable that the filtration mechanism depends on the density of the fluid. However, according to the present invention, if the filtration means continues to be filled with the high-pressure fluid, it may be adversely affected by fluctuations in the fluid density in the filtration means. The problem can be solved. Therefore, the pressure increasing operation and the pressure reducing operation are inevitably repeated, and this is particularly useful in a high pressure processing apparatus in which a gas phase and a supercritical phase (close to liquid density) coexist.

ここで、濾過手段を少なくとも表面処理を施す際におけるプロセス圧以上の圧力状態に保持するのが好ましい。このような構成によれば、例えば処理チャンバーを減圧する際にも、濾過手段が表面処理を施す際のプロセス圧以上の高圧状態に保持されるので、処理チャンバーの圧力状態に関わらず、濾過手段を常にプロセス圧以上の高圧状態に維持することができる。このため、濾過手段の圧力変動を抑制してパーティクルの吐き出しを効果的に抑制するとともに、パーティクルの捕捉効率を安定化させることができる。   Here, it is preferable to maintain the filtering means at a pressure state equal to or higher than the process pressure at the time of performing the surface treatment. According to such a configuration, for example, when the processing chamber is depressurized, the filtering means is maintained in a high pressure state equal to or higher than the process pressure when the surface treatment is performed. Therefore, regardless of the pressure state of the processing chamber, the filtering means Can always be maintained at a pressure higher than the process pressure. For this reason, while suppressing the pressure fluctuation of a filtration means and suppressing the discharge of a particle effectively, the capture efficiency of a particle can be stabilized.

また、処理チャンバーの圧力状態にかかわらず、濾過手段を常に高圧状態に保持する具体的な手段としては、以下のような態様が挙げられる。すなわち、濾過手段を常に高圧状態に保持する具体的な手段の一態様として、表面処理を実行する間は、濾過手段を介して高圧流体を処理チャンバーに送り込む一方、表面処理を実行しない間は、濾過手段を高圧流体で封止することによって濾過手段を常に高圧状態に保持することができる。また、濾過手段を常に高圧状態に保持する具体的な手段の他の態様として、表面処理を実行する間は、濾過手段を介して高圧流体を処理チャンバーに送り込む一方、表面処理を実行しない間は、濾過手段を介して高圧流体を該高圧流体を排出する排出経路に送り込むことによって、濾過手段を常に高圧状態に保持することができる。つまり、濾過手段に高圧流体を流し続けることによって、濾過手段を常に高圧状態に保持することができる。   Moreover, the following aspects are mentioned as a concrete means which always maintains a filtration means in a high pressure state irrespective of the pressure state of a processing chamber. That is, as one aspect of the specific means for always maintaining the filtration means in a high pressure state, while performing the surface treatment, while sending the high-pressure fluid to the treatment chamber through the filtration means, while not performing the surface treatment, By sealing the filtering means with a high pressure fluid, the filtering means can always be kept in a high pressure state. Further, as another aspect of the specific means for constantly maintaining the filtering means in a high pressure state, while the surface treatment is being performed, the high-pressure fluid is sent to the processing chamber via the filtering means while the surface treatment is not being performed. By sending the high-pressure fluid to the discharge path for discharging the high-pressure fluid through the filtering means, the filtering means can always be kept in a high-pressure state. That is, the filtering means can always be kept in a high pressure state by continuing to flow the high-pressure fluid through the filtering means.

ここで、濾過手段を常に高圧状態に保持する手段の一態様として、表面処理を実行する際には、高圧流体供給手段から圧力容器に高圧流体を圧送する一方、表面処理を実行しない間は、高圧流体供給手段からの高圧流体の圧送を停止させる装置においては、高圧流体供給手段と圧力容器とを濾過手段を介して連通して高圧流体を圧力容器に導く主管路と、主管路に介挿され濾過手段を挟み込むように濾過手段の一次側と二次側とにそれぞれ一次側開閉弁と二次側開閉弁とを備え、表面処理を実行する際には、一次側および二次側開閉弁を開状態として高圧流体供給手段から圧力容器に高圧流体を送り込む一方で、表面処理を実行しない間は、一次側および二次側開閉弁を閉状態として一次側開閉弁と二次側開閉弁との間に高圧流体を封止させるようにするのが好ましい。このように構成された装置では、表面処理を実行する際には、濾過手段を介して高圧流体を処理チャンバーに送り込むことで、濾過手段を高圧状態に保持する一方、表面処理を実行しない間は、高圧流体供給手段からの高圧流体の圧送を停止させる場合であっても、濾過手段を高圧流体によって封止することで、処理チャンバーの圧力状態にかかわらず、濾過手段を高圧状態に保持することができる。したがって、被処理体を搬入出するなどして処理チャンバーにおいて昇圧動作と減圧動作を繰り返した場合であっても、濾過手段によって捕捉されたパーティクル等の不要物質が吐き出されるのを防止することができる。   Here, as one aspect of the means for always maintaining the filtration means in a high pressure state, when performing the surface treatment, while the high pressure fluid is pumped from the high pressure fluid supply means to the pressure vessel, while the surface treatment is not performed, In an apparatus for stopping the pumping of the high-pressure fluid from the high-pressure fluid supply means, the high-pressure fluid supply means and the pressure vessel communicate with each other via the filtration means, and the main pipeline that guides the high-pressure fluid to the pressure vessel is inserted into the main pipeline. The primary side and secondary side on-off valves are respectively provided on the primary side and secondary side of the filtering means so as to sandwich the filtering means, and when performing surface treatment, the primary side and secondary side on-off valves are provided. Open the high pressure fluid from the high pressure fluid supply means to the pressure vessel, while the surface treatment is not performed, the primary side and secondary side on / off valves are closed with the primary side and secondary side on / off valves closed. The high pressure fluid is sealed between Preferably way. In the apparatus configured as described above, when the surface treatment is performed, the high pressure fluid is fed into the processing chamber through the filtering means, so that the filtering means is maintained in a high pressure state, while the surface treatment is not performed. Even when the pumping of the high-pressure fluid from the high-pressure fluid supply means is stopped, the filtration means is sealed with the high-pressure fluid so that the filtration means is maintained in a high-pressure state regardless of the pressure state of the processing chamber. Can do. Therefore, even when the pressure increase operation and the pressure decrease operation are repeated in the processing chamber by carrying in and out the object to be processed, it is possible to prevent unnecessary substances such as particles captured by the filtering means from being discharged. .

また、一次側開閉弁の一次側に主管路から分岐され、高圧流体を排出する一次側排出経路に繋がる一次側分岐管路と、一次側分岐管路と一次側排出経路との間に設けられ、一次側排出経路への流路を開閉する排出側開閉弁とをさらに備えるように構成し、高圧流体供給手段から主管路に高圧流体の圧送を開始する際には、一次側開閉弁を閉状態とするとともに排出側開閉弁を開状態として高圧流体を一次側分岐管路に送り込み、一次側分岐管路内および主管路のうち一次側開閉弁の一次側の管路内を昇圧する一方、主管路のうち一次側開閉弁の一次側の管路内の圧力が表面処理を施す際におけるプロセス圧に到達後は、一次側開閉弁を開状態とするとともに排出側開閉弁を閉状態として高圧流体を圧力容器に送り込むようにするのが好ましい。このように構成することで、高圧流体供給手段から主管路に高圧流体の圧送を開始して主管路(一次側開閉弁の一次側)内の圧力がプロセス圧に到達するまでは、濾過手段を高圧流体で封止して高圧状態に保持することができる。そして、主管路(一次側開閉弁の一次側)内の圧力がプロセス圧に到達後は、濾過手段に高圧流体を送り込むことによって濾過手段を高圧状態に保持することができる。すなわち、主管路(一次側開閉弁の一次側)内が昇圧途中で圧力が低いうちは、低圧状態の流体を濾過手段に流通させないようにするとともに、一次側分岐管路を利用して一次側分岐管路内および主管路(一次側開閉弁の一次側)内の圧力を昇圧してプロセス圧到達後に濾過手段に高圧状態の流体(高圧流体)を流通させるようにしているので、昇圧過程に伴って濾過手段の圧力状態が変動するのを回避して濾過手段を常に高圧状態に保持することができる。   In addition, the primary side on-off valve is provided between the primary side branch pipe that branches from the main pipe to the primary side and leads to the primary side discharge path that discharges high-pressure fluid, and between the primary side branch pipe and the primary side discharge path. A discharge-side on-off valve that opens and closes the flow path to the primary-side discharge path, and closes the primary-side on-off valve when starting the high-pressure fluid pumping from the high-pressure fluid supply means to the main pipeline. While the discharge side on-off valve is opened and the high-pressure fluid is sent to the primary side branch pipe to increase the pressure in the primary side branch pipe and the primary side on-off valve of the primary side on-off valve, After the pressure in the primary pipe on the primary side of the main pipe reaches the process pressure when the surface treatment is applied, the primary open / close valve is opened and the discharge side open / close valve is closed. Preferably the fluid is fed into the pressure vesselBy configuring in this way, the filtration means is started until the pressure in the main pipe line (primary side of the primary on-off valve) reaches the process pressure after the high-pressure fluid supply means starts to pump the high-pressure fluid to the main pipe line. It can be sealed with a high pressure fluid and kept in a high pressure state. Then, after the pressure in the main pipe line (primary side of the primary side on-off valve) reaches the process pressure, the filtering means can be kept in a high pressure state by feeding high pressure fluid into the filtering means. That is, while the pressure in the main line (primary side on-off valve) is low and the pressure is low, the low-pressure fluid is not circulated to the filtering means, and the primary side branch line is used for the primary side. The pressure in the branch line and the main line (primary side of the primary side on-off valve) is increased so that the high pressure fluid (high pressure fluid) is circulated through the filtering means after reaching the process pressure. Along with this, it is possible to avoid the fluctuation of the pressure state of the filtering means and to keep the filtering means always in a high pressure state.

ここで、主管路(一次側開閉弁の一次側)内および一次側分岐管路内を昇圧させるためには、一次側排出経路上に一次側分岐管路内の圧力を調整する第1圧力調整弁を設ければよい。ここでは、第1圧力調整弁を部分的に開状態としながらプロセス圧まで昇圧するようにしてもよいし、第1圧力調整弁を閉状態としてプロセス圧まで昇圧後、開度を調整してプロセス圧に圧力を維持するようにしてもよい。   Here, in order to increase the pressure in the main pipe line (primary side of the primary side on-off valve) and in the primary side branch pipe, the first pressure adjustment for adjusting the pressure in the primary side branch pipe on the primary side discharge path A valve may be provided. Here, the first pressure regulating valve may be partially opened to increase the process pressure, or the first pressure regulating valve may be closed to increase the process pressure, and then the opening degree is adjusted to adjust the process. The pressure may be maintained at the pressure.

さらに、濾過手段を高圧流体によって封止させる際には、封止された高圧流体の待機中の温度低下を防ぐために加熱手段によって所望の温度に保温しておくことが好ましい。   Furthermore, when sealing the filtering means with the high-pressure fluid, it is preferable to keep the temperature at a desired temperature by the heating means in order to prevent a temperature drop during the standby of the sealed high-pressure fluid.

また、濾過手段を常に高圧状態に保持する手段の他の態様として、高圧流体供給手段から高圧流体を圧送し続ける装置においては、高圧流体供給手段と圧力容器とを濾過手段を介して連通して高圧流体を圧力容器に導く主管路と、濾過手段の二次側において主管路から分岐され、高圧流体を排出する二次側排出経路に繋がる二次側分岐管路と、二次側分岐管路と主管路との接合部に設けられ、高圧流体供給手段から圧送される高圧流体の流路を切換えて高圧流体を圧力容器と二次側排出経路とに選択的に送り込む切換え手段とを備え、切換え手段を制御して、表面処理を実行する際には、圧力容器に高圧流体を送り込む一方で、表面処理を実行しない間は、二次側排出経路に高圧流体を送り込むようにするのが好ましい。このように構成された装置では、表面処理を実行する際には、濾過手段を介して高圧流体を処理チャンバーに送り込むことで、濾過手段を高圧状態に保持する一方、表面処理を実行しない間は、濾過手段を介して高圧流体を二次側排出経路に送り込むことで濾過手段を高圧状態に保持することができる。したがって、被処理体を搬入出するなどして処理チャンバーにおいて昇圧動作と減圧動作を繰り返した場合であっても、濾過手段によって捕捉されたパーティクル等の不要物質が吐き出されるのを防止することができる。   Further, as another aspect of the means for constantly maintaining the filtering means in a high pressure state, in an apparatus that continues to pump high pressure fluid from the high pressure fluid supply means, the high pressure fluid supply means and the pressure vessel are communicated with each other via the filtration means. A main pipe that leads the high-pressure fluid to the pressure vessel, a secondary branch pipe that is branched from the main pipe on the secondary side of the filtering means and that leads to a secondary discharge path that discharges the high-pressure fluid, and a secondary branch pipe Switching means for selectively feeding the high-pressure fluid to the pressure vessel and the secondary discharge path by switching the flow path of the high-pressure fluid pumped from the high-pressure fluid supply means. When performing the surface treatment by controlling the switching means, it is preferable to send the high-pressure fluid to the pressure vessel while feeding the high-pressure fluid to the secondary discharge path while not performing the surface treatment. . In the apparatus configured as described above, when the surface treatment is performed, the high pressure fluid is fed into the processing chamber through the filtering means, so that the filtering means is maintained in a high pressure state, while the surface treatment is not performed. By sending the high-pressure fluid to the secondary side discharge path through the filtering means, the filtering means can be kept in a high pressure state. Therefore, even when the pressure increase operation and the pressure decrease operation are repeated in the processing chamber by carrying in and out the object to be processed, it is possible to prevent unnecessary substances such as particles captured by the filtering means from being discharged. .

ここで、濾過手段が介挿された主管路(二次側分岐管路と主管路との接合部の一次側)および二次側分岐管路内の圧力を常に高圧状態に保持、すなわち高圧流体を常時流通させるためには、二次側分岐管路内の圧力を調整する第2圧力調整弁を二次側排出経路上に設ければよい。この構成によれば、第2圧力調整弁の開度を調整することにより、主管路(分岐管路と主管路との接合部の一次側)および二次側分岐管路内の圧力を高圧状態、例えばプロセス圧に維持しながら排出経路(二次側排出経路)に向けて高圧流体を流通させることができる。   Here, the pressure in the main pipe line (primary side of the junction of the secondary branch pipe line and the main pipe line) in which the filtering means is inserted and the pressure in the secondary branch pipe line are always maintained in a high pressure state, that is, the high pressure fluid In order to make it always circulate, the 2nd pressure regulation valve which adjusts the pressure in a secondary side branch pipe line should just be provided on a secondary side discharge course. According to this configuration, by adjusting the opening of the second pressure regulating valve, the pressure in the main pipeline (primary side of the junction between the branch pipeline and the main pipeline) and the secondary branch pipeline is in a high pressure state. For example, the high-pressure fluid can be circulated toward the discharge path (secondary discharge path) while maintaining the process pressure.

なお、本発明では、「排出経路」に排出されることによって減圧された流体を回収(および必要により精製)して再利用するようにしてもよいし、あるいは系外に廃棄するようにしてもよい。   In the present invention, the fluid decompressed by being discharged to the “discharge path” may be collected (and purified if necessary) and reused, or may be discarded outside the system. Good.

なお、本発明における「被処理体の表面」とは、高圧処理を施すべき面を意味しており、被処理体が例えば半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、光ディスク用基板などの各種基板である場合、その基板の両主面のうち回路パターンなどが形成された一方主面に対して高圧処理を施す必要がある場合には、該一方主面が本発明の「被処理体の表面」に相当する。また、他方主面に対して高圧処理を施す必要がある場合には、該他方主面が本発明の「被処理体の表面」に相当する。もちろん、両面実装基板のように両主面に対して高圧処理を施す必要がある場合には、両主面が本発明の「被処理体の表面」に相当する。   The “surface of the object to be processed” in the present invention means a surface to be subjected to high pressure treatment, and the object to be processed is, for example, a semiconductor wafer, a glass substrate for photomask, a glass substrate for liquid crystal display, or a plasma display. In the case of various substrates such as a glass substrate and an optical disk substrate, when one main surface on which a circuit pattern or the like is formed out of both main surfaces of the substrate needs to be subjected to high pressure treatment, the one main surface Corresponds to the “surface of the object” of the present invention. Moreover, when it is necessary to perform a high pressure process with respect to the other main surface, this other main surface is equivalent to the "surface of a to-be-processed object" of this invention. Of course, when it is necessary to perform high-pressure processing on both main surfaces as in a double-sided mounting substrate, both main surfaces correspond to the “surface of the object to be processed” of the present invention.

また、本発明における表面処理とは、例えばレジストが付着した半導体基板のように汚染物質が付着している被処理体から、汚染物質を剥離・除去する洗浄処理が代表例としてあげられる。被処理体としては、半導体基板に限定されず、金属、プラスチック、セラミックス等の各種基材の上に、異種物質の非連続または連続層が形成もしくは残留しているようなものが含まれる。また、洗浄処理に限られず、高圧流体を用いて、被処理体上から不要な物質を除去する処理(例えば、乾燥、現像等)は、全て本発明の高圧処理装置の対象とすることができる。   A typical example of the surface treatment in the present invention is a cleaning process for removing and removing contaminants from a target object to which contaminants adhere, such as a semiconductor substrate to which a resist adheres. The object to be processed is not limited to a semiconductor substrate, and includes an object in which a discontinuous or continuous layer of a different substance is formed or remains on various base materials such as metal, plastic, and ceramic. Further, the present invention is not limited to the cleaning process, and all processes (for example, drying, development, etc.) for removing unnecessary substances from the object to be processed using a high-pressure fluid can be targeted by the high-pressure processing apparatus of the present invention. .

また、本発明において、用いられる高圧流体としては、安全性、価格、超臨界状態にするのが容易、といった点で、二酸化炭素が好ましい。二酸化炭素以外には、水、アンモニア、亜酸化窒素、エタノール等も使用可能である。高圧流体を用いるのは、拡散係数が大きく、溶解した汚染物質を媒体中に分散することができるためであり、より高圧にして超臨界流体にした場合には、気体と液体の中間の性質を有するようになって微細なパターン部分にもより一層浸透することができるようになるためである。また、高圧流体の密度は、液体に近く、気体に比べて遥かに大量の添加剤(薬剤)を含むことができる。   In the present invention, the high-pressure fluid used is preferably carbon dioxide from the viewpoints of safety, cost, and easy supercritical state. In addition to carbon dioxide, water, ammonia, nitrous oxide, ethanol and the like can also be used. The high pressure fluid is used because it has a large diffusion coefficient and can disperse dissolved contaminants in the medium. This is because it becomes possible to penetrate even fine pattern portions. Further, the density of the high-pressure fluid is close to that of a liquid and can contain a much larger amount of additives (drugs) than gas.

ここで、本発明における高圧流体とは1MPa以上の圧力の流体である。好ましく用いることのできる高圧流体は、高密度、高溶解性、低粘度、高拡散性の性質が認められる流体であり、さらに好ましいものは超臨界状態または亜臨界状態の流体である。二酸化炭素を超臨界流体とするには31゜C、7.4MPa以上とすればよく、特に洗浄工程には、プロセス圧として5〜30MPaの亜臨界または超臨界流体を用いることが好ましく、7.4〜30MPaで処理を行うことがより好ましい。   Here, the high-pressure fluid in the present invention is a fluid having a pressure of 1 MPa or more. The high-pressure fluid that can be preferably used is a fluid in which high-density, high-solubility, low-viscosity, and high-diffusibility properties are observed, and more preferable is a fluid in a supercritical state or a subcritical state. In order to use carbon dioxide as a supercritical fluid, the temperature may be 31 ° C. and 7.4 MPa or higher. In the cleaning process, it is preferable to use a subcritical or supercritical fluid having a process pressure of 5 to 30 MPa. More preferably, the treatment is performed at 4 to 30 MPa.

また、濾過手段によって濾過された高圧流体(濾過済高圧流体)に適宜薬剤を添加することによって、高圧処理を行うようにしてもよい。また、高圧流体に適宜薬剤を添加した混合物を濾過手段によって濾過した処理流体(濾過済処理流体)によって高圧処理を行うようにしてもよい。高圧流体に薬剤を添加する場合において、薬剤としての洗浄成分が高圧流体に対して溶解度が低い場合には、この洗浄成分を高圧流体に溶解もしくは均一分散させる助剤となり得る相溶化剤を用いることが好ましい。特に、二酸化炭素の超臨界流体に対し、薬剤が水分を含む場合には、薬剤の難溶化が顕著となるケースもある。相溶化剤は、複数の成分を混合した薬剤に関し、用いる高圧流体に対し溶解性が悪い場合には、この薬剤と高圧流体との相溶性を改善する。この相溶化剤は、洗浄工程終了後のリンス工程で、付着・残留した薬剤を除去する作用も有している。   Moreover, you may make it perform a high pressure process by adding a chemical | medical agent suitably to the high pressure fluid (filtered high pressure fluid) filtered by the filtration means. Alternatively, the high pressure treatment may be performed with a treatment fluid (filtered treatment fluid) obtained by filtering a mixture obtained by appropriately adding a chemical to the high pressure fluid by a filtration means. When adding a chemical to a high-pressure fluid, if the cleaning component as a chemical has low solubility in the high-pressure fluid, use a compatibilizing agent that can aid in dissolving or uniformly dispersing the cleaning component in the high-pressure fluid. Is preferred. In particular, in the case where the drug contains water with respect to the supercritical fluid of carbon dioxide, there are cases where the drug hardly becomes soluble. The compatibilizing agent improves the compatibility between the medicine and the high-pressure fluid when the solubility of the medicine mixed with a plurality of components is poor with respect to the high-pressure fluid used. This compatibilizing agent also has an action of removing the adhered / residual drug in the rinsing process after the cleaning process.

この発明によれば、処理チャンバーの圧力状態に関わらず、処理チャンバーの一次側に配設された濾過手段は高圧流体によって満たされ続けることによって常に高圧状態に保持されている。そのため、処理チャンバーにおいて昇圧動作と減圧動作を繰り返した場合であっても、濾過手段によって捕捉された不要物質が高圧流体中に吐き出されるのが防止される。その結果、清浄度の高い高圧流体あるいは高圧流体と薬剤との混合物を処理流体として処理チャンバーに安定して供給することができる。   According to the present invention, regardless of the pressure state of the processing chamber, the filtering means disposed on the primary side of the processing chamber is always kept in a high pressure state by being continuously filled with the high pressure fluid. Therefore, even when the pressure increasing operation and the pressure reducing operation are repeated in the processing chamber, unnecessary substances captured by the filtering means are prevented from being discharged into the high pressure fluid. As a result, a high-purity fluid with a high cleanliness or a mixture of a high-pressure fluid and a chemical can be stably supplied to the processing chamber as a processing fluid.

<第1実施形態>
図1は、この発明にかかる高圧処理装置の第1実施形態を示す図である。また、図2は、図1の高圧処理装置の電気的構成を示すブロック図である。この高圧処理装置は、圧力容器1の内部に形成される処理チャンバー11に超臨界二酸化炭素を処理流体として導入し、その処理チャンバー11において保持されている略円形の半導体ウエハなどの基板(被処理体)に対して所定の洗浄処理を行う装置である。以下、その構成および動作について詳細に説明する。
<First Embodiment>
FIG. 1 is a diagram showing a first embodiment of a high-pressure processing apparatus according to the present invention. FIG. 2 is a block diagram showing an electrical configuration of the high-pressure processing apparatus of FIG. This high-pressure processing apparatus introduces supercritical carbon dioxide as a processing fluid into a processing chamber 11 formed inside the pressure vessel 1, and a substrate such as a substantially circular semiconductor wafer (processing object) held in the processing chamber 11. This is a device that performs a predetermined cleaning process on the body. Hereinafter, the configuration and operation will be described in detail.

この高圧処理装置では、本発明の「高圧流体」として超臨界二酸化炭素(以下「SCF」という)を圧力容器1に圧送する高圧流体供給ユニット2と、高圧流体供給ユニット2から圧送される高圧流体の流路を高圧弁V1〜V4の開閉,圧力調整弁PCV1およびPCV2の開度調整により制御する流路制御ユニット3と、洗浄処理に使用された高圧流体などを回収して貯留する貯留部4とが設けられている。また、圧力容器1と貯留部4の間には、圧力調整弁PCV3が設けられている。   In this high-pressure processing apparatus, a high-pressure fluid supply unit 2 that pumps supercritical carbon dioxide (hereinafter referred to as “SCF”) to the pressure vessel 1 as a “high-pressure fluid” of the present invention, and a high-pressure fluid that is pumped from the high-pressure fluid supply unit 2. The flow path control unit 3 that controls the flow path of the high pressure valves V1 to V4 by opening and closing the pressure control valves PCV1 and PCV2, and the storage section 4 that collects and stores the high-pressure fluid used for the cleaning process. And are provided. Further, a pressure regulating valve PCV 3 is provided between the pressure vessel 1 and the storage unit 4.

この高圧流体供給ユニット2は、高圧流体貯留タンク21と高圧ポンプ22を備えている。上記のように高圧流体として、超臨界状態の二酸化炭素を用いる場合、高圧流体貯留タンク21には、通常、液化二酸化炭素が貯留されている。また、過冷却器(図示せず)で予め流体を冷却して、高圧ポンプ22内でのガス化を防止してもよい。そして、該流体を高圧ポンプ22で加圧すれば高圧液化二酸化炭素を得ることができる。また、高圧ポンプ22の出口側は第1ヒータ23、開閉弁(高圧弁)V2、ファイナルフィルタ24、開閉弁(高圧弁)V4および第2ヒータ25を介挿してなる主管路(高圧配管)26により圧力容器1に接続されている。このように、開閉弁V2はファイナルフィルタ24の一次側に配設され、本発明の「一次側開閉弁」として機能する一方で、開閉弁V4はファイナルフィルタ24の二次側に配設され、本発明の「二次側開閉弁」として機能する。そして、装置全体を制御するコントローラ8からの開閉指令に応じて開閉弁V2,V4を開くことで、高圧ポンプ22で加圧された高圧液化二酸化炭素を第1ヒータ23により加熱して高圧流体としてSCFを得て、このSCFをファイナルフィルタ24によって濾過して圧力容器1に直接的に圧送する。これにより、SCFに含まれているパーティクル等の不要物質が除去されてSCF(濾過済SCF)が処理チャンバー11に導入される。このように、この実施形態では、ファイナルフィルタ24が、本発明の「濾過手段」として機能している。なお、第2ヒータ25は、高圧流体が所定のプロセス温度未満に温度低下した場合に、加熱して高圧流体を加熱して高圧流体をSCFとして圧力容器1に供給するために設けられている。また、流路制御ユニット3とコントローラ8が本発明の「流路制御手段」として機能する。   The high-pressure fluid supply unit 2 includes a high-pressure fluid storage tank 21 and a high-pressure pump 22. As described above, when supercritical carbon dioxide is used as the high-pressure fluid, the high-pressure fluid storage tank 21 normally stores liquefied carbon dioxide. Further, the fluid may be cooled in advance by a supercooler (not shown) to prevent gasification in the high-pressure pump 22. If the fluid is pressurized by the high-pressure pump 22, high-pressure liquefied carbon dioxide can be obtained. The outlet side of the high-pressure pump 22 is a main line (high-pressure pipe) 26 including a first heater 23, an on-off valve (high-pressure valve) V 2, a final filter 24, an on-off valve (high-pressure valve) V 4 and a second heater 25. Is connected to the pressure vessel 1. Thus, the on-off valve V2 is disposed on the primary side of the final filter 24 and functions as the “primary-side on-off valve” of the present invention, while the on-off valve V4 is disposed on the secondary side of the final filter 24, It functions as the “secondary opening / closing valve” of the present invention. Then, by opening the on-off valves V2 and V4 in response to an opening / closing command from the controller 8 that controls the entire apparatus, the high-pressure liquefied carbon dioxide pressurized by the high-pressure pump 22 is heated by the first heater 23 and used as a high-pressure fluid. SCF is obtained, and this SCF is filtered by the final filter 24 and directly pumped to the pressure vessel 1. Thereby, unnecessary substances such as particles contained in the SCF are removed, and SCF (filtered SCF) is introduced into the processing chamber 11. Thus, in this embodiment, the final filter 24 functions as the “filtering means” of the present invention. The second heater 25 is provided for heating and heating the high-pressure fluid to supply the high-pressure fluid to the pressure vessel 1 as SCF when the temperature of the high-pressure fluid drops below a predetermined process temperature. Further, the flow path control unit 3 and the controller 8 function as the “flow path control means” of the present invention.

処理チャンバー11の一次側に配設されるファイナルフィルタ(以下、単に「フィルタ」という)24としては、高圧状態に適したフィルタ(高圧用フィルタ)を用いるのが好ましい。具体的には、低圧状態に適したフィルタ(低圧用フィルタ)は、低圧状態(低密度時)における粒子の拡散によって粒子を濾過材に捕捉(吸着)し易いように構成されており、フィルタの捕捉効率は向上する傾向にあるものの、このように捕捉された粒子は高圧状態(高密度時)では濾過材から容易に脱離してSCF(高圧流体)中に吐き出されてしまう。その一方で、高圧用フィルタは、その濾過メカニズムとして、粒子の拡散による濾過材への捕捉に代えて、濾過材の空隙による粒子の捕捉(濾過材の空隙より大きなサイズの粒子は通過できず、捕捉される)を主体として設計されている。このため、高圧用フィルタを用いることによって、このような粒子の捕捉ならびに吐き出しを抑制することができる。   As the final filter (hereinafter simply referred to as “filter”) 24 disposed on the primary side of the processing chamber 11, it is preferable to use a filter suitable for a high pressure state (high pressure filter). Specifically, a filter suitable for a low-pressure state (low-pressure filter) is configured to easily capture (adsorb) particles on a filter medium by diffusion of particles in a low-pressure state (low density). Although the trapping efficiency tends to improve, the particles trapped in this way are easily detached from the filter medium and discharged into the SCF (high pressure fluid) in a high pressure state (at high density). On the other hand, the high-pressure filter, as its filtration mechanism, instead of trapping the filter medium by the diffusion of particles, trapping particles by the filter medium gap (particles larger than the filter medium gap cannot pass, It is designed to be captured mainly). For this reason, by using a high-pressure filter, it is possible to suppress the capture and discharge of such particles.

一方、高圧用フィルタを用いて低圧状態の流体(例えば気体)と高圧流体の互いに密度の異なる流体を流通させた場合には、次のような問題がある。すなわち、低圧状態で濾過材の空隙サイズよりも小さなサイズの粒子が濾過材に捕捉(吸着)される一方で、高圧状態(高密度時)となったときにそれらが脱離してフィルタの二次側に出現する場合がある。また、場合によってはこれらの脱離した小さなサイズの粒子が凝集して大きなサイズの粒子へと変貌を遂げることもある。したがって、後述するようにして、フィルタ24を高圧状態に保持してフィルタ24における圧力変動を防止することが重要となっている。   On the other hand, when a low-pressure fluid (for example, gas) and a high-pressure fluid having different densities are circulated using a high-pressure filter, there are the following problems. In other words, particles having a size smaller than the pore size of the filter medium are trapped (adsorbed) by the filter medium in the low pressure state, but they are desorbed when the high pressure state (at high density) is reached and the secondary of the filter. May appear on the side. In some cases, these detached small-sized particles may aggregate and transform into large-sized particles. Therefore, as described later, it is important to keep the filter 24 in a high pressure state to prevent pressure fluctuations in the filter 24.

主管路26からは2本の分岐管路(高圧配管)27,28が分岐している。これらのうち一方の分岐管路27(本発明の「一次側分岐管路」に相当)は開閉弁V2の一次側、詳しくは第1ヒータ23と開閉弁V2との間において主管路26から分岐して排出ライン41(一次側排出経路)に繋がっている。分岐管路27と排出ライン41との間には、排出ライン41への流路を開閉する開閉弁V1が本発明の「排出側開閉弁」として設置されるとともに、排出ライン41上に分岐管路27内の圧力を調整する圧力調整弁PCV1が本発明の「第1圧力調整弁」として設置されている。排出ライン41は貯留部4と接続されており、排出ライン41に排出されたSCFは減圧されることによってガス化され、貯留部4に回収され必要に応じて再利用される。また、回収することなく、排出ライン41からそのまま廃棄するようにしてもよい。なお、開閉弁V1と開閉弁V2とは、主管路26と分岐管路27との接合箇所の近傍に設置して一体化してブロックバルブとするのが好ましい。これにより、接合箇所と開閉弁との間に流体の溜りが発生するのが抑制される。   Two branch pipes (high-pressure pipes) 27 and 28 are branched from the main pipe line 26. One of these branch lines 27 (corresponding to the “primary side branch line” of the present invention) branches from the main line 26 between the primary heater 23 and the on-off valve V2, more specifically on the primary side of the on-off valve V2. Thus, it is connected to the discharge line 41 (primary discharge path). Between the branch line 27 and the discharge line 41, an on-off valve V1 that opens and closes the flow path to the discharge line 41 is installed as a “discharge-side on-off valve” of the present invention. A pressure regulating valve PCV1 for regulating the pressure in the passage 27 is installed as the “first pressure regulating valve” of the present invention. The discharge line 41 is connected to the storage unit 4, and the SCF discharged to the discharge line 41 is gasified by being depressurized, collected in the storage unit 4, and reused as necessary. Moreover, you may make it discard from the discharge line 41 as it is, without collect | recovering. Note that the on-off valve V1 and the on-off valve V2 are preferably installed in the vicinity of the joint portion between the main pipe line 26 and the branch pipe line 27 and integrated into a block valve. Thereby, it is suppressed that the accumulation of a fluid generate | occur | produces between a junction location and an on-off valve.

他方の分岐管路28(本発明の「二次側分岐管路」に相当)はフィルタ24の二次側、詳しくはフィルタ24と開閉弁V4との間において主管路26から分岐して排出ライン42(二次側排出経路)に繋がっている。分岐管路28と排出ライン42との間には、排出ライン42への流路を開閉する開閉弁V3が設置されるとともに、排出ライン42上に分岐管路28内の圧力を調整する圧力調整弁PCV2が本発明の「第2圧力調整弁」として設置されている。排出ライン42は貯留部4と接続されており、貯留部4に回収され必要に応じて再利用あるいは排出ライン42から廃棄される。なお、開閉弁V3と開閉弁V4についても、開閉弁V1、V2と同様な理由から、主管路26と分岐管路28との接合箇所の近傍に設置して一体化してブロックバルブとするのが好ましい。   The other branch pipe 28 (corresponding to the “secondary branch pipe” of the present invention) branches from the main pipe 26 between the secondary side of the filter 24, more specifically between the filter 24 and the on-off valve V4. 42 (secondary discharge route). An on-off valve V3 for opening and closing the flow path to the discharge line 42 is installed between the branch line 28 and the discharge line 42, and pressure adjustment for adjusting the pressure in the branch line 28 on the discharge line 42 The valve PCV2 is installed as the “second pressure regulating valve” of the present invention. The discharge line 42 is connected to the storage unit 4 and is collected in the storage unit 4 and reused or discarded from the discharge line 42 as necessary. The on-off valve V3 and the on-off valve V4 are also installed in the vicinity of the junction between the main pipe line 26 and the branch pipe line 28 for the same reason as the on-off valves V1 and V2, and are integrated into a block valve. preferable.

圧力容器1は高圧配管5により貯留部4と連通されている。また、この高圧配管5には圧力調整弁PCV3が介挿されている。このため、圧力調整弁PCV3を開くと、圧力容器1内の処理流体などが貯留部4に排出される一方、圧力調整弁PCV3を閉じると、圧力容器1に処理流体を閉じ込めることができる。また、圧力調整弁PCV3の開閉制御により処理チャンバー11内の圧力を調整することも可能である。   The pressure vessel 1 is communicated with the storage unit 4 by a high-pressure pipe 5. In addition, a pressure regulating valve PCV3 is inserted in the high-pressure pipe 5. For this reason, when the pressure regulating valve PCV3 is opened, the processing fluid and the like in the pressure vessel 1 are discharged to the storage unit 4, while when the pressure regulating valve PCV3 is closed, the processing fluid can be confined in the pressure vessel 1. It is also possible to adjust the pressure in the processing chamber 11 by opening / closing control of the pressure regulating valve PCV3.

貯留部4としては、例えば気液分離容器等を設ければ良く、気液分離容器を用いてSCFを気体部分と液体部分とに分離し、別々の経路を通して廃棄する。あるいは、各成分を回収(および必要により精製)して再利用してもよい。なお、気液分離容器により分離された気体成分と液体成分は、別々の経路を通して系外へ排出してもよい。   As the storage unit 4, for example, a gas-liquid separation container or the like may be provided, and the SCF is separated into a gas part and a liquid part using the gas-liquid separation container and discarded through separate paths. Alternatively, each component may be recovered (and purified if necessary) and reused. The gas component and the liquid component separated by the gas-liquid separation container may be discharged out of the system through separate paths.

次に、上記のように構成された高圧処理装置の動作について図3および図4を参照しつつ説明する。図3は、図1の高圧処理装置の動作を示すタイミングチャートである。また、図4は、図1の高圧処理装置の動作を模式的に示す図である。ここでは、処理チャンバー11に対して被処理体たる基板を連続的に(あるいは断続的に)交換しながら処理流体として高圧流体を用いて洗浄処理する場合について説明する。   Next, the operation of the high-pressure processing apparatus configured as described above will be described with reference to FIGS. FIG. 3 is a timing chart showing the operation of the high-pressure processing apparatus of FIG. FIG. 4 is a diagram schematically showing the operation of the high-pressure processing apparatus of FIG. Here, a case will be described in which the processing chamber 11 is subjected to a cleaning process using a high-pressure fluid as a processing fluid while continuously (or intermittently) replacing a substrate to be processed.

図4(a)は、このように連続的に基板を交換しながら処理する中で、基板に対する洗浄処理が完了し、処理チャンバー11より基板を搬出した後の状態を示している。このとき、フィルタ24は基板を洗浄処理する際におけるプロセス圧と同等の圧力のSCFによって封止されている。具体的には、フィルタ24の一次側に配設された開閉弁V2とフィルタ24の二次側に配設された開閉弁V4とが閉状態とされることで、主管路26のうち開閉弁V2と開閉弁V4との間がSCFで満たされ高圧状態に保持されている。さらには、分岐管路28内がSCFで満たされることによって高圧状態に保持されている。ここで、開閉弁V3は開かれ、圧力調整弁PCV2は制御ONとされ、SCFで満たされた管内の圧力を所定圧(例えば異常な高圧)以下となるよう制御している。すなわち、管内の圧力が所定圧以下であれば、閉状態となっているが、何らかの要因で管内の圧力が上昇した場合に、所定圧まで管内の圧力を抜くことによって配管の破裂等を防いでいる。いわゆる安全弁の代替として機能している。なお、高圧弁V1は閉じられるとともに,圧力調整弁PCV1,PCV3は制御OFFにして閉じられている。また、高圧ポンプ22も停止状態にある。   FIG. 4A shows a state after the cleaning process for the substrate is completed and the substrate is unloaded from the processing chamber 11 while processing is performed while continuously exchanging the substrate. At this time, the filter 24 is sealed with SCF having a pressure equivalent to the process pressure when the substrate is cleaned. Specifically, the on-off valve V2 disposed on the primary side of the filter 24 and the on-off valve V4 disposed on the secondary side of the filter 24 are closed, so that the on-off valve in the main pipeline 26 is closed. The space between V2 and the on-off valve V4 is filled with SCF and maintained in a high pressure state. Furthermore, the inside of the branch conduit 28 is maintained at a high pressure by being filled with SCF. Here, the on-off valve V3 is opened, the pressure regulating valve PCV2 is turned on, and the pressure in the pipe filled with SCF is controlled to be equal to or lower than a predetermined pressure (for example, an abnormal high pressure). In other words, if the pressure in the pipe is less than or equal to the predetermined pressure, the pipe is closed, but if the pressure in the pipe rises for some reason, it can prevent the pipe from rupturing by extracting the pressure in the pipe to the predetermined pressure. Yes. It functions as a substitute for the so-called safety valve. The high pressure valve V1 is closed, and the pressure regulating valves PCV1 and PCV3 are closed with control OFF. The high-pressure pump 22 is also in a stopped state.

このような状態を初期状態として、産業用ロボット等のハンドリング装置や搬送機構により未処理基板が処理チャンバー11に搬入されると、処理チャンバー11を閉じて処理準備を完了する。まず、タイミングT1で開閉弁V1を開いてSCFを高圧流体供給ユニット2から分岐管路27に向けて圧送可能な状態するとともに圧力調整弁PCV1を制御ON(圧力調整動作を実行)にして、高圧ポンプ22を稼動させる。これによりSCFが分岐管路27に圧送されていき、分岐管路27内および主管路26のうち開閉弁V2の一次側の管路内の圧力が徐々に上昇していく(図4(b))。このとき圧力調整弁PCV1を部分的に開状態としながらプロセス圧まで昇圧するようにしてもよいし、圧力調整弁PCV1を閉状態としてプロセス圧まで昇圧後、開度を調整してプロセス圧に圧力を維持するようにしてもよい。   With such a state as an initial state, when an unprocessed substrate is carried into the processing chamber 11 by a handling device such as an industrial robot or a transport mechanism, the processing chamber 11 is closed to complete processing preparation. First, at timing T1, the on-off valve V1 is opened so that the SCF can be pumped from the high-pressure fluid supply unit 2 toward the branch pipe 27, and the pressure adjustment valve PCV1 is set to control ON (pressure adjustment operation is performed) to increase the pressure. The pump 22 is operated. As a result, the SCF is pumped to the branch pipe 27 and the pressure in the branch pipe 27 and the pipe on the primary side of the on-off valve V2 in the main pipe 26 gradually increases (FIG. 4B). ). At this time, the pressure adjustment valve PCV1 may be partially opened and the pressure may be increased to the process pressure. Alternatively, the pressure adjustment valve PCV1 may be closed and the pressure may be increased to the process pressure. May be maintained.

このように、主管路26(開閉弁V2の一次側)内の圧力が低いうちは、フィルタ24に低圧状態の流体を流通させないようにしている。その一方で、高圧状態の流体(SCF)をフィルタ24に流通させるべく、分岐管路27を利用して主管路26(開閉弁V2の一次側)内を昇圧させている。   Thus, while the pressure in the main pipeline 26 (primary side of the on-off valve V2) is low, the low-pressure fluid is prevented from flowing through the filter 24. On the other hand, in order to circulate the high-pressure fluid (SCF) through the filter 24, the pressure in the main pipeline 26 (primary side of the on-off valve V2) is increased using the branch pipeline 27.

こうして、主管路26(開閉弁V2の一次側)内の圧力がプロセス圧に到達すると(タイミングT2)、開閉弁V1を閉じる一方で、開閉弁V2を開く。これにより、SCFはフィルタ24を通じて分岐管路28の方へ流れ、制御ON(部分的に開状態)とされた圧力調整弁PCV2を介して管内の圧力を高圧状態(プロセス圧)に保持したまま排出ライン42に排出されていく(図4(c))。これにより、封止により継続して流れのなかったフィルタ24周りのSCFが新たに高圧流体供給ユニット2から送り込まれるSCFによって置換され、SCFの流れによって慣らされる。ここで、図5に示すように、分岐管路28において開閉弁V3と圧力調整弁PCV2との間に、パーティクル数をカウントするモニタ手段6をインラインで設けて、パーティクル数が所定値以下に安定するまでは、分岐管路28を介してSCFを排出ライン42に排出し続けるようにしてもよい。なお、このような慣らし工程が不要である場合には、割愛してもよい。   Thus, when the pressure in the main line 26 (primary side of the on-off valve V2) reaches the process pressure (timing T2), the on-off valve V1 is closed while the on-off valve V2 is opened. As a result, the SCF flows toward the branch line 28 through the filter 24, and the pressure in the pipe is maintained at a high pressure state (process pressure) via the pressure regulating valve PCV2 which is controlled ON (partially opened). It is discharged to the discharge line 42 (FIG. 4C). As a result, the SCF around the filter 24 that has not flowed continuously due to sealing is replaced by the SCF newly fed from the high-pressure fluid supply unit 2, and is made accustomed by the flow of SCF. Here, as shown in FIG. 5, a monitoring means 6 for counting the number of particles is provided in-line between the on-off valve V3 and the pressure regulating valve PCV2 in the branch pipe 28, so that the number of particles is stabilized to a predetermined value or less. Until then, the SCF may continue to be discharged to the discharge line 42 via the branch line 28. In addition, when such a break-in process is unnecessary, you may omit.

また、このとき圧力調整弁PCV1を全開とすることで、開閉弁V1と圧力調整弁PCV1との間の分岐管路27内のSCFを排出ライン41に排出して分岐管路27内を減圧しておく。なお、分岐管路27内の減圧後は圧力調整弁PCV1を制御OFFにして閉じておく。   At this time, by fully opening the pressure regulating valve PCV1, the SCF in the branch line 27 between the on-off valve V1 and the pressure regulating valve PCV1 is discharged to the discharge line 41 to reduce the pressure in the branch line 27. Keep it. Note that after the pressure in the branch line 27 is reduced, the pressure regulating valve PCV1 is turned off and closed.

そして、次のタイミングT3で開閉弁V3を閉じて、開閉弁V4を開くことにより、フィルタ24を通じて濾過されたSCF(濾過済SCF)が圧力容器1に送り込まれる。その際、開閉弁V4として、単なる開閉弁ではなく、圧力調整弁を用い、閉状態から開状態へと、開閉弁V4より一次側の圧力が一時的に低下することのないよう、徐々に開けていってもよい。これにより、フィルタ24における圧低下をより確実に防止できる。こうして、SCFが処理チャンバー11に流入し、処理チャンバー11の圧力が徐々に上昇していく。このとき、圧力調整弁PCV3をコントローラ8からの開閉指令に応じて開閉制御することで処理チャンバー11の圧力が一定、例えば20MPa程度のプロセス圧に保たれる。なお、この開閉制御による圧力調整は後で説明する減圧処理が完了するまで継続される。こうして、処理チャンバー11に収容された基板に対してSCFによる表面処理(洗浄処理)が実行される(図4(d))。さらに処理チャンバー11の温度調整が必要な場合は圧力容器1の近傍に設けた加熱器(図示せず)により、洗浄処理に適した温度に設定する。   Then, at the next timing T3, the on-off valve V3 is closed and the on-off valve V4 is opened, so that SCF filtered through the filter 24 (filtered SCF) is fed into the pressure vessel 1. At this time, as the on-off valve V4, a pressure regulating valve is used instead of a simple on-off valve, and the valve is gradually opened from the closed state to the open state so that the pressure on the primary side from the on-off valve V4 is not temporarily reduced. May be. Thereby, the pressure drop in the filter 24 can be prevented more reliably. Thus, SCF flows into the processing chamber 11, and the pressure in the processing chamber 11 gradually increases. At this time, the pressure of the processing chamber 11 is kept constant, for example, a process pressure of about 20 MPa, by controlling the pressure regulating valve PCV3 according to an opening / closing command from the controller 8. The pressure adjustment by the opening / closing control is continued until the decompression process described later is completed. Thus, the surface treatment (cleaning treatment) by the SCF is performed on the substrate accommodated in the treatment chamber 11 (FIG. 4D). Further, when it is necessary to adjust the temperature of the processing chamber 11, a temperature suitable for the cleaning process is set by a heater (not shown) provided in the vicinity of the pressure vessel 1.

また、圧力調整弁PCV2を制御OFFにして閉じておくことで、開閉弁V3と圧力調整弁PCV2との間の排出ライン42内にSCFを封止しておく。すなわち、排出ライン42内には、タイミングT2で流通させたSCFが残留して排出ライン42内が高圧状態に保持される。あるいは圧力調整弁PCV2を制御ONのまま安全弁として機能させてもよい。これにより、分岐配管28内に封止されたSCFが異常な高圧に至るという事故を防ぐことができる。   In addition, the SCF is sealed in the discharge line 42 between the on-off valve V3 and the pressure adjustment valve PCV2 by closing the pressure adjustment valve PCV2 with control off. That is, the SCF circulated at the timing T2 remains in the discharge line 42 and the discharge line 42 is maintained in a high pressure state. Alternatively, the pressure regulating valve PCV2 may function as a safety valve while the control is ON. Thereby, it is possible to prevent an accident that the SCF sealed in the branch pipe 28 reaches an abnormally high pressure.

こうして、基板の洗浄処理が完了すれば、開閉弁V2,V4を閉じて圧力容器1へのSCFの供給を停止させるとともに、高圧ポンプ22を停止してSCFの圧送を停止させる(タイミングT4)。これにより、主管路26のうち開閉弁V2と開閉弁V4との間はSCFによって高圧状態に保持される。また、開閉弁V3を開くとともに圧力調整弁PCV2を制御ONにすることで、開閉弁V2と開閉弁V4との間の主管路26のみならず、分岐管路28内がSCFで満たされ高圧状態に保持される。これにより、フィルタ24はSCFによって封止され、高圧状態のまま保持される。ここで、圧力調整弁PCV2はSCFで満たされた管内の圧力を所定圧(例えば異常な高圧)以下となるよう制御する。   When the substrate cleaning process is thus completed, the on-off valves V2 and V4 are closed to stop the supply of SCF to the pressure vessel 1, and the high-pressure pump 22 is stopped to stop the pumping of SCF (timing T4). Thereby, between the on-off valve V2 and the on-off valve V4 in the main pipeline 26 is maintained in a high pressure state by the SCF. Further, by opening the on-off valve V3 and turning on the pressure regulating valve PCV2, not only the main pipe line 26 between the on-off valve V2 and the on-off valve V4 but also the branch pipe line 28 is filled with SCF and is in a high pressure state. Retained. As a result, the filter 24 is sealed by the SCF and is maintained in a high pressure state. Here, the pressure regulating valve PCV2 controls the pressure in the pipe filled with SCF to be equal to or lower than a predetermined pressure (for example, an abnormal high pressure).

また、処理チャンバー11内のSCFについては、圧力調整弁PCV3を通じて貯留部4に逃がす。すなわち、圧力調整弁PCV3の開閉を制御することで減圧レートをコントロールしながら処理チャンバー11内を常圧(大気圧)に戻す。また、主管路26のうち開閉弁V2より一次側の管路内のSCFは開閉弁V1を開くとともに、圧力調整弁PCV1を全開にすることで分岐管路27を通じて排出ライン41に排出する(図4(e))。その結果、開閉弁V2より一次側の管路および処理チャンバー11を含む開閉弁V4より二次側の管路(経路)が常圧に戻される。   Further, the SCF in the processing chamber 11 is released to the storage unit 4 through the pressure regulating valve PCV3. That is, the inside of the processing chamber 11 is returned to normal pressure (atmospheric pressure) while controlling the pressure reduction rate by controlling the opening and closing of the pressure regulating valve PCV3. In addition, the SCF in the pipeline on the primary side of the main pipe 26 with respect to the open / close valve V2 opens the open / close valve V1 and discharges to the discharge line 41 through the branch pipe 27 by fully opening the pressure regulating valve PCV1 (see FIG. 4 (e)). As a result, the primary line from the open / close valve V2 and the secondary line (path) from the open / close valve V4 including the processing chamber 11 are returned to normal pressure.

そして、上記経路内の圧力が常圧に戻ると、タイミングT5で開閉弁V1を閉じるとともに、圧力調整弁PCV1、PCV3を制御OFFにして閉じておく(図4(f))。こうして、図4(a)に示す状態と同じ状態となって、処理済基板を次の未処理基板に交換することが可能となり、処理チャンバー11を開き、産業用ロボット等のハンドリング装置や搬送機構により処理済基板を搬出する。そして、次の未処理基板が搬入されてくると、上記動作が繰り返されていく。   When the pressure in the path returns to normal pressure, the on-off valve V1 is closed at timing T5, and the pressure regulating valves PCV1, PCV3 are turned off and closed (FIG. 4 (f)). In this way, the same state as shown in FIG. 4A is obtained, and the processed substrate can be replaced with the next unprocessed substrate, the processing chamber 11 is opened, and a handling device such as an industrial robot or a transport mechanism is opened. To carry out the processed substrate. Then, when the next unprocessed substrate is carried in, the above operation is repeated.

ここで、フィルタ24周りの高圧流体は、洗浄処理の終了後、次の未処理基板が搬入されるまでは管路内に留まった状態で保持される。そのため、図6に示すように、待機中のSCFの温度低下を防ぐため、主管路26のうち開閉弁V2と開閉弁V4との間および分岐管路28内に封止された高圧流体を加熱する、インラインヒータ29等の加熱手段を設けて、所望の温度に保温しておくことが好ましい。なお、インラインヒータ29の配設位置については、高圧流体が封止されている経路内のいずれであっても構わない。このように、この実施形態では、インラインヒータ29が、本発明の封止された高圧流体を加熱する「加熱手段」として機能する。   Here, the high-pressure fluid around the filter 24 is held in the pipeline until the next unprocessed substrate is carried in after the completion of the cleaning process. Therefore, as shown in FIG. 6, in order to prevent the temperature of the waiting SCF from decreasing, the high-pressure fluid sealed between the on-off valve V2 and the on-off valve V4 and in the branch pipe 28 in the main pipe line 26 is heated. It is preferable to provide a heating means such as an in-line heater 29 to keep the temperature at a desired temperature. In addition, about the arrangement | positioning position of the inline heater 29, you may be any in the path | route where the high pressure fluid is sealed. Thus, in this embodiment, the in-line heater 29 functions as a “heating means” for heating the sealed high-pressure fluid of the present invention.

以上のように、この実施形態によれば、高圧流体供給ユニット2と圧力容器1とをフィルタ24を介して連通してSCF(高圧流体)を圧力容器1に導く主管路26と、主管路26に介挿されフィルタ24を挟み込むようにフィルタ24の一次側と二次側にそれぞれ開閉弁V2と開閉弁V4とを備え、洗浄処理(表面処理)を実行する際には、開閉弁V2,V4を開いて高圧流体供給ユニット2から圧力容器1にSCFを送り込む一方で、洗浄処理を実行しない間は、開閉弁V2,V4を閉じて開閉弁V2と開閉弁V4との間にSCFを閉じ込めて封止させている。このため、処理チャンバー11が超臨界状態(高圧状態)あるいは大気圧状態(低圧状態)にあるとに関わりなく、フィルタ24がSCFによって満たされ続け、フィルタ24を常に高圧状態に保持することができる。したがって、処理チャンバー11において昇圧動作と減圧動作を繰り返した場合であっても、フィルタ24によって捕捉されたパーティクル等の不要物質がSCF中に吐き出されるのが防止される。その結果、清浄度の高いSCFを処理チャンバー11に供給することができ、基板を良好に洗浄することができる。   As described above, according to this embodiment, the high-pressure fluid supply unit 2 and the pressure vessel 1 are communicated with each other via the filter 24 to lead the SCF (high-pressure fluid) to the pressure vessel 1, and the main pipeline 26 Are provided on the primary side and the secondary side of the filter 24 so as to sandwich the filter 24, and when performing the cleaning process (surface treatment), the on-off valves V2, V4 are provided. Is opened and SCF is sent from the high-pressure fluid supply unit 2 to the pressure vessel 1, while the cleaning process is not executed, the on-off valves V2 and V4 are closed and the SCF is confined between the on-off valves V2 and V4. It is sealed. For this reason, regardless of whether the processing chamber 11 is in a supercritical state (high pressure state) or an atmospheric pressure state (low pressure state), the filter 24 can be continuously filled with the SCF, and the filter 24 can always be kept in the high pressure state. . Therefore, even when the pressure increasing operation and the pressure decreasing operation are repeated in the processing chamber 11, unnecessary substances such as particles captured by the filter 24 are prevented from being discharged into the SCF. As a result, highly clean SCF can be supplied to the processing chamber 11 and the substrate can be cleaned well.

また、この実施形態によれば、高圧流体供給ユニット2から主管路26にSCFの圧送を開始して主管路26(開閉弁V2の一次側)内の圧力がプロセス圧に到達するまでは、フィルタ24をSCFで封止して高圧状態に保持する一方で、主管路26(開閉弁V2の一次側)内の圧力がプロセス圧に到達後は、フィルタ24にSCFを送り込むことによってフィルタ24を高圧状態に保持している。すなわち、主管路26(開閉弁V2の一次側)内が昇圧途中で圧力が低いうちは、低圧状態の流体をフィルタ24に流通させないようにするとともに、分岐管路27を利用して分岐管路27内および主管路26(開閉弁V2の一次側)内の圧力を昇圧してプロセス圧到達後にフィルタ24に高圧状態の流体(SCF)を流通させるようにしているので、昇圧過程に伴ってフィルタ24の圧力状態が変動するのを回避してフィルタ24を常に高圧状態に保持することができる。   Further, according to this embodiment, until the pressure in the main line 26 (primary side of the on-off valve V2) reaches the process pressure from the start of the pressure feeding of the SCF from the high-pressure fluid supply unit 2 to the main line 26, the filter 24 is sealed with SCF and kept in a high pressure state. On the other hand, after the pressure in the main pipe line 26 (primary side of the on-off valve V2) reaches the process pressure, the S24 is fed into the filter 24 to increase the pressure of the filter 24. Held in a state. That is, while the pressure in the main pipe line 26 (primary side of the on-off valve V2) is being increased and the pressure is low, the low-pressure fluid is prevented from flowing through the filter 24, and the branch pipe line 27 is used to make the branch pipe line. 27 and the pressure in the main pipe line 26 (primary side of the on-off valve V2) are increased so that the high-pressure fluid (SCF) flows through the filter 24 after reaching the process pressure. It is possible to keep the filter 24 in a high pressure state by avoiding fluctuations in the pressure state of the 24.

<第2実施形態>
図7は、この発明にかかる高圧処理装置の第2実施形態を示す図である。この実施形態が第1実施形態と大きく相違する点は、第1実施形態では、表面処理を実行しない間は、フィルタ24をSCF(高圧流体)で封止することによって、フィルタ24を常に高圧状態に保持していたのに対して、この第2実施形態では、表面処理を実行しない間もフィルタ24にSCFを流通させることによって、フィルタ24を常に高圧状態に保持している点であり、その他の構成は基本的に第1実施形態と同様である。したがって、同一構成については同一符号を付して説明を省略し、以下のおいては相違点を中心に説明する。
Second Embodiment
FIG. 7 is a diagram showing a second embodiment of the high-pressure processing apparatus according to the present invention. This embodiment is greatly different from the first embodiment. In the first embodiment, the filter 24 is always in a high pressure state by sealing the filter 24 with SCF (high pressure fluid) while the surface treatment is not performed. In contrast, in the second embodiment, the filter 24 is always kept in a high pressure state by passing SCF through the filter 24 even when the surface treatment is not performed. The configuration is basically the same as that of the first embodiment. Therefore, the same components are denoted by the same reference numerals, and the description thereof is omitted. In the following, differences will be mainly described.

この第2実施形態においては、流路制御ユニット3は、第1実施形態で備えられていた開閉弁V2、分岐管路27(一次側分岐管路)を有していない。したがって、分岐管路27を前提に設けれた開閉弁V1、圧力調整弁PCV1および排出ライン41に相当する構成も有していない。そのため、第1実施形態に比較し装置構成が簡素となっている。   In the second embodiment, the flow path control unit 3 does not have the on-off valve V2 and the branch pipe line 27 (primary side branch pipe line) provided in the first embodiment. Therefore, there is no configuration corresponding to the on-off valve V1, the pressure regulating valve PCV1, and the discharge line 41 provided on the premise of the branch pipe line 27. Therefore, the apparatus configuration is simplified compared to the first embodiment.

次に、上記のように構成された高圧処理装置の動作について図8および図9を参照しつつ説明する。図8は、図7の高圧処理装置の動作を示すタイミングチャートである。また、図9は、図7の高圧処理装置の動作を模式的に示す図である。ここでも、処理チャンバー11に対して被処理体たる基板を連続的に(あるいは断続的に)交換しながら洗浄処理する場合について説明する。なお、高圧流体供給ユニット2からは高圧ポンプ22が常時稼動することでSCFが圧送され続けている。   Next, the operation of the high-pressure processing apparatus configured as described above will be described with reference to FIGS. 8 and 9. FIG. 8 is a timing chart showing the operation of the high-pressure processing apparatus of FIG. Moreover, FIG. 9 is a figure which shows typically operation | movement of the high voltage | pressure processing apparatus of FIG. Here, the case where the cleaning process is performed while continuously (or intermittently) exchanging the substrate to be processed with respect to the processing chamber 11 will be described. Note that the SCF continues to be pumped from the high-pressure fluid supply unit 2 by constantly operating the high-pressure pump 22.

図9(a)は、基板に対する洗浄処理を完了し、処理チャンバー11より処理済基板を搬出するとともに次の未処理基板を搬入した直後の状態あるいは処理チャンバー11に基板を搬入して待機している状態を示している。ここでは、開閉弁V3が開かれるとともに開閉弁V4が閉じられることより、高圧流体供給ユニット2から圧送されるSCFはフィルタ24を通じて分岐管路28の方へ流通し、排出ライン42(二次側排出経路)に排出される。圧力調整弁PCV2は制御ON(圧力調整動作を実行)とされ、主管路26(開閉弁V4の一次側)および分岐管路28の管内の圧力は高圧状態(プロセス圧)に保持されている。なお、排出ライン42に排出された流体は減圧され、貯留部4に回収されることによって、必要に応じて精製され再利用される。あるいは排出ライン41から系外にそのまま廃棄される。そして、このような状態を初期状態として未処理基板に対する洗浄処理を実行する。また、開閉弁V4より二次側の経路内は常圧となっており、圧力調整弁PCV3は制御OFFとされ閉じられている。   FIG. 9A shows a state in which the cleaning process for the substrate is completed, the processed substrate is unloaded from the processing chamber 11 and the next unprocessed substrate is loaded, or the substrate is loaded into the processing chamber 11 and waits. It shows the state. Here, the on-off valve V3 is opened and the on-off valve V4 is closed, so that the SCF pumped from the high-pressure fluid supply unit 2 flows through the filter 24 toward the branch pipe 28, and the discharge line 42 (secondary side). To the discharge route). The pressure adjustment valve PCV2 is turned on (execution of pressure adjustment operation), and the pressure in the main pipe 26 (primary side of the on-off valve V4) and the branch pipe 28 is maintained in a high pressure state (process pressure). The fluid discharged to the discharge line 42 is depressurized and collected in the storage unit 4 so that it is purified and reused as necessary. Or it is discarded as it is out of the system from the discharge line 41. Then, a cleaning process is performed on the unprocessed substrate with such a state as an initial state. Further, the pressure on the secondary side of the on-off valve V4 is normal pressure, and the pressure regulating valve PCV3 is closed with the control turned off.

洗浄処理を実行する際には、タイミングT1で開閉弁V4を開くとともに、開閉弁V3を閉じることで、高圧流体供給ユニット2から圧送されるSCFの流路を切換えて、排出ライン42に送り込んでいたSCFを圧力容器1に送り込む。その際、開閉弁V4として、単なる開閉弁ではなく、圧力調整弁を用い、閉状態から開状態へと、開閉弁V4より一次側の圧力が一時的に低下することのないよう、徐々に開けていってもよい。これにより、フィルタ24における圧低下をより確実に防止できる。こうして、SCFは処理チャンバー11に流入し、処理チャンバー11に収容された基板に対してSCFによる表面処理(洗浄処理)が実行される(図9(b))。このとき、圧力調整弁PCV3をコントローラ8からの開閉指令に応じて開閉制御することで処理チャンバー11の圧力が一定、例えば20MPa程度のプロセス圧に保たれる。このように、この実施形態では、開閉弁V3とV4とが、本発明の「切換え手段」として機能している。   When executing the cleaning process, the on-off valve V4 is opened at the timing T1 and the on-off valve V3 is closed, so that the flow path of the SCF pumped from the high-pressure fluid supply unit 2 is switched and sent to the discharge line 42. SCF was sent to the pressure vessel 1. At this time, as the on-off valve V4, a pressure regulating valve is used instead of a simple on-off valve, and the valve is gradually opened from the closed state to the open state so that the pressure on the primary side from the on-off valve V4 is not temporarily reduced. May be. Thereby, the pressure drop in the filter 24 can be prevented more reliably. In this way, the SCF flows into the processing chamber 11, and the surface treatment (cleaning processing) by the SCF is performed on the substrate accommodated in the processing chamber 11 (FIG. 9B). At this time, the pressure of the processing chamber 11 is kept constant, for example, a process pressure of about 20 MPa, by controlling the pressure regulating valve PCV3 according to an opening / closing command from the controller 8. Thus, in this embodiment, the on-off valves V3 and V4 function as the “switching means” of the present invention.

また、このとき圧力調整弁PCV2を全開とすることで、開閉弁V3と圧力調整弁PCV2との間の分岐管路28内のSCFを排出ライン42に排出して分岐管路28内を減圧しておく。あるいは圧力調整弁PCV2を制御ONのままとし、SCFを封止して分岐管路28内を所定圧に保ち続けてもよい。   At this time, by fully opening the pressure regulating valve PCV2, the SCF in the branch pipe 28 between the on-off valve V3 and the pressure regulating valve PCV2 is discharged to the discharge line 42 to reduce the pressure in the branch pipe 28. Keep it. Alternatively, the pressure regulating valve PCV2 may be left in the control ON state, and the SCF may be sealed to keep the inside of the branch pipe line 28 at a predetermined pressure.

こうして、基板の洗浄処理が完了すれば、開閉弁V3を開くとともに、開閉弁V4を閉じることで、高圧流体供給ユニット2から圧送されるSCFの流路を切換えて、圧力容器1に送り込んでいたSCFを分岐管路28を介して排出ライン42に送り込む(タイミングT2)。このとき、圧力調整弁PCV2は制御ONとされ、主管路26(開閉弁V4の一次側)および分岐管路28の管内の圧力は高圧状態(プロセス圧)に保持され続ける。また、処理チャンバー11内のSCFについては、圧力調整弁PCV3を通じて貯留部4に逃がす。すなわち、圧力調整弁PCV3の開閉を制御することで減圧レートをコントロールしながら処理チャンバー11を常圧(大気圧)に戻す(図9(c))。   Thus, when the substrate cleaning process is completed, the on-off valve V3 is opened and the on-off valve V4 is closed, so that the flow path of the SCF pumped from the high-pressure fluid supply unit 2 is switched and sent to the pressure vessel 1. SCF is fed into the discharge line 42 via the branch line 28 (timing T2). At this time, the pressure adjustment valve PCV2 is turned on, and the pressures in the main line 26 (primary side of the on-off valve V4) and the branch line 28 are kept at a high pressure (process pressure). Further, the SCF in the processing chamber 11 is released to the storage unit 4 through the pressure regulating valve PCV3. That is, the process chamber 11 is returned to normal pressure (atmospheric pressure) while controlling the pressure reduction rate by controlling the opening and closing of the pressure regulating valve PCV3 (FIG. 9C).

そして、処理チャンバー11の圧力が常圧に戻ると、タイミングT3で圧力調整弁PCV3を制御OFFにして閉じておく(図9(d))。なお、高圧流体供給ユニット2から圧送されるSCFはフィルタ24を通して分岐管路28に流れ、排出ライン42に排出され続けている。こうして、図9(a)に示す状態と同じ状態となって、処理済基板を次の未処理基板に交換することが可能となり、処理チャンバー11を開き、処理済基板を搬出する。そして、次の未処理基板が搬入されてくると、上記動作が繰り返されていく。   Then, when the pressure in the processing chamber 11 returns to normal pressure, the pressure regulating valve PCV3 is controlled to be closed at timing T3 (FIG. 9D). The SCF pumped from the high-pressure fluid supply unit 2 flows through the filter 24 to the branch pipe 28 and continues to be discharged to the discharge line 42. Thus, the same state as shown in FIG. 9A is obtained, and the processed substrate can be replaced with the next unprocessed substrate. The processing chamber 11 is opened and the processed substrate is unloaded. Then, when the next unprocessed substrate is carried in, the above operation is repeated.

以上のように、この実施形態によれば、高圧流体供給ユニット2と圧力容器1とをフィルタ24を介して連通してSCF(高圧流体)を圧力容器1に導く主管路26と、フィルタ24の二次側において主管路26から分岐され、SCFを排出する排出ライン42に繋がる分岐管路28と、高圧流体供給ユニット2から圧送されるSCFの流路を切換えてSCFを圧力容器1と排出経路28とに選択的に送り込む開閉弁V3,V4(切換え手段)とを備え、開閉弁V3,V4を制御して、洗浄処理(表面処理)を実行する際には、圧力容器1にSCFを送り込む一方で、洗浄処理を実行しない間は、排出ライン42にSCFを送り込んでいる。このため、処理チャンバー11が超臨界状態(高圧状態)あるいは大気圧状態(低圧状態)にあるとに関わりなく、フィルタ24にSCFが常時流通し続け、フィルタ24を常に高圧状態に保持することができる。したがって、処理チャンバー11において昇圧動作と減圧動作を繰り返した場合であっても、フィルタ24によって捕捉されたパーティクル等の不要物質がSCF中に吐き出されるのが防止される。その結果、清浄度の高いSCFを処理チャンバー11に供給することができ、基板を良好に洗浄することができる。   As described above, according to this embodiment, the high-pressure fluid supply unit 2 and the pressure vessel 1 are communicated with each other via the filter 24 to lead the SCF (high-pressure fluid) to the pressure vessel 1 and the filter 24. On the secondary side, the branch line 28 branched from the main line 26 and connected to the discharge line 42 for discharging SCF, and the flow path of the SCF pumped from the high-pressure fluid supply unit 2 are switched so that the SCF is discharged from the pressure vessel 1 and the discharge path. On-off valves V3 and V4 (switching means) that are selectively sent to 28 and control the on-off valves V3 and V4 to send SCF into the pressure vessel 1 when performing a cleaning process (surface treatment). On the other hand, SCF is sent to the discharge line 42 while the cleaning process is not executed. For this reason, regardless of whether the processing chamber 11 is in a supercritical state (high pressure state) or an atmospheric pressure state (low pressure state), the SCF can always flow through the filter 24 and the filter 24 can always be kept in a high pressure state. it can. Therefore, even when the pressure increasing operation and the pressure decreasing operation are repeated in the processing chamber 11, unnecessary substances such as particles captured by the filter 24 are prevented from being discharged into the SCF. As a result, highly clean SCF can be supplied to the processing chamber 11 and the substrate can be cleaned well.

また、この実施形態によれば、フィルタ24にSCFを常時流通させながらフィルタ24を高圧状態に保持しているので、SCFの滞留による淀みを回避することができる。   In addition, according to this embodiment, since the filter 24 is held in a high pressure state while constantly passing SCF through the filter 24, it is possible to avoid stagnation due to SCF retention.

<その他>
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、フィルタ24を洗浄処理(表面処理)を施す際におけるプロセス圧に保持しているが、これに限定されず、プロセス圧より大きな圧力で保持するようにしてもよい。例えば、上記第2実施形態では、分岐管路28にSCFを送り込む際に、主管路26(開閉弁V4の一次側)および分岐管路28の管内の圧力がプロセス圧より大きくなるように、圧力調整弁PCV2によって管内圧力を調整すればよい。このように構成しても、フィルタ24がプロセス圧以上の高圧状態に保持されることで、フィルタ24に捕捉された不要物質の高圧流体への吐き出しを防止することができる。
<Others>
The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the filter 24 is held at the process pressure when the cleaning process (surface treatment) is performed. However, the present invention is not limited to this, and the filter 24 may be held at a pressure higher than the process pressure. For example, in the second embodiment, when the SCF is fed into the branch pipe 28, the pressure in the main pipe 26 (primary side of the open / close valve V4) and the pressure in the pipe of the branch pipe 28 is larger than the process pressure. The in-pipe pressure may be adjusted by the regulating valve PCV2. Even if comprised in this way, the discharge | emission to the high pressure fluid of the unnecessary substance trapped by the filter 24 can be prevented because the filter 24 is hold | maintained in the high pressure state more than a process pressure.

また、上記実施形態では、SCF(超臨界二酸化炭素)のみにより、基板の洗浄処理を実行しているが、例えば、図10に示すように、洗浄成分を含有した薬剤(添加剤)をSCFに添加して基板の洗浄処理を実行してもよい(第3実施形態)。このような薬剤を添加したSCF(高圧流体と薬剤との混合物)を処理流体として用いることにより洗浄力を高めることができる。例えば、第1実施形態にかかる高圧処理装置に薬剤を添加する場合には、次のように構成することができる。   In the above embodiment, the substrate cleaning process is executed only by SCF (supercritical carbon dioxide). For example, as shown in FIG. 10, a chemical (additive) containing a cleaning component is added to the SCF. The substrate may be added to perform a cleaning process (third embodiment). Detergency can be increased by using SCF (a mixture of a high-pressure fluid and a drug) to which such a drug is added as a processing fluid. For example, when adding a chemical | medical agent to the high-pressure processing apparatus concerning 1st Embodiment, it can comprise as follows.

図10は、この発明にかかる高圧処理装置の第3実施形態を示す図である。この実施形態が第1実施形態と相違する点は、洗浄処理を施す高圧流体(SCF)に、パーティクルやレジストを除去するために好適な薬剤を供給するための薬剤供給部7が設けられている点であり、その他の構成および動作は第1実施形態のそれらと同一である。したがって、以下においては相違点を中心に説明する。   FIG. 10 is a view showing a third embodiment of the high-pressure processing apparatus according to the present invention. This embodiment is different from the first embodiment in that a high-pressure fluid (SCF) for performing a cleaning process is provided with a chemical supply unit 7 for supplying a suitable chemical for removing particles and resist. In other respects, other configurations and operations are the same as those of the first embodiment. Therefore, the following description will focus on the differences.

薬剤供給部7は、薬剤を貯留する薬剤貯留タンク72を備えている。薬剤としては、洗浄成分として塩基性化合物を用いることが好ましい。レジストに多用される高分子物質を加水分解する作用があり、洗浄効果が高いためである。塩基性化合物の具体例としては、第四級アンモニウム水酸化物、第四級アンモニウムフッ化物、アルキルアミン、アルカノールアミン、ヒドロキシルアミン(NHOH)およびフッ化アンモニウム(NHF)よりなる群から選択される1種以上の化合物が挙げられる。 The medicine supply unit 7 includes a medicine storage tank 72 that stores medicine. As a medicine, it is preferable to use a basic compound as a cleaning component. This is because it has a function of hydrolyzing a polymer substance frequently used in resist and has a high cleaning effect. Specific examples of the basic compound include a quaternary ammonium hydroxide, a quaternary ammonium fluoride, an alkylamine, an alkanolamine, hydroxylamine (NH 2 OH), and ammonium fluoride (NH 4 F). One or more selected compounds may be mentioned.

上記塩基性化合物等の洗浄成分が高圧流体に対して溶解度が低い場合には、この洗浄成分を高圧流体に溶解もしくは均一分散させる助剤となり得る相溶化剤を第2の薬剤として用いることが好ましい。この相溶化剤は、洗浄工程終了後のリンス工程で、汚れを再付着させないようにする作用も有している。相溶化剤としては、洗浄成分を高圧流体と相溶化させることができれば特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール類や、ジメチルスルホキシド等のアルキルスルホキシドが好ましいものとして挙げられる。   When the cleaning component such as the basic compound has low solubility in the high-pressure fluid, it is preferable to use a compatibilizing agent that can serve as an auxiliary for dissolving or uniformly dispersing the cleaning component in the high-pressure fluid as the second agent. . This compatibilizing agent also has an effect of preventing dirt from reattaching in the rinsing step after the cleaning step. The compatibilizing agent is not particularly limited as long as the washing component can be compatibilized with the high-pressure fluid, but preferred examples include alcohols such as methanol, ethanol and isopropanol, and alkyl sulfoxides such as dimethyl sulfoxide.

また、低誘電率層間絶縁膜(Low−k膜)が形成されている半導体ウエハを洗浄する場合には、Low−k膜へのエッチングによるダメージを考慮して、特定のアミン化合物が用いられる。アミン化合物として好ましくは、第2アミンおよび第3アミンからなる群から選択される。より好ましくは、2−(メチルアミノ)エタノール、PMDETA(ペンタメチルジエチレントリアミン)、トリエタノールアミン、トリエチルアミン、およびその混合物からなる群から選択される。また、フッ化水素を代表するフッ化物が添加されることもある。さらに、相溶剤が添加されることもある。   Further, when cleaning a semiconductor wafer on which a low dielectric constant interlayer insulating film (Low-k film) is formed, a specific amine compound is used in consideration of etching damage to the Low-k film. The amine compound is preferably selected from the group consisting of secondary amines and tertiary amines. More preferably, it is selected from the group consisting of 2- (methylamino) ethanol, PMDETA (pentamethyldiethylenetriamine), triethanolamine, triethylamine, and mixtures thereof. Further, a fluoride representing hydrogen fluoride may be added. Furthermore, a compatibilizer may be added.

上記したような薬剤を貯留する薬剤貯留タンク72は分岐管路71により主管路26と接続されている。具体的には、分岐管路71は開閉弁V4と第2ヒータ25との間で主管路26と接続されている。このように、フィルタ24の二次側で高圧流体に薬剤を添加しているのは、薬剤によるフィルタの腐食あるいは劣化を抑制するとともに、フィルタを構成する濾過材が不要物質として濾過後の高圧流体に混入することを回避するためである。また、開閉弁V4の二次側で高圧流体に薬剤を添加しているのは、高圧流体を開閉弁V2と開閉弁V4との間に閉じ込めて封止する際に、SCFに添加された薬剤が滞留したまま放置されるのを回避するためである。さらに、第2ヒータ25の一次側で高圧流体に薬剤を添加することにより、薬剤の混合により流体温度がプロセス温度未満に低下する場合には、第2ヒータ25が処理流体を加熱して超臨界状態に戻し、圧力容器1に供給することが可能となる。なお、SCFに添加された薬剤が開閉弁V2と開閉弁V4との間で処理流体として閉じ込められたとしても、圧力容器1での処理の実行に影響のない場合は、第1ヒータ23と第2ヒータ25の間であれば、どこで分岐管路71を主管路26に接続してもよい。いずれにしても、SCFと薬剤との混合物による洗浄処理工程後に、SCFのみによるリンス処理工程が実行されることで、開閉弁V2と開閉弁V4との間の配管内に薬剤が滞留したまま放置されることはない。   The drug storage tank 72 that stores the drug as described above is connected to the main pipeline 26 by a branch pipeline 71. Specifically, the branch pipe 71 is connected to the main pipe 26 between the on-off valve V4 and the second heater 25. As described above, the chemical is added to the high-pressure fluid on the secondary side of the filter 24, while the corrosion or deterioration of the filter due to the chemical is suppressed, and the high-pressure fluid after the filtration as the unnecessary material is filtered. It is for avoiding mixing in. Further, the chemical is added to the high-pressure fluid on the secondary side of the on-off valve V4 because the high-pressure fluid is confined between the on-off valve V2 and the on-off valve V4 and sealed. This is for avoiding that the liquid is left standing. Further, when the chemical temperature is reduced to less than the process temperature due to the mixing of the chemical by adding the chemical to the high-pressure fluid on the primary side of the second heater 25, the second heater 25 heats the processing fluid to supercritical. It becomes possible to return to a state and to supply to the pressure vessel 1. In addition, even if the chemical | medical agent added to SCF is confined as a process fluid between the on-off valve V2 and the on-off valve V4, when there is no influence on execution of the process in the pressure vessel 1, the 1st heater 23 and the 1st The branch line 71 may be connected to the main line 26 anywhere between the two heaters 25. In any case, the rinsing process using only the SCF is performed after the cleaning process using the mixture of SCF and the drug, so that the drug remains in the pipe between the on-off valve V2 and the on-off valve V4. It will never be done.

また、この分岐管路71には、送給ポンプ73、フィルタ75(高圧用フィルタ)および高圧弁74が介挿されている。なお、高圧弁74は主管路26と分岐管路71との接合箇所の近傍に設置して一体化してブロックバルブとするのが好ましい。このような構成により、コントローラ8からの開閉指令に応じて高圧弁74の開閉動作を制御することで、薬剤貯留タンク72内の薬剤が主管路26に送り込まれて濾過済SCFに薬剤が混合され処理流体(SCF+薬剤)が調製される。そして、処理流体が圧力容器1の処理チャンバー11に供給される。   Further, a feed pump 73, a filter 75 (high pressure filter) and a high pressure valve 74 are interposed in the branch pipe 71. The high-pressure valve 74 is preferably installed in the vicinity of the joint between the main pipeline 26 and the branch pipeline 71 and integrated into a block valve. With such a configuration, the opening / closing operation of the high-pressure valve 74 is controlled in accordance with an opening / closing command from the controller 8, whereby the medicine in the medicine storage tank 72 is sent to the main pipeline 26 and the medicine is mixed with the filtered SCF. A processing fluid (SCF + drug) is prepared. Then, the processing fluid is supplied to the processing chamber 11 of the pressure vessel 1.

また、第2実施形態についても同様にして洗浄成分を含有した薬剤(添加剤)をSCFに添加して基板の洗浄処理を実行してもよい。この場合、上記と同様の理由からフィルタ24と第2ヒータ25との間で主管路26を流通する高圧流体に薬剤を添加するのが好ましい。   Similarly, in the second embodiment, a substrate cleaning process may be executed by adding a chemical (additive) containing a cleaning component to the SCF. In this case, it is preferable to add a chemical | medical agent to the high pressure fluid which distribute | circulates the main pipe line 26 between the filter 24 and the 2nd heater 25 for the reason similar to the above.

また、上記実施形態では、表面処理として洗浄処理を実行しているが、本発明の適用対象はこれに限定されるものではなく、例えば現像工程と洗浄・リンス工程が施された基板を受取り、乾燥処理のみを行う装置や別の表面処理(現像処理など)を実行する高圧処理装置などにも本発明を適用することができる。   Further, in the above embodiment, the cleaning process is performed as the surface treatment, but the application target of the present invention is not limited to this, for example, receiving a substrate subjected to a development process and a cleaning / rinsing process, The present invention can also be applied to an apparatus that performs only a drying process or a high-pressure processing apparatus that performs another surface treatment (development process or the like).

また、上記実施形態では、基板Wを1枚ずつ処理する枚葉方式の処理装置に対して本発明を適用しているが、複数枚の基板Wを同時に処理する、いわゆるバッチ方式の処理装置に対しても本発明を適用することができる。   In the above embodiment, the present invention is applied to a single wafer processing apparatus that processes the substrates W one by one. However, the present invention is applied to a so-called batch processing apparatus that processes a plurality of substrates W simultaneously. The present invention can also be applied to this.

また、上記実施形態では、高圧処理装置に高圧流体供給部2が備えられているが、これに限定されず、1台の高圧流体供給部から複数の高圧処理装置に高圧流体を供給するようにしてもよい。例えば、大規模な量産工場では、高圧流体供給部2に関し、各処理装置毎に1台ずつ具備させるのではなくて、1台の高圧流体供給部で複数の処理装置をまかなうように、高圧流体供給部を工場側ユーティリティとして設置してもよい。このような場合にも、本願は好適に対応できる。   Further, in the above embodiment, the high-pressure processing apparatus is provided with the high-pressure fluid supply unit 2, but the present invention is not limited to this, and a high-pressure fluid is supplied from a single high-pressure fluid supply unit to a plurality of high-pressure processing apparatuses. May be. For example, in a large-scale mass production factory, with respect to the high-pressure fluid supply unit 2, the high-pressure fluid supply unit 2 is not provided with one unit for each processing unit, but a single high-pressure fluid supply unit covers a plurality of processing units. You may install a supply part as a factory side utility. Even in such a case, the present application can cope with it suitably.

図11は、複数台の高圧処理装置が設置された高圧処理システムの構成を示す図である。例えば、図11(a)では、工場側ユーティリティとして、CO源としての貯槽201、昇圧ポンプ202、加熱ヒータ203、高圧流体循環ライン204が設置されており、高圧流体(SCF)が高圧流体循環ライン204内を常時循環している。高圧流体循環ライン204の途上には、各処理装置A1,A2,・・・,An(合計n台)へとSCFを供給するための分岐配管L101,L102,・・・L10nが分岐して設けられ、高圧流体循環ライン204が分岐配管L101,L102,・・・L10nを介して各処理装置に設置されている第1ヒータ23へと接続されている。なお、第1ヒータ23より二次側の装置構成は、図1、図7および図10に示す高圧処理装置における第1ヒータ23より二次側の装置構成と同様である。また、これら分岐配管L101,L102,・・・L10nにはそれぞれ、各処理装置A1,A2,・・・,AnへのSCFの供給/供給停止を制御する開閉バルブV101,V102,・・・,V10nが介装されている。 FIG. 11 is a diagram illustrating a configuration of a high-pressure processing system in which a plurality of high-pressure processing apparatuses are installed. For example, in FIG. 11A, as a factory-side utility, a storage tank 201 as a CO 2 source, a booster pump 202, a heater 203, and a high-pressure fluid circulation line 204 are installed, and high-pressure fluid (SCF) is circulated under high-pressure fluid. The line 204 is constantly circulated. In the middle of the high-pressure fluid circulation line 204, branch pipes L101, L102,... L10n for supplying SCF to each processing apparatus A1, A2,. The high-pressure fluid circulation line 204 is connected to the first heater 23 installed in each processing apparatus via branch pipes L101, L102,... L10n. The apparatus configuration on the secondary side of the first heater 23 is the same as the apparatus configuration on the secondary side of the first heater 23 in the high-pressure processing apparatus shown in FIGS. 1, 7, and 10. Further, these branch pipes L101, L102,... L10n are open / close valves V101, V102,..., Which control the supply / stop of supply of SCF to the processing devices A1, A2,. V10n is interposed.

この場合、図1、図7および図10において、開閉バルブV101,V102,・・・,V10nが各処理装置の高圧ポンプ22の代わりを果たし、各処理装置における高圧ポンプ22のON/OFF動作が開閉バルブV101,V102,・・・,V10nの開/閉動作に相当している。そして、各処理装置A1,A2,・・・,Anに対して、必要なときに必要な量だけ開閉バルブV101,V102,・・・,V10nが個別に開/閉動作される。なお、COの消費によってCO源としての貯槽201内のCO量が所定のレベル以下にまで低下すると、この貯槽201に対して外部よりCOが補充される(図示せず)。 In this case, in FIG. 1, FIG. 7, and FIG. 10, the on-off valves V101, V102,..., V10n serve as the high-pressure pump 22 of each processing apparatus, and the ON / OFF operation of the high-pressure pump 22 in each processing apparatus is performed. This corresponds to the opening / closing operation of the on-off valves V101, V102,. Then, the opening / closing valves V101, V102,..., V10n are individually opened / closed by the necessary amount for each processing device A1, A2,. Incidentally, when the amount of CO 2 storage tank 201 as CO 2 source by the consumption of CO 2 is reduced to below a predetermined level, CO 2 from the outside (not shown) by the supplemented for this reservoir 201.

このような高圧処理システムにおいては、SCFが常に循環されているため、仮にフィルタに対してSCFを逆方向に流すことによる逆洗によって清浄化するにしても複雑な配管構造を追加しなければならない。しかしながら、上記実施形態によれば、循環ラインからSCFを各処理装置へ供給する形態を変更せずに清浄度の高いSCFを処理チャンバーに供給できる。   In such a high-pressure processing system, since the SCF is constantly circulated, a complicated piping structure must be added even if it is cleaned by backwashing by flowing the SCF in the reverse direction with respect to the filter. . However, according to the said embodiment, SCF with high cleanliness can be supplied to a processing chamber, without changing the form which supplies SCF to each processing apparatus from a circulation line.

次いで、図11(b)に、複数台の高圧処理装置が設置される高圧処理システムの更に別の態様を示す。工場側ユーティリティにおける高圧流体循環ライン204内の高圧流体の圧力がプロセス圧力に満たない場合は、各処理装置A1,A2,・・・,Anにおいて必要なプロセス圧にまで流体を昇圧する必要がある。そこで、各処理装置A1,A2,・・・An毎に昇圧ポンプ22を第1ヒータ23の一次側に設置している。これにより、高圧流体循環ライン204から分岐配管L101,L102,・・・L10nを介して供給される流体は、開閉バルブV101,V102,・・・,V10nを通じて昇圧ポンプ22に導かれ、昇圧ポンプ22において必要なプロセス圧にまで流体を昇圧することが可能となっている。なお、開閉バルブV101,V102,・・・,V10nはそれぞれ、各処理装置A1,A2,・・・,Anにおいてポンプ22における昇圧動作(ON状態)が必要なときに、各ポンプ22と連動して開閉される。 Next, FIG. 11B shows still another aspect of the high-pressure processing system in which a plurality of high-pressure processing apparatuses are installed. When the pressure of the high-pressure fluid in the high-pressure fluid circulation line 204 in the factory-side utility is less than the process pressure, it is necessary to increase the fluid to a required process pressure in each of the processing apparatuses A1, A2,. . Therefore, the booster pump 22 is installed on the primary side of the first heater 23 for each of the processing apparatuses A1, A2,. Thus, the fluid supplied from the high-pressure fluid circulation line 204 through the branch pipes L101, L102,... L10n is guided to the booster pump 22 through the on-off valves V101, V102,. It is possible to boost the fluid to the required process pressure. The open / close valves V101, V102,..., V10n are linked to the pumps 22 when the processing devices A1, A2,. Open and close.

この発明は、高圧流体を濾過手段によって濾過した濾過済高圧流体あるいは濾過済高圧流体と薬剤(添加剤)との混合物を処理流体として用いて、半導体ウエハ、液晶表示装置用ガラス基板、PDP(プラズマ・ディスプレイ・パネル)用基板、あるいは磁気ディスク用のガラス基板やセラミック基板などを含む被処理体の表面に対して所定の表面処理(現像処理、洗浄処理や乾燥処理など)を施す高圧処理装置に適用することができる。   The present invention uses a filtered high-pressure fluid obtained by filtering a high-pressure fluid by a filtering means or a mixture of a filtered high-pressure fluid and a drug (additive) as a processing fluid, and a semiconductor wafer, a glass substrate for a liquid crystal display device, a plasma display panel (PDP)・ High-pressure processing equipment that performs predetermined surface treatments (development treatment, cleaning treatment, drying treatment, etc.) on the surface of objects to be processed, including substrates for display panels and glass substrates and ceramic substrates for magnetic disks Can be applied.

この発明にかかる高圧処理装置の第1実施形態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the high-pressure processing apparatus concerning this invention. 図1の高圧処理装置の電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of the high voltage | pressure processing apparatus of FIG. 図1の高圧処理装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the high voltage | pressure processing apparatus of FIG. 図1の高圧処理装置の動作を模式的に示す図である。It is a figure which shows typically operation | movement of the high-pressure processing apparatus of FIG. 図1の高圧処理装置にかかる変形形態を示す部分構成図である。It is a partial block diagram which shows the modification concerning the high-pressure processing apparatus of FIG. 図1の高圧処理装置にかかる変形形態を示す部分構成図である。It is a partial block diagram which shows the modification concerning the high-pressure processing apparatus of FIG. この発明にかかる高圧処理装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the high-pressure processing apparatus concerning this invention. 図7の高圧処理装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the high voltage | pressure processing apparatus of FIG. 図7の高圧処理装置の動作を模式的に示す図である。It is a figure which shows typically operation | movement of the high-pressure processing apparatus of FIG. この発明にかかる高圧処理装置の第3実施形態を示す図である。It is a figure which shows 3rd Embodiment of the high pressure processing apparatus concerning this invention. 複数台の高圧処理装置が設置された高圧処理システムの構成を示す図である。It is a figure which shows the structure of the high pressure processing system in which the several high pressure processing apparatus was installed.

符号の説明Explanation of symbols

1…圧力容器
2…高圧流体供給ユニット(高圧流体供給手段)
3…流路制御ユニット
11…処理チャンバー
24…フィルタ(濾過手段)
26…主管路
27…分岐管路(一次側分岐管路)
28…分岐管路(二次側分岐管路)
29…インラインヒータ(加熱手段)
41…排出ライン(一次側排出経路)
42…排出ライン(二次側排出経路)
V1…開閉弁(排出側開閉弁)
V2…開閉弁(一次側開閉弁)
V3…開閉弁(切換え手段)
V4…開閉弁(二次側開閉弁、切換え手段)
PCV1…圧力調整弁(第1圧力調整弁)
PCV2…圧力調整弁(第2圧力調整弁)
DESCRIPTION OF SYMBOLS 1 ... Pressure vessel 2 ... High pressure fluid supply unit (high pressure fluid supply means)
3 ... Flow path control unit 11 ... Processing chamber 24 ... Filter (filtering means)
26 ... Main pipeline 27 ... Branch pipeline (primary branch pipeline)
28 ... Branch line (secondary branch line)
29 ... In-line heater (heating means)
41 ... Discharge line (primary discharge route)
42 ... Discharge line (secondary discharge route)
V1 ... open / close valve (discharge side open / close valve)
V2 ... Open / close valve (primary open / close valve)
V3 ... Open / close valve (switching means)
V4 ... Open / close valve (secondary open / close valve, switching means)
PCV1 ... Pressure regulating valve (first pressure regulating valve)
PCV2 ... Pressure regulating valve (second pressure regulating valve)

Claims (11)

高圧流体あるいは高圧流体と薬剤との混合物を処理流体として処理チャンバーに送り込み、前記処理チャンバーに収容される被処理体の表面に接触させて前記被処理体の表面に対して所定の表面処理を施す高圧処理装置において、
その内部に前記表面処理を行うための処理チャンバーを有する圧力容器と、
高圧流体を前記圧力容器に濾過手段を介して圧送可能な高圧流体供給手段と、
前記高圧流体供給手段から圧送される高圧流体の流路を制御する流路制御手段と
を備え、
前記流路制御手段は、前記処理チャンバーの圧力状態にかかわらず、前記濾過手段に高圧流体を満たし続けるように高圧流体の流路を制御することで、前記濾過手段を常に高圧状態に保持することを特徴とする高圧処理装置。
A high-pressure fluid or a mixture of a high-pressure fluid and a chemical is sent to the processing chamber as a processing fluid, and is brought into contact with the surface of the target object accommodated in the processing chamber to perform a predetermined surface treatment on the surface of the target object. In high pressure processing equipment,
A pressure vessel having a processing chamber for performing the surface treatment therein;
High pressure fluid supply means capable of pumping high pressure fluid to the pressure vessel via filtration means;
Flow path control means for controlling the flow path of the high pressure fluid pumped from the high pressure fluid supply means,
Regardless of the pressure state of the processing chamber, the flow path control means controls the flow path of the high-pressure fluid so that the filtration means continues to be filled with the high-pressure fluid, thereby constantly maintaining the filtration means in a high-pressure state. High pressure processing equipment characterized by.
前記流路制御手段は、前記濾過手段を少なくとも前記表面処理を施す際におけるプロセス圧以上の圧力状態に保持する請求項1記載の高圧処理装置。   The high-pressure processing apparatus according to claim 1, wherein the flow path control unit maintains the filtering unit at a pressure state equal to or higher than a process pressure when the surface treatment is performed. 前記表面処理を実行する際には、前記高圧流体供給手段から前記圧力容器に高圧流体を圧送する一方、前記表面処理を実行しない間は、前記高圧流体供給手段からの高圧流体の圧送を停止させる請求項1または2記載の高圧処理装置であって、
前記流路制御手段は、前記高圧流体供給手段と前記圧力容器とを前記濾過手段を介して連通して高圧流体を前記圧力容器に導く主管路と、前記主管路に介挿され前記濾過手段を挟み込むように前記濾過手段の一次側と二次側とにそれぞれ設けられた一次側開閉弁および二次側開閉弁とを有し、
前記表面処理を実行する際には、前記一次側および二次側開閉弁を開状態として前記高圧流体供給手段から高圧流体を前記圧力容器に送り込む一方で、前記表面処理を実行しない間は、前記一次側および二次側開閉弁を閉状態として前記一次側開閉弁と前記二次側開閉弁との間に高圧流体を封止させる高圧処理装置。
When performing the surface treatment, the high-pressure fluid is pumped from the high-pressure fluid supply unit to the pressure vessel, while the high-pressure fluid pumping from the high-pressure fluid supply unit is stopped while the surface treatment is not performed. The high-pressure processing apparatus according to claim 1 or 2,
The flow path control means communicates the high-pressure fluid supply means and the pressure vessel via the filtration means, and guides the high-pressure fluid to the pressure vessel, and is inserted into the main pipeline to pass the filtration means. A primary side on-off valve and a secondary side on-off valve respectively provided on the primary side and the secondary side of the filtering means so as to sandwich,
When performing the surface treatment, while the primary side and secondary side on-off valves are opened, high pressure fluid is sent from the high pressure fluid supply means to the pressure vessel, while the surface treatment is not performed, A high-pressure treatment apparatus that seals a high-pressure fluid between the primary-side on-off valve and the secondary-side on-off valve by closing the primary-side and secondary-side on-off valves.
前記流路制御手段は、前記一次側開閉弁の一次側に前記主管路から分岐され、高圧流体を排出する一次側排出経路に繋がる一次側分岐管路と、前記一次側分岐管路と前記一次側排出経路との間に設けられ、前記一次側排出経路への流路を開閉する排出側開閉弁とをさらに有し、
前記高圧流体供給手段から前記主管路に高圧流体の圧送を開始する際には、前記一次側開閉弁を閉状態とするとともに前記排出側開閉弁を開状態として高圧流体を前記一次側分岐管路に送り込み、前記一次側分岐管路内および前記主管路のうち一次側開閉弁の一次側の管路内を昇圧する一方、前記主管路のうち一次側開閉弁の一次側の管路内の圧力が前記表面処理を施す際におけるプロセス圧に到達後は、前記一次側開閉弁を開状態とするとともに前記排出側開閉弁を閉状態として高圧流体を前記圧力容器に送り込む請求項3記載の高圧処理装置。
The flow path control means is branched from the main line to the primary side of the primary side on-off valve, and is connected to a primary side discharge path that discharges high-pressure fluid, and the primary side branch line and the primary side A discharge side on-off valve provided between the side discharge path and opening and closing a flow path to the primary side discharge path,
When the high-pressure fluid starts to be fed from the high-pressure fluid supply means to the main pipeline, the primary-side on-off valve is closed and the discharge-side on-off valve is opened to supply the high-pressure fluid to the primary-side branch pipeline. Pressure in the primary side branch pipe and the primary side on / off valve in the primary side of the primary pipe, while the pressure in the primary side of the primary on / off valve in the main pipe 4. The high pressure treatment according to claim 3, wherein after reaching the process pressure when the surface treatment is performed, the primary side on-off valve is opened and the discharge side on-off valve is closed to feed the high-pressure fluid into the pressure vessel. apparatus.
前記流路制御手段は、前記一次側排出経路上に設けられ、前記一次側分岐管路内の圧力を調整する第1圧力調整弁をさらに有する請求項4記載の高圧処理装置。   5. The high-pressure processing apparatus according to claim 4, wherein the flow path control unit further includes a first pressure adjusting valve that is provided on the primary-side discharge path and adjusts the pressure in the primary-side branch pipe. 前記一次側開閉弁と前記二次側開閉弁との間に封止された高圧流体を加熱する加熱手段をさらに備える請求項3ないし5のいずれかに記載の高圧処理装置。   The high-pressure processing apparatus according to any one of claims 3 to 5, further comprising heating means for heating a high-pressure fluid sealed between the primary-side on-off valve and the secondary-side on-off valve. 前記高圧流体供給手段から高圧流体を圧送し続ける請求項1または2記載の高圧処理装置であって、
前記流路制御手段は、前記高圧流体供給手段と前記圧力容器とを前記濾過手段を介して連通して高圧流体を前記圧力容器に導く主管路と、前記濾過手段の二次側において前記主管路から分岐され、高圧流体を排出する二次側排出経路に繋がる二次側分岐管路と、前記二次側分岐管路と前記主管路との接合部に設けられ、前記高圧流体供給手段から圧送される高圧流体の流路を切換えて高圧流体を前記圧力容器と前記二次側排出経路とに選択的に送り込む切換え手段とを有し、
前記切換え手段を制御して、前記表面処理を実行する際には、前記圧力容器に高圧流体を送り込む一方で、前記表面処理を実行しない間は、前記二次側排出経路に高圧流体を送り込む高圧処理装置。
The high-pressure processing apparatus according to claim 1 or 2, wherein the high-pressure fluid continues to be pumped from the high-pressure fluid supply means.
The flow path control means communicates the high-pressure fluid supply means and the pressure vessel via the filtration means to guide the high-pressure fluid to the pressure vessel, and the main pipeline on the secondary side of the filtration means The secondary side branch pipe connected to the secondary side discharge path for discharging the high-pressure fluid and the junction between the secondary side branch pipe and the main pipe, and pumped from the high-pressure fluid supply means Switching means for selectively feeding the high-pressure fluid to the pressure vessel and the secondary discharge path by switching the flow path of the high-pressure fluid,
When the surface treatment is performed by controlling the switching means, the high pressure fluid is fed into the pressure vessel, while the high pressure fluid is fed into the secondary discharge path while the surface treatment is not performed. Processing equipment.
前記流路制御手段は、前記二次側排出経路上に設けられ、前記二次側分岐管路内の圧力を調整する第2圧力調整弁をさらに有する請求項7記載の高圧処理装置。   The high-pressure processing apparatus according to claim 7, wherein the flow path control unit further includes a second pressure adjusting valve that is provided on the secondary-side discharge path and adjusts the pressure in the secondary-side branch pipe. 高圧流体あるいは高圧流体と薬剤との混合物を処理流体として処理チャンバーに送り込み、前記処理チャンバーに収容される被処理体の表面に接触させて前記被処理体の表面に対して所定の表面処理を施す高圧処理方法において、
前記処理チャンバーの圧力状態にかかわらず、濾過手段に高圧流体を満たし続けることによって前記濾過手段を常に高圧状態に保持することを特徴とする高圧処理方法。
A high-pressure fluid or a mixture of a high-pressure fluid and a chemical is sent to the processing chamber as a processing fluid, and is brought into contact with the surface of the target object accommodated in the processing chamber to perform a predetermined surface treatment on the surface of the target object. In the high pressure processing method,
Regardless of the pressure state of the processing chamber, the filtration means is always kept in a high-pressure state by continuously filling the filtration means with a high-pressure fluid.
前記表面処理を実行する間は、前記濾過手段を介して高圧流体を前記処理チャンバーに送り込む一方、前記表面処理を実行しない間は、前記濾過手段を高圧流体で封止することによって、前記濾過手段を常に高圧状態に保持する請求項9記載の高圧処理方法。   While performing the surface treatment, the high-pressure fluid is sent to the processing chamber through the filtration means, and while the surface treatment is not performed, the filtration means is sealed with the high-pressure fluid. The high pressure processing method according to claim 9, wherein the pressure is always kept at a high pressure. 前記表面処理を実行する間は、前記濾過手段を介して高圧流体を前記処理チャンバーに送り込む一方、前記表面処理を実行しない間は、前記濾過手段を介して高圧流体を該高圧流体を排出する排出経路に送り込むことによって、前記濾過手段を常に高圧状態に保持する請求項9記載の高圧処理方法。   While performing the surface treatment, the high-pressure fluid is sent to the processing chamber through the filtering means, and while not performing the surface treatment, the high-pressure fluid is discharged through the filtering means to discharge the high-pressure fluid. The high-pressure processing method according to claim 9, wherein the filtering means is always kept in a high-pressure state by being fed into a path.
JP2005373845A 2005-12-27 2005-12-27 High pressure treatment apparatus and high pressure treatment method Withdrawn JP2007175559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373845A JP2007175559A (en) 2005-12-27 2005-12-27 High pressure treatment apparatus and high pressure treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373845A JP2007175559A (en) 2005-12-27 2005-12-27 High pressure treatment apparatus and high pressure treatment method

Publications (1)

Publication Number Publication Date
JP2007175559A true JP2007175559A (en) 2007-07-12

Family

ID=38301276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373845A Withdrawn JP2007175559A (en) 2005-12-27 2005-12-27 High pressure treatment apparatus and high pressure treatment method

Country Status (1)

Country Link
JP (1) JP2007175559A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190921A (en) * 2008-02-13 2009-08-27 Japan Organo Co Ltd Method of filtering high pressure carbon dioxide and filtering apparatus
JP2010174071A (en) * 2009-01-27 2010-08-12 Kobe Steel Ltd Method and system for high pressure processing
JP2013032245A (en) * 2011-08-02 2013-02-14 Japan Organo Co Ltd Method and system for purifying and supplying carbon dioxide
JP2013207076A (en) * 2012-03-28 2013-10-07 Dainippon Screen Mfg Co Ltd Processing liquid supply device and processing liquid supply method
JP2013251547A (en) * 2012-05-31 2013-12-12 Semes Co Ltd Substrate treating apparatus and substrate treating method
CN103456664A (en) * 2012-05-31 2013-12-18 细美事有限公司 Apparatus and method for drying substrate
KR20130138122A (en) * 2012-06-08 2013-12-18 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
JP2014022520A (en) * 2012-07-17 2014-02-03 Tokyo Electron Ltd Wafer treatment device, fluid supply method and storage medium
KR101536724B1 (en) * 2012-05-31 2015-07-16 세메스 주식회사 Substrate treating apparatus and substrate treating method
JP2021111786A (en) * 2019-12-31 2021-08-02 セメス カンパニー,リミテッド Method for processing substrate and apparatus for processing substrate
JP2022176911A (en) * 2021-05-17 2022-11-30 セメス カンパニー,リミテッド Substrate processing device
US11940734B2 (en) 2022-04-21 2024-03-26 Semes Co., Ltd. Apparatus and method for treating substrate
US12094706B2 (en) 2021-09-03 2024-09-17 Semes Co., Ltd. Substrate treating apparatus and substrate treating method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190921A (en) * 2008-02-13 2009-08-27 Japan Organo Co Ltd Method of filtering high pressure carbon dioxide and filtering apparatus
JP2010174071A (en) * 2009-01-27 2010-08-12 Kobe Steel Ltd Method and system for high pressure processing
JP2013032245A (en) * 2011-08-02 2013-02-14 Japan Organo Co Ltd Method and system for purifying and supplying carbon dioxide
JP2013207076A (en) * 2012-03-28 2013-10-07 Dainippon Screen Mfg Co Ltd Processing liquid supply device and processing liquid supply method
US9275852B2 (en) 2012-05-31 2016-03-01 Semes Co., Ltd. Substrate treating apparatus and substrate treating method
CN103456665B (en) * 2012-05-31 2017-07-18 细美事有限公司 A kind of substrate board treatment and substrate processing method using same
CN103456665A (en) * 2012-05-31 2013-12-18 细美事有限公司 Substrate treating apparatus and substrate treating method
CN103456664A (en) * 2012-05-31 2013-12-18 细美事有限公司 Apparatus and method for drying substrate
US9587880B2 (en) 2012-05-31 2017-03-07 Semes Co., Ltd. Apparatus and method for drying substrate
KR101536724B1 (en) * 2012-05-31 2015-07-16 세메스 주식회사 Substrate treating apparatus and substrate treating method
JP2013251547A (en) * 2012-05-31 2013-12-12 Semes Co Ltd Substrate treating apparatus and substrate treating method
US9662685B2 (en) 2012-06-08 2017-05-30 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
KR20130138122A (en) * 2012-06-08 2013-12-18 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
US10046370B2 (en) 2012-06-08 2018-08-14 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
KR101920941B1 (en) * 2012-06-08 2018-11-21 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
JP2014022520A (en) * 2012-07-17 2014-02-03 Tokyo Electron Ltd Wafer treatment device, fluid supply method and storage medium
JP2021111786A (en) * 2019-12-31 2021-08-02 セメス カンパニー,リミテッド Method for processing substrate and apparatus for processing substrate
JP7236428B2 (en) 2019-12-31 2023-03-09 セメス カンパニー,リミテッド Substrate processing method and substrate processing apparatus
US12027381B2 (en) 2019-12-31 2024-07-02 Semes Co., Ltd. Apparatus for treating substrate and method for treating substrate
JP2022176911A (en) * 2021-05-17 2022-11-30 セメス カンパニー,リミテッド Substrate processing device
US12094706B2 (en) 2021-09-03 2024-09-17 Semes Co., Ltd. Substrate treating apparatus and substrate treating method
US11940734B2 (en) 2022-04-21 2024-03-26 Semes Co., Ltd. Apparatus and method for treating substrate

Similar Documents

Publication Publication Date Title
JP2007175559A (en) High pressure treatment apparatus and high pressure treatment method
KR101824809B1 (en) Substrate processing apparatus, substrate processing method and storage medium
KR101920941B1 (en) Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
US9754806B2 (en) Apparatus for treating wafers using supercritical fluid
JP2007234862A (en) Apparatus and method for high pressure process
JP7109328B2 (en) Substrate processing system
JP2008066495A (en) High-pressure processing apparatus, and high-pressure processing method
TW201426850A (en) Stiction-free drying process with contaminant removal for high-aspect-ratio semiconductor device structures
KR102591343B1 (en) Liquid processing apparatus and liquid processing method
WO2015046455A1 (en) Pretreatment method for filter unit, treatment liquid supply device, filter unit heating device, and pretreatment method for treatment liquid supply path
JP2020126974A (en) Substrate processing apparatus and substrate processing method
JP2013062417A (en) Supercritical drying method of semiconductor substrate and device
US20220008964A1 (en) Substrate treating apparatus and substrate treating method
CN112117212A (en) Substrate drying chamber
JP2015204302A (en) Liquid supply device, and filter cleaning method
KR102693650B1 (en) Substrate processing apparatus, substrate processing method and storage medium
JP2008182034A (en) Substrate treatment method and substrate treatment equipment
US10816141B2 (en) Chemical solution feeder, substrate treatment apparatus, method for feeding chemical solution, and method for treating substrate
JP7305807B2 (en) Filter cleaning system and filter cleaning method
JP2002313764A (en) High pressure processor
JP2007305676A (en) Processing method and processing apparatus of substrate
JP2005142301A (en) High-pressure processing method and apparatus thereof
JP2004288681A (en) Device and method for high-pressure treatment
JP2003347261A (en) Cleaning device and cleaning method
JP6897392B2 (en) Operation method of ultrapure water production equipment and ultrapure water production equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303