JP2007172953A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007172953A
JP2007172953A JP2005367446A JP2005367446A JP2007172953A JP 2007172953 A JP2007172953 A JP 2007172953A JP 2005367446 A JP2005367446 A JP 2005367446A JP 2005367446 A JP2005367446 A JP 2005367446A JP 2007172953 A JP2007172953 A JP 2007172953A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
mea
fluid flow
cell according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367446A
Other languages
Japanese (ja)
Inventor
Toru Sugawa
徹 壽川
Tsutomu Kawashima
川島  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005367446A priority Critical patent/JP2007172953A/en
Publication of JP2007172953A publication Critical patent/JP2007172953A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To enhance energy efficiency by reducing uneven pressure loss between cells and uniformizing a gas flow flowing in each cell, and to reduce production loss. <P>SOLUTION: This polymer electrolyte fuel cell is equipped with fluid passages 6, 7 in which a fuel gas and an oxidant gas are circulated respectively. An inclination having an angle of inclination of more than 0 degree and less than 40 degree made to the surface perpendicular to the laminated direction of cells are given to the top part of the projecting part 3 of an anode side separator and the top part of the projecting part 4 of a cathode side separator, and thereby, an MEA (membrane electrode assembly) 5 is stretched and pulled by the inclinations of the top parts, and the MEA 5 is inhibited from hanging down to the fluid passages 6, 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高分子電解質膜を挟む一対の電極からなるMEA(膜電極接合体)を用いた燃料電池に関するものである。   The present invention relates to a fuel cell using an MEA (membrane electrode assembly) composed of a pair of electrodes sandwiching a polymer electrolyte membrane.

燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを、電気化学的に反応させることにより、電力と熱とを同時に発生させるものである。   A fuel cell generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air.

その高分子電解質型燃料電池は、次のようにして製造される。   The polymer electrolyte fuel cell is manufactured as follows.

まず、水素イオンを選択的に輸送する高分子電解質の両面に、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒反応層が形成される。次に、この触媒反応層の外面に、燃料ガスの通気性と電子導電性とを併せ持つ、例えばカーボンクロス(炭素繊維織布)やカーボンペーパーにより拡散層が形成される。なお、この拡散層と触媒反応層とを合わせて反応電極、また水素の入ってくる反応電極がアノード(水素極,燃料極)、さらに酸素の入ってくる反応電極がカソード(酸素極,空気極)とそれぞれ呼ばれる。   First, a catalytic reaction layer composed mainly of carbon powder carrying a platinum-based metal catalyst is formed on both sides of a polymer electrolyte that selectively transports hydrogen ions. Next, a diffusion layer is formed on the outer surface of the catalytic reaction layer by, for example, carbon cloth (carbon fiber woven fabric) or carbon paper having both air permeability of fuel gas and electronic conductivity. The diffusion layer and the catalytic reaction layer are combined to form a reaction electrode, a reaction electrode containing hydrogen is an anode (hydrogen electrode, fuel electrode), and a reaction electrode containing oxygen is a cathode (oxygen electrode, air electrode). ) Respectively.

次に、供給する燃料ガスや酸化剤ガスが外にリークしたり、燃料ガスと酸化剤ガスとが互いに混合したりしないように、反応電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットが配置される。このシール材やガスケットは、反応電極および高分子電解質膜と一体化してあらかじめ組み立てられ、これをMEA(膜電極接合体)と呼ぶ場合もある(以下、MEAと記す)。   Next, a gas seal material is placed around the reaction electrode with a polymer electrolyte membrane so that the supplied fuel gas or oxidant gas does not leak outside or the fuel gas and oxidant gas are mixed with each other. And a gasket is placed. This sealing material or gasket is integrated with the reaction electrode and the polymer electrolyte membrane in advance, and is sometimes referred to as MEA (membrane electrode assembly) (hereinafter referred to as MEA).

MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性のセパレータが配置される。セパレータにおけるMEAと接触する部分には、反応電極に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路が形成される。このガス流路はセパレータと別に設けることもできるが、セパレータの表面に溝を設けてガス流路とする構成が一般的である。   On the outside of the MEA, a conductive separator for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is disposed. A gas flow path for supplying the reaction gas to the reaction electrode and carrying away the generated gas and surplus gas is formed in a portion of the separator that contacts the MEA. Although this gas flow path can be provided separately from the separator, a structure in which a groove is provided on the surface of the separator to form a gas flow path is common.

前記ガス流路としての溝に燃料ガスを供給するために、燃料ガスを供給する配管が、使用するセパレータの枚数に分岐し、その分岐先をセパレータ状の溝に直接つなぎ込む配管治具が必要となる。この治具をマニホールドと呼び、前記のように燃料ガスの供給配管から直接つなぎ込むタイプを外部マニホールドと呼ぶ。このマニホールドには、構造をより簡単にした内部マニホールドと呼ぶ形式のものがある。内部マニホールドとは、ガス流路を形成したセパレータに貫通した孔を設け、この孔までガス流路の出入口を通し、この孔から燃料ガスを直接供給するものである。   In order to supply the fuel gas to the groove as the gas flow path, a pipe for supplying the fuel gas branches to the number of separators to be used, and a piping jig for directly connecting the branch destination to the separator-like groove is required. It becomes. This jig is called a manifold, and the type that connects directly from the fuel gas supply pipe as described above is called an external manifold. There is a type of this manifold called an internal manifold with a simplified structure. The internal manifold is provided with a hole penetrating the separator in which the gas flow path is formed, through which the gas flow path is passed, and the fuel gas is directly supplied from the hole.

燃料電池は、運転中に発熱するので、電池を良好な温度状態に維持するために冷却水などで冷却する必要がある。通常、1〜3セル毎に冷却水を流す冷却部が、セパレータとセパレータとの間に挿入されるが、セパレータの背面に冷却水流路を設けて冷却部とする場合が多い。   Since the fuel cell generates heat during operation, it is necessary to cool the fuel cell with cooling water or the like in order to maintain the battery in a favorable temperature state. Usually, a cooling unit for flowing cooling water every 1 to 3 cells is inserted between the separator and the separator. However, a cooling water channel is often provided on the back surface of the separator to form a cooling unit.

前記構成のMEAとセパレータおよび冷却部をセルとして交互に重ね、10〜400セル積層して、集電板と絶縁板とを介して端板でセル積層を挟持し、締結ボルトで両端を固定することにより高分子電解質型燃料電池が製造される。   The MEA, separator, and cooling unit configured as described above are alternately stacked as cells, 10 to 400 cells are stacked, the cell stack is sandwiched between end plates via current collector plates and insulating plates, and both ends are fixed with fastening bolts. As a result, a polymer electrolyte fuel cell is manufactured.

前記締結は、ガスおよび循環水を漏らさないようにシール性を維持することの他に、セパレータとガス拡散層との接合部などの積層部材間の接触抵抗を低減する目的がある。   The fastening has the purpose of reducing the contact resistance between the laminated members such as the joint between the separator and the gas diffusion layer, in addition to maintaining the sealing performance so as not to leak the gas and the circulating water.

そのため、面圧として0.5MPa〜1.0MPaの比較的大きな締結圧を必要とする。この締結圧のために、ガス流路へのガス拡散層の垂れ込み量にバラツキが生じやすくなる。また、この垂れ込み量のバラツキによって、ガス拡散層を通して隣接するガス流路へのガスリーク量にバラツキが生じる。   Therefore, a relatively large fastening pressure of 0.5 MPa to 1.0 MPa is required as the surface pressure. Due to this fastening pressure, the amount of sag of the gas diffusion layer to the gas flow path tends to vary. Further, due to the variation in the sagging amount, the gas leak amount to the adjacent gas flow path through the gas diffusion layer varies.

前記バラツキの発生によって各セルの圧力損失が異なるという現象が生じる。高分子電解質型燃料電池は、セパレータの側面のマニホールドから各セルに燃料ガスおよび酸化剤ガスを並列に分散して供給する構成のものが多く、各セルの圧力損失が異なると、それぞれのセルに供給されるガス流量がセル毎に異なることになる。その結果、ガス流量が少ないセルでは、水滴がガス流路を塞ぎ、その塞いだ箇所以降の電極や触媒に対し燃料供給不足が発生するため、徐々に電圧が低下し、また前記水滴が排出されると、流路閉塞が解除されるため燃料供給が回復し、電圧が上昇するといった電圧不安定現象(フラッディング)が発生するという問題があった。   The phenomenon that the pressure loss of each cell differs due to the occurrence of the variation occurs. Many polymer electrolyte fuel cells have a configuration in which fuel gas and oxidant gas are distributed and supplied in parallel from the manifold on the side of the separator to each cell. The gas flow rate to be supplied is different for each cell. As a result, in a cell with a low gas flow rate, water droplets block the gas flow path, resulting in insufficient fuel supply to the electrode and catalyst after the blocked location, so the voltage gradually decreases and the water droplets are discharged. Then, since the flow path blockage is released, the fuel supply is recovered, and there is a problem that a voltage instability phenomenon (flooding) occurs in which the voltage rises.

このような問題に対して、特許文献1には単セルの圧力損失を測定し、予め定められたランクに分け、同じランクの単セルを集めて燃料電池を製作することにより、各セルのガス流量バラツキを低減し、フラッディングを抑制するようにした燃料電池とその製造方法が開示されている。   In order to solve such a problem, Patent Document 1 measures the pressure loss of a single cell, divides it into predetermined ranks, collects the single cells of the same rank, and manufactures a fuel cell. A fuel cell and a method of manufacturing the same that reduce flow rate variation and suppress flooding are disclosed.

また、特許文献2には、ガス拡散層の繊維方向をガス流れ方向に対して並行となるように構成し、ガス流れ方向に対して直交する方向のガス拡散層のガス透過性が、ガス流れ方向のガス拡散層のガス透過性よりも小さくなるように設定することにより、ガス拡散層を通して隣接するガス流路に生じるガスリークを防止し、ガス流路を流れる反応ガスの圧力損失ロスを低減することによって、フラッディングを抑制するようにした燃料電池が開示されている。
特開2003−151604号公報 特開2004−185936号公報
Further, in Patent Document 2, the fiber direction of the gas diffusion layer is configured to be parallel to the gas flow direction, and the gas permeability of the gas diffusion layer in the direction orthogonal to the gas flow direction is the gas flow. By setting it to be smaller than the gas permeability of the gas diffusion layer in the direction, gas leakage that occurs in the adjacent gas flow path through the gas diffusion layer is prevented, and pressure loss loss of the reaction gas flowing through the gas flow path is reduced Thus, a fuel cell in which flooding is suppressed is disclosed.
JP 2003-151604 A JP 2004-185936 A

しかしながら、特許文献1に記載の構成では、単セルの圧力損失を測定し、予め定められたランクに分けるという手間がかかるため、従来よりもコストおよび時間がかかり、生産ロスも大きいという問題がある。   However, in the configuration described in Patent Document 1, it takes time and effort to measure the pressure loss of a single cell and divide it into a predetermined rank. .

また、特許文献2に記載の構成では、ガス拡散層の繊維方向がガス流路に対して平行となるため、ガス流路に対して直交する方向の剛性が低くなり、その結果、ガス拡散層がガス流路へ垂れ込みやすくなる。したがって、各セル間におけるガス拡散層のガス流路への垂れ込み量のバラツキを低減することができないという問題がある。   Further, in the configuration described in Patent Document 2, since the fiber direction of the gas diffusion layer is parallel to the gas flow path, the rigidity in the direction orthogonal to the gas flow path is reduced, and as a result, the gas diffusion layer Tends to sag into the gas flow path. Therefore, there is a problem that variation in the amount of sag in the gas flow path of the gas diffusion layer between the cells cannot be reduced.

本発明は、前記従来の問題を解決するものであり、生産ロスが少なく、各セル間の圧力損失バラツキを低減し、各セルに流れるガス流量を均等にすることにより、耐フラッディング性を高める燃料電池を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, has a low production loss, reduces pressure loss variation between cells, and equalizes the flow rate of gas flowing to each cell, thereby improving the flooding resistance. An object is to provide a battery.

前記課題を解決し目的を達成するために、本発明の燃料電池は、高分子電解質膜と、前記高分子電解質膜を挟む一対の電極からなるMEAと、前記MEAを挟持する一対のセパレータとを備え、かつ前記電極として前記高分子電解質膜に接する触媒層および前記セパレータに接するガス拡散層を具備するセルを複数積層してなる燃料電池において、前記セパレータに流体流路となる凸部および凹部を設け、前記凸部に傾斜部を形成したことを特徴とし、これにより、ガス拡散層のガス流路の凹部への垂れ込みを抑制することができる。   In order to solve the problems and achieve the object, a fuel cell of the present invention comprises a polymer electrolyte membrane, an MEA comprising a pair of electrodes that sandwich the polymer electrolyte membrane, and a pair of separators that sandwich the MEA. A fuel cell comprising a plurality of cells each having a catalyst layer in contact with the polymer electrolyte membrane and a gas diffusion layer in contact with the separator as the electrode, wherein the separator has a convex portion and a concave portion serving as a fluid flow path. And an inclined portion is formed on the convex portion, whereby the sag of the gas diffusion layer into the concave portion of the gas flow path can be suppressed.

本発明によれば、ガス拡散層を含むMEAを伸ばすことによって、流体通路となる凹部へのガス拡散層の垂れ込みを抑制することができるため、各セル間の圧力損失バラツキを防ぎ、ガス拡散層を通して隣接するガス流路へのガスリークを防止することができる。   According to the present invention, by extending the MEA including the gas diffusion layer, it is possible to suppress the gas diffusion layer from sagging into the concave portion serving as a fluid passage. Gas leakage to adjacent gas flow paths through the layers can be prevented.

以上のことから、高分子電解質型の燃料電池において製造品質を高め、安定性、効率などの性能の向上を図ることができる。   From the above, it is possible to improve the manufacturing quality and improve the performance such as stability and efficiency in the polymer electrolyte fuel cell.

以下、本発明に係る実施形態を、図面を参照しつつ説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings.

図1は本発明に係る燃料電池の実施形態である高分子電解質型燃料電池の一単位である単電池(セル)の一部を模式的に示す斜視図、図2は図1におけるI―I線断面図である。   FIG. 1 is a perspective view schematically showing a part of a unit cell (cell) which is a unit of a polymer electrolyte fuel cell which is an embodiment of a fuel cell according to the present invention, and FIG. It is line sectional drawing.

図1,図2に示すように、単電池8は、MEA(膜電極接合体)5と、アノード側セパレータ1と、カソード側セパレータ2を備えている。MEA5は、プロトン伝導性高分子電解質膜9の表裏面にそれぞれ触媒層を備えた電極11と、該電極11の支持体であるガス拡散層からなる反応電極10が設けられたシート状のものである。   As shown in FIGS. 1 and 2, the cell 8 includes an MEA (membrane electrode assembly) 5, an anode side separator 1, and a cathode side separator 2. The MEA 5 is a sheet-like material in which an electrode 11 having a catalyst layer on each of the front and back surfaces of the proton conductive polymer electrolyte membrane 9 and a reaction electrode 10 comprising a gas diffusion layer as a support for the electrode 11 are provided. is there.

前記プロトン伝導性高分子電解質膜9の種類や形状は特に限定されるものではなく、一般的に燃料電池に用いられるものであればよい。また、反応電極10の種類や形状も限定されるものではなく、カーボンクロス,カーボンペーパーまたはカーボンメッシュに触媒としての白金を担持させたような一般的な反応電極でよい。セパレータ1,2は、ガス不透過性の導電性材料であればよく、例えば樹脂含浸カーボン材料を所定の形状に切削したもの、カーボン粉末と樹脂材料の混合物を成形したものが一般的に用いられる。   The type and shape of the proton conductive polymer electrolyte membrane 9 are not particularly limited as long as they are generally used for fuel cells. Further, the type and shape of the reaction electrode 10 are not limited, and may be a general reaction electrode in which platinum as a catalyst is supported on carbon cloth, carbon paper, or carbon mesh. The separators 1 and 2 may be any gas-impermeable conductive material. For example, a material obtained by cutting a resin-impregnated carbon material into a predetermined shape or a mixture of carbon powder and a resin material is generally used. .

前記セパレータ1,2は、MEA5とこれと隣接する図示しない単電池のMEAとを電気的直列に接続する板状体であって、燃料ガスや酸化剤ガスが流通する流体流路6,7が多数本平行に板状態全体に渡って並設されている。また、セパレータ1,2において板状態の流体流路6,7が設けられている面と反対の面には、冷却用の流体を流通させるための流路12が設けられている。   The separators 1 and 2 are plate-like bodies that electrically connect the MEA 5 and the adjacent MEA of a unit cell (not shown) in series, and have fluid flow paths 6 and 7 through which fuel gas and oxidant gas flow. Many are arranged in parallel over the entire plate state. In addition, on the surface opposite to the surface on which the plate-like fluid flow paths 6 and 7 are provided in the separators 1 and 2, a flow path 12 for circulating a cooling fluid is provided.

本実施形態では、アノード側セパレータ1の凸部3の頂上部と、カソード側セパレータ2の凸部4の頂上部とを、それぞれ単電池8を積層する方向に対して直角な面に0度を超えかつ40度未満傾斜させ、図2に示すように、各凸部3,4の頂上部どうしが接合する構成にしており、さらに、セパレータ1,2における隣接する凹部どうし、および凸部どうしの流体流れ方向の断面寸法が同一であるようにしている。   In the present embodiment, the top of the convex portion 3 of the anode-side separator 1 and the top of the convex portion 4 of the cathode-side separator 2 are each set at 0 degree to a plane perpendicular to the direction in which the unit cells 8 are stacked. 2 and inclined by less than 40 degrees, as shown in FIG. 2, the tops of the convex portions 3 and 4 are joined together, and the adjacent concave portions in the separators 1 and 2, and the convex portions The cross-sectional dimensions in the fluid flow direction are the same.

また、図3に示す本実施形態の変形例1のように、アノード側セパレータ1の凸部3の頂上部と、カソード側セパレータ2の凸部4の頂上部とが接合した後の寸法L1を同一とし、かつ個々の凸部において短い寸法L2の凸部と長い寸法L3の凸部とを交互に形成するようにしてもよい。   Further, as in Modification 1 of the present embodiment shown in FIG. 3, the dimension L1 after the top of the convex portion 3 of the anode side separator 1 and the top of the convex portion 4 of the cathode side separator 2 are joined is as follows. You may make it the same and may form the convex part of the short dimension L2 and the convex part of the long dimension L3 alternately in each convex part.

また、図4に示す本実施形態の変形例2のように、アノード側セパレータ1の凸部3の頂上部と、カソード側セパレータ2の凸部4の頂上部に、それぞれ流体流路6,7となる凹部と平行になるように、かつ緩やかな凹凸13を形成し、この凹凸13にMEAシート5が垂れ込むような構成にしてもよい。本変形例2では、凹凸13における凸部は単電池の積層方向に対して直角な面に0度以上40度未満傾斜するように、また凹凸13の隣接する凹部どうし、および凸部どうしの寸法形状が同一であるように形成している。   Further, as in the second modification of the present embodiment shown in FIG. 4, the fluid flow paths 6 and 7 are respectively provided at the top of the convex portion 3 of the anode side separator 1 and the top of the convex portion 4 of the cathode side separator 2. Alternatively, a gentle unevenness 13 may be formed so as to be parallel to the recessed portion, and the MEA sheet 5 may be dripped into the unevenness 13. In the second modification, the convex portions of the concave and convex portions 13 are inclined at 0 degree or more and less than 40 degrees on a plane perpendicular to the stacking direction of the unit cells, and the concave portions adjacent to the concave and convex portions 13 and the dimensions of the convex portions are arranged. They are formed so as to have the same shape.

図2〜図4に示す本実施形態のような構成にした理由を説明する。   The reason why the present embodiment is configured as shown in FIGS. 2 to 4 will be described.

図5に比較例として従来の単電池の構成を示す断面図を示す。図5に示すように、従来では、アノード側セパレータ1の凸部3の頂上部と、カソード側セパレータ2の凸部4の頂上部において、それぞれの断面の寸法および形状が同じ場合が多く、MEA5を挟持し、接触抵抗を低減させるために所定の締結圧を加えると、MEA5の流体流路6,7への垂れ込みBが生じやすい。そうすると、MEA5の垂れ込みBによって各単電池間で圧力損失のバラツキが生じやすかった。   FIG. 5 is a cross-sectional view showing the structure of a conventional unit cell as a comparative example. As shown in FIG. 5, conventionally, the top and the top of the convex portion 3 of the anode side separator 1 and the top of the convex portion 4 of the cathode side separator 2 often have the same cross-sectional dimensions and shapes. When a predetermined fastening pressure is applied to reduce the contact resistance, sag B of the MEA 5 into the fluid flow paths 6 and 7 is likely to occur. As a result, the sag B of the MEA 5 was likely to cause variations in pressure loss between the single cells.

そこで、本実施形態では、前記のようにMEA5が、単電池8の積層する方向に対して直角な面(図1の矢印A方向)に伸長するように、流体流路6,7の凸部3,4が傾斜する構成をセパレータ1,2に具備させることによって、MEA5の流体流路6,7への垂れ込みを抑制することができた。   Therefore, in the present embodiment, as described above, the convex portions of the fluid flow paths 6 and 7 so that the MEA 5 extends in a plane perpendicular to the direction in which the unit cells 8 are stacked (the direction of arrow A in FIG. 1). By providing the separators 1 and 2 with the configuration in which the 3 and 4 are inclined, the sagging of the MEA 5 into the fluid flow paths 6 and 7 could be suppressed.

本実施形態では、凸部3,4の頂上部の傾斜角度を単電池8の積層する方向に対して直角な面に0度を超えかつ40度未満と規定することで、ガス拡散層を含むMEA5におけるセパレータ1,2の流体流路6,7となる凹部への垂れ込み量が、その凹部の深さの0%以上20%未満になった。以下、その理由を説明する。   In the present embodiment, the gas diffusion layer is included by defining the inclination angle of the tops of the convex portions 3 and 4 to be greater than 0 degrees and less than 40 degrees on a plane perpendicular to the stacking direction of the unit cells 8. The amount of sagging of the separators 1 and 2 in the MEA 5 into the recesses to be the fluid flow paths 6 and 7 became 0% or more and less than 20% of the depth of the recesses. The reason will be described below.

図6は本実施形態におけるMEAを伸長させるための基本構成を示す説明図であり、流体流路6,7において隣接する凸部3,4において、それぞれの頂上部部分がずれて傾斜θを形成することにより、MEA5を図において上下方向に引っ張って伸ばすようにすることにより、MEA5が流体流路6,7内に垂れ込むことを防止している。   FIG. 6 is an explanatory view showing a basic configuration for extending the MEA in the present embodiment. In the adjacent convex portions 3 and 4 in the fluid flow paths 6 and 7, the respective top portions are shifted to form an inclination θ. Thus, the MEA 5 is prevented from sagging in the fluid flow paths 6 and 7 by pulling and extending the MEA 5 in the vertical direction in the drawing.

そこで、本実施形態の構成のMEAに引張試験を行った。試験条件として1.6mm/sの引張速度で試験を行った後、MEAの各箇所を光学顕微鏡で詳細に観察し、破損が生じていないか確認を行った。   Therefore, a tensile test was performed on the MEA having the configuration of the present embodiment. After testing at a tensile speed of 1.6 mm / s as test conditions, each part of the MEA was observed in detail with an optical microscope to confirm whether or not damage occurred.

その結果、図7に示すように、初期の長さから30%以上引き伸ばすとMEA5に破損が生じることが分かった。つまり、本実施形態のセパレータ1,2によって、MEA5が30%以上引き伸ばされると、破損などの不具合が生じる可能性がある。   As a result, as shown in FIG. 7, it was found that the MEA 5 was damaged when it was stretched 30% or more from the initial length. That is, when the MEA 5 is stretched by 30% or more by the separators 1 and 2 of the present embodiment, there is a possibility that problems such as breakage may occur.

そこで、傾斜後の凸部3,4の頂上部の長さが、傾斜前の凸部3,4の頂上部の長さの1.3倍となるときの凸部頂上部の傾斜角θを求めたところ約40度になった。よって、この角度を傾斜角の上限とする。   Therefore, the inclination angle θ of the top part of the convex part when the length of the top part of the convex parts 3 and 4 after the inclination is 1.3 times the length of the top part of the convex parts 3 and 4 before the inclination. It was about 40 degrees when asked. Therefore, this angle is the upper limit of the tilt angle.

以上のような本実施形態の構成の単電池8を作製して、該単電池8を冷却水路を確保しつつ多数(例えば100層)積層して電池スタックとした後、該電池スタックの両端部に、集電板と電気絶縁材料の絶縁板を設け、さらに端板と締結ロッドとで固定することにより高分子電解質型燃料電池が製造される。   After producing the unit cell 8 having the configuration of the present embodiment as described above and stacking a large number (for example, 100 layers) of the unit cell 8 while securing a cooling water channel to form a battery stack, both end portions of the cell stack are formed. A polymer electrolyte fuel cell is manufactured by providing a current collector plate and an insulating plate made of an electrically insulating material, and further fixing with an end plate and a fastening rod.

このように前記単電池8で構成される高分子電解質型燃料電池は、MEA5が引き伸ばされるため、アノード側燃料流路である流体流路6、カソード側酸化材流路である流体流路7へのMEA5の垂れ込みを抑制することができる。つまり、各単電池間の圧力損失バラツキが低減し、各単電池に流れるガス流量を均等に分配することができる。   In this way, in the polymer electrolyte fuel cell composed of the unit cells 8, the MEA 5 is stretched, so that the fluid channel 6 that is the anode-side fuel channel and the fluid channel 7 that is the cathode-side oxidizing material channel are used. The sag of the MEA 5 can be suppressed. That is, the pressure loss variation between the single cells is reduced, and the gas flow rate flowing through the single cells can be evenly distributed.

次に、本願発明に係る実施例を図1を参照しつつ説明する。   Next, an embodiment according to the present invention will be described with reference to FIG.

まず、触媒層を備える反応電極10の作成方法を説明する。すなわち、アセチレンブラック粉末に、平均粒径が約30Åの白金粒子を25重量%担持したものを電極の触媒とした。この触媒粉末をイソプロパノールに分散させた溶液に、パーフルオロカーボンスルホン酸の粉末をエチルアルコールに分散したディスパージョン溶液を混合し、触媒ペースト状にした。   First, a method for producing the reaction electrode 10 including the catalyst layer will be described. That is, an electrode catalyst was prepared by supporting 25% by weight of platinum particles having an average particle diameter of about 30% on acetylene black powder. A dispersion solution in which perfluorocarbon sulfonic acid powder was dispersed in ethyl alcohol was mixed with a solution in which the catalyst powder was dispersed in isopropanol to form a catalyst paste.

一方、電極の支持体になるカーボンペーパーを撥水処理した。すなわち、外寸14cm×14cm、厚み36μmのカーボン不織布(東レ製、TGP−H−120)を、フッ素樹脂含有の水性ディスパージョン(ダイキン工業製、ネオフロンND1)に含浸した後、これを乾燥し、400℃で30分間加熱することで、撥水性を与える。前記撥水処理したカーボン不織布の一方の面に、前記ペースト状の触媒をスクリーン印刷法を用いて塗布することでカーボン不織布の一面に触媒層11を備える反応電極10が形成される。   On the other hand, the carbon paper which becomes a support body of an electrode was water-repellent treated. That is, after impregnating a carbon nonwoven fabric (made by Toray, TGP-H-120) having an outer dimension of 14 cm × 14 cm and a thickness of 36 μm into a fluororesin-containing aqueous dispersion (manufactured by Daikin Industries, NEOFLON ND1), this is dried. Heating at 400 ° C. for 30 minutes gives water repellency. A reaction electrode 10 having a catalyst layer 11 on one surface of the carbon nonwoven fabric is formed by applying the paste-like catalyst to one surface of the water-repellent carbon nonwoven fabric using a screen printing method.

このとき、触媒層の一部は、カーボン不織布の中に埋め込んだ状態となる。なお、前記スクリーン印刷によるペースト状触媒の塗布量は、形成後の反応電極10中に含まれる白金量が0.6mg/cm、パーフルオロカーボンスルホン酸の量は1.2mg/cmとなるように調整している。 At this time, a part of the catalyst layer is embedded in the carbon nonwoven fabric. Incidentally, the coating amount of the paste-like catalyst by screen printing, the amount of platinum contained in the reaction electrode 10 after formation 0.6 mg / cm 2, the amount of perfluorocarbon sulfonic acid such as a 1.2 mg / cm 2 It is adjusted to.

次に、外寸が15cm×15cmのプロトン伝導性高分子電解質膜9の裏表両面に、一対の前記反応電極10を触媒層が、プロトン伝導性高分子電解質膜9の側部に接するようにホットプレスで接合して、MEA5を作成する。本実施例の場合、プロトン伝導性高分子膜として、パーフルオロカーボンスルホン酸を30μmの厚みに薄膜化したものを用いた。   Next, the reaction electrode 10 is placed on both sides of the proton conductive polymer electrolyte membrane 9 having an outer dimension of 15 cm × 15 cm so that the catalyst layer is in contact with the sides of the proton conductive polymer electrolyte membrane 9. It joins with a press and MEA5 is created. In the case of this example, a proton-conductive polymer membrane obtained by thinning perfluorocarbon sulfonic acid to a thickness of 30 μm was used.

次に、本発明のポイントである導電性のセパレータ1,2の製造方法について説明する。   Next, the manufacturing method of the electroconductive separators 1 and 2 which are the points of this invention is demonstrated.

まず、平均粒径が約50μm〜100μmの人造黒鉛粉末を用意し、人造黒鉛粉末80重量%に、熱硬化性フェノール樹脂20%を押し出し混練機で混練する。そして、この混練粉末をMEA5が積層する方向に対して直角な面に伸びるように、流体流路6,7の凸部3,4が傾斜する形状を作りこんだ金型に投入する。この金型は、流体流路6,7の成型の他に、冷却水流路用溝およびマニホールドを成形するように加工されている。   First, an artificial graphite powder having an average particle diameter of about 50 μm to 100 μm is prepared, and 20% of a thermosetting phenol resin is extruded and kneaded by 80% by weight of the artificial graphite powder with a kneader. And this kneaded powder is thrown into the metal mold | die which made the shape where the convex parts 3 and 4 of the fluid flow paths 6 and 7 incline so that it may extend to the surface orthogonal to the direction where MEA5 laminates. This mold is processed so as to mold the cooling water channel groove and the manifold in addition to the molding of the fluid channels 6 and 7.

この金型に混練粉末を投入した後、ホットプレスしてセパレータ1,2を得る。このホットプレスの条件は、金型温度150℃、圧力100kg/cmで10分間とする。得られたセパレータ1,2は、外寸が20cm×20cm、厚みが3.0mm、溝状の流体流路6,7、および冷却水流路の断面形状は共に正方形であり1.0mm×1.0mmとなるように調整されている。よって、セパレータ1,2の最も肉薄部の厚みは1.0mmである。 After the kneaded powder is put into this mold, it is hot pressed to obtain separators 1 and 2. The conditions for this hot pressing are a mold temperature of 150 ° C. and a pressure of 100 kg / cm 2 for 10 minutes. The obtained separators 1 and 2 have an outer dimension of 20 cm × 20 cm, a thickness of 3.0 mm, the groove-like fluid flow paths 6 and 7, and the cooling water flow path are both square and 1.0 mm × 1. It is adjusted to be 0 mm. Therefore, the thickness of the thinnest part of the separators 1 and 2 is 1.0 mm.

なお、導電性のカーボン材料については、本実施例では人造黒鉛を用いたが、例えば天然黒鉛,カーボンブラック,ケッチェンブラックなどの適用も可能である。また、本実施例では、金型にMEAが積層する方向に対して直角な面に伸びるように、流体流路6,7の凸部3,4が傾斜する機構を作りこんだが、成形後に切削加工によって機構を形成してもよい。   As the conductive carbon material, artificial graphite is used in the present embodiment, but natural graphite, carbon black, ketjen black, and the like can also be applied. In this embodiment, a mechanism in which the convex portions 3 and 4 of the fluid flow paths 6 and 7 are inclined so as to extend in a plane perpendicular to the direction in which the MEA is laminated on the mold is cut. The mechanism may be formed by processing.

本実施例と比較するための比較例として、前記傾斜する凸部を有しないセパレータを用い、MEAの一方の面にアノード側のセパレータを、裏面にカソード側のセパレータを重ね合わせて図1に示す単電池8を作製した。   As a comparative example for comparison with the present embodiment, the separator having no inclined convex portion is used, and an anode side separator is superimposed on one surface of the MEA and a cathode side separator is superimposed on the back surface, as shown in FIG. A single battery 8 was produced.

そして、本実施例と比較例との両例の単電池8を2セル積層した後、冷却水路溝を形成したセパレータで、この2セル積層電池を挟み込み、このパターンを繰り返して100セル積層の電池スタックを作製した。さらに電池スタックの両端部には、ステンレス製の集電板と電気絶縁材料の絶縁板、さらに端板と締結ロットで固定した。このときの締結圧はセパレータの面積当たり15kg/cmとした。 Then, after stacking two cells of the cells 8 of both the present example and the comparative example, the two-cell stacked battery is sandwiched by a separator in which a cooling channel groove is formed, and this pattern is repeated to form a battery of 100-cell stacked A stack was made. Furthermore, the both ends of the battery stack were fixed with a stainless steel current collector plate, an insulating plate made of an electrically insulating material, and an end plate and a fastening lot. The fastening pressure at this time was 15 kg / cm 2 per separator area.

このように作製した両例の高分子電解質型燃料電池を80℃に保持し、アノード側セパレータに75℃の露点となるように加湿・加温した水素ガスを、もう一方のカソード側セパレータの65℃の露点となるように加湿・加温した空気を供給した。その結果、電流を外部に出力しない無負荷時には、96Vの電池開放電圧を得た。また、このときの積層電池全体の内部抵抗を測定したところ、約45mΩであった。   The polymer electrolyte fuel cells of both examples thus prepared were held at 80 ° C., and the anode side separator was heated and heated to a dew point of 75 ° C. with hydrogen gas from the other cathode side separator. Air that was humidified and heated to a dew point of ° C. was supplied. As a result, a battery open voltage of 96 V was obtained at no load when no current was output to the outside. Moreover, when the internal resistance of the whole laminated battery at this time was measured, it was about 45 mΩ.

さらに、両例の各々単電池8をそれぞれ10個作成し、各セル間の圧力損失のバラツキを評価した。発電条件として、燃料利用率(Uf)60%、酸素利用率(Uo)50%、電流密度0.2A/cmで発電を行い、それぞれのアノード側とカソード側の圧力損失を計測した結果を図8に示す。この結果から、比較例に対して本実施例は圧力損失のバラツキが小さいことが分る。 Furthermore, 10 unit cells 8 were prepared for each example, and the variation in pressure loss between the cells was evaluated. As the power generation conditions, power generation was performed at a fuel utilization rate (Uf) of 60%, an oxygen utilization rate (Uo) of 50%, and a current density of 0.2 A / cm 2 , and the pressure loss on each anode side and cathode side was measured. As shown in FIG. From this result, it can be seen that the variation of the pressure loss in this example is smaller than that of the comparative example.

次に、図9に、両例の各々の単電池8を図1に示すI―I線で切断し、MEAのガス流路部への垂れ込みを光学顕微鏡で計測した結果を示す。この図より、比較例に対して本実施例は垂れ込み量を抑制することができていることが分かる。   Next, FIG. 9 shows the result of measuring the sag of the MEA into the gas flow path section with an optical microscope by cutting the unit cells 8 of both examples along the II line shown in FIG. From this figure, it can be seen that the present embodiment can suppress the amount of sagging relative to the comparative example.

次に、限界燃料利用率(限界Uf)を得るために、両例の高分子電解質型燃料電池に次の操作を行った。すなわち、前記燃料電池を酸素利用率40%、電流密度0.15A/cmの条件で、燃料利用率50%から5%ずつ燃料利用率を上げていった。このとき、燃料利用率を5時間の運転中、すべてのセル電圧が安定的に運転できたとき、燃料利用率を5%上げていく。そして、5時間の運転中、セル電圧が600mV以下になったところで、試験を中止し、すべてのセル電圧が安定的に運転できる最も高い酸素利用率を限界酸素利用率(限界Uf)とした。 Next, in order to obtain the limit fuel utilization rate (limit Uf), the following operations were performed on the polymer electrolyte fuel cells of both examples. That is, the fuel utilization rate of the fuel cell was increased by 5% from 50% under conditions of an oxygen utilization rate of 40% and a current density of 0.15 A / cm 2 . At this time, the fuel utilization rate is increased by 5% when all the cell voltages are stably operated during the operation of the fuel utilization rate for 5 hours. Then, when the cell voltage became 600 mV or less during the operation for 5 hours, the test was stopped, and the highest oxygen utilization rate at which all the cell voltages could be stably operated was defined as the limiting oxygen utilization rate (limit Uf).

次に、限界酸素利用率(限界Uo)を得るために、両例の高分子電解質型燃料電池に次の操作を行った。すなわち、前記燃料電池を燃料利用率60%、電流密度0.3A/cm2の条件で酸素利用率30%から5%ずつ酸素利用率を上げていった。このとき、酸素利用率は5時間の運転中、すべてのセル電圧が安定的に運転できたとき、酸素利用率を5%上げていく。そして5時間の運転中、セル電圧が600mV以下になったところで、試験を中止し、すべてのセル電圧が安定的に運転できる最も高い酸素利用率を限界酸素利用率 (限界Uo)とした。   Next, in order to obtain the limiting oxygen utilization rate (limit Uo), the following operations were performed on the polymer electrolyte fuel cells of both examples. That is, the oxygen utilization rate of the fuel cell was increased from 30% to 5% at a fuel utilization rate of 60% and a current density of 0.3 A / cm 2. At this time, the oxygen utilization rate is increased by 5% when all the cell voltages can be stably operated during the 5-hour operation. Then, when the cell voltage became 600 mV or less during the operation for 5 hours, the test was stopped, and the highest oxygen utilization rate at which all the cell voltages could be stably operated was defined as the critical oxygen utilization rate (limit Uo).

これらの限界燃料利用率(限界Uf)と限界酸素利用率(限界Uo)とが大きい高分子電解質型燃料電池ほど安定性が高く、耐フラッディング製が良好といえる。この値を高分子電解質燃料電池の電池特性評価の指標とした。このようにして評価した結果を図10に示す。このように、限界燃料利用率、限界酸素利用率ともに比較例に対して大きく向上することが確認できた。   A polymer electrolyte fuel cell having a larger limit fuel utilization rate (limit Uf) and a greater oxygen utilization rate (limit Uo) has higher stability, and it can be said that the product made of anti-flooding is better. This value was used as an index for evaluating battery characteristics of the polymer electrolyte fuel cell. The results of evaluation in this way are shown in FIG. Thus, it was confirmed that both the critical fuel utilization rate and the critical oxygen utilization rate were greatly improved over the comparative example.

以上のように前記実施形態,実施例の構成によれば、高分子電解質型燃料電池において、MEAが積層する方向に対して直角な面に伸びるように、流体流路の凸部が傾斜する構成をセパレータに具備させることによって、各単電池(セル)間の圧力損失バラツキを抑え、電池特性を向上させることができる。このため高分子電解質型燃料電池において、製造品質を高め、安定性かつ効率などを向上させることができる。   As described above, according to the configurations of the above-described embodiments and examples, in the polymer electrolyte fuel cell, the convex portion of the fluid flow path is inclined so as to extend in a plane perpendicular to the direction in which the MEAs are stacked. By providing the separator in the separator, it is possible to suppress the pressure loss variation between the individual cells (cells) and to improve the battery characteristics. For this reason, in the polymer electrolyte fuel cell, the manufacturing quality can be improved, and the stability and efficiency can be improved.

本発明は、高分子電解質型燃料電池に適用でき、特にポータブル電源、電気自動車電源、家庭用電源、家庭内コージェネシステム、可搬型電源、ビル用コージェネレーション用などの高分子電解質型燃料電池に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be applied to polymer electrolyte fuel cells, and in particular to polymer electrolyte fuel cells for portable power supplies, electric vehicle power supplies, household power supplies, domestic cogeneration systems, portable power supplies, building cogeneration, etc. can do.

本発明に係る燃料電池の実施形態である高分子電解質型燃料電池の一単位であるセル(単電池)の一部を模式的に示す斜視図The perspective view which shows typically a part of cell (unit cell) which is one unit of the polymer electrolyte fuel cell which is embodiment of the fuel cell which concerns on this invention 本実施形態の図1におけるI―I線断面図FIG. 1 is a cross-sectional view taken along line II in FIG. 本実施形態の変形例1の構成を示す断面図Sectional drawing which shows the structure of the modification 1 of this embodiment. 本実施形態の変形例2の要部の構成を示す斜視図The perspective view which shows the structure of the principal part of the modification 2 of this embodiment. 比較例として従来の単電池の構成を示す断面図Sectional drawing which shows the structure of the conventional cell as a comparative example 本実施形態におけるMEAを伸長させるための基本構成を示す説明図Explanatory drawing which shows the basic composition for extending MEA in this embodiment 本実施形態におけるMEAの引張強度試験の結果を示す図The figure which shows the result of the tensile strength test of MEA in this embodiment 本発明に係る実施例と比較例とにおける圧力損失の比較図Comparison diagram of pressure loss in the embodiment according to the present invention and the comparative example 本発明に係る実施例と比較例とにおけるガス流路へのMEAの垂れ込み量の比較図Comparison diagram of amount of sag of MEA into gas flow path in embodiment and comparative example according to present invention 本発明に係る実施例と比較例とにおける電池特性評価の結果を示す図The figure which shows the result of the battery characteristic evaluation in the Example which concerns on this invention, and a comparative example

符号の説明Explanation of symbols

1 アノード側のセパレータ
2 カソード側のセパレータ
3,4 凸部
5 MEA(膜電極接合体)
6,7 流体流路
8 単電池
9 プロトン伝導性高分子電解質膜
10 反応電極(ガス拡散層)
11 電極(触媒層)
13 凸部頂上部の凹凸
DESCRIPTION OF SYMBOLS 1 Separator on the anode side 2 Separator on the cathode side 3, 4 Projection 5 MEA (membrane electrode assembly)
6, 7 Fluid flow path 8 Single cell 9 Proton conductive polymer electrolyte membrane 10 Reaction electrode (gas diffusion layer)
11 Electrode (catalyst layer)
13 Concavities and convexities at the top of the convex part

Claims (11)

高分子電解質膜と、前記高分子電解質膜を挟む一対の電極からなるMEA(膜電極接合体)と、前記MEAを挟持する一対のセパレータとを備え、かつ前記電極として前記高分子電解質膜に接する触媒層および前記セパレータに接するガス拡散層を具備するセルを複数積層してなる燃料電池において、
前記セパレータに流体流路となる凸部および凹部を設け、前記凸部に傾斜部を形成したことを特徴とする燃料電池。
A polymer electrolyte membrane, an MEA (membrane electrode assembly) composed of a pair of electrodes sandwiching the polymer electrolyte membrane, and a pair of separators sandwiching the MEA, and in contact with the polymer electrolyte membrane as the electrodes In a fuel cell formed by laminating a plurality of cells each having a catalyst layer and a gas diffusion layer in contact with the separator,
A fuel cell, wherein the separator is provided with a convex portion and a concave portion serving as a fluid flow path, and an inclined portion is formed on the convex portion.
前記ガス拡散層における前記セパレータの流体流路となる凹部への垂れ込み量が、前記凹部の深さの0%以上20%未満であることを特徴とする請求項1記載の燃料電池。   2. The fuel cell according to claim 1, wherein a sagging amount of the gas diffusion layer into a recess serving as a fluid flow path of the separator is not less than 0% and less than 20% of a depth of the recess. 前記セパレータの前記流体流路にて対向する前記凸部のそれぞれにおける流体流れ方向の断面寸法が異なり、前記凸部が接合したときの凸部全長の前記流体流れ方向の断面寸法が同一であることを特徴とする請求項1または2記載の燃料電池。   The cross-sectional dimensions in the fluid flow direction of each of the convex portions facing each other in the fluid flow path of the separator are different, and the cross-sectional dimensions in the fluid flow direction of the entire convex portion when the convex portions are joined are the same. The fuel cell according to claim 1 or 2. 前記セパレータの前記凸部の頂上部に、前記セルの積層方向に対して直角な面に対して0度以上40度未満の傾斜を形成したことを特徴とする請求項1〜3いずれか1項記載の燃料電池。   The slope of 0 degree or more and less than 40 degree | times was formed in the top part of the said convex part of the said separator with respect to the surface orthogonal to the lamination direction of the said cell. The fuel cell as described. 前記セパレータの隣接する前記凹部の流体流れ方向の断面寸法が同一であることを特徴とする請求項1〜4いずれか1項記載の燃料電池。   The fuel cell according to any one of claims 1 to 4, wherein the recesses adjacent to each other have the same cross-sectional dimension in the fluid flow direction. 前記セパレータの隣接する前記凸部の流体流れ方向の断面寸法が同一であることを特徴とする請求項1〜5いずれか1項記載の燃料電池。   The fuel cell according to any one of claims 1 to 5, wherein the convex portions adjacent to the separator have the same cross-sectional dimension in the fluid flow direction. 前記セパレータの前記凸部頂上部の少なくとも一部に凹凸が形成されていることを特徴とする請求項1〜6いずれか1項記載の燃料電池。   The fuel cell according to any one of claims 1 to 6, wherein unevenness is formed on at least a part of the top of the convex portion of the separator. 前記凸部頂上部の前記凹凸における凸部が、前記セルの積層方向に対して直角な面に0度以上40度未満傾斜していることを特徴とする請求項7記載の燃料電池。   The fuel cell according to claim 7, wherein a convex portion of the concave and convex portions at the top of the convex portion is inclined by 0 degree or more and less than 40 degrees on a plane perpendicular to the stacking direction of the cells. 前記凸頂上部の前記凹凸の隣接する凹部の寸法形状が同一であることを特徴とする請求項7または8記載の燃料電池。   The fuel cell according to claim 7 or 8, wherein the concave and convex portions adjacent to the concave and convex portions at the top of the convex portion have the same dimensional shape. 前記凸部頂上部の前記凹凸の隣接する凸部の寸法形状が同一であることを特徴する請求項7〜9いずれか1項記載の燃料電池。   The fuel cell according to any one of claims 7 to 9, characterized in that the size and shape of the convex portions adjacent to the concave and convex portions at the top of the convex portion are the same. 前記ガス拡散層がカーボンクロスまたはカーボンペーパーからなり、前記MEAの伸びが0%以上30%未満であることを特徴とする請求項1記載の燃料電池。   The fuel cell according to claim 1, wherein the gas diffusion layer is made of carbon cloth or carbon paper, and the MEA has an elongation of 0% or more and less than 30%.
JP2005367446A 2005-12-21 2005-12-21 Fuel cell Pending JP2007172953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367446A JP2007172953A (en) 2005-12-21 2005-12-21 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367446A JP2007172953A (en) 2005-12-21 2005-12-21 Fuel cell

Publications (1)

Publication Number Publication Date
JP2007172953A true JP2007172953A (en) 2007-07-05

Family

ID=38299242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367446A Pending JP2007172953A (en) 2005-12-21 2005-12-21 Fuel cell

Country Status (1)

Country Link
JP (1) JP2007172953A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829897B1 (en) 2007-05-31 2008-05-16 한국과학기술원 Pemfc with deflected membranes
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101399664B1 (en) 2012-05-16 2014-05-27 고려대학교 산학협력단 Separator of Fuel Cell
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2017099181A1 (en) * 2015-12-11 2017-06-15 東レ株式会社 Carbon sheet, gas diffusion electrode substrate, and fuel cell
EP3248947A4 (en) * 2015-03-02 2018-07-11 Nihon Trim Co., Ltd. Electrolyzed water-generating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829897B1 (en) 2007-05-31 2008-05-16 한국과학기술원 Pemfc with deflected membranes
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
JP5310738B2 (en) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 Fuel cell moisture amount estimation device and fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system
KR101399664B1 (en) 2012-05-16 2014-05-27 고려대학교 산학협력단 Separator of Fuel Cell
EP3248947A4 (en) * 2015-03-02 2018-07-11 Nihon Trim Co., Ltd. Electrolyzed water-generating device
WO2017099181A1 (en) * 2015-12-11 2017-06-15 東レ株式会社 Carbon sheet, gas diffusion electrode substrate, and fuel cell
JPWO2017099181A1 (en) * 2015-12-11 2018-09-27 東レ株式会社 Carbon sheet, gas diffusion electrode substrate, and fuel cell
US11837732B2 (en) 2015-12-11 2023-12-05 Toray Industries, Inc. Carbon sheet, gas diffusion electrode substrate, and fuel cell

Similar Documents

Publication Publication Date Title
US7632589B2 (en) Fuel-cell stack and fuel cell
US8361673B2 (en) Fuel cell and method for manufacturing same
JP4051076B2 (en) Polymer electrolyte fuel cell
US7014940B2 (en) High-polymer electrolyte fuel cell
US10707494B2 (en) Gas diffusion layer for fuel cell, method for manufacturing said layer, membrane-electrode assembly, and fuel cell
JP2007172953A (en) Fuel cell
JP2004039365A (en) Polyelectrolyte type fuel cell and manufacturing method of its separator plate
JP2007059187A (en) Fuel cell
US20100298119A1 (en) Fuel cell electrode and method for producing the same
US20040157111A1 (en) Fuel cell
JP2003123801A (en) Polymer electrolyte stacked fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP2015079639A (en) Electrolyte membrane/electrode structure
JP2007149454A (en) Gas diffusion layer, gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell
JP2004006280A (en) Polymer electrolyte fuel cell, its manufacturing method and inspection method for it
KR101220866B1 (en) Separator for proton exchange membrane fuel cell and proton exchange membrane fuel cell using the same
JP2009037860A (en) Fuel cell and separator used for the same
JP2004349013A (en) Fuel cell stack
JP6356436B2 (en) Electrolyte membrane / electrode structure
JP3738831B2 (en) Fuel cell electrode and fuel cell
JP2003297389A (en) Polyelectrolyte fuel cell
JP7354928B2 (en) Gas diffusion layer for fuel cells
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field
JP6412995B2 (en) Manufacturing method of electrolyte membrane / electrode structure
US20210359313A1 (en) Fuel battery cell, fuel battery, and method of manufacturing fuel battery cell