JP2007171279A - Method of manufacturing elastic roller - Google Patents

Method of manufacturing elastic roller Download PDF

Info

Publication number
JP2007171279A
JP2007171279A JP2005365028A JP2005365028A JP2007171279A JP 2007171279 A JP2007171279 A JP 2007171279A JP 2005365028 A JP2005365028 A JP 2005365028A JP 2005365028 A JP2005365028 A JP 2005365028A JP 2007171279 A JP2007171279 A JP 2007171279A
Authority
JP
Japan
Prior art keywords
roller
unvulcanized rubber
pressure contact
contact member
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005365028A
Other languages
Japanese (ja)
Inventor
Michitaka Kitahara
道隆 北原
Atsushi Murata
淳 村田
Hisao Kato
久雄 加藤
Noriaki Kuroda
紀明 黒田
Yukinori Nagata
之則 永田
Masaki Ozawa
雅基 小澤
Kazuyuki Shishizuka
和之 宍塚
Toshiro Suzuki
敏郎 鈴木
Takumi Furukawa
匠 古川
Yoko Kuruma
洋子 来摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005365028A priority Critical patent/JP2007171279A/en
Publication of JP2007171279A publication Critical patent/JP2007171279A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a highly precise elastic roller having a small surface defect by measuring an electric resistance of the roller during a molding process and controlling a molding device by the measured value to possess small irregularity and a uniform resistance value in the elastic roller used for an image forming apparatus using an electrophotographic process. <P>SOLUTION: In a pressure rotation heating process for a member of the surface of an elastic member (rubber roller) used for the image forming apparatus using the electrophotographic process, the method of manufacturing the high precise elastic roller comprises applying a voltage during molding, and having the uniform resistance value by controlling the molding device by the electric resistance value of a measured roller. The method predicts the optimum molding condition from the resistance value of the roller after the molding process and has the uniform resistance value by carrying out the molding process in the optimum molding condition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LBP(Laser Beam Printer)、複写機及びファクシミリ等のOA機器において、電子写真プロセスを利用した画像形成装置に用いるゴムローラの(帯電ローラ、現像ローラ等)の製造方法に関するものである。   The present invention relates to a method of manufacturing rubber rollers (charging roller, developing roller, etc.) used in an image forming apparatus using an electrophotographic process in office automation equipment such as LBP (Laser Beam Printer), copying machines, and facsimiles.

従来から電子写真の帯電・転写プロセスにおいて、接触帯電及び接触転写の手法が多く研究されている。図1は、接触帯電手段及び接触転写手段を有する電子写真装置の構成を模式的に示す図である。1は被帯電体としての像担持体であり、アルミニウムなどの導電性の支持体とその外周面に少なくとも光導電層を有するドラム型の電子写真プロセスに用いられる感光体である。2はこの感光体に接し、感光体面を所定の電位に一様に帯電させる帯電部材であり、本例はローラ形状のもの(以下、帯電ローラとする)を示す。   Conventionally, many methods of contact charging and contact transfer have been studied in the electrophotographic charging / transfer process. FIG. 1 is a diagram schematically showing the configuration of an electrophotographic apparatus having contact charging means and contact transfer means. Reference numeral 1 denotes an image carrier as a member to be charged, which is a photosensitive member used in a drum type electrophotographic process having a conductive support such as aluminum and at least a photoconductive layer on the outer peripheral surface thereof. Reference numeral 2 denotes a charging member that comes into contact with the photosensitive member and uniformly charges the surface of the photosensitive member to a predetermined potential. This example shows a roller shape (hereinafter referred to as a charging roller).

この帯電ローラは、少なくとも中心部の芯金と、その外周面に弾性体の層(以下、弾性層)を有する。この帯電ローラをバネ等の圧接手段(不図示)で感光体1に所定の圧接力をもって圧接され、感光体1の回転にともない従動回転する。また、この芯金部に直流+交流(又は、直流のみ)バイアスを印加することで感光体1を所定の電位に接触帯電される。つまり、良好なコピー画像を得るために、帯電部材2には、感光体1との均一な接触状態と、導電性が必要になる。帯電部材2で所定の電位に帯電された感光体1の表面が、レーザー、LED等の露光手段(不図示)から出力される露光光3によって画像情報を露光されることによって、目的の画像情報に対応した静電潜像が形成される。   This charging roller has at least a central core and an elastic layer (hereinafter referred to as an elastic layer) on the outer peripheral surface thereof. The charging roller is pressed against the photosensitive member 1 with a predetermined pressing force by a pressing means (not shown) such as a spring, and is rotated following the rotation of the photosensitive member 1. Further, the photoconductor 1 is contact-charged to a predetermined potential by applying a DC + AC (or only DC) bias to the core part. That is, in order to obtain a good copy image, the charging member 2 needs to have a uniform contact state with the photoconductor 1 and conductivity. The surface of the photosensitive member 1 charged to a predetermined potential by the charging member 2 is exposed to image information by exposure light 3 output from exposure means (not shown) such as a laser or LED, so that target image information is obtained. An electrostatic latent image corresponding to is formed.

次いで、その潜像を現像手段4によってトナー画像として可視像化する。このトナー画像は、転写部材5によって転写材6の裏からトナーと逆極性の帯電を行うことで感光体1の表面のトナー画像が転写材6の表面側に転写される。トナー画像の転写を受けた転写材6は感光体1から分離され、定着部材7によって熱、圧力で固着される。また、像転写後の感光体1の表面はクリーニング部材8で転写時における残留トナー等の付着物の除去を受けて清浄面化され、くり返し作像に供される。なお、図1の中の9はトナー、10は回転軸を示す。   Next, the latent image is visualized as a toner image by the developing means 4. The toner image is charged from the back of the transfer material 6 with the reverse polarity to the toner by the transfer member 5, whereby the toner image on the surface of the photoreceptor 1 is transferred to the surface side of the transfer material 6. The transfer material 6 that has received the transfer of the toner image is separated from the photoreceptor 1 and fixed by heat and pressure by the fixing member 7. Further, the surface of the photosensitive member 1 after image transfer is cleaned by the cleaning member 8 after removal of deposits such as residual toner at the time of transfer, and is repeatedly used for image formation. In FIG. 1, 9 denotes toner and 10 denotes a rotation axis.

こうした帯電、転写、現像部材等に用いられるローラは、少なくとも両端において回転可能に支持される芯金と、芯金の外周面に設けられた弾性層によって構成される弾性体ローラである。   A roller used for such charging, transfer, developing member, and the like is an elastic roller composed of a cored bar that is rotatably supported at least at both ends, and an elastic layer provided on the outer peripheral surface of the cored bar.

たとえば感光体に接触させて用いる帯電ローラの場合、ローラ抵抗を中抵抗化することが必要であると共に、ローラの周方向、長手方向の抵抗値のばらつきを極力抑えなければならず、この抵抗ばらつきが大きいと、画像にムラが生じてしまい、良好な画像を得ることが困難である。   For example, in the case of a charging roller that is used in contact with a photosensitive member, it is necessary to reduce the resistance of the roller to a medium resistance, and variations in resistance values in the circumferential direction and longitudinal direction of the roller must be suppressed as much as possible. If it is large, unevenness occurs in the image, and it is difficult to obtain a good image.

従来このような中抵抗領域の抵抗を有するローラは、カーボンなどの電子導電性粉体をポリマーおよび樹脂等に混合して抵抗値の調整を行うことにより得られているが、この場合抵抗値のばらつき大きくが非常に困難であり、均一な抵抗値を有するローラを得ることは難しい。そこで、このような抵抗値のばらつきを改善するため、導電剤としてイオン導電性物質を用いて抵抗値を中抵抗領域に調整したイオン導電性を有するポリマー組成物を用いて中抵抗のローラを得る方法も提案されている。しかしながら、イオン導電性のポリマーは、雰囲気の水分の影響を受けやすく、高温高湿環境下と低温低湿環境下ではイオンの移動度が大きくことなり、環境変動による抵抗値の変動が著しく、電子導電系よりも抵抗値の環境安定性が劣るという問題がある。   Conventionally, such a roller having a resistance in the middle resistance region is obtained by adjusting the resistance value by mixing an electronic conductive powder such as carbon into a polymer and a resin. Large variations are very difficult, and it is difficult to obtain a roller having a uniform resistance value. Accordingly, in order to improve such variation in resistance value, a medium resistance roller is obtained by using an ion conductive polymer composition in which the resistance value is adjusted to a medium resistance region using an ion conductive material as a conductive agent. A method has also been proposed. However, ion-conductive polymers are easily affected by moisture in the atmosphere, and the ion mobility increases in high-temperature and high-humidity environments and low-temperature and low-humidity environments. There is a problem that the environmental stability of the resistance value is inferior to that of the system.

なお、このような抵抗値の均一性及び安定性については、上記帯電ローラ等の帯電部材に限らず、転写部材、現像部材等、その他の電子写真用部材についても重要な性能の1つであり、抵抗値の均一性及び安定性に優れた電子写真用弾性ローラの開発が望まれる。   Such uniformity and stability of the resistance value is one of important performances not only for the charging member such as the charging roller but also for other electrophotographic members such as a transfer member and a developing member. Therefore, development of an elastic roller for electrophotography excellent in uniformity and stability of resistance value is desired.

またローラ表面に大きな凹み・穴等の欠陥がある場合も画像不良を発生させることがあるため、ローラの表面欠陥を低減する手法として、芯金上の未加硫ゴム組成物を圧接部材によって圧力をかけた状態で、回転させながら加熱を行う押圧加熱回転によって表面平滑化する手法(例えば、特許文献1参照)が提案されているが、ローラの抵抗値に関する記載はされていない。
特開2000-177005号公報
Also, if there are defects such as large dents and holes on the roller surface, image defects may occur. Therefore, as a technique for reducing the surface defects of the roller, the unvulcanized rubber composition on the metal core is pressed with a pressure contact member. Although a method for smoothing the surface by pressing and heating rotation in which heating is performed while rotating is proposed (for example, see Patent Document 1), there is no description regarding the resistance value of the roller.
JP 2000-177005 A

本発明は前記の課題に鑑みてなされたものであり、その目的は電子写真プロセスを利用した画像形成装置に用いる弾性ローラにおいて、成形工程時にローラの電気抵抗を測定し、その測定値で成形装置を制御することによって抵抗のばらつきが少なく、さらに表面欠陥の少ない高精度な弾性ローラを製造する方法を提供することにある。またその他の目的は、成形工程における成形条件と成形工程後もしくは加硫後のローラの抵抗値から最適成形条件を予測し、その最適成形条件にて成形工程を行うことで、導電性フィラーを含有する材料を用いて成形方法にてローラの抵抗を制御する方法、つまり異なる抵抗値を持つローラ製造する方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to measure an electrical resistance of a roller during a molding process in an elastic roller used in an image forming apparatus using an electrophotographic process, and use the measured value as a molding apparatus. It is an object of the present invention to provide a method for manufacturing a highly accurate elastic roller with less variation in resistance and less surface defects. Another object is to predict the optimum molding conditions from the molding conditions in the molding process and the resistance value of the roller after the molding process or after vulcanization, and to carry out the molding process under the optimum molding conditions, so that the conductive filler is contained. Another object of the present invention is to provide a method of controlling the resistance of a roller by a molding method using a material to be manufactured, that is, a method of manufacturing a roller having different resistance values.

前記の課題・目的は以下に示す本発明によって解決・達成される。   The above-mentioned problems and objects are solved and achieved by the present invention described below.

1.未加硫ゴム組成物を芯金とともに押出す事で芯金上に未加硫ゴム組成物を被覆する工程と、該芯金上の未加硫ゴム組成物表面を圧接部材により圧力かけた状態で回転させながら加熱を行う成形工程とを有する事を特徴とする弾性ローラの製造方法において、該芯金上の未加硫ゴム組成物表面を圧接部材に圧力をかけた状態で回転させながら加熱しつつ、芯金と圧接部材との間に電圧を印加して未加硫ゴム組成物の電気抵抗を測定する手段を備え、測定される電気抵抗値に基づいて圧接部材による加圧回転加熱工程における圧接部材の加圧時間あるいは加圧力あるいは加熱温度あるいは回転数の少なくともいずれか1つをフィードバック制御する事を特徴とする弾性ローラの製造方法を提供することにある。   1. A process of coating the unvulcanized rubber composition on the core metal by extruding the unvulcanized rubber composition together with the core metal, and a state in which the surface of the unvulcanized rubber composition on the core metal is pressed by a pressure contact member In a method of manufacturing an elastic roller, wherein the heating is performed while rotating the surface of the unvulcanized rubber composition on the core metal while applying pressure to the pressure contact member. However, it is provided with a means for measuring the electric resistance of the unvulcanized rubber composition by applying a voltage between the metal core and the pressure contact member, and a pressure rotation heating process by the pressure contact member based on the measured electric resistance value It is an object of the present invention to provide a method for manufacturing an elastic roller, wherein feedback control is performed on at least one of a pressurizing time, a pressurizing force, a heating temperature, and a rotational speed of a pressure contact member.

2.未加硫ゴム組成物を芯金とともに押出す事で芯金上に未加硫ゴム組成物を被覆する工程と、該芯金上の未加硫ゴム組成物表面を圧接部材により圧力かけた状態で回転させながら加熱を行う成形工程とを有する事を特徴とする弾性ローラの製造方法において、成形中もしくは成形後もしくは加硫後のいずれか/毎に弾性ローラの電気抵抗を測定し、測定された電気抵抗値と圧接部材による加圧回転加熱工程における圧接部材の加圧時間あるいは加圧力あるいは加熱温度あるいは回転数からなる少なくともいずれか1つの成形条件から、要求する電気抵抗値をもつ弾性ローラの成形条件を予測し、予測された成形条件を最適成形条件として決定し、該最適成形条件により圧接部材による加圧回転加熱工程をおこなう事を特徴とする弾性ローラの製造方法を提供することにある。   2. A process of coating the unvulcanized rubber composition on the core metal by extruding the unvulcanized rubber composition together with the core metal, and a state in which the surface of the unvulcanized rubber composition on the core metal is pressed by a pressure contact member In a method of manufacturing an elastic roller, characterized in that the electrical resistance of the elastic roller is measured during molding, after molding, or after vulcanization / every time. The elastic roller having the required electrical resistance value is determined from at least one molding condition consisting of the electrical resistance value and the pressurizing time or pressurizing pressure, heating temperature or rotational speed of the pressurizing member in the pressurizing and rotating process. An elastic roller manufactured by predicting molding conditions, determining the predicted molding conditions as optimum molding conditions, and performing a pressurizing rotation heating process with a pressure contact member under the optimum molding conditions. It is to provide a method.

3.前記未加硫ゴム組成物が導電性フィラーを少なくとも含有する事を特徴と上記1〜2に記載の弾性ローラの製造方法を提供することにある。   3. The unvulcanized rubber composition contains at least a conductive filler and is to provide a method for producing an elastic roller according to the above 1-2.

4.前記導電性フィラーがカーボンブラックであり、少なくとも含有される該カーボンブラックの窒素吸着比表面積をA(m/g)、DBP吸油量をB(ml/100g)、ゴム100重量部に対する添加重量部をCとして、該カーボンブラックが式(I)および(II)の関係を満たすこと事を特徴とする上記1〜2に記載の弾性ローラの製造方法を提供することにある。 4). The conductive filler is carbon black, and at least the carbon black contained therein has a nitrogen adsorption specific surface area of A (m 2 / g), a DBP oil absorption of B (ml / 100 g), and an added part by weight with respect to 100 parts by weight of rubber. It is to provide the method for producing an elastic roller according to the above 1 or 2, wherein the carbon black satisfies the relationship of the formulas (I) and (II), where C is C.

式(I) 1000≦Σ(A×C)≦100,000
式(II) 2500≦Σ(B×C)≦50,000
Formula (I) 1000 ≦ Σ (A × C) ≦ 100,000
Formula (II) 2500 ≦ Σ (B × C) ≦ 50,000

本発明は、電子写真プロセスを利用した画像形成装置に用いるゴムローラの製造方法において、ポリマー原料と添加剤を配合し混練された未加硫ゴム組成物を芯金とともに押出す事で芯金上に未加硫ゴム組成物を被覆する工程と、該芯金上の未加硫ゴム組成物表面を圧接部材により圧力かけた状態で回転させながら加熱を行う成形工程とを有し、芯金と圧接部材との間に電圧を印加して電気抵抗を測定し、測定される電気抵抗値に基づいて圧接部材による加圧回転加熱工程における成形装置を制御することによって、表面に欠陥等も無く、表面粗さも良好で形状精度も高くかつ均一な抵抗値を持つ弾性ローラを、安定して得ることができるため、製造コストを削減するだけでなく、製品としての品質も高めることができる。また、成形後もしくは加硫後の弾性ローラの電気抵抗値と圧接部材による成形条件から要求する抵抗値をもつローラの最適成形条件が決定できるため、導電性フィラーを含有する未加硫ゴム組成物のロット起因による抵抗バラツキ等も低減することが可能であり、安定した抵抗をもつ製品を得ることができる。   The present invention relates to a method for producing a rubber roller for use in an image forming apparatus utilizing an electrophotographic process, by extruding a kneaded unvulcanized rubber composition mixed with a polymer raw material and an additive together with a core metal onto the core metal. A step of coating an unvulcanized rubber composition, and a molding step of heating while rotating the surface of the unvulcanized rubber composition on the core metal while being pressed by a pressure contact member. By measuring the electrical resistance by applying a voltage between the member and controlling the molding device in the pressurizing rotation heating process with the pressure contact member based on the measured electrical resistance value, there is no defect on the surface, the surface Since an elastic roller having good roughness, high shape accuracy, and uniform resistance can be obtained stably, not only the manufacturing cost can be reduced, but also the quality as a product can be improved. In addition, since the optimum molding conditions of the roller having the required resistance value can be determined from the electrical resistance value of the elastic roller after molding or vulcanization and the molding condition of the pressure contact member, an unvulcanized rubber composition containing a conductive filler It is possible to reduce the resistance variation caused by the lot, and to obtain a product having a stable resistance.

以下、本発明を更に図面を用いて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

まず、本発明の弾性体ローラの製造方法について説明する。   First, the manufacturing method of the elastic body roller of this invention is demonstrated.

ここで図2は本発明に用いる押出機の模式図を示す。図2において押出機11は、クロスヘッド12を備える。クロスヘッド12は芯金送りローラ13によって送られた芯金14を後ろから挿入でき、芯金14と同時に円筒状の未加硫ゴム組成物を一体に押出すことができる。芯金の周囲に円筒状に未加硫ゴム組成物を被覆形成した後に、端部を切断・除去処理15を行い、未加硫ローラ16とした。   Here, FIG. 2 shows a schematic diagram of an extruder used in the present invention. In FIG. 2, the extruder 11 includes a crosshead 12. The cross head 12 can insert the cored bar 14 fed from the cored bar feeding roller 13 from behind, and can simultaneously extrude the cylindrical unvulcanized rubber composition simultaneously with the cored bar 14. After the unvulcanized rubber composition was coated and formed in a cylindrical shape around the core metal, the end portion was cut and removed 15 to obtain an unvulcanized roller 16.

前記の芯金として使用する材質は、ニッケルメッキやクロムメッキしたSUM材等の鋼材を含むステンレススチール棒、リン青銅棒、アルミニウム棒、耐熱樹脂棒等が好ましいが、特にこれらに限定されるものではない。   The material used as the core metal is preferably a stainless steel rod, a phosphor bronze rod, an aluminum rod, a heat-resistant resin rod or the like including a steel material such as a nickel-plated or chrome-plated SUM material, but is not particularly limited thereto. Absent.

本発明で使用されるポリマー原料としては、天然ゴム、ブタジエンゴム、スチレンブタジエンゴム(SBR)、ニトリルゴム、エチレンプロピレンゴム(EPDM)、クロロプレンゴム(CR)、ニトリルブタジエンゴム(NBR)、エピクロルヒドリンゴム、ブチルゴム、シリコーンゴム、ウレタンゴム、フッソゴム、塩素ゴムなどのゴムがある。   Examples of the polymer raw material used in the present invention include natural rubber, butadiene rubber, styrene butadiene rubber (SBR), nitrile rubber, ethylene propylene rubber (EPDM), chloroprene rubber (CR), nitrile butadiene rubber (NBR), epichlorohydrin rubber, There are rubbers such as butyl rubber, silicone rubber, urethane rubber, fluorine rubber, and chlorine rubber.

これらのゴムを単体もしくはブレンドして用いることもできる。さらに熱可塑性の材料や、熱可塑性の材料とゴム材料と混合されたものでも良い。   These rubbers can be used alone or blended. Further, a thermoplastic material or a mixture of a thermoplastic material and a rubber material may be used.

また加硫済みのゴムに対して裁断、粉砕、研削等の処理を施し、ゴム片あるいはゴム粉状にしたもの、あるいは1nm以上200μm以下の球状に成形・加硫されたゴム粉等を添加することもできる。   In addition, vulcanized rubber is treated by cutting, grinding, grinding, etc. to add rubber pieces or rubber powder, or rubber powder that has been molded and vulcanized into a sphere of 1 nm to 200 μm. You can also.

また上記ゴム材料には、加硫剤、加硫促進剤、導電剤、帯電制御剤、可塑剤、老化防止剤等を適宜に添加することもできる。さらに、帯電防止剤、紫外線吸収剤、補強剤、充填剤、滑剤、離型剤、顔料、染料、難燃剤等を必要に応じて適宜に添加することもできる。   Moreover, a vulcanizing agent, a vulcanization accelerator, a conductive agent, a charge control agent, a plasticizer, an antiaging agent, and the like can be appropriately added to the rubber material. Furthermore, an antistatic agent, an ultraviolet absorber, a reinforcing agent, a filler, a lubricant, a release agent, a pigment, a dye, a flame retardant, and the like can be appropriately added as necessary.

本発明の効果を得るために前記ポリマー原料中に分散させる導電性フィラーとしては、カーボンブラック、導電性カーボン等のカーボン類、グラファイト、TiO、SnO、ZnOなどの金酸化物、SnOとSbの固溶体、ZnOとAlの固溶体などの複酸化物、Cu、Agなどの金属粉等を始めとして、公知の各種のものが使用でき、単体もしくは複数種をブレンドして使用してもよい。 Examples of the conductive filler dispersed in the polymer raw material to obtain the effect of the present invention include carbons such as carbon black and conductive carbon, graphite, gold oxides such as TiO 2 , SnO 2 and ZnO, SnO 2 and the like. Various known materials such as a solid solution of Sb 2 O 3 , a double oxide such as a solid solution of ZnO and Al 2 O 3 , metal powders such as Cu and Ag can be used. May be used.

さらに好ましくはカーボンブラックを添加するのがよく、少なくとも含有するカーボンブラックの窒素吸着比表面積をA(m/g)、DBP吸油量をB(ml/100g)、ポリマー原料100重量部に対する添加重量部をCとして、該カーボンブラックが式(I)および(II)の関係を満たす範囲に原料ポリマー中に添加することで、本発明の効果をさらに高める事ができる。 More preferably, carbon black is added. At least the nitrogen adsorption specific surface area of the carbon black contained is A (m 2 / g), the DBP oil absorption is B (ml / 100 g), and the added weight with respect to 100 parts by weight of the polymer raw material. The effect of the present invention can be further enhanced by adding the carbon black to the raw material polymer in such a range that the carbon black satisfies the relationship of the formulas (I) and (II).

式(I) 1000≦Σ(A×C)≦100,000
式(II) 2500≦Σ(B×C)≦50,000
上記の式(I)および式(II)について説明する。一般的に原料ポリマー中に分散した状態で導電性を示すカーボンブラックの指標の一つとして、窒素吸着比表面積およびDBP吸油量の数値が大きいものが導電性が高いことが知られている。例えば帯電ローラとして要求される抵抗値をもつローラを得るためには、導電性の高いカーボンブラックを少量添加する、もしくは導電性の低いカーボンブラックを多量添加することで実現可能であることが検討により求められた。さらに鋭意検討を進めた結果、添加する各カーボンブラックの窒素吸着比表面積と添加重量部の積の和が1000以上100000以下であり、かつDBP吸油量と添加重量部の積の和が2500以上50000以下でにある場合に本発明の効果を効果的に得ることできる。下限値については本発明の効果を得るためには導電性が不足し、つまり電子導電性の導電性示さないため、上限値については導電性が高すぎて所望の抵抗値を得ることができない、つまり低抵抗化すぎるために設定される。
Formula (I) 1000 ≦ Σ (A × C) ≦ 100,000
Formula (II) 2500 ≦ Σ (B × C) ≦ 50,000
The above formula (I) and formula (II) will be described. In general, as one of the indicators of carbon black exhibiting conductivity in a dispersed state in a raw material polymer, it is known that a material having a large value of nitrogen adsorption specific surface area and DBP oil absorption is high in conductivity. For example, in order to obtain a roller having a required resistance value as a charging roller, it is possible to achieve it by adding a small amount of carbon black with high conductivity or a large amount of carbon black with low conductivity. I was asked. As a result of further intensive studies, the sum of the product of the nitrogen adsorption specific surface area and the added part by weight of each carbon black to be added is 1000 or more and 100,000 or less, and the sum of the product of the DBP oil absorption and the added part by weight is 2500 or more and 50000. The effects of the present invention can be effectively obtained in the following cases. For the lower limit, the conductivity is insufficient to obtain the effect of the present invention, that is, the electronic conductivity is not shown, so the upper limit is too high to obtain a desired resistance value. That is, it is set because the resistance is too low.

また導電性ポリマー、イオン導電剤などを前記導電性フィラーと併用して導電性を付与しても良い。   Moreover, you may provide electroconductivity, using a conductive polymer, an ionic conductive agent, etc. together with the said conductive filler.

前記のような方法で得られた未加硫ゴムローラの表面を回転させながら当接させる加熱状態の圧接部材の材質としてはステンレス、鉄、アルミニウム、銅、真鋳等の金属が好ましく、更に熱伝導性が高く、加工精度が高い金属を用いる事が好ましい。また、圧接部材には表面処理を施しても良く、未加硫ゴムの防着のために、クロムメッキ、ニッケルメッキ等のメッキ類の他に、フッ素コーティング、フッ素樹脂・シリコーン樹脂等をコーティングしたものや、フッ素系・シリコーン系の離型剤を塗布したもの、DLC(ダイアモンドライクカーボン)蒸着したもの、その他公知の金属の表面処理を用いる事ができる。   As the material of the pressure contact member in a heated state to be brought into contact while rotating the surface of the unvulcanized rubber roller obtained by the method as described above, a metal such as stainless steel, iron, aluminum, copper, brass or the like is preferable. It is preferable to use a metal having high properties and high processing accuracy. In addition, the pressure contact member may be surface-treated and coated with fluorine coating, fluorine resin / silicone resin, etc. in addition to plating such as chrome plating and nickel plating for the prevention of unvulcanized rubber. For example, a surface treatment of a metal, a coating with a fluorine / silicone release agent, a DLC (diamond-like carbon) vapor deposition, or other known metals can be used.

次に、圧接部材の形状及び表面粗さについて説明する。   Next, the shape and surface roughness of the pressure contact member will be described.

圧接部材の形状として未加硫ローラのゴム部分の幅よりも小さい圧接部材を用いる場合には未加硫ローラの一部分だけに集中して圧力を加えると、外観上も跡が残ってしまうことがあるため、連続的に回転しながら圧接部材によって圧力をかけ、さらに圧力をかける場所を連続的にずらしていくことが好ましい。加熱回転させながら長手方向に移動するために、螺旋状の加熱履歴が発生し、ローラの抵抗ムラとして影響する場合がある。その為、未加硫ゴムローラのゴム部分の長さよりも長い部材を用いる事がさらに好ましい。当接面は平面形状でも良いが、曲面形状である事が好ましい。   If a pressure contact member smaller than the width of the rubber portion of the unvulcanized roller is used as the shape of the pressure contact member, if pressure is concentrated on only a part of the unvulcanized roller, a mark may remain on the appearance. Therefore, it is preferable to apply pressure by the pressure contact member while continuously rotating, and to continuously shift the place where the pressure is applied. Since it moves in the longitudinal direction while being heated and rotated, a spiral heating history is generated, which may affect the resistance unevenness of the roller. Therefore, it is more preferable to use a member longer than the length of the rubber portion of the unvulcanized rubber roller. The contact surface may be planar, but is preferably curved.

まず、圧接部材と未加硫ゴムローラとの当接面が曲面形状であるものについて説明する。具体的には円筒状の圧接部材を用いる事がある。円筒状の圧接部材の場合は回転している圧接部材に芯金の両端部を加圧しながら未加硫ゴムローラを当接させ、従動回転させる事によって連続的に位置を変えながら圧力を加える事ができる。なお、円筒状の圧接部材としては、未加硫ゴムローラの外径よりも大きい内径を持つ円筒形状のものを用いて、内周面に当接させながら回転させても良い。   First, the case where the contact surface between the pressure contact member and the unvulcanized rubber roller has a curved shape will be described. Specifically, a cylindrical pressure contact member may be used. In the case of a cylindrical pressure contact member, it is possible to apply pressure while continuously changing the position by bringing the unvulcanized rubber roller into contact with the rotating pressure contact member while applying pressure to both ends of the core bar and rotating the roller. it can. As the cylindrical pressure contact member, a cylindrical member having an inner diameter larger than the outer diameter of the unvulcanized rubber roller may be used and rotated while being in contact with the inner peripheral surface.

次に、圧接部材と未加硫ゴムローラとの当接面が平面形状であるものについて説明する。具体的には平板状の圧接部材を用いる事がある。平板状の圧接部材の場合は芯金の両端部を加圧して未加硫ゴムローラを圧接させながらその上を回転させることによって連続的に位置を変えながら圧力を加える事ができる。   Next, the case where the contact surface between the pressure contact member and the unvulcanized rubber roller has a planar shape will be described. Specifically, a flat plate pressure contact member may be used. In the case of a flat plate-shaped pressure contact member, pressure can be applied while continuously changing the position by pressing both ends of the core metal and rotating the unvulcanized rubber roller while pressing it.

得られるゴムローラを長手方向で外径が異なるクラウン形状や逆クラウン形状にするためには、圧接部材が円筒状の場合、クラウン形状(中央部の外径が端部の外径よりも大きい)、或いは逆クラウン形状(中央部の外径が端部の外径よりも小さい)の圧接部材を用いて加熱を行えば良い。又、あらかじめ外径差をつけた未加硫ローラを用いても良い。   In order to make the obtained rubber roller into a crown shape or an inverted crown shape having different outer diameters in the longitudinal direction, when the pressure contact member is cylindrical, the crown shape (the outer diameter of the central portion is larger than the outer diameter of the end portion), Or what is necessary is just to heat using the press-contact member of a reverse crown shape (the outer diameter of a center part is smaller than the outer diameter of an edge part). Moreover, you may use the unvulcanized roller which gave the outer diameter difference previously.

圧接部材の表面粗さについては、所望の表面粗さを得るために所望の表面粗さと同程度の表面粗さにする事によりゴムローラの表面粗さを制御する事が可能である。   As for the surface roughness of the pressure contact member, it is possible to control the surface roughness of the rubber roller by setting the surface roughness to the same level as the desired surface roughness in order to obtain the desired surface roughness.

圧接部材の加熱方法に関しては、熱風炉、加硫缶、熱盤、遠・近赤外線、誘導加熱、電熱線等のいずれの方法を併用しても良く、120℃以上220℃以下の範囲の温度で均一に加熱されている事が好ましい。   Regarding the heating method of the pressure contact member, any method such as a hot stove, vulcanizer, hot platen, far / near infrared, induction heating, heating wire, etc. may be used in combination, and the temperature is in the range of 120 ° C. or higher and 220 ° C. or lower. It is preferable that it is heated uniformly.

未加硫ゴムローラの加熱方法に関しては、圧接部材による加熱工程と共に熱風炉、加硫缶、熱盤、遠・近赤外線、誘導加熱等のいずれの方法を併用しても良く、140℃以上220℃以下の範囲の温度で10分以上180分以下の時間で加熱する事が好ましい。   Regarding the heating method of the unvulcanized rubber roller, any method such as a hot stove, a vulcanizing can, a hot platen, far / near infrared rays, induction heating, etc. may be used together with a heating process using a pressure contact member. It is preferable to heat at a temperature in the following range for 10 minutes to 180 minutes.

未加硫ゴムローラの圧接部材への圧接荷重に関しては、ゴム材料の粘度等によって適宜調整が可能であり、芯金の重量によっては自重のみでも良いが、安定性の面からも両端部に100gづつ以上かける、あるいはローラゴム長に対して均一な面圧をかける方法が好ましい。荷重はバネ圧、エアー圧等のいずれの方法で加えても良い。   The pressure load on the pressure contact member of the unvulcanized rubber roller can be adjusted as appropriate depending on the viscosity of the rubber material. Depending on the weight of the core metal, only its own weight may be used. It is preferable to apply the above method or to apply a uniform surface pressure to the length of the roller rubber. The load may be applied by any method such as spring pressure or air pressure.

図3に本発明に用いるの円筒状の圧接部材を有する圧接加硫装置の模式図(Aは正面図、Bは側面図)を示す。   FIG. 3 is a schematic diagram (A is a front view, B is a side view) of a pressure vulcanizing apparatus having a cylindrical pressure contact member used in the present invention.

回転している円筒状の圧接部材17と、芯金と一体に押出された未加硫ゴムローラ16の中心は平行に保持され、未加硫ゴムローラの両端部に加圧するための保持部材18を押し当てて軸が左右にずれる事がないように保持している。圧接部材は、中心に加熱用赤外線ヒーター19(ハロゲンランプヒーター)が配置されており、あらかじめ加熱温度に温めている。モータ20によって圧接部材を回転させる事で、未加硫ゴムローラを従動回転させる事ができる。又、加圧力は荷重21を変化させる事で調節可能である。更に、未加硫ゴムローラに電圧が印加されるように直流電源22が、そのローラ抵抗値を測定するようにマルチメータ23が配置されており、未加硫ゴムローラの加熱状態の圧接部材への当接と電圧の印加および測定を同時に行う事が可能である。   The center of the rotating cylindrical pressure contact member 17 and the unvulcanized rubber roller 16 extruded integrally with the core metal are held in parallel, and the holding member 18 for pressing the both ends of the unvulcanized rubber roller is pushed. It is held so that the shaft does not shift from side to side. The pressure contact member is provided with a heating infrared heater 19 (halogen lamp heater) at the center, and is preheated to a heating temperature. By rotating the pressure contact member by the motor 20, the unvulcanized rubber roller can be driven to rotate. Further, the applied pressure can be adjusted by changing the load 21. Further, a DC power source 22 is arranged so that a voltage is applied to the unvulcanized rubber roller, and a multimeter 23 is arranged so as to measure the roller resistance value. It is possible to simultaneously apply and measure the voltage and voltage.

圧接部材と未加硫ゴムローラが接触することにより圧接部材から未加硫ゴムローラに通電される。その電流を例えばマルチメータ・電流計等で測定することで、未加硫ゴムローラの抵抗値を得ることが可能となる。例えば、前記の検出される抵抗値をモニタし、あらかじめ設定した圧接部材による加熱回転工程時間に達した場合にゴムローラの抵抗値が規定値に未到達の場合には加熱回転工程時間を規定値に到達するまで延長する、または設定時間前にゴムローラの抵抗値が規定値に到達した場合には圧接部材とゴムローラとを離間し加熱回転工程を終了する、もしくは圧接部材の加熱温度を上昇もしくは下降させ設定時間で弾性ローラの抵抗値が規定値に到達するように圧接部材の加熱温度を変更する、もしくは圧接部材による加圧力を変更する、圧接部材の回転数を変更するといったようなフィードバック制御を行う事で、均一な抵抗値をもつ弾性ローラを製造することが可能となる。電圧の印加に関しては、加熱回転工程の終始印加するあるいは、設定した時間間隔(例えば15秒毎など)に印加してもよい。フィードバック制御を行う圧接部材による成形条件としては、例えば圧接部材の圧接時間、加圧力、温度、回転数等が上げられるが、これら成形条件を単独で制御しても複数を組み合わせて制御しても良い。   When the pressure contact member and the unvulcanized rubber roller come into contact with each other, the unvulcanized rubber roller is energized from the pressure contact member. The resistance value of the unvulcanized rubber roller can be obtained by measuring the current using, for example, a multimeter or an ammeter. For example, when the resistance value of the rubber roller does not reach the specified value when the detected resistance value is monitored and the resistance value of the rubber roller does not reach the specified value when the preset heating contact time is reached, the heating rotation process time is set to the specified value. When the resistance value of the rubber roller reaches the specified value before the set time, the pressure contact member and the rubber roller are separated from each other and the heating rotation process is ended, or the heating temperature of the pressure contact member is increased or decreased. Perform feedback control such as changing the heating temperature of the pressure contact member so that the resistance value of the elastic roller reaches the specified value in the set time, changing the pressure applied by the pressure contact member, or changing the rotation speed of the pressure contact member. Thus, it becomes possible to manufacture an elastic roller having a uniform resistance value. Regarding the application of the voltage, it may be applied throughout the heating rotation process, or may be applied at a set time interval (for example, every 15 seconds). The molding conditions for the pressure contact member that performs feedback control include, for example, the pressure contact time, pressure, temperature, and rotational speed of the pressure contact member. These molding conditions may be controlled individually or in combination. good.

またローラの抵抗値を制御する他の方法として、前記のように圧接部材と未加硫ゴムローラ間に電圧を印加して測定される抵抗値に基づくフィードバック制御を各ローラ毎に行う方法以外に、圧接部材による加圧回転加熱成形後もしくは2次加硫後のローラの抵抗値を測定し、測定された抵抗値と成形条件の関係から、要求する抵抗値をもつローラを製造する為の圧接部材による最適成形条件を予測し、予測された最適成形条件にて加圧回転加熱成形工程を行う方法がある。   In addition to the method of controlling the resistance value of the roller, in addition to the method of performing feedback control for each roller based on the resistance value measured by applying a voltage between the pressure contact member and the unvulcanized rubber roller as described above, A pressure contact member for measuring a resistance value of a roller after pressure rotary heating molding or secondary vulcanization by a pressure contact member, and manufacturing a roller having a required resistance value from the relationship between the measured resistance value and molding conditions. There is a method of predicting the optimum molding conditions by the method and performing the pressure rotary heating molding process under the predicted optimum molding conditions.

最適成形条件を推定する手法について、圧接部材による圧接時間を例にあげて以下に説明するが、圧接力、温度、回転数等のその他成形条件の場合についても同様の手法を用いる事ができる。   The method for estimating the optimum molding condition will be described below by taking the pressure contact time by the pressure contact member as an example, but the same method can also be used in the case of other molding conditions such as pressure contact force, temperature, and rotation speed.

圧接部材による加圧回転加熱成形工程において、あらかじめ少なくとも2点以上、好ましくは5点程度水準にて圧接部材による圧接時間を変更して弾性ローラを作成し、ローラ抵抗値を測定する。測定されたローラ抵抗値を圧接時間についてプロットすると、圧接時間を延ばすと圧接時間に応じてゴムローラの抵抗値が上昇していくことがわかる。つまりローラ抵抗値と圧接部材による成形条件に相関があることが明らかであり、このローラ抵抗値と成形条件の関係から要求する抵抗値をもつゴムローラを製造する為の圧接部材による最適圧接時間が推定でき、同じ材料であっても成形条件を変えることで、異なる抵抗値を持つローラを得ることが可能であることが本発明の最大の特徴である。   In the pressure rotary thermoforming process with the pressure contact member, an elastic roller is prepared by changing the pressure contact time with the pressure contact member at least at least 2 points, preferably about 5 points in advance, and the roller resistance value is measured. When the measured roller resistance value is plotted with respect to the pressure contact time, it can be seen that when the pressure contact time is extended, the resistance value of the rubber roller increases according to the pressure contact time. In other words, it is clear that there is a correlation between the roller resistance value and the molding condition by the pressure contact member, and the optimum pressure contact time by the pressure contact member for manufacturing the rubber roller having the required resistance value is estimated from the relationship between the roller resistance value and the molding condition. The greatest feature of the present invention is that it is possible to obtain rollers having different resistance values by changing molding conditions even with the same material.

圧接部材による成形条件とゴムローラの抵抗値の関係としては、前述のように圧接時間を長くすると高抵抗化する方向、加圧力を高くすると高抵抗化する方向、加熱温度を高くすると高抵抗化する方向に変化させることができるが、その変化率は導電性フィラーの配合量や種類、さらにはポリマー種やその他添加剤等によって異なることがある。   As described above, the relationship between the molding condition by the pressure contact member and the resistance value of the rubber roller increases the resistance when the pressure is increased, increases the resistance when the applied pressure is increased, and increases the resistance when the heating temperature is increased. The rate of change may vary depending on the blending amount and type of the conductive filler, the polymer type, other additives, and the like.

この手法を用いることで、例えば未加硫ゴム組成物の混練りロット違い等から未加硫ゴム組成物の抵抗値がある程度ばらついた場合においても、最適成形条件をあらかじめ推定して、推定された最適成形条件にて圧接部材による加熱回転工程を行うことで未加硫ゴム組成物ロットの抵抗値ばらつきを抑えたローラを製造することができる。   By using this method, even when the resistance value of the unvulcanized rubber composition varies to some extent due to, for example, the difference in the kneading lot of the unvulcanized rubber composition, the optimum molding conditions are estimated in advance and estimated. By performing the heating and rotating step with the pressure contact member under the optimum molding conditions, it is possible to manufacture a roller that suppresses variation in resistance value of the unvulcanized rubber composition lot.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these.

〈未加硫ゴム組成物の作製〉
エピクロルヒドリンゴム(商品名「エピクロマー(エピクロマーは登録商標です)CG105」:ダイソー(株)製)100質量部に対して,酸化亜鉛(酸化亜鉛二種 正同化学)5質量部,ステアリン酸1質量部,導電性フィラーとしてカーボンブラック(HS500 旭カーボン社製)35質量部をオープンロールで30分間混練した。更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部、加硫促進剤(TS:テトラメチルチウラムモノスルフィド)1質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。
<Preparation of unvulcanized rubber composition>
Epichlorohydrin rubber (trade name “Epichromer (Epichromer is a registered trademark) CG105”: manufactured by Daiso Co., Ltd.) 100 parts by mass, 5 parts by mass of zinc oxide (Zinc Oxide Two Kinds of Chemicals), 1 part by mass of stearic acid As a conductive filler, 35 parts by mass of carbon black (manufactured by Asahi Carbon Co., Ltd., HS500) was kneaded with an open roll for 30 minutes. Furthermore, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide), 1 part by mass of a vulcanization accelerator (TS: tetramethylthiuram monosulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent And kneaded with an open roll for 15 minutes to prepare an unvulcanized rubber composition.

導電性フィラーの配合量および式(1)および式(2)の計算結果を表1に示す。   Table 1 shows the blending amount of the conductive filler and the calculation results of the formulas (1) and (2).

次いで、外径φ6mm、長さ258mmのステンレス棒の芯金を用意した。ここで、図3に模式的に示す押出機を用いて芯金とゴムとを一体に押出すことで、芯金の周囲に円筒状の未加硫ゴム組成物を成形した。その後、未加硫ゴム組成物の長さが232mmになるように端部を切断・除去処理を行い、未加硫ゴムローラを得た(未加硫ゴムローラ外径φ8.5mm)。以降特に記載がない場合は、すべてこの方法で未加硫ゴムローラを作成した。   Next, a stainless bar core bar having an outer diameter of 6 mm and a length of 258 mm was prepared. Here, a cylindrical unvulcanized rubber composition was molded around the core metal by integrally extruding the core metal and rubber using an extruder schematically shown in FIG. Thereafter, the end portion was cut and removed so that the length of the unvulcanized rubber composition was 232 mm to obtain an unvulcanized rubber roller (unvulcanized rubber roller outer diameter φ8.5 mm). Thereafter, unless otherwise specified, unvulcanized rubber rollers were prepared by this method.

前記未加硫ゴムローラを図3に模式的に示す圧接加熱装置を用いて、145℃に加熱した円筒状の圧接部材による加圧回転加熱成形を未加硫ゴムローラの両端に1kgづつの荷重をかけて行った。なお、圧接部材による加圧回転加熱成形と同時に円筒状の圧接部材と未加硫ゴムローラ間に直流電圧200Vを印加し、測定されるローラ抵抗値が2*10^6Ωに到達した時点で圧接部材を離間して、ゴムローラを得た。その後、160℃、120分間加熱加硫を行いゴムローラを得た。このゴムローラを10本ごとに抜取り低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を図4に示す。ほぼ一定の抵抗を持つゴムローラが安定して得られている事が分かった。又、このゴムローラを低温低湿環境(15℃、10%)下で帯電ローラとして電子写真用カートリッジに組込み、感光ドラムの両端に500gづつの荷重を負荷した状態で圧接し、このゴムローラ(帯電ローラ)を用いてハーフトーンによる画像評価を行った。この評価において、本実施例のゴムローラ(帯電ローラ)は、抵抗ムラによる帯電不良や凹み等の表面欠陥による画像不良も無く良好な画像を得ることができた。以降特に記載がない場合は、すべてこの方法でゴムローラの画像評価を行った。   Using the pressure heating apparatus schematically shown in FIG. 3, the unvulcanized rubber roller is subjected to pressure rotary thermoforming using a cylindrical pressure contact member heated to 145 ° C., and a load of 1 kg is applied to both ends of the unvulcanized rubber roller. I went. At the same time as the press-rotating and heat-forming by the pressure contact member, a DC voltage of 200V is applied between the cylindrical pressure contact member and the unvulcanized rubber roller, and when the measured roller resistance value reaches 2 * 10 ^ 6Ω, the pressure contact member Was separated to obtain a rubber roller. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller. FIG. 4 shows the roller resistance value when each of these rubber rollers is pulled out and a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%). It was found that rubber rollers with almost constant resistance were obtained stably. This rubber roller is incorporated in an electrophotographic cartridge as a charging roller in a low-temperature and low-humidity environment (15 ° C., 10%), and is pressed into contact with both ends of the photosensitive drum with a load of 500 g. This rubber roller (charging roller) Was used to evaluate the image by halftone. In this evaluation, the rubber roller (charging roller) of the present example was able to obtain a good image without charging failure due to resistance unevenness and image failure due to surface defects such as dents. Thereafter, unless otherwise specified, image evaluation of the rubber roller was performed by this method.

〈未加硫ゴム組成物の作製〉
エピクロルヒドリンゴム(商品名「エピクロマー(エピクロマーは登録商標です)CG105」:ダイソー(株)製)100質量部に対して、酸化亜鉛(酸化亜鉛二種 正同化学)5質量部、ステアリン酸1質量部、導電性フィラーとしてケッチエンブラック(商品名「EC600JD」ライオン(株)製)2質量部、カーボンブラック(HS500 旭カーボン社製)15質量部をオープンロールで30分間混練した。更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部、加硫促進剤(TS:テトラメチルチウラムモノスルフィド)1質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。導電性フィラーの配合量および式(1)および式(2)の計算結果を表1に示す。この未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを図3に模式的に示す圧接加熱装置を用いて、145℃に加熱した円筒状の圧接部材による加圧回転加熱成形を未加硫ゴムローラの両端に1kgづつの荷重をかけて、30、60、90、120、150、180秒間の6水準の圧接時間で行った。その後、160℃、120分間加熱加硫を行いゴムローラを得た。
<Preparation of unvulcanized rubber composition>
Epichlorohydrin rubber (trade name "Epichromer (Epichromer is a registered trademark) CG105": manufactured by Daiso Co., Ltd.) 100 parts by mass, 5 parts by mass of zinc oxide (Zinc Oxide Type 2) and 1 part by mass of stearic acid As a conductive filler, 2 parts by mass of Ketchen Black (trade name “EC600JD” manufactured by Lion Corporation) and 15 parts by mass of carbon black (HS500 manufactured by Asahi Carbon Co., Ltd.) were kneaded with an open roll for 30 minutes. Furthermore, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide), 1 part by mass of a vulcanization accelerator (TS: tetramethylthiuram monosulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent And kneaded with an open roll for 15 minutes to prepare an unvulcanized rubber composition. Table 1 shows the blending amount of the conductive filler and the calculation results of the formulas (1) and (2). An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that this unvulcanized rubber composition was used. This unvulcanized rubber roller is subjected to pressure rotary thermoforming by a cylindrical pressure member heated to 145 ° C. using a pressure heating apparatus schematically shown in FIG. 3, and a load of 1 kg is applied to both ends of the unvulcanized rubber roller. Then, the welding was performed at six levels of pressure contact time of 30, 60, 90, 120, 150, and 180 seconds. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller.

このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を圧接時間についてプロットしたグラフを図5Aに示す。図5Aより圧接時間が長くなるとゴムローラの抵抗が高抵抗化している事が確認できた。図5A中に示した近似曲線から最適成形条件として圧接時間120秒を設定した。圧接時間を120秒固定として加圧回転加熱成形する以外は上記と同様な方法でゴムローラを得た。このゴムローラを10本ごとに抜取り低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値をプロットしたグラフを図5Bに示す。図5Bよりローラ間での抵抗バラツキの少ないローラが作成可能なことが確認できた。   FIG. 5A is a graph in which the roller resistance value of this rubber roller when a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the pressure contact time. From FIG. 5A, it was confirmed that the resistance of the rubber roller increased as the pressure contact time increased. From the approximate curve shown in FIG. 5A, a pressing time of 120 seconds was set as the optimum molding condition. A rubber roller was obtained in the same manner as described above except that the pressure contact time was fixed at 120 seconds and pressurization was performed. FIG. 5B is a graph plotting the roller resistance values when each of the rubber rollers is pulled out every 10 and a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%). From FIG. 5B, it was confirmed that it was possible to produce a roller with little resistance variation between the rollers.

〈未加硫ゴム組成物の作製〉
エピクロルヒドリンゴム(商品名「エピクロマー(エピクロマーは登録商標です)CG105」:ダイソー(株)製)100質量部に対して、酸化亜鉛(酸化亜鉛二種 正同化学)5質量部、ステアリン酸1質量部、導電性フィラーとしてSRF−カーボン(商品名:旭#35 旭カーボン社製)60質量部をオープンロールで30分間混練した。更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部、加硫促進剤(TS:テトラメチルチウラムモノスルフィド)1質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。導電性フィラーの配合量および式(1)および式(2)の計算結果を表1に示す。
<Preparation of unvulcanized rubber composition>
Epichlorohydrin rubber (trade name "Epichromer (Epichromer is a registered trademark) CG105": manufactured by Daiso Co., Ltd.) 100 parts by mass, 5 parts by mass of zinc oxide (Zinc Oxide Type 2) and 1 part by mass of stearic acid In addition, 60 parts by mass of SRF-carbon (trade name: Asahi # 35 manufactured by Asahi Carbon Co., Ltd.) as a conductive filler was kneaded with an open roll for 30 minutes. Furthermore, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide), 1 part by mass of a vulcanization accelerator (TS: tetramethylthiuram monosulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent And kneaded with an open roll for 15 minutes to prepare an unvulcanized rubber composition. Table 1 shows the blending amount of the conductive filler and the calculation results of the formulas (1) and (2).

この未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを用いて実施例2と同様な6水準の圧接時間で加圧回転加熱成形を行いゴムローラを得た。このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を圧接時間についてプロットしたグラフを図6に示す。図6より圧接時間が長くなるとゴムローラの抵抗が高抵抗化している事が確認できた。   An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that this unvulcanized rubber composition was used. Using this unvulcanized rubber roller, pressure rotation heating molding was carried out in the same 6-level pressure contact time as in Example 2 to obtain a rubber roller. FIG. 6 shows a graph in which the roller resistance value of this rubber roller when the DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the pressure contact time. From FIG. 6, it was confirmed that the resistance of the rubber roller increased as the pressure contact time increased.

〈未加硫ゴム組成物の作製〉
NBR(商品名「N230S」JSR社製)100質量部に対して、酸化亜鉛(酸化亜鉛二種 正同化学)5質量部、ステアリン酸1質量部、導電性フィラーとしてケッチエンブラック(商品名「EC600JD」ライオン(株))6質量部、カーボンブラック(HS500 旭カーボン社)14質量部、充填材として炭酸カルシウム(商品名「ナノックス#30」丸尾カルシウム(株))30質量部をオープンロールで30分間混練した。更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部,加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。導電性フィラーの配合量および式(1)および式(2)の計算結果を表1に示す。
<Preparation of unvulcanized rubber composition>
For 100 parts by mass of NBR (trade name “N230S” manufactured by JSR), 5 parts by mass of zinc oxide (Zinc Oxide Two Kinds of Chemicals), 1 part by weight of stearic acid, and Ketchen Black (trade name “Product Name“ EC600JD “Lion Co., Ltd.) 6 parts by mass, carbon black (HS500 Asahi Carbon Co., Ltd.) 14 parts by mass, calcium carbonate (trade name“ Nanox # 30 ”Maruo Calcium Co., Ltd.) 30 parts by mass as an open roll 30 Kneaded for a minute. Further, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent were added and kneaded with an open roll for 15 minutes to form an unvulcanized rubber composition. A product was made. Table 1 shows the blending amount of the conductive filler and the calculation results of the formulas (1) and (2).

この未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを図3に模式的に示す圧接加熱装置を用いて、未加硫ゴムローラの両端に1kgづつの荷重をかけて、圧接時間を120秒固定として、125、145、155℃の3水準にあらかじめ加熱した円筒状の圧接部材による加圧回転加熱成形を行った。その後、160℃、120分間加熱加硫を行いゴムローラを得た。   An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that this unvulcanized rubber composition was used. The unvulcanized rubber roller is pressed at 125, 145, and 155 ° C. using a pressure heating apparatus schematically shown in FIG. 3, applying a load of 1 kg to both ends of the unvulcanized rubber roller and fixing the pressure contact time to 120 seconds. Pressurized rotary thermoforming was performed with a cylindrical pressure contact member preheated to three levels. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller.

このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を圧接部材の加熱温度についてプロットしたグラフを図7に示す。図7より圧接部材の加熱温度が高くなるとゴムローラの抵抗が高抵抗化している事が確認できた。   FIG. 7 shows a graph in which the roller resistance value of this rubber roller when a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the heating temperature of the press contact member. From FIG. 7, it was confirmed that the resistance of the rubber roller increased as the heating temperature of the pressure contact member increased.

実施例4で用いた未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを図3に模式的に示す圧接加熱装置を用いて、圧接時間を120秒固定として、145℃に加熱した円筒状の圧接部材による加圧回転加熱成形を未加硫ゴムローラの両端に1、2、3、4kgづつの4水準の荷重をかけて行った。その後、160℃、120分間加熱加硫を行いゴムローラを得た。   An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that the unvulcanized rubber composition used in Example 4 was used. Using the pressure heating apparatus schematically shown in FIG. 3, this unvulcanized rubber roller is fixed in a pressure contact time of 120 seconds, and is subjected to pressure rotary thermoforming using a cylindrical pressure contact member heated to 145 ° C. The test was carried out by applying four levels of loads of 1, 2, 3, 4 kg to both ends. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller.

このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を両端の荷重による加圧力についてプロットしたグラフを図8に示す。図8よりローラにかかる加圧力が高くなるとゴムローラの抵抗が高抵抗化している事が確認できた。   FIG. 8 is a graph in which the roller resistance value of this rubber roller when a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the pressure applied by the loads at both ends. From FIG. 8, it was confirmed that the resistance of the rubber roller increased as the pressure applied to the roller increased.

(比較例1)
〈未加硫ゴム組成物の作製〉
エピクロルヒドリンゴム(商品名「エピクロマー(エピクロマーは登録商標です)CG105」:ダイソー(株)製)100質量部に対して、酸化亜鉛(酸化亜鉛二種 正同化学)5質量部、ステアリン酸1質量部、導電性フィラーとしてカーボンブラック(商品名:シーストSO 東海カーボン)10質量部、イオン導電剤としてテトラブチルアンモニウムパークロレート1質量部、充填材として炭酸カルシウム(商品名「ナノックス#30」丸尾カルシウム(株))30質量部をオープンロールで30分間混練した。更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部、加硫促進剤(TS:テトラメチルチウラムモノスルフィド)1質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。導電性フィラーの配合量および式(1)および式(2)の計算結果を表1に示す。
(Comparative Example 1)
<Preparation of unvulcanized rubber composition>
Epichlorohydrin rubber (trade name “Epichromer (Epichromer is a registered trademark) CG105”: manufactured by Daiso Co., Ltd.) 100 parts by mass, 5 parts by mass of zinc oxide (Zinc Oxide Type 2 Chemicals), 1 part by mass of stearic acid Carbon black (trade name: Seast SO Tokai Carbon) as the conductive filler, 1 part by mass of tetrabutylammonium perchlorate as the ionic conductive agent, calcium carbonate as the filler (trade name “Nanox # 30” Maruo Calcium Co., Ltd. )) 30 parts by mass were kneaded with an open roll for 30 minutes. Furthermore, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide), 1 part by mass of a vulcanization accelerator (TS: tetramethylthiuram monosulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent And kneaded with an open roll for 15 minutes to prepare an unvulcanized rubber composition. Table 1 shows the blending amount of the conductive filler and the calculation results of the formulas (1) and (2).

この未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを用いて60、180、300秒間の3水準の圧接時間とする以外は前記の実施例2と同様に圧接部材による加圧回転加熱成形を行いゴムローラを得た。その後、160℃、120分間加熱加硫を行いゴムローラを得た。このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を圧接時間についてプロットしたグラフを図9に示す。図9より比較例1の未加硫ゴム組成物を用いた場合には圧接時間を長くした場合でもゴムローラの抵抗がほぼ変化していない事が確認できた。   An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that this unvulcanized rubber composition was used. Using this unvulcanized rubber roller, a pressure roller was formed by pressing and pressing with a pressure contact member in the same manner as in Example 2 except that the pressure contact time was three levels of 60, 180, and 300 seconds to obtain a rubber roller. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller. FIG. 9 shows a graph in which the roller resistance value of this rubber roller is plotted with respect to the pressure contact time when a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%). From FIG. 9, it was confirmed that when the unvulcanized rubber composition of Comparative Example 1 was used, the resistance of the rubber roller was not substantially changed even when the pressure contact time was increased.

(比較例2)
比較例1で用いた未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを用いて圧接部材を140、155、170℃の3水準に加熱する以外は前記の実施例4と同様に圧接部材で加圧回転加熱成形を行いゴムローラを得た。その後、160℃、120分間加熱加硫を行いゴムローラを得た。このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を圧接部材の加熱温度についてプロットしたグラフを図10に示す。図10より比較例1の未加硫ゴム組成物を用いた場合には圧接部材の加熱温度を高くした場合でもゴムローラの抵抗がほぼ変化していない事が確認できた。
(Comparative Example 2)
An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that the unvulcanized rubber composition used in Comparative Example 1 was used. Except for heating the pressure contact member to three levels of 140, 155, and 170 ° C. using this unvulcanized rubber roller, pressure rotation heating molding was performed with the pressure contact member in the same manner as in Example 4 to obtain a rubber roller. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller. FIG. 10 shows a graph in which the roller resistance value of this rubber roller when a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the heating temperature of the pressure contact member. From FIG. 10, it was confirmed that when the unvulcanized rubber composition of Comparative Example 1 was used, the resistance of the rubber roller was not substantially changed even when the heating temperature of the pressure contact member was increased.

(比較例3)
比較例1で用いた未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを用いて未加硫ゴムローラの両端に1、2、3kgづつの3水準の荷重をかける以外は前記の実施例5と同様に圧接部材で加圧回転加熱成形を行いゴムローラを得た。その後、160℃、120分間加熱加硫を行いゴムローラを得た。このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を両端の荷重による加圧力についてプロットしたグラフを図11に示す。図11より比較例1の未加硫ゴム組成物を用いた場合にはローラにかかる加圧力を高くした場合でもゴムローラの抵抗がほぼ変化していない事が確認できた。
(Comparative Example 3)
An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that the unvulcanized rubber composition used in Comparative Example 1 was used. Using this unvulcanized rubber roller, pressurizing, rotating and heat-molding with a pressure contact member in the same manner as in Example 5 above except that three levels of load of 1, 2, 3 kg are applied to both ends of the unvulcanized rubber roller. Obtained. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller. FIG. 11 is a graph in which the roller resistance value of this rubber roller when a DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the pressure applied by the loads at both ends. From FIG. 11, it was confirmed that when the unvulcanized rubber composition of Comparative Example 1 was used, the resistance of the rubber roller was not substantially changed even when the pressure applied to the roller was increased.

(比較例4)
〈未加硫ゴム組成物の作製〉
エピクロルヒドリンゴム(商品名「エピクロマー(エピクロマーは登録商標です)CG105」:ダイソー(株)製)100質量部に対して、酸化亜鉛(酸化亜鉛二種 正同化学)5質量部、ステアリン酸1質量部、導電性フィラーとしてMT−カーボン(N990)35質量部をオープンロールで30分間混練した。更に、加硫促進剤(DM:ジ-2-ベンゾチアゾリルジスルフィド)1質量部、加硫促進剤(TS:テトラメチルチウラムモノスルフィド)1質量部及び加硫剤としてイオウ1.2質量部を加えて、15分間オープンロールで混練して未加硫ゴム組成物を作製した。導電性フィラーの配合量および式(1)および式(2)の計算結果を表1に示す。
(Comparative Example 4)
<Preparation of unvulcanized rubber composition>
Epichlorohydrin rubber (trade name "Epichromer (Epichromer is a registered trademark) CG105": manufactured by Daiso Co., Ltd.) 100 parts by mass, 5 parts by mass of zinc oxide (Zinc Oxide Type 2) and 1 part by mass of stearic acid Then, 35 parts by mass of MT-carbon (N990) as a conductive filler was kneaded with an open roll for 30 minutes. Furthermore, 1 part by mass of a vulcanization accelerator (DM: di-2-benzothiazolyl disulfide), 1 part by mass of a vulcanization accelerator (TS: tetramethylthiuram monosulfide) and 1.2 parts by mass of sulfur as a vulcanizing agent And kneaded with an open roll for 15 minutes to prepare an unvulcanized rubber composition. Table 1 shows the blending amount of the conductive filler and the calculation results of the formulas (1) and (2).

この未加硫ゴム組成物を用いる以外は前記の実施例1と同様な方法で未加硫ゴムローラを得た。この未加硫ゴムローラを用いて60、120、180秒間の3水準の圧接時間とする以外は前記の実施例2と同様に圧接部材による加圧回転加熱成形を行いゴムローラを得た。その後、160℃、120分間加熱加硫を行いゴムローラを得た。このゴムローラを低温低湿環境(15℃、10%)下で直流電圧200Vを印加した場合のローラ抵抗値を圧接時間についてプロットしたグラフを図12に示す。図12より比較例4の未加硫ゴム組成物を用いた場合には圧接時間を長くした場合でもゴムローラの抵抗がほぼ変化していない事が確認できた。   An unvulcanized rubber roller was obtained in the same manner as in Example 1 except that this unvulcanized rubber composition was used. Using this unvulcanized rubber roller, a pressure roller heating molding was performed by a pressure contact member in the same manner as in Example 2 except that the pressure contact time was three levels of 60, 120 and 180 seconds to obtain a rubber roller. Thereafter, heat vulcanization was performed at 160 ° C. for 120 minutes to obtain a rubber roller. FIG. 12 shows a graph in which the roller resistance value of this rubber roller when the DC voltage of 200 V is applied in a low temperature and low humidity environment (15 ° C., 10%) is plotted with respect to the pressure contact time. From FIG. 12, it was confirmed that when the unvulcanized rubber composition of Comparative Example 4 was used, the resistance of the rubber roller was not substantially changed even when the pressure contact time was increased.

Figure 2007171279
Figure 2007171279

画像形成装置の概略構成図Schematic configuration diagram of an image forming apparatus 押出機の模式図Schematic diagram of extruder 円筒状圧接部材の圧接加熱装置の模式図(Aは正面図、Bは側面図)Schematic diagram of a pressure heating device for a cylindrical pressure welding member (A is a front view, B is a side view) 実施例1における抜き取りローラ抵抗値Extraction roller resistance value in Example 1 実施例2における圧接時間とローラ抵抗値の関係および抜き取りローラ抵抗値Relationship between pressure contact time and roller resistance value and extraction roller resistance value in Example 2 実施例3における圧接時間とローラ抵抗値の関係Relationship between pressure contact time and roller resistance value in Example 3 実施例4における圧接部材加熱温度とローラ抵抗値の関係Relationship between pressure member heating temperature and roller resistance value in Example 4 実施例5における加圧力とローラ抵抗値の関係Relationship between pressure force and roller resistance value in Example 5 比較例1における圧接時間とローラ抵抗値の関係Relationship between pressure contact time and roller resistance value in Comparative Example 1 比較例2における圧接部材加熱温度とローラ抵抗値の関係Relation between pressure member heating temperature and roller resistance value in Comparative Example 2 比較例3における加圧力とローラ抵抗値の関係Relationship between pressure force and roller resistance value in Comparative Example 3 比較例4における圧接時間とローラ抵抗値の関係Relationship between pressure contact time and roller resistance value in Comparative Example 4

符号の説明Explanation of symbols

1 感光体
2 帯電部材
3 露光光
4 現像部材
5 転写部材
6 転写材
7 定着部材
8 クリーニング部材
9 トナー
10 回転軸
11 押出機
12 クロスヘッド
13 芯金送りローラ
14 芯金
15 切断・除去処理
16 未加硫ローラ
17 圧接部材
18 保持部材
19 加熱用赤外線ヒーター
20 モータ
21 荷重
22 直流電源
23 マルチメータ
DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Charging member 3 Exposure light 4 Developing member 5 Transfer member 6 Transfer material 7 Fixing member 8 Cleaning member 9 Toner 10 Rotating shaft 11 Extruder 12 Crosshead 13 Core metal feed roller 14 Core metal 15 Cutting / removal processing 16 Not yet Vulcanizing roller 17 Pressure contact member 18 Holding member 19 Infrared heater for heating 20 Motor 21 Load 22 DC power supply 23 Multimeter

Claims (4)

未加硫ゴム組成物を芯金とともに押出す事で芯金上に未加硫ゴム組成物を被覆する工程と、該芯金上の未加硫ゴム組成物表面を圧接部材により圧力かけた状態で回転させながら加熱を行う成形工程とを有する事を特徴とする弾性ローラの製造方法において、該芯金上の未加硫ゴム組成物表面を圧接部材に圧力をかけた状態で回転させながら加熱しつつ、芯金と圧接部材との間に電圧を印加して未加硫ゴム組成物の電気抵抗を測定する手段を備え、測定される電気抵抗値に基づいて圧接部材による加圧回転加熱工程における圧接部材の加圧時間あるいは加圧力あるいは加熱温度あるいは回転数の少なくともいずれか1つをフィードバック制御する事を特徴とする弾性ローラの製造方法。   A process of coating the unvulcanized rubber composition on the core metal by extruding the unvulcanized rubber composition together with the core metal, and a state in which the surface of the unvulcanized rubber composition on the core metal is pressed by a pressure contact member In a method of manufacturing an elastic roller, wherein the heating is performed while rotating the surface of the unvulcanized rubber composition on the core metal while applying pressure to the pressure contact member. However, it is provided with a means for measuring the electric resistance of the unvulcanized rubber composition by applying a voltage between the metal core and the pressure contact member, and a pressure rotation heating process by the pressure contact member based on the measured electric resistance value A method of manufacturing an elastic roller, wherein feedback control is performed on at least one of a pressurizing time, a pressurizing force, a heating temperature, and a rotational speed of the press contact member in step. 未加硫ゴム組成物を芯金とともに押出す事で芯金上に未加硫ゴム組成物を被覆する工程と、該芯金上の未加硫ゴム組成物表面を圧接部材により圧力かけた状態で回転させながら加熱を行う成形工程とを有する事を特徴とする弾性ローラの製造方法において、成形中もしくは成形後もしくは加硫後のいずれか/毎に弾性ローラの電気抵抗を測定し、測定された電気抵抗値と圧接部材による加圧回転加熱工程における圧接部材の加圧時間あるいは加圧力あるいは加熱温度あるいは回転数からなる少なくともいずれか1つの成形条件から、要求する電気抵抗値をもつ弾性ローラの成形条件を予測し、予測された成形条件を最適成形条件として決定し、該最適成形条件により圧接部材による加圧回転加熱工程をおこなう事を特徴とする弾性ローラの製造方法。   A process of coating the unvulcanized rubber composition on the core metal by extruding the unvulcanized rubber composition together with the core metal, and a state in which the surface of the unvulcanized rubber composition on the core metal is pressed by a pressure contact member In a method of manufacturing an elastic roller, characterized in that the electrical resistance of the elastic roller is measured during molding, after molding, or after vulcanization / every time. The elastic roller having the required electrical resistance value is determined from at least one molding condition consisting of the electrical resistance value and the pressurizing time or pressurizing pressure, heating temperature or rotational speed of the pressurizing member in the pressurizing and rotating process. An elastic roller manufactured by predicting molding conditions, determining the predicted molding conditions as optimum molding conditions, and performing a pressurizing rotation heating process with a pressure contact member under the optimum molding conditions. Method. 前記未加硫ゴム組成物が導電性フィラーを少なくとも含有する事を特徴とする請求項1〜2に記載の弾性ローラの製造方法。   The method for producing an elastic roller according to claim 1, wherein the unvulcanized rubber composition contains at least a conductive filler. 前記導電性フィラーがカーボンブラックであり、少なくとも含有される該カーボンブラックの窒素吸着比表面積をA(m/g)、DBP吸油量をB(ml/100g)、ゴム100重量部に対する添加重量部をCとして、該カーボンブラックが式(I)および(II)の関係を満たすこと事を特徴とする請求項1〜2に記載の弾性ローラの製造方法。
式(I) 1000≦Σ(A×C)≦100,000
式(II) 2500≦Σ(B×C)≦50,000
The conductive filler is carbon black, and at least the carbon black contained therein has a nitrogen adsorption specific surface area of A (m 2 / g), a DBP oil absorption of B (ml / 100 g), and an added part by weight with respect to 100 parts by weight of rubber. The method for producing an elastic roller according to claim 1, wherein the carbon black satisfies the relationship of the formulas (I) and (II), where C is C.
Formula (I) 1000 ≦ Σ (A × C) ≦ 100,000
Formula (II) 2500 ≦ Σ (B × C) ≦ 50,000
JP2005365028A 2005-12-19 2005-12-19 Method of manufacturing elastic roller Withdrawn JP2007171279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365028A JP2007171279A (en) 2005-12-19 2005-12-19 Method of manufacturing elastic roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365028A JP2007171279A (en) 2005-12-19 2005-12-19 Method of manufacturing elastic roller

Publications (1)

Publication Number Publication Date
JP2007171279A true JP2007171279A (en) 2007-07-05

Family

ID=38297966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365028A Withdrawn JP2007171279A (en) 2005-12-19 2005-12-19 Method of manufacturing elastic roller

Country Status (1)

Country Link
JP (1) JP2007171279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976447B2 (en) * 2006-12-27 2011-07-12 Canon Kasei Kabushiki Kaisha Conductive rubber roller and transfer roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976447B2 (en) * 2006-12-27 2011-07-12 Canon Kasei Kabushiki Kaisha Conductive rubber roller and transfer roller

Similar Documents

Publication Publication Date Title
JP3639773B2 (en) Semiconductive rubber composition, charging member, electrophotographic apparatus, process cartridge
KR100739695B1 (en) Tubular developing roller, method of preparing the same, and electrophotographic imaging apparatus comprising the same
US9720343B2 (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP2010076205A (en) Method of manufacturing conductive roller, conductive roller, charged roller, and electrophotographic device
US9095999B2 (en) Charging member, charging unit, process cartridge, image forming apparatus, and method of manufacturing charging member
JP2006258934A (en) Charging member, electrophotographic apparatus and process cartridge using the charging member
JP2010217521A (en) Conductive rubber roller and transfer roller
JP2012155263A (en) Conductive sponge rubber roller and transfer roller
JP2010145920A (en) Conductive sponge rubber roller and image forming apparatus
JP2007171279A (en) Method of manufacturing elastic roller
JP5585331B2 (en) Conductive member evaluation apparatus and conductive member evaluation method
CN108241267B (en) Charging member, charging device, process cartridge, and image forming apparatus
JP7046598B2 (en) Manufacturing method of charged member
JP2007163574A (en) Conductive rubber roller
JP3760735B2 (en) Conductive roll
JP2006258933A (en) Conductive roller and method for manufacturing same
JP5377024B2 (en) Method for manufacturing charging member
JP2009014834A (en) Charging roller, and process cartridge and electrophotographic device having charging roller
JP2009199027A (en) Charging device, process cartridge having the same, and image forming apparatus having the process cartridge
JP6883197B2 (en) Charging member, charging device, process cartridge, and image forming device
US20200341403A1 (en) Charging device, process cartridge, and image forming apparatus
JP2005212372A (en) Method and equipment for surface treatment of elastic member
JP6801197B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2001221224A (en) Rubber roller for image forming device
JP2011164176A (en) Conductive sponge rubber roller and transfer roller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303