JP2007171033A - Indirect measuring method and system of leaf area index - Google Patents

Indirect measuring method and system of leaf area index Download PDF

Info

Publication number
JP2007171033A
JP2007171033A JP2005370404A JP2005370404A JP2007171033A JP 2007171033 A JP2007171033 A JP 2007171033A JP 2005370404 A JP2005370404 A JP 2005370404A JP 2005370404 A JP2005370404 A JP 2005370404A JP 2007171033 A JP2007171033 A JP 2007171033A
Authority
JP
Japan
Prior art keywords
ratio
leaf area
luminance value
solar radiation
area index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005370404A
Other languages
Japanese (ja)
Inventor
Takafumi Tanaka
隆文 田中
Takeshi Ota
岳史 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2005370404A priority Critical patent/JP2007171033A/en
Publication of JP2007171033A publication Critical patent/JP2007171033A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To determine a leaf area index highly accurately, even if each solar radiation in a forest and out of the forest is not measured simultaneously, or even if measurement itself of the solar radiation out of the forest is omitted. <P>SOLUTION: When measuring indirectly the leaf area index, an image of a prescribed area is photographed by changing an exposure time in a plurality of kinds, relative to each of near-infrared light and red light by using a wide angle lens and an electronic imaging element, and an image whose brightness value is the nearest to the median of a gradation from insufficient exposure to excessive exposure is selected from among images having a plurality of kinds of exposure times, relative to each of the near-infrared light and the red light in each subdivided domain acquired by subdividing the prescribed area. A brightness value when the selected image is normalized into a prescribed exposure time is determined, and a brightness value ratio between the near-infrared light and the red light in each subdivided domain is determined from each brightness value of the near-infrared light and the red light determined in each subdivided domain, and a relative solar radiation is estimated by using the brightness value ratio, and the leaf area index is determined from the relative solar radiation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、森林のバイオマス量の代表的な指標値である葉面積指数を間接的に測定する方法およびシステムに関するものである。   The present invention relates to a method and system for indirectly measuring a leaf area index, which is a typical index value of forest biomass.

葉面積指数(LAI:Leaf Area Index)とは、単位水平面積当りの地上部の全ての葉の片面の面積の合計値のことであり、例えばLAI=2なら、10mの面積内の葉の片面の面積の合計が20mとなって、水平な地面に葉を隙間なく並べれば2枚重なると解釈できる。 The leaf area index (LAI) is the total value of the area of one side of all the leaves of the above-ground part per unit horizontal area. For example, if LAI = 2, the leaf area index is 10 m 2 . If the total area of one side is 20 m 2 and leaves are arranged on the horizontal ground without any gaps, it can be interpreted as two overlapping.

森林のバイオマス量の代表的な指標値である上記葉面積指数は、森林の熱収支モデル、蒸発散モデル、光合成モデル等の主要パラメータであり、地球温暖化研究の全球モデルの植生表現の主要パラメータにも採用されている。また森林に関わる様々な研究の試験地の説明項目としても使用されている。   The above-mentioned leaf area index, which is a representative index value of forest biomass, is a main parameter of forest heat balance model, evapotranspiration model, photosynthesis model, etc., and is a main parameter of vegetation expression of global model of global warming research It is also adopted. It is also used as an explanatory item for test sites in various research related to forests.

かかる葉面積指数は、全木伐採や標準木伐採によって直接測定することができるが、全木伐採は、伐採に対する抵抗感および、季節変化やプロセスの重視のため近年は少なくなっており、標準木伐採は、種構成の多様な森林では困難であった。   This leaf area index can be measured directly by whole tree cutting or standard tree cutting, but whole tree cutting has decreased in recent years due to the resistance to logging and the importance of seasonal changes and processes. Logging was difficult in forests with diverse species composition.

一方、葉面積指数は相対日射量の関数となることが知られており(非特許文献1参照)、これを利用した葉面積指数の間接測定も実用化され、普及している(例えば、非特許文献2参照)。   On the other hand, it is known that the leaf area index is a function of the relative solar radiation amount (see Non-Patent Document 1), and indirect measurement of the leaf area index using this has been put into practical use and has become widespread (for example, non-patent document 1). Patent Document 2).

また、魚眼レンズを用い、天頂角・方位角で分割した領域毎の相対照度を測定して高精度に葉面積指数を求めることも行われている(非特許文献3参照)。
Monsi & Saeki, 1953, Jpn. J. Bot. 14, 22-52. J. M. Welles and J. M. Norman 1991, Instrument for indirect measurement of canopy architecture, Agronomy Journal, 83.818-825. J. M. Norman & G. S. Campbell, Canopy structure, p.301-325, in R. W. Pearcy, J. Ehleringer, H. A. Mooney and P. W. Rundel (Eds.) Plant Physiological Ecology, 1989, Chapman & Hall, London, pp.457.
Also, a leaf area index is obtained with high accuracy by measuring the relative illuminance of each region divided by the zenith angle and azimuth angle using a fisheye lens (see Non-Patent Document 3).
Monsi & Saeki, 1953, Jpn. J. Bot. 14, 22-52. JM Welles and JM Norman 1991, Instrument for indirect measurement of canopy architecture, Agronomy Journal, 83.818-825. JM Norman & GS Campbell, Canopy structure, p.301-325, in RW Pearcy, J. Ehleringer, HA Mooney and PW Rundel (Eds.) Plant Physiological Ecology, 1989, Chapman & Hall, London, pp. 457.

ところで、相対日射量を得るためには、森林内と森林外との日射量を同時測定することが必要であるが、樹高も空間的な広がりも大きな森林では、森林内外の日射量の同時測定は容易でないことが多いため、実際には時間差を置いて測定されることが多く、大きな誤差要因となっていた。   By the way, in order to obtain relative solar radiation, it is necessary to simultaneously measure solar radiation in the forest and outside the forest, but in forests with large tree height and spatial spread, simultaneous solar radiation measurement inside and outside the forest. In many cases, it is not easy to measure, so in practice, it is often measured with a time difference, which is a major error factor.

すなわち、時刻や天候の変化で森林外の日射量は数オーダー変動することもあり、例えば2オーダー異なれば、葉面積指数の値が±4以上も異なってしまい、これは到底無視できない程度であって、葉面積指数の測定値の信頼性を大きく損ねていた。   In other words, the amount of solar radiation outside the forest may fluctuate by several orders due to changes in time and weather. For example, if there are two orders of difference, the leaf area index will differ by more than ± 4, which cannot be ignored. Thus, the reliability of the measured value of the leaf area index was greatly impaired.

そこでこの状況を改善するため従来、日射が森林の林冠部を通過するとき近赤外と赤色光とで減衰の程度が異なり、森林内の日射は森林外の日射に比べ近赤外光/赤色光の光量比が大きくなるという点に着目し、この比を用いて相対日射量を推定して葉面積指数を求めることも提案されていたが、結局この手法は失敗して放棄されてしまった(非特許文献3参照)。   Therefore, in order to improve this situation, conventionally, when the solar radiation passes through the forest canopy, the intensity of attenuation differs between the near infrared light and the red light, and the solar radiation in the forest is near infrared light / red compared to the solar radiation outside the forest. Focusing on the fact that the light intensity ratio increases, it has also been proposed to calculate the leaf area index by estimating the relative solar radiation using this ratio, but this method eventually failed and was abandoned (Refer nonpatent literature 3).

その失敗の理由は、従来は画像から光量を測定していたわけではないが、その測定は結局(近赤外光の積算値)/(赤色光の積算値)で計算していたことに相当するため、葉群の少ない部位(すなわち輝度の高い部位)の情報の重みが大きくなり、葉群の多い部位(すなわち輝度の低い部位)の情報の重みが低くなったためと考えられる。   The reason for the failure is that the amount of light was not conventionally measured from the image, but the measurement was eventually calculated as (integrated value of near infrared light) / (integrated value of red light). For this reason, it is considered that the information weight of the part with a small number of leaf groups (that is, the part with high luminance) is increased, and the information weight of the part with a large number of leaf groups (that is, a part with low luminance) is reduced.

この発明は、上記従来の課題を有利に解決することを目的とするものであり、この発明の葉面積指数の間接測定方法は、葉面積指数を間接的に測定するに際し、広角レンズおよび電子式撮像素子を用いて、近赤外光と赤色光とのそれぞれについて、露出時間を複数種類に変えて所定領域の画像を撮影し、前記所定領域を細分した細分領域毎に、近赤外光と赤色光とのそれぞれについて、前記複数種類の露出時間の画像中で輝度値が露出不足から露出過多までの間の階調の中央値に最も近い画像を選択して、その選択した画像を所定露出時間に正規化した場合の輝度値を求め、前記細分領域毎に求めた近赤外光と赤色光との輝度値から、前記細分領域毎の近赤外光と赤色光との輝度値比を求め、前記輝度値比を用いて相対日射量を推定し、前記相対日射量から葉面積指数を求めることを特徴とするものである。   An object of the present invention is to advantageously solve the above-described conventional problems, and the indirect measurement method of the leaf area index according to the present invention provides a wide-angle lens and an electronic method for indirectly measuring the leaf area index. For each of the near-infrared light and the red light using the imaging device, the exposure time is changed into a plurality of types, an image of a predetermined area is photographed, and for each subdivided area obtained by subdividing the predetermined area, near-infrared light and For each of the red light, the image having the brightness value closest to the median of the gradation between the underexposure and the overexposure is selected from the images of the plurality of types of exposure times, and the selected image is exposed to a predetermined amount. The luminance value when normalized to time is obtained, and the luminance value ratio between the near infrared light and the red light for each subdivision region is calculated from the luminance value of the near infrared light and the red light obtained for each subdivision region. Obtaining the relative solar radiation amount using the luminance value ratio, It is characterized in determining the leaf area index from pairs solar radiation.

また、この発明の葉面積指数の間接測定システムは、広角レンズおよび電子式撮像素子を用いて、近赤外光と赤色光とのそれぞれについて、露出時間を複数種類に変えて所定領域の画像を撮影する撮影手段と、前記所定領域を細分した細分領域毎に、近赤外光と赤色光とのそれぞれについて、前記複数種類の露出時間の画像中で輝度値が露出不足から露出過多までの間の階調の中央値に最も近い画像を選択して、その選択した画像を所定露出時間に正規化した場合の輝度値を求める画像選択・輝度値演算手段と、前記細分領域毎に求めた近赤外光と赤色光との輝度値から、前記細分領域毎の近赤外光と赤色光との輝度値比を求める輝度値比演算手段と、前記輝度値比を用いて相対日射量を推定する相対日射量推定手段と、前記相対日射量から葉面積指数を求める葉面積指数演算手段と、を具えてなるものである。   In addition, the indirect measurement system for leaf area index according to the present invention uses a wide-angle lens and an electronic imaging device to change the exposure time for each of the near-infrared light and the red light into a plurality of types and display an image of a predetermined region. For each subdivision area obtained by subdividing the predetermined area with the photographing means for photographing, the brightness value is between underexposure and overexposure in the images of the plurality of types of exposure time for each of near infrared light and red light. An image selection / brightness value calculation means for obtaining a luminance value when the image closest to the median value of the gradation is selected and the selected image is normalized to a predetermined exposure time, and a proximity value obtained for each subdivision area Luminance value ratio calculation means for obtaining a luminance value ratio between near infrared light and red light for each subdivision area from the luminance values of infrared light and red light, and estimation of relative solar radiation using the luminance value ratio Relative solar radiation amount estimating means, and from the relative solar radiation amount And leaf area index calculating means for calculating the area index is made comprises a.

上記間接測定方法によれば、細分領域毎に輝度値が露出不足から露出過多までの間の階調の中央値に最も近い画像を選択し、その選択した画像を所定露出時間で撮像したものとした場合のその画像の輝度値を求めるので、各細分領域の輝度値が極めて多段階の階調値で高精度に表現でき、しかも所定領域としての全天等を細分した細分領域毎にその高精度の輝度値を求めるので、葉群の少ない部位(すなわち輝度の高い部位)の情報と葉群の多い部位(すなわち輝度の低い部位)の情報との重みの差をほとんど若しくは全くなくすことができ、その高精度の輝度値を用いて近赤外光と赤色光との輝度値比を求めて相対日射量を推定し、そこから葉面積指数を求めるから、森林内と森林外との日射量を同時測定しなくても、さらには森林外との日射量の測定自体をなくしても、高精度に葉面積指数を求めることができる。   According to the indirect measurement method, for each subdivision area, an image whose luminance value is closest to the median value of gradation between underexposure and overexposure is selected, and the selected image is captured with a predetermined exposure time. In this case, the brightness value of the image is obtained, so that the brightness value of each subdivision area can be expressed with extremely high gradation levels and with high accuracy for each subdivision area obtained by subdividing the whole sky as a predetermined area. Since the luminance value of the accuracy is obtained, the difference in weight between the information of the part having a small number of leaf groups (that is, the part having high luminance) and the information of the part having a large number of leaf groups (that is, a part having low luminance) can be eliminated. The relative insolation amount is estimated by obtaining the luminance value ratio between near infrared light and red light using high-precision luminance values, and the leaf area index is obtained therefrom, so that the insolation amount in and outside the forest can be simultaneously calculated. Even without measuring, even outside the forest Even eliminating the measurement itself of injection amount, it is possible to determine the leaf area index with high accuracy.

なお、この発明の葉面積指数の間接測定方法においては、前記細分領域は、前記電子式撮像素子の一または複数の画素に対応するものであっても良く、このようにすれば、各細分領域の輝度値を容易に求めることができる。   In the indirect measurement method of the leaf area index according to the present invention, the subdivision area may correspond to one or a plurality of pixels of the electronic imaging device, and in this way, each subdivision area The luminance value can be easily obtained.

さらに、この発明の葉面積指数の間接測定方法においては、前記所定領域の、天頂から所定天頂角までを天頂角によって三つの大領域に分割して、前記大領域毎に前記輝度値比の平均値を求め、前記大領域毎の輝度値比の平均値から前記相対日射量としてのギャップの割合を推定し、前記ギャップの割合から葉面積指数を求めることとしても良く、このようにすれば、前記非特許文献2によれば天頂から所定天頂角までを天頂角によって三つに分割した領域毎の近赤外光と赤色光との光量比と市販のLAI測定器である後述のLAI-2000で測定したギャップの割合との間に一価関係があることが判明しているので、この非特許文献2に倣って、天頂から所定天頂角までを天頂角によって三つに分割した大領域毎の輝度値比の平均値と市販のLAI測定器のギャップの割合との間の一価関係を用いて前記輝度値比の平均値をギャップの割合に変換し、そのギャップの割合から非特許文献2に倣って計算してLAI値を求めることができる。   Furthermore, in the indirect measurement method of the leaf area index of the present invention, the predetermined area is divided into three large areas by the zenith angle from the zenith to the predetermined zenith angle, and the average of the luminance value ratio for each large area The value is obtained, the ratio of the gap as the relative solar radiation amount is estimated from the average value of the luminance value ratio for each large area, and the leaf area index may be obtained from the ratio of the gap. According to Non-Patent Document 2, the light intensity ratio between near-infrared light and red light for each region obtained by dividing the zenith to a predetermined zenith angle into three by the zenith angle, and a later-described LAI-2000 which is a commercially available LAI measuring instrument. Since it has been found that there is a monovalent relationship with the gap ratio measured in step 3, according to Non-Patent Document 2, each large region obtained by dividing the zenith to the predetermined zenith angle into three by the zenith angle. The average value of the luminance value ratio of the LAI measuring instrument The average value of the luminance value ratios is converted into a gap ratio using a monovalent relationship with the ratio of the gap, and the LAI value can be obtained by calculating according to Non-Patent Document 2 from the gap ratio. .

一方、上記間接測定システムによれば、撮影手段が、広角レンズおよび電子式撮像素子を用いて、近赤外光と赤色光とのそれぞれについて、露出時間を複数種類に変えて所定領域の画像を撮影し、画像選択・輝度値演算手段が、前記所定領域を細分した細分領域毎に、近赤外光と赤色光とのそれぞれについて、前記複数種類の露出時間の画像中で輝度値が露出不足から露出過多までの間の階調の中央値に最も近い画像を選択して、その選択した画像を所定露出時間に正規化した場合の輝度値を求め、輝度値比演算手段が、前記細分領域毎に求めた近赤外光と赤色光との輝度値から、前記細分領域毎の近赤外光と赤色光との輝度値比を求め、そして葉面積指数演算手段が、前記輝度値比を用いて相対日射量を推定する相対日射量推定手段と、前記相対日射量から葉面積指数を求めることから、上記間接測定方法を実施し得て、各細分領域の輝度値が極めて多段階の階調値で高精度に表現でき、しかも所定領域としての全天等を細分した細分領域毎にその高精度の輝度値を求めるので、葉群の少ない部位(すなわち輝度の高い部位)の情報と葉群の多い部位(すなわち輝度の低い部位)の情報との重みの差をほとんど若しくは全くなくすことができ、その高精度の輝度値を用いて近赤外光と赤色光との輝度値比を求めて相対日射量を推定し、そこから葉面積指数を求めるから、森林内と森林外との日射量を同時測定しなくても、さらには森林外との日射量の測定自体をなくしても、高精度に葉面積指数を求めることができる。   On the other hand, according to the above indirect measurement system, the photographing means uses the wide-angle lens and the electronic image pickup device to change the exposure time for each of the near-infrared light and the red light into a plurality of types and display an image of a predetermined region. Shooting and image selection / brightness value calculation means underexposure of luminance values in the images of the plurality of types of exposure time for each of the near infrared light and red light for each subdivided area obtained by subdividing the predetermined area And selecting the image closest to the median of the gradation between the overexposure and the overexposure, obtaining the luminance value when the selected image is normalized to a predetermined exposure time, and the luminance value ratio calculation means The brightness value ratio between the near infrared light and the red light for each subdivision area is obtained from the brightness values of the near infrared light and the red light obtained every time, and the leaf area index calculating means calculates the brightness value ratio. Relative solar radiation amount estimation means for estimating relative solar radiation amount using Since the leaf area index is obtained from the relative solar radiation, the above indirect measurement method can be implemented, and the luminance value of each sub-region can be expressed with very high gradation levels, and the whole sky as a predetermined region can be expressed. Since the high-precision luminance value is obtained for each subdivided region, etc., the difference in weight between the information on the part with a small leaf group (that is, the part with high luminance) and the information on the part with a large leaf group (that is, a part with low luminance) Since the relative solar radiation amount is estimated from the luminance value ratio between near infrared light and red light using the high-precision luminance value, and the leaf area index is obtained therefrom, the forest The leaf area index can be obtained with high accuracy without simultaneously measuring the solar radiation amount inside and outside the forest, or even without measuring the solar radiation amount outside the forest itself.

なお、この発明の葉面積指数の間接測定システムにおいては、前記細分領域は、前記電子式撮像素子の一または複数の画素に対応するものであっても良く、このようにすれば、各細分領域の輝度値を容易に求めることができる。   In the leaf area index indirect measurement system according to the present invention, the subdivision area may correspond to one or a plurality of pixels of the electronic imaging device. In this way, each subdivision area The luminance value can be easily obtained.

さらに、この発明の葉面積指数の間接測定システムにおいては、前記輝度値比演算手段は、前記所定領域の、天頂から所定天頂角までを天頂角によって三つの大領域に分割して、前記大領域毎に前記輝度値比の平均値を求め、前記相対日射量推定手段は、前記大領域毎の輝度値比の平均値から前記相対日射量としてのギャップの割合を推定し、前記葉面積指数演算手段は、前記ギャップの割合から葉面積指数を求めても良く、このようにすれば、前記非特許文献2によれば天頂から所定天頂角までを天頂角によって三つに分割した領域毎の近赤外光と赤色光との光量比と市販のLAI測定器である後述のLAI-2000で測定したギャップの割合との間に一価関係があることが判明しているので、この非特許文献2に倣って、天頂から所定天頂角までを天頂角によって三つに分割した大領域毎の輝度値比の平均値と市販のLAI測定器のギャップの割合との間の一価関係を用いて前記輝度値比の平均値をギャップの割合に変換し、そのギャップの割合から非特許文献2に倣って計算してLAI値を求めることができる。   Furthermore, in the leaf area index indirect measurement system of the present invention, the luminance value ratio calculating means divides the predetermined area from the zenith to the predetermined zenith angle into three large areas by the zenith angle, and the large area The average value of the luminance value ratio is calculated every time, and the relative solar radiation amount estimating means estimates the gap ratio as the relative solar radiation amount from the average value of the luminance value ratio of each large region, and calculates the leaf area index The means may obtain a leaf area index from the ratio of the gap, and according to the non-patent document 2, according to the non-patent document 2, the distance from the zenith to the predetermined zenith angle is divided into three by the zenith angle. It is known that there is a monovalent relationship between the ratio of the amount of light between infrared light and red light and the ratio of the gap measured with the LAI-2000 described later, which is a commercially available LAI measuring instrument. Follow Fig. 2 from the zenith to the specified zenith angle. The average value of the luminance value ratio is converted into the gap ratio using a monovalent relationship between the average value of the luminance value ratio for each large area divided into three by the corner and the gap ratio of a commercially available LAI measuring instrument. Then, the LAI value can be obtained by calculation according to Non-Patent Document 2 from the gap ratio.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明の葉面積指数の間接測定方法の一実施例の実施に用いる、この発明の葉面積指数の間接測定システムの一実施例の構成を示す説明図、図2は、上記実施例の葉面積指数の間接測定方法の手順を示すフローチャート、そして図3(a)および(b)は、上記実施例の方法で求めた画素毎のIR/赤色光の平均値とギャップの割合との関係および従来のIR累積値/赤色光累積値の平均値とギャップの割合との関係をそれぞれ示す関係図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing the configuration of an embodiment of an indirect measurement system for leaf area index according to the present invention, which is used in the implementation of an embodiment of the indirect measurement method for leaf area index of the present invention. FIG. 3 is a flowchart showing the procedure of the indirect measurement method of the leaf area index of the above embodiment, and FIGS. 3A and 3B show the average value and gap of IR / red light for each pixel obtained by the method of the above embodiment. FIG. 6 is a relational diagram showing the relationship between the ratio of the IR and the conventional IR cumulative value / red light cumulative value and the gap ratio.

図1に示す上記実施例の間接測定システムは、三脚1上に固定されたデジタルカメラ2と、そのデジタルカメラ2に装着された広角レンズとしての魚眼レンズ3と、その魚眼レンズ3に装着された光学フィルタ4と、デジタルカメラ2に制御命令を送るとともにデジタルカメラ2からその撮影した画像データを取り込んで記録するパーソナルコンピュータ(パソコン)5と、そのパソコン5に電源を供給するバッテリ6とを具えてなる。   The indirect measurement system of the above embodiment shown in FIG. 1 includes a digital camera 2 fixed on a tripod 1, a fisheye lens 3 as a wide-angle lens attached to the digital camera 2, and an optical filter attached to the fisheye lens 3. 4, a personal computer (personal computer) 5 that sends a control command to the digital camera 2 and captures and records the captured image data from the digital camera 2, and a battery 6 that supplies power to the personal computer 5.

ここで、デジタルカメラ2は可視光と近赤外光との両方に感度をもつ必要があり、このようなデジタルカメラ2としては、例えばソニー株式会社製IEEE1394カメラを使用できる。また魚眼レンズ3としては、例えば株式会社タムロン製1/2インチ用単焦点、画角104.0×77.0を使用できる。さらに、光学フィルタ4としては、赤色光撮影時は例えばシグマ光機株式会社製近赤外吸収フィルタおよび同社製シャープカットフィルタを二枚重ねで使用でき、近赤外光撮影時は同社製赤外透過フィルタを使用できる。そしてデジタルカメラ2とパソコン5との間のインターフェースとしては、例えばラトックシステム株式会社製IEEE1394PC-Cardを使用することができる。   Here, the digital camera 2 needs to be sensitive to both visible light and near-infrared light. As such a digital camera 2, for example, an IEEE1394 camera manufactured by Sony Corporation can be used. As the fish-eye lens 3, for example, a 1/2 inch single focal point and an angle of view of 104.0 × 77.0 manufactured by Tamron Co., Ltd. can be used. Further, as the optical filter 4, when photographing red light, for example, a near infrared absorption filter manufactured by Sigma Kogyo Co., Ltd. and a sharp cut filter manufactured by the same company can be used in two layers. When photographing near infrared light, an infrared transmission filter manufactured by the same company can be used. Can be used. As an interface between the digital camera 2 and the personal computer 5, for example, an IEEE1394 PC-Card manufactured by Ratoku System Co., Ltd. can be used.

かかる実施例の間接測定システムを用いて葉面積指数の間接測定を行うに際しては、図2に示すように、先ずステップS1〜S3で撮影を行う。すなわち、ステップS1で、測定対象とする林冠下に三脚1を据え、水準器を用いてデジタルカメラ2の視軸が鉛直上方を向くようにデジタルカメラ2を固定する。デジタルカメラ2の絞りは、続くステップS2,S3でシャッタ速度を例えば1/100,000秒から0.4秒まで順次に変えて撮影したときに露出状態が露出不足から露出過多まで画像が変化するように適宜調整しておく。   When performing indirect measurement of the leaf area index using the indirect measurement system of this embodiment, first, as shown in FIG. 2, photographing is performed in steps S1 to S3. That is, in step S1, the tripod 1 is placed under the canopy to be measured, and the digital camera 2 is fixed by using a level so that the visual axis of the digital camera 2 is directed vertically upward. The aperture of the digital camera 2 is adjusted appropriately so that the image changes from underexposure to overexposure when the shutter speed is sequentially changed from 1 / 100,000 seconds to 0.4 seconds, for example, in the subsequent steps S2 and S3. Keep it.

次にステップS2で、上記赤外透過フィルタ等の近赤外光のみが透過する光学フィルタ4を魚眼レンズ3の前方に装着して、パソコン5からの制御命令でシャッタ速度(露出時間)を例えば1/100,000秒、1/50,000秒、1/20,000秒、0.000117秒、0.000284秒、0.000535秒、0.001037秒、0.00205秒、0.00413秒、0.00831秒、0.016669秒、0.033305秒、0.066995秒、0.133333秒、0.2秒、0.4秒の16種類に順次変えながらデジタルカメラ2で全天画像を16枚撮影し、それらの画像データを全てパソコン5に転送して保存する。なお、この撮影の際、シャッタ速度(露出時間)の変更、撮影の指令、画像データのデジタルカメラ2からパソコン5への転送保存等は全て、パソコン5上にあらかじめインストールしたプログラムにより全自動で処理される。   Next, in step S2, an optical filter 4 that transmits only near-infrared light, such as the above-described infrared transmission filter, is mounted in front of the fisheye lens 3, and the shutter speed (exposure time) is set to, for example, 1 by a control command from the personal computer 5. / 100,000 seconds, 1 / 50,000 seconds, 1/20000 seconds, 0.000117 seconds, 0.000284 seconds, 0.000535 seconds, 0.001037 seconds, 0.00205 seconds, 0.00413 seconds, 0.00831 seconds, 0.016669 seconds, 0.033305 seconds, 0.066995 seconds, 0.133333 seconds, 0.2 seconds, The digital camera 2 takes 16 images of the whole sky while sequentially changing to 16 types of 0.4 seconds, and all the image data is transferred to the personal computer 5 and stored. In this shooting, the shutter speed (exposure time) change, shooting command, transfer of image data from the digital camera 2 to the personal computer 5, etc. are all processed automatically by the program installed on the personal computer 5 in advance. Is done.

次にステップS3で、上記近赤外吸収フィルタおよびシャープカットフィルタの二枚重ね等の赤色光のみが透過する光学フィルタ4を魚眼レンズ3の前方に装着して、ステップS2と同様に、パソコン5からの制御命令でシャッタ速度(露出時間)を例えば1/100,000秒、1/50,000秒、1/20,000秒、0.000117秒、0.000284秒、0.000535秒、0.001037秒、0.00205秒、0.00413秒、0.00831秒、0.016669秒、0.033305秒、0.066995秒、0.133333秒、0.2秒、0.4秒の16種類に順次変えながらデジタルカメラ2で全天画像を16枚撮影し、それらの画像データを全てパソコン5に転送して保存する。なお、この撮影の際も、シャッタ速度(露出時間)の変更、撮影の指令、画像データのデジタルカメラ2からパソコン5への転送保存等は全て、パソコン5上にあらかじめインストールしたプログラムにより全自動で処理される。   Next, in step S3, an optical filter 4 that transmits only red light, such as a double layer of the near-infrared absorption filter and the sharp cut filter, is attached to the front of the fisheye lens 3, and the control from the personal computer 5 is performed as in step S2. Shutter speed (exposure time) by command, for example, 1 / 100,000 seconds, 1 / 50,000 seconds, 1/20000 seconds, 0.000117 seconds, 0.000284 seconds, 0.000535 seconds, 0.001037 seconds, 0.00205 seconds, 0.00413 seconds, 0.00831 seconds, 0.016669 seconds, 0.033305 Sixteen sky images are taken with the digital camera 2 while sequentially changing to 16 types of seconds, 0.066995 seconds, 0.133333 seconds, 0.2 seconds, and 0.4 seconds, and all these image data are transferred to the personal computer 5 and stored. Even during this shooting, the shutter speed (exposure time) change, shooting command, transfer of image data from the digital camera 2 to the personal computer 5, etc. are all automatically performed by a program installed on the personal computer 5 in advance. It is processed.

従って、上記デジタルカメラ2、魚眼レンズ3および光学フィルタ4と、上記ステップS2,S3を実行する上記パソコン5とは、撮影手段に相当し、上記のようにして撮影した画像は、例えば1024×768個の画素を持ち、各画素は、青・緑・赤の三バンドについてそれぞれ例えば256階調の輝度値を持つ。そして、近赤外光と赤色光とは共に、赤バンドの輝度値として捉えられる。   Therefore, the digital camera 2, the fisheye lens 3, the optical filter 4, and the personal computer 5 that executes the steps S2 and S3 correspond to photographing means. The number of images photographed as described above is, for example, 1024 × 768. Each pixel has a luminance value of, for example, 256 gradations for the three bands of blue, green, and red. Both near-infrared light and red light are captured as luminance values of the red band.

次いでステップS4〜S8で計算を行う。なお、この計算も、パソコン5上にあらかじめインストールしたプログラムにより全自動で処理される。   Next, calculations are performed in steps S4 to S8. This calculation is also processed automatically by a program installed in advance on the personal computer 5.

すなわち、ステップS4で、ステップS2で撮影した例えば上記16枚の近赤外光画像から、その画像の全画素(例えば1024×768個の画素)について細分領域としての一画素毎に、画素の輝度値が階調の中央値(例えば256階調の場合は128)に最も近い画像を選び出し、選んだ画像の露出時間を用い、その画像を例えば1/100秒で正規化した場合の輝度値を計算する。この処理により近赤外光画像の輝度値は7オーダー程度の階調値を表現できる。   That is, in step S4, for example, from the 16 near-infrared light images captured in step S2, the luminance of the pixel for each pixel as a subdivision area for all pixels (for example, 1024 × 768 pixels) of the image. Select the image whose value is closest to the median value of the gradation (for example, 128 for 256 gradations), use the exposure time of the selected image, and normalize the image by 1/100 seconds, for example. calculate. With this process, the brightness value of the near-infrared light image can express a gradation value of about 7 orders.

次いでステップS5で、ステップS4と同様に、ステップS3で撮影した例えば上記16枚の赤色光画像から、その画像の全画素(例えば1024×768個の画素)について細分領域としての一画素毎に、画素の輝度値が階調の中央値(例えば256階調の場合は128)に最も近い画像を選び出し、選んだ画像の露出時間を用い、その画像を例えば1/100秒で正規化した場合の輝度値を計算する。この処理により赤色光画像の輝度値も7オーダー程度の階調値を表現できる。従って、上記ステップS4,S5を実行する上記パソコン5は、画像選択・輝度値演算手段に相当する。   Next, in step S5, as in step S4, for example, from the 16 red light images captured in step S3, for each pixel as a subdivision area for all pixels (for example, 1024 × 768 pixels) of the image, Select the image whose pixel brightness value is closest to the median value of the gradation (for example, 128 for 256 gradations), use the exposure time of the selected image, and normalize the image by 1/100 seconds, for example Calculate the luminance value. With this processing, the luminance value of the red light image can also represent a gradation value of about 7 orders. Therefore, the personal computer 5 that executes the steps S4 and S5 corresponds to image selection / luminance value calculation means.

次いでステップS6で、上記近赤外光画像および赤色光画像の全画素(例えば1024×768個の画素)について一画素毎に、近赤外光の正規化輝度値と赤色光の正規化輝度値との比(近赤外光正規化輝度値/赤色光正規化輝度値)を計算して求め、天頂角(zenith angle:鉛直真上を0度とする)で分けた三つの大領域(領域1:0〜14度,領域2:16〜30度,領域3:31〜45度)について大領域毎の上記輝度値比の平均値を計算する。従って、上記ステップS6を実行する上記パソコン5は、輝度値比演算手段に相当する。   Next, in step S6, the normalized luminance value of the near infrared light and the normalized luminance value of the red light for each pixel of all the pixels of the near infrared light image and the red light image (for example, 1024 × 768 pixels). The three major regions (regions) divided by the zenith angle (Zenith angle: 0 degrees above the vertical) 1: 0 to 14 degrees, area 2: 16 to 30 degrees, area 3: 31 to 45 degrees), the average value of the luminance value ratio for each large area is calculated. Therefore, the personal computer 5 that executes the step S6 corresponds to a luminance value ratio calculating means.

ところで、前述のように非特許文献2によれば、天頂から所定天頂角までを天頂角によって三つに分割した領域毎の近赤外光と赤色光との光量比と市販のLAI測定器であるLI-COR社製LAI測定器LAI-2000で測定したギャップの割合との間には一価関係があることが判明しているので、上記輝度値比の平均値と市販のLAI測定器である例えば上記LAI-2000で測定したギャップの割合との一価的関係をあらかじめ求めておき、この関係を利用して次のステップS7で、領域毎の上記輝度値比の平均値をギャップの割合に変換し、続くステップS8で、それらのギャップの割合からLAIの値を非特許文献2に倣って計算して求める。従って、上記ステップS7を実行する上記パソコン5は、相対日射量推定手段に相当し、また上記ステップS8を実行する上記パソコン5は、葉面積指数演算手段に相当する。   By the way, according to Non-Patent Document 2, as described above, the light quantity ratio between near infrared light and red light for each region obtained by dividing the zenith to the predetermined zenith angle into three by the zenith angle, and a commercially available LAI measuring instrument. Since it has been found that there is a monovalent relationship between the gap ratio measured by a LAI-LOR measuring instrument LAI-2000 manufactured by a LI-COR company, the average value of the above luminance value ratio and a commercially available LAI measuring instrument For example, a monovalent relationship with the gap ratio measured by the above LAI-2000 is obtained in advance, and using this relationship, the average value of the luminance value ratio for each region is calculated as the gap ratio in the next step S7. In the subsequent step S8, the LAI value is calculated from the gap ratio in accordance with Non-Patent Document 2. Therefore, the personal computer 5 that executes the step S7 corresponds to a relative solar radiation amount estimating means, and the personal computer 5 that executes the step S8 corresponds to a leaf area index calculating means.

すなわち、本願発明者が上記の如くして正規化輝度値を求めた近赤外光画像および赤色光画像とそれらの画素毎の輝度値比を輝度で表した画像とを対比してみると、赤色光画像も近赤外光画像も何れも、葉の少ない領域が明るく、幹は暗くなっているが、両者の輝度値の比をとった画像では、葉の少ない領域も幹も近赤外光正規化輝度値/赤色光正規化輝度値比が低い(画像では黒っぽい)のに対し、葉の多い領域は近赤外光正規化輝度値/赤色光正規化輝度値比が高い値(画像では明るい)を示すことがわかった。これは、近赤外光正規化輝度値/赤色光正規化輝度値比が高い領域では、葉群によって日射の透過が妨げられる割合が大きいからであると推定される。   That is, when comparing the near-infrared light image and the red light image obtained by the inventor of the present invention with the normalized luminance value as described above and the image representing the luminance value ratio of each pixel in terms of luminance, In both the red light image and the near infrared light image, the region with few leaves is bright and the trunk is dark, but in the image taking the ratio of the luminance values of both, the region with few leaves and the trunk are near infrared. The light normalized luminance value / red light normalized luminance value ratio is low (blackish in the image), whereas the area with many leaves has a high near infrared light normalized luminance value / red light normalized luminance value ratio (image It was bright). This is presumed to be because, in the region where the near-infrared light normalized luminance value / red light normalized luminance value ratio is high, the ratio of hindrance to the transmission of solar radiation is large.

図3(a)は、上記実施例の方法で求めた1024×768個の画素毎の近赤外光正規化輝度値/赤色光正規化輝度値比の上記三つの大領域についての大領域毎の平均値(横軸)と市販のLAI測定器(LAI-2000)のギャップの割合(縦軸)との関係を示す図であり、例えば図中直線で示すように、近赤外光/赤色光の輝度値比の大領域毎の平均値と市販のLAI測定器である上記LAI-2000で測定したギャップの割合との間には一価的な関係が見出せる。従って、この関係を利用して上記ステップS7,S8のようにギャップの割合を求め、そのギャップの割合からLAIの値を、非特許文献2に倣って、以下の如くして計算することができる。   FIG. 3A shows each large area of the above three large areas of the near infrared light normalized luminance value / red light normalized luminance value ratio for each of 1024 × 768 pixels obtained by the method of the above embodiment. It is a figure which shows the relationship between the average value (horizontal axis) and the ratio (vertical axis) of the gap of a commercially available LAI measuring device (LAI-2000). For example, as shown by the straight line in the figure, near infrared light / red A monovalent relationship can be found between the average value of the light intensity ratio for each large area and the gap ratio measured with the LAI-2000, which is a commercially available LAI measuring device. Therefore, using this relationship, the gap ratio can be obtained as in steps S7 and S8, and the value of LAI can be calculated from the gap ratio as follows in accordance with Non-Patent Document 2. .

すなわち、天頂角で区切った領域(以下、リングと呼ぶ)のLAI値は、そのリングのギャップの割合から、次式(1)で求められることが知られている(非特許文献2)。
「あるリングのLAI値」=(−1/k)×ln(「そのリングのギャップの割合」)×cos(「そのリングの天頂角代表値」)・・・(1)
ここで、ギャップの割合は、相対照度として測定される。kは、生態学の分野において吸光係数と呼ばれ、葉の傾斜角に対応する指数であり、0.5が採用されることが多い。
That is, it is known that the LAI value of a region (hereinafter referred to as a ring) divided by the zenith angle is obtained by the following equation (1) from the gap ratio of the ring (Non-patent Document 2).
“LAI value of a ring” = (− 1 / k) × ln (“ratio of gap of the ring”) × cos (“typical zenith angle value of the ring”) (1)
Here, the gap ratio is measured as relative illuminance. k is called an extinction coefficient in the field of ecology, and is an index corresponding to the inclination angle of leaves, and 0.5 is often adopted.

なお、非特許文献2に倣って、リングの区切りを、リング1:0.0〜12.3度、リング2:16.7〜28.6度、リング3:32.4〜43.4度とし、リングの天頂角代表値を、7度、23度、38度としてもよい。非特許文献2に倣えば、この3つのリングのLAI値を平均する場合は、0.034:0.104:0.160の比で重みをつければよい。すなわち、吸光係数kを0.5とするとともに重みの値を0.114、0.349、0.537として平均LAI値を求めることができる。   According to Non-Patent Document 2, the ring breaks were set to ring 1: 0.0 to 12.3 degrees, ring 2: 16.7 to 28.6 degrees, ring 3: 32.4 to 43.4 degrees, and the zenith angle representative value of the ring was 7 degrees. , 23 degrees and 38 degrees. According to Non-Patent Document 2, when the LAI values of these three rings are averaged, a weight of 0.034: 0.104: 0.160 may be applied. That is, the average LAI value can be obtained with the extinction coefficient k being 0.5 and the weight values being 0.114, 0.349, and 0.537.

これに対し図3(b)は、画素毎の処理をしていない近赤外光平均値/赤色光平均値の比(横軸)とギャップの割合(縦軸)との間の関係を示しているが、この図では、図示のようにそれらの関係はあいまいである。この図における横軸は、カメラを用いていない先人達の研究に対応すると考えられる。   In contrast, FIG. 3B shows the relationship between the ratio of the near-infrared light average value / red light average value (horizontal axis) and the gap ratio (vertical axis) that are not processed for each pixel. However, in this figure, their relationship is ambiguous as shown. The horizontal axis in this figure is considered to correspond to research by predecessors who do not use cameras.

従って、この実施例の葉面積指数の間接測定方法および間接測定システムによれば、森林内と森林外との日射量を同時測定しなくても、さらには森林外との日射量の測定自体をなくしても、高精度に葉面積指数を求めることができる。しかもこの実施例の方法によれば、従来は測定困難だった針葉樹の葉や斑入り広葉樹の葉も、十分良好に測定することができる。   Therefore, according to the indirect measurement method and the indirect measurement system of the leaf area index of this embodiment, even if the solar radiation amount in the forest and the outside of the forest are not measured simultaneously, the solar radiation amount outside the forest is measured. Even without it, the leaf area index can be obtained with high accuracy. In addition, according to the method of this embodiment, it is possible to sufficiently sufficiently measure the leaves of coniferous trees and the leaves of variegated broad-leaved trees, which were conventionally difficult to measure.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更することができ、例えば、上記実施例の方法およびシステムでは細分領域を一画素として正規化輝度値を求めているが、その代わりに纏まった複数画素としても良い。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims. For example, in the method and system of the above-described embodiments, Although the normalized luminance value is obtained with the subdivision area as one pixel, it may be a plurality of pixels instead.

また、例えば上記実施例の間接測定システムのデジタルカメラの鉛直上方に葉を挟み込むチャンバ部を配置して、撮影する所定領域内にその葉が入るようにすることで、葉の形態や大きさの測定の標準化に用いることができ、さらに、そのチャンバ部の上方に人工光源を配置することで、葉の赤色光透過特性/近赤外光透過特性(SPAD値)ひいては葉内クロロフィル濃度の間接測定による樹種や樹齢による光合成特性の比較等に用いることができ、この場合に対象物を従来は測定困難だった針葉樹の葉や斑入り広葉樹の葉としても、十分良好に測定することができる。   In addition, for example, by arranging a chamber portion that sandwiches the leaf vertically above the digital camera of the indirect measurement system of the above embodiment so that the leaf enters a predetermined area to be photographed, the shape and size of the leaf It can be used for standardization of measurement, and by placing an artificial light source above the chamber, indirect measurement of leaf red light transmission characteristics / near infrared light transmission characteristics (SPAD values) and consequently chlorophyll concentration in the leaves It can be used for comparison of photosynthetic characteristics according to tree species and age, etc. In this case, the object can be measured sufficiently satisfactorily as a coniferous leaf or a variegated broadleaf leaf, which has conventionally been difficult to measure.

さらに、上記チャンバ部の上方でなく下方にデジタルカメラと並置して人工光源を配置することで、リモートセンシングによる植物調査におけるグランドトュルース(地上検証測定)にも用いることができ、この場合に対象物を従来は測定困難だった針葉樹の葉や斑入り広葉樹の葉としても、十分良好に測定することができる。   Furthermore, by placing an artificial light source in parallel with the digital camera, not above the chamber, but can be used for ground truth (ground verification measurement) in plant surveys by remote sensing. It can be measured satisfactorily as a coniferous leaf or a variegated broadleaf leaf, which has been difficult to measure in the past.

そして上記のような室内で用いる間接測定システムでは、パーソナルコンピュータ(パソコン)はバッテリ駆動でなく商用電源駆動としても良い。また、デジタルカメラの制御および画像データの保存を行うコンピュータと、計算処理を行うコンピュータとは別個にしても良い。   In the indirect measurement system used indoors as described above, the personal computer (personal computer) may be driven by a commercial power supply instead of battery. The computer that controls the digital camera and stores the image data may be separate from the computer that performs the calculation process.

かくしてこの発明の葉面積指数の間接測定方法および間接測定システムによれば、森林内と森林外との日射量を同時測定しなくても、さらには森林外との日射量の測定自体をなくしても、高精度に葉面積指数を求めることができる。   Thus, according to the indirect measurement method and indirect measurement system of the leaf area index of the present invention, it is possible to eliminate the measurement of the solar radiation amount outside the forest itself, even if the solar radiation amount within the forest and the outside of the forest are not simultaneously measured. Also, the leaf area index can be obtained with high accuracy.

この発明の葉面積指数の間接測定方法の一実施例の実施に用いる、この発明の葉面積指数の間接測定システムの一実施例の構成を示す説明図である。It is explanatory drawing which shows the structure of one Example of the indirect measurement system of the leaf area index of this invention used for implementation of one Example of the indirect measurement method of the leaf area index of this invention. 上記実施例の葉面積指数の間接測定方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the indirect measurement method of the leaf area index | exponent of the said Example. (a)および(b)は、上記実施例の方法で求めた画素毎のIR/赤色光の平均値とギャップの割合との関係および従来のIR累積値/赤色光累積値の平均値とギャップの割合との関係をそれぞれ示す関係図である。(A) and (b) are the relationship between the average value of IR / red light and the ratio of gap for each pixel determined by the method of the above embodiment, and the average value and gap of conventional IR accumulated value / red light accumulated value. It is a related figure which shows the relationship with the ratio of each.

符号の説明Explanation of symbols

1 三脚
2 デジタルカメラ
3 魚眼レンズ
4 光学フィルタ
5 パーソナルコンピュータ(パソコン)
6 バッテリ
1 Tripod 2 Digital Camera 3 Fisheye Lens 4 Optical Filter 5 Personal Computer (PC)
6 battery

Claims (6)

葉面積指数を間接的に測定するに際し、
広角レンズおよび電子式撮像素子を用いて、近赤外光と赤色光とのそれぞれについて、露出時間を複数種類に変えて所定領域の画像を撮影し、
前記所定領域を細分した細分領域毎に、近赤外光と赤色光とのそれぞれについて、前記複数種類の露出時間の画像中で輝度値が露出不足から露出過多までの間の階調の中央値に最も近い画像を選択して、その選択した画像を所定露出時間に正規化した場合の輝度値を求め、
前記細分領域毎に求めた近赤外光と赤色光との輝度値から、前記細分領域毎の近赤外光と赤色光との輝度値比を求め、
前記輝度値比を用いて相対日射量を推定し、
前記相対日射量から葉面積指数を求めることを特徴とする、葉面積指数の間接測定方法。
When measuring the leaf area index indirectly,
Using a wide-angle lens and an electronic image sensor, for each of near-infrared light and red light, the exposure time is changed into a plurality of types, and an image of a predetermined area is taken.
For each subdivision area obtained by subdividing the predetermined area, for each of near-infrared light and red light, the median value of the gradation between the underexposure and the overexposure in the images of the plurality of types of exposure times. Select the image closest to, find the brightness value when the selected image is normalized to the predetermined exposure time,
From the luminance value of near infrared light and red light obtained for each subdivision area, obtain the luminance value ratio of near infrared light and red light for each subdivision area,
The relative solar radiation amount is estimated using the luminance value ratio,
A leaf area index indirect measurement method, wherein a leaf area index is obtained from the relative solar radiation amount.
前記細分領域は、前記電子式撮像素子の一または複数の画素に対応するものである、請求項1記載の葉面積指数の間接測定方法。   The indirect measurement method of a leaf area index according to claim 1, wherein the subdivided region corresponds to one or a plurality of pixels of the electronic image sensor. 前記所定領域の、天頂から所定天頂角までを天頂角によって三つの大領域に分割して、前記大領域毎に前記輝度値比の平均値を求め、
前記大領域毎の輝度値比の平均値から前記相対日射量としてのギャップの割合を推定し、
前記ギャップの割合から葉面積指数を求めることを特徴とする、請求項1または2記載の葉面積指数の間接測定方法。
Dividing the predetermined area from the zenith to the predetermined zenith angle into three large areas by the zenith angle, and determining the average value of the luminance value ratio for each large area,
Estimating the ratio of the gap as the relative solar radiation amount from the average value of the luminance value ratio for each large area,
3. The leaf area index indirect measurement method according to claim 1, wherein a leaf area index is obtained from a ratio of the gap.
広角レンズおよび電子式撮像素子を用いて、近赤外光と赤色光とのそれぞれについて、露出時間を複数種類に変えて所定領域の画像を撮影する撮影手段と、
前記所定領域を細分した細分領域毎に、近赤外光と赤色光とのそれぞれについて、前記複数種類の露出時間の画像中で輝度値が露出不足から露出過多までの間の階調の中央値に最も近い画像を選択して、その選択した画像を所定露出時間に正規化した場合の輝度値を求める画像選択・輝度値演算手段と、
前記細分領域毎に求めた近赤外光と赤色光との輝度値から、前記細分領域毎の近赤外光と赤色光との輝度値比を求める輝度値比演算手段と、
前記輝度値比を用いて相対日射量を推定する相対日射量推定手段と、
前記相対日射量から葉面積指数を求める葉面積指数演算手段と、
を具えてなる、葉面積指数の間接測定システム。
An imaging means for taking an image of a predetermined area by changing the exposure time to a plurality of types for each of near-infrared light and red light using a wide-angle lens and an electronic imaging device;
For each subdivision area obtained by subdividing the predetermined area, for each of near-infrared light and red light, the median value of the gradation between the underexposure and the overexposure in the images of the plurality of types of exposure times. An image selection / brightness value calculating means for obtaining a luminance value when the selected image is normalized to a predetermined exposure time;
Luminance value ratio calculation means for obtaining a luminance value ratio between near infrared light and red light for each subdivision region from the luminance values of near infrared light and red light obtained for each subdivision region;
A relative solar radiation amount estimating means for estimating a relative solar radiation amount using the luminance value ratio;
A leaf area index calculating means for obtaining a leaf area index from the relative solar radiation amount;
An indirect measurement system for leaf area index.
前記細分領域は、前記電子式撮像素子の一または複数の画素に対応するものである、請求項4記載の葉面積指数の間接測定システム。   The leaf area index indirect measurement system according to claim 4, wherein the subdivided region corresponds to one or a plurality of pixels of the electronic image sensor. 前記輝度値比演算手段は、前記所定領域の、天頂から所定天頂角までを天頂角によって三つの大領域に分割して、前記大領域毎に前記輝度値比の平均値を求め、
前記相対日射量推定手段は、前記大領域毎の輝度値比の平均値から前記相対日射量としてのギャップの割合を推定し、
前記葉面積指数演算手段は、前記ギャップの割合から葉面積指数を求めることを特徴とする、請求項4または5記載の葉面積指数の間接測定システム。
The luminance value ratio calculation means divides the predetermined area from the zenith to the predetermined zenith angle into three large areas by the zenith angle, and obtains an average value of the luminance value ratio for each large area,
The relative solar radiation amount estimating means estimates a gap ratio as the relative solar radiation amount from an average value of a luminance value ratio for each large area,
6. The leaf area index indirect measurement system according to claim 4, wherein the leaf area index calculating means obtains a leaf area index from the gap ratio.
JP2005370404A 2005-12-22 2005-12-22 Indirect measuring method and system of leaf area index Pending JP2007171033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370404A JP2007171033A (en) 2005-12-22 2005-12-22 Indirect measuring method and system of leaf area index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370404A JP2007171033A (en) 2005-12-22 2005-12-22 Indirect measuring method and system of leaf area index

Publications (1)

Publication Number Publication Date
JP2007171033A true JP2007171033A (en) 2007-07-05

Family

ID=38297782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370404A Pending JP2007171033A (en) 2005-12-22 2005-12-22 Indirect measuring method and system of leaf area index

Country Status (1)

Country Link
JP (1) JP2007171033A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090281733A1 (en) * 2005-12-15 2009-11-12 Yamaguchi University Method for evaluating tree production capacity, image capture device for evaluating tree production capacity, and program for evaluating tree production capacity
CN101799283A (en) * 2010-04-01 2010-08-11 吉林大学 Nondestructive measuring method for leaf area of broad leaved plant
CN101852598A (en) * 2010-06-02 2010-10-06 广东省农业科学院水稻研究所 Instrument for determining blade area with living body
JP2011133451A (en) * 2009-11-27 2011-07-07 Kyushu Univ Optical vegetation index sensor
CN102243069A (en) * 2011-06-22 2011-11-16 华南农业大学 Method and device for determining leaf area index
CN102269576A (en) * 2010-06-03 2011-12-07 曹春香 Active and passive joint inversion method for forest coverage and effective leaf area index
WO2012073519A1 (en) * 2010-12-02 2012-06-07 日本電気株式会社 System, apparatus, method, and program for measurement of leaf area index
CN102506772A (en) * 2011-11-01 2012-06-20 西北农林科技大学 Method and device for quickly detecting area of leaf blade based on mobile phone
CN102564357A (en) * 2012-01-06 2012-07-11 华南农业大学 Device and method for measuring leaf area indexes automatically and fast
CN102706293A (en) * 2012-06-27 2012-10-03 黑龙江工程学院 Four-component optical physical model based inversion method of leaf area index
CN102997871A (en) * 2012-11-23 2013-03-27 南京大学 Method for inverting effective leaf area index by utilizing geometric projection and laser radar
CN103238058A (en) * 2010-12-02 2013-08-07 日本电气株式会社 System, apparatus, method, and program for measurement of leaf area index
CN103278112A (en) * 2013-05-17 2013-09-04 中国科学院对地观测与数字地球科学中心 Leaf area index inversion method and device based on remote sensing images
CN103528920A (en) * 2013-10-23 2014-01-22 中国科学院遥感与数字地球研究所 Device and method for measuring foliage area volume density
CN103791861A (en) * 2014-02-10 2014-05-14 黑龙江省森林与环境科学研究院 Plant leaf area lossless measuring method
CN103808265A (en) * 2014-02-28 2014-05-21 北京农业信息技术研究中心 Method, device and system for measuring oilseed rape laminae and forms of sclerotium scabs synchronously
WO2014103181A1 (en) * 2012-12-26 2014-07-03 日本電気株式会社 Image measuring method, system, device, and program
WO2014122800A1 (en) * 2013-02-05 2014-08-14 国立大学法人千葉大学 Fisheye image data creation program and lai computation program
CN104330058A (en) * 2014-11-25 2015-02-04 东北林业大学 Correction method for measuring leaf area index by use of plant canopy analyzer
CN104457626A (en) * 2014-12-08 2015-03-25 中国科学院合肥物质科学研究院 Plant leaf area index measurement method based on laser radar point cloud technology
CN105371789A (en) * 2015-10-09 2016-03-02 南京大学 Method for utilizing aviation laser point cloud to calculate effective leaf area index
CN105389538A (en) * 2015-10-09 2016-03-09 南京大学 Method for estimating forest leaf-area index based on point cloud hemisphere slice
CN105738366A (en) * 2016-02-26 2016-07-06 中国计量学院 Living plant leaf stoma imaging viewer
CN108613639A (en) * 2018-05-11 2018-10-02 中国建材检验认证集团浙江有限公司 Ornamental engraving decorated gypsum board hollow out rate measurement method
CN109211908A (en) * 2018-11-07 2019-01-15 南京恩格尔特信息科技有限公司 A kind of device and method of portable quick obtaining crop phenotype data
CN109373937A (en) * 2018-12-10 2019-02-22 中国气象局兰州干旱气象研究所 Vegetation canopy leaf area index measurement method
CN109696139A (en) * 2019-01-15 2019-04-30 点将(上海)科技股份有限公司 A kind of blade of broadleaf plant biomass in-situ measuring method
CN110006390A (en) * 2019-04-17 2019-07-12 福建农林大学 The single wooden leaf area index measurement device of auxiliary and method
CN110068299A (en) * 2019-05-05 2019-07-30 华北水利水电大学 A kind of calculation method of chamber crop leaf area index
CN111860328A (en) * 2020-07-21 2020-10-30 杭州时光坐标影视传媒股份有限公司 Biomass estimation method based on bidirectional reflection function and forest scene illumination effect modeling
CN112857269A (en) * 2021-03-15 2021-05-28 南宁师范大学 Novel leaf area index instrument and leaf area index measuring method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021378A (en) * 1996-07-01 1998-01-23 Toyo Commun Equip Co Ltd Image pickup device and its method
JP2003143961A (en) * 2001-11-15 2003-05-20 Univ Nagoya Method for measuring three-dimensional structure of plant or plant group
JP2004003878A (en) * 2002-04-30 2004-01-08 Kobe Steel Ltd Device and method of measuring activity of plant
JP2005052045A (en) * 2003-08-01 2005-03-03 Japan Science & Technology Agency System for quantitatively evaluating environmental influence of plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021378A (en) * 1996-07-01 1998-01-23 Toyo Commun Equip Co Ltd Image pickup device and its method
JP2003143961A (en) * 2001-11-15 2003-05-20 Univ Nagoya Method for measuring three-dimensional structure of plant or plant group
JP2004003878A (en) * 2002-04-30 2004-01-08 Kobe Steel Ltd Device and method of measuring activity of plant
JP2005052045A (en) * 2003-08-01 2005-03-03 Japan Science & Technology Agency System for quantitatively evaluating environmental influence of plant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010063894, 橋本 哲, "魚眼レンズを用いた森林の間接的推定手法の確立に向けて", 広域的適用を目指した森林の間接計測手法開発と分散型データ処理技術手法の構築 平成7〜9年度文部省科学, 19990324, 第114頁−第122頁, JP *
JPN6010063895, 田中隆文、外3名, "魚眼レンズを用いるLAI推定法の問題点再考 −距離情報をもつアクティブ広角画像による検証−", 第113回 日本林学会大会学術講演集, 20020320, 第731頁 *
JPN6010063896, 齋藤武史, "カラマツ林内における開空度と葉面積指数との関係", 日本林学会東北支会, 19931225, 第45号, 第131頁−第132頁 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352208B2 (en) * 2005-12-15 2013-01-08 Yamaguchi University Method for evaluating tree production capacity, image capture device for evaluating tree production capacity, and program for evaluating tree production capacity
US20090281733A1 (en) * 2005-12-15 2009-11-12 Yamaguchi University Method for evaluating tree production capacity, image capture device for evaluating tree production capacity, and program for evaluating tree production capacity
JP2011133451A (en) * 2009-11-27 2011-07-07 Kyushu Univ Optical vegetation index sensor
CN101799283A (en) * 2010-04-01 2010-08-11 吉林大学 Nondestructive measuring method for leaf area of broad leaved plant
CN101852598A (en) * 2010-06-02 2010-10-06 广东省农业科学院水稻研究所 Instrument for determining blade area with living body
CN102269576A (en) * 2010-06-03 2011-12-07 曹春香 Active and passive joint inversion method for forest coverage and effective leaf area index
WO2012073519A1 (en) * 2010-12-02 2012-06-07 日本電気株式会社 System, apparatus, method, and program for measurement of leaf area index
JP5920224B2 (en) * 2010-12-02 2016-05-18 日本電気株式会社 Leaf area index measurement system, apparatus, method and program
US9207072B2 (en) 2010-12-02 2015-12-08 Nec Corporation Leaf area index measurement system, device, method, and program
US9202134B2 (en) 2010-12-02 2015-12-01 Nec Corporation Leaf area index measurement system, device, method, and program
CN103238057A (en) * 2010-12-02 2013-08-07 日本电气株式会社 System, apparatus, method, and program for measurement of leaf area index
CN103238058A (en) * 2010-12-02 2013-08-07 日本电气株式会社 System, apparatus, method, and program for measurement of leaf area index
CN102243069A (en) * 2011-06-22 2011-11-16 华南农业大学 Method and device for determining leaf area index
CN102243069B (en) * 2011-06-22 2013-05-01 华南农业大学 Method and device for determining leaf area index
CN102506772A (en) * 2011-11-01 2012-06-20 西北农林科技大学 Method and device for quickly detecting area of leaf blade based on mobile phone
CN102564357A (en) * 2012-01-06 2012-07-11 华南农业大学 Device and method for measuring leaf area indexes automatically and fast
CN102706293A (en) * 2012-06-27 2012-10-03 黑龙江工程学院 Four-component optical physical model based inversion method of leaf area index
CN102997871A (en) * 2012-11-23 2013-03-27 南京大学 Method for inverting effective leaf area index by utilizing geometric projection and laser radar
WO2014103181A1 (en) * 2012-12-26 2014-07-03 日本電気株式会社 Image measuring method, system, device, and program
JPWO2014103181A1 (en) * 2012-12-26 2017-01-12 日本電気株式会社 Image measuring method, system, apparatus and program
US9646223B2 (en) 2012-12-26 2017-05-09 Nec Corporation Image measuring method, system, device, and program
JP6044052B2 (en) * 2013-02-05 2016-12-14 国立大学法人 千葉大学 Fisheye image data creation program and LAI calculation program
WO2014122800A1 (en) * 2013-02-05 2014-08-14 国立大学法人千葉大学 Fisheye image data creation program and lai computation program
CN103278112A (en) * 2013-05-17 2013-09-04 中国科学院对地观测与数字地球科学中心 Leaf area index inversion method and device based on remote sensing images
CN103528920A (en) * 2013-10-23 2014-01-22 中国科学院遥感与数字地球研究所 Device and method for measuring foliage area volume density
CN103791861A (en) * 2014-02-10 2014-05-14 黑龙江省森林与环境科学研究院 Plant leaf area lossless measuring method
CN103808265A (en) * 2014-02-28 2014-05-21 北京农业信息技术研究中心 Method, device and system for measuring oilseed rape laminae and forms of sclerotium scabs synchronously
CN103808265B (en) * 2014-02-28 2017-04-26 北京农业信息技术研究中心 Method, device and system for measuring oilseed rape laminae and forms of sclerotium scabs synchronously
CN104330058A (en) * 2014-11-25 2015-02-04 东北林业大学 Correction method for measuring leaf area index by use of plant canopy analyzer
CN104457626A (en) * 2014-12-08 2015-03-25 中国科学院合肥物质科学研究院 Plant leaf area index measurement method based on laser radar point cloud technology
CN104457626B (en) * 2014-12-08 2017-05-31 中国科学院合肥物质科学研究院 A kind of plant leaf area assessment of indices method based on laser radar point cloud
CN105389538A (en) * 2015-10-09 2016-03-09 南京大学 Method for estimating forest leaf-area index based on point cloud hemisphere slice
CN105371789A (en) * 2015-10-09 2016-03-02 南京大学 Method for utilizing aviation laser point cloud to calculate effective leaf area index
CN105389538B (en) * 2015-10-09 2018-07-13 南京大学 A method of based on a cloud hemisphere slice estimation Forest Leaf Area Index
CN105738366A (en) * 2016-02-26 2016-07-06 中国计量学院 Living plant leaf stoma imaging viewer
CN108613639A (en) * 2018-05-11 2018-10-02 中国建材检验认证集团浙江有限公司 Ornamental engraving decorated gypsum board hollow out rate measurement method
CN109211908A (en) * 2018-11-07 2019-01-15 南京恩格尔特信息科技有限公司 A kind of device and method of portable quick obtaining crop phenotype data
CN109373937A (en) * 2018-12-10 2019-02-22 中国气象局兰州干旱气象研究所 Vegetation canopy leaf area index measurement method
CN109696139A (en) * 2019-01-15 2019-04-30 点将(上海)科技股份有限公司 A kind of blade of broadleaf plant biomass in-situ measuring method
CN110006390A (en) * 2019-04-17 2019-07-12 福建农林大学 The single wooden leaf area index measurement device of auxiliary and method
CN110068299A (en) * 2019-05-05 2019-07-30 华北水利水电大学 A kind of calculation method of chamber crop leaf area index
CN110068299B (en) * 2019-05-05 2020-10-13 华北水利水电大学 Calculation method of leaf area index of greenhouse crop
CN111860328A (en) * 2020-07-21 2020-10-30 杭州时光坐标影视传媒股份有限公司 Biomass estimation method based on bidirectional reflection function and forest scene illumination effect modeling
CN112857269A (en) * 2021-03-15 2021-05-28 南宁师范大学 Novel leaf area index instrument and leaf area index measuring method thereof

Similar Documents

Publication Publication Date Title
JP2007171033A (en) Indirect measuring method and system of leaf area index
Lang et al. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method
US7911517B1 (en) Device and method for acquiring digital color-infrared photographs for monitoring vegetation
US20120155714A1 (en) Vegetation indices for measuring multilayer microcrop density and growth
WO2021002279A1 (en) Multi-spatial resolution measurements for generation of vegetation states
US20190310184A1 (en) Signal processing apparatus, signal processing method, and progress
CN113358224B (en) Spectral reflectivity detection method and system
KR20200004680A (en) Aerosol distribution measuring system by using sky image
Nocerino et al. Geometric calibration and radiometric correction of the maia multispectral camera
US20190236358A1 (en) Multispectral Filters
JP2018151832A (en) Information processing device, information processing method, and, program
AU2021204034B2 (en) Information processing device, information processing method and program
KR20190096374A (en) How to determine spatial light distribution in the environment
CN107529726A (en) Check device, inspection method and program
Schwalbe et al. Hemispheric image modeling and analysis techniques for solar radiation determination in forest ecosystems
WO2020179276A1 (en) Image processing device, image processing method, and program
CN113514402B (en) System and method for predicting chlorophyll content of winter wheat
Cattini et al. Low-cost imaging photometer and calibration method for road tunnel lighting
JP5672029B2 (en) Reflectance calculating device, reflectance calculating method and program
RU2589463C1 (en) Device for determining total amount of clouds on basis of direct digital wide-angle images of visible hemisphere of sky
Shajahan et al. Monitoring plant phenology using phenocam: A review
Gålfalk et al. A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands
JP3735621B2 (en) All-sky light environment evaluation method
JP7273259B2 (en) Vegetation area determination device and program
US20230408889A1 (en) Imaging apparatus and lens apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308