JP2007170912A - Antioxidant activity measuring method of food and antioxidant activity measuring system of food - Google Patents

Antioxidant activity measuring method of food and antioxidant activity measuring system of food Download PDF

Info

Publication number
JP2007170912A
JP2007170912A JP2005366516A JP2005366516A JP2007170912A JP 2007170912 A JP2007170912 A JP 2007170912A JP 2005366516 A JP2005366516 A JP 2005366516A JP 2005366516 A JP2005366516 A JP 2005366516A JP 2007170912 A JP2007170912 A JP 2007170912A
Authority
JP
Japan
Prior art keywords
electrode
measuring
antioxidant activity
food
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005366516A
Other languages
Japanese (ja)
Inventor
Koichi Okuma
廣一 大熊
Toshihide Sato
稔英 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2005366516A priority Critical patent/JP2007170912A/en
Publication of JP2007170912A publication Critical patent/JP2007170912A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antioxidant activity measuring method of food for efficiently measuring antioxidant activity of food simply, with its cost suppressed, without using any enzyme or special reagent by electrochemically generating active oxygen, and an antioxidant activity measuring system of food therefor. <P>SOLUTION: Antioxidant activity of food is measured by the following processes: (1) a process of impressing a voltage on an electrode for H<SB>2</SB>O<SB>2</SB>measurement; (2) a process of generating O<SB>2</SB><SP>-</SP>by impressing a voltage on the electrode for O<SB>2</SB><SP>-</SP>generation; (3) a process of producing H<SB>2</SB>O<SB>2</SB>by a disproportionation reaction from the generated O<SB>2</SB><SP>-</SP>; (4) a process of measuring the amount of produced H<SB>2</SB>O<SB>2</SB>by an electrode for H<SB>2</SB>O<SB>2</SB>measurement; and (5) a process of calculating antioxidant activity possessed by food, based on the amount of measured H<SB>2</SB>O<SB>2</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食品の抗酸化活性測定方法と、食品の抗酸化活性測定システムに関するものである。   The present invention relates to a method for measuring antioxidant activity of food and a system for measuring antioxidant activity of food.

近年、細胞に酸素が呼吸過程やストレス、放射線・紫外線の照射、発ガン物質の代謝過程等にて生じる活性酸素が、不飽和脂肪酸と反応して過酸化脂質を生じ、人体に悪影響を及ぼすことが明らかになってきている。この活性酸素とは、水や酸素から生成し、不安定な不対電子を有する反応性に富んだ分子種であり、一般には、スーパーオキシドアニオンラジカル、ヒドロキシラジカル、過酸化水素、一重項酸素等が知られている。   In recent years, active oxygen generated by oxygen in cells during breathing process, stress, radiation / ultraviolet irradiation, carcinogen metabolism process, etc. reacts with unsaturated fatty acids to produce lipid peroxides, which adversely affect the human body. It has become clear. This active oxygen is a highly reactive molecular species generated from water or oxygen and having an unstable unpaired electron. Generally, superoxide anion radical, hydroxy radical, hydrogen peroxide, singlet oxygen, etc. It has been known.

過剰な活性酸素は、生体成分である脂質やタンパク、核酸等の酸化障害を引き起こし、その結果、動脈硬化やガン、糖尿病等の疾病の原因になり、さらには老化促進にもつながるといわれている。このように、活性酸素は生体に悪影響を及ぼすゆえ、これを捕捉し、消去する作用を有する抗酸化性物質が近年注目されている。   Excessive active oxygen is said to cause oxidative damage to biological components such as lipids, proteins, and nucleic acids, resulting in diseases such as arteriosclerosis, cancer, and diabetes, as well as promoting aging. . Thus, since active oxygen has a bad influence on a living body, an antioxidant substance having an action of capturing and eliminating the active oxygen has recently attracted attention.

ところで、このような抗酸化性物質は、例えば、ワインやチョコレート、お茶等をはじめとする種々の飲食品中に多く含まれていることが知られている。例えば、ワインやチョコレート等にはポリフェノールが、お茶等にはカテキンが含まれていることが知られている。   By the way, it is known that many such antioxidant substances are contained in various foods and drinks including wine, chocolate, tea and the like. For example, it is known that wine, chocolate, etc. contain polyphenols, and tea, etc. contain catechins.

このような飲食品の特性を生かした、抗酸化機能に優れる高機能食品を開発する際、抗酸化性物質が有する抗酸化活性の強度を測定することは重要である。   It is important to measure the strength of the antioxidant activity of an antioxidant substance when developing a highly functional food that makes use of such characteristics of foods and drinks and has an excellent antioxidant function.

そこで、従来より、抗酸化活性を測定する方法として、例えば、1,1-ジフェニール-2-ピクリルヒドラジル(DPPH)法や電子スピン共鳴(ESR)法、酵素法等を利用した測定方法が知られている(例えば、特許文献1、特許文献2、特許文献3)。DPPH法では、安定ラジカルであるDPPHラジカルを用い、DPPHラジカルが消去された割合における吸光度を測定することで、簡便に抗酸化活性を測定することができるとしている。また、ESR法では、γ線照射によって生成するラジカルが、骨やセルロース中に比較的長く残存することを利用して、抗酸化活性を測定している。   Therefore, conventionally, as a method for measuring the antioxidant activity, for example, there are measuring methods using 1,1-diphenyl-2-picrylhydrazyl (DPPH) method, electron spin resonance (ESR) method, enzyme method and the like. It is known (for example, Patent Document 1, Patent Document 2, and Patent Document 3). In the DPPH method, it is said that the antioxidant activity can be easily measured by measuring the absorbance at the rate at which the DPPH radical is eliminated by using the DPPH radical which is a stable radical. In the ESR method, antioxidant activity is measured by utilizing the fact that radicals generated by γ-ray irradiation remain relatively long in bones and cellulose.

しかしながら、上記特許文献1から3に記載のような測定方法は、いずれも活性酸素の発生に酵素や特殊な試薬を必要とすることから、コストがかかり、手順も煩雑であり、また、これら酵素や試薬の取り扱いも細心の注意が必要であり、簡便に測定することはできないという問題もあった。
特開2002−350420号公報 特開2003−232755号公報 特開平8−228752号公報
However, all of the measurement methods as described in Patent Documents 1 to 3 require an enzyme and a special reagent for the generation of active oxygen, which is expensive and complicated. In addition, the handling of reagents and reagents requires careful attention, and there is a problem that simple measurement is not possible.
JP 2002-350420 A JP 2003-232755 A JP-A-8-228752

そこで、以上のとおりの背景から、従来の問題点を解決すべく、本願発明は、電気化学的手法を用いて活性酸素を発生させることで、酵素や特殊な試薬を使用せず、簡便で、しかもコストを抑えて、食品の抗酸化活性を効率よく測定することのできる、新しい食品の抗酸化活性測定方法と、食品の抗酸化活性測定システムを提供することを課題としている。   Therefore, from the background as described above, in order to solve the conventional problems, the present invention generates an active oxygen using an electrochemical method, and does not use an enzyme or a special reagent. In addition, it is an object of the present invention to provide a new method for measuring antioxidant activity of food and a system for measuring antioxidant activity of food, which are capable of efficiently measuring the antioxidant activity of food while suppressing cost.

本願発明は、前記の課題を解決するものとして、以下のとおりの特徴を有するものである。   The present invention has the following features to solve the above-described problems.

第1には、以下の工程:
<1> H測定用電極に電圧を印加する工程;
<2> O 発生用電極に電圧を印加し、O を発生させる工程;
<3> 発生させたO を不均化反応によってHを生成させる工程;
<4> 生成させたH量を、前記H測定用電極で測定する工程;および
<5> 測定したH量を基に、食品が有する抗酸化活性を算出する工程;
を含むことを特徴とする食品の抗酸化活性測定方法。
First, the following steps:
<1> a step of applying a voltage to the electrode for measuring H 2 O 2 ;
<2> a step of applying a voltage to the O 2 generating electrode to generate O 2 ;
<3> A step of generating H 2 O 2 by the disproportionation reaction of the generated O 2 ;
<4> a step of measuring the amount of generated H 2 O 2 with the electrode for measuring H 2 O 2 ; and <5> calculating the antioxidant activity of the food based on the measured amount of H 2 O 2. Process;
A method for measuring antioxidant activity of foods, comprising:

第2には、H測定用電極に印加する電圧は、0.1〜1.1Vの範囲であることを特徴とする上記1の測定方法。 Secondly, the voltage applied to the electrode for measuring H 2 O 2 is in the range of 0.1 to 1.1 V, the measurement method according to 1 above.

第3には、O 発生用電極に印加する電圧は、−1.2〜−0.3Vの範囲であることを特徴とする上記第1または第2の食品の抗酸化活性測定方法。 The first 3, O 2 - the voltage applied to the electrode for generating, said first or antioxidant activity measuring method of the second food which is a range of -1.2~-0.3V.

第4には、少なくともH測定用電極、O 発生用電極および対極を備えた3電極構成であり、かつ、これらH測定用電極、O 発生用電極および対極が電解質と接触して配置してなる食品の抗酸化活性測定システムであって、H測定用電極は、O 発生用電極と対面配置されていることを特徴とする食品の抗酸化活性測定システムであって、H測定用電極は、O 発生用電極と対面配置されていることを特徴とする食品の抗酸化活性測定システム。 The fourth is a three-electrode configuration including at least an H 2 O 2 measuring electrode, an O 2 generating electrode, and a counter electrode, and these H 2 O 2 measuring electrode, O 2 generating electrode, and a counter electrode. Is a system for measuring the antioxidant activity of foods, which is arranged in contact with an electrolyte, wherein the electrode for measuring H 2 O 2 is arranged to face the electrode for generating O 2 a oxidation activity measurement system, H 2 O 2 measuring electrode, O 2 - antioxidant activity measurement system food which are arranged facing a generation electrode.

第5には、H測定用電極とO 発生用電極との間の距離が1〜1000μmの範囲であることを特徴とする上記第4の食品の抗酸化活性測定システム。 Fifth, the fourth food antioxidant activity measurement system according to claim 4, wherein the distance between the electrode for measuring H 2 O 2 and the electrode for generating O 2 is in the range of 1 to 1000 μm.

第6には、対極および参照電極のいずれか、もしくは対極および参照電極の両方を備えていることを特徴とする上記第4または第5の食品の抗酸化活性測定システム。   Sixth, the system for measuring antioxidant activity of the fourth or fifth food, comprising either the counter electrode and the reference electrode, or both the counter electrode and the reference electrode.

第7には、H測定用電極は、セルロースエステル透析膜で修飾されていることを特徴とする上記第4から第6いずれかの食品の抗酸化活性測定システム。 Seventh, the H 2 O 2 measurement electrode is modified with a cellulose ester dialysis membrane, and the antioxidant activity measurement system for food according to any one of the fourth to sixth aspects.

第8には、H測定用電極とO 発生用電極のいずれか一方、あるいは両方の電極が機能性膜で修飾されているとこを特徴とする上記第4から7のいずれかの食品の抗酸化活性測定システム。 The first 8, H 2 O 2 measuring electrode and the O 2 - one of either the generating electrode, or the Toko both electrodes are modified with functional film from the fourth, wherein 7 Food antioxidant activity measurement system.

第9には、それぞれ絶縁性の基板上に形成したH測定用電極とO 発生用電極をスペーサーを介して対面に配置し、H測定用電極とO 発生用電極のいずれか一方に参照電極および対極の少なくともいずれかを備えていることを特徴とする上記第4から8のいずれかの食品の抗酸化活性測定システム。 Ninth, an electrode for measuring H 2 O 2 and an electrode for generating O 2 formed on an insulating substrate are arranged facing each other via a spacer, and an electrode for measuring H 2 O 2 and O 2 − are generated. Any one of the above-mentioned electrodes is provided with at least one of a reference electrode and a counter electrode.

上記のとおりの本願発明によれば、活性酸素を電気化学的に発生させることで、酵素や特殊な試薬を使用せず、簡便で、しかもコストを抑えて、食品の抗酸化活性を効率よく測定することができる。   According to the present invention as described above, the active oxygen is generated electrochemically, so that the antioxidant activity of food is efficiently measured without using enzymes or special reagents, and at a low cost. can do.

また、第4から第9の発明によれば、活性酸素を電気化学的に発生させることができるため、酵素や特殊な試薬を使用せず、簡便で、しかもコストを抑えて、食品の抗酸化活性を効率よく測定することができる。また、第8の発明によればH測定用電極を低電位で動作させ、かつO 発生用電極からO 発生量を増大させることができるため、抗酸化活性を高感度に測定することができる。さらに第9の発明によれば、それぞれPETフィルムの絶縁性の基板上にスクリーン印刷でH測定用電極とO 発生用電極を形成しスペーサーを介して対面に配置する構造にでき、そのスペーサー内に電解質含有の試料溶液を注入して抗酸化活性を測定するようにすれば安価な使い捨てセンサを構成できる。
In addition, according to the fourth to ninth inventions, since active oxygen can be generated electrochemically, the use of an enzyme or a special reagent is simple, and the cost of food is reduced without using enzymes or special reagents. The activity can be measured efficiently. Further, the first 8 H 2 O 2 measuring electrode according to the invention of is operated at a low potential, and O 2 - O 2 from generating electrode - since it is possible to increase the amount of generated high sensitivity antioxidant activity Can be measured. According to a further aspect of the ninth, each PET film insulating H 2 by screen printing on a substrate of O 2 measuring electrode and the O 2 - can in structure disposed facing via a spacer to form a generating electrode An inexpensive disposable sensor can be constructed by injecting an electrolyte-containing sample solution into the spacer and measuring the antioxidant activity.

本願発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について詳しく説明する。   The present invention has the features as described above, and the embodiment thereof will be described in detail below.

本願発明は、食品中の抗酸化性物質の有無、また、抗酸化性物質が存在する場合には、その抗酸化活性の強度を測定する方法およびシステムである。   The present invention is a method and system for measuring the presence or absence of an antioxidant substance in foods and, if an antioxidant substance is present, the strength of its antioxidant activity.

具体的には、まず本願発明の食品の抗酸化活性測定方法は、少なくとも以下の工程:
第1の工程として、H測定用電極に電圧を印加する工程;
第2の工程として、O 発生用電極に電圧を印加し、O を発生させる工程;
第3の工程として、発生させたO を不均化反応によってHを生成させる工程;
第4の工程として、生成させたH量を、前記H測定用電極で測定する工程;および
第5の工程として、測定したH量を基に、食品が有する抗酸化活性を算出する工程;
を含むことを特徴としている。このような、本願発明の測定方法および測定システムは、以下に示す電気化学的手法による測定原理に基づいている。
Specifically, first, the method for measuring antioxidant activity of foods of the present invention comprises at least the following steps:
As a first step, a step of applying a voltage to the electrode for measuring H 2 O 2 ;
As a second step, O 2 - a voltage is applied to the generating electrode, O 2 - step of generating;
A step of generating H 2 O 2 by a disproportionation reaction of the generated O 2 as a third step;
As a fourth step, the H 2 O 2 amount was generated, step measured by the H 2 O 2 measuring electrode; and as a fifth step, based on the measured H 2 O 2 amount, food has Calculating antioxidant activity;
It is characterized by including. Such a measurement method and measurement system of the present invention are based on the measurement principle by the electrochemical method described below.

すなわち、Oの標準電極電位により、KCl等の電解質水溶液中において白金等の電極に−0.284V以下の電圧を印加すると、電極上で、次式(1)のように活性酸素種であるO が発生する。 That is, when a voltage of −0.284 V or less is applied to an electrode of platinum or the like in an aqueous electrolyte solution of KCl or the like with a standard electrode potential of O 2 , the active oxygen species is represented by the following formula (1) on the electrode. O 2 is generated.

また、発生したO は不均化反応によって、次式(2)のようにHを生成する。 The generated O 2 generates H 2 O 2 by the disproportionation reaction as shown in the following formula (2).

そして、このような反応を利用して、一方の電極(O 発生用電極)にマイナスの電圧を印加してO を発生させ、不均化反応によってHを生成させる。ここに抗酸化性物質が存在すると、これがO を捕捉するため、不均化反応によるHの生成量が、次式(3)のように減少する。 And using such a reaction, a negative voltage is applied to one electrode (O 2 generating electrode) to generate O 2 −, and H 2 O 2 is generated by a disproportionation reaction. If an antioxidant is present here, it captures O 2 −, and thus the amount of H 2 O 2 produced by the disproportionation reaction decreases as shown in the following formula (3).

このH量を、前記O 発生用電極と近接した他方の電極(H測定用電極)で検出することにより測定対象物、すなわち食品の抗酸化性物質の有無と、その抗酸化活性を測定する。ここで、本願発明における抗酸化性物質とは、活性酸素を捕捉し、消去する活性を有するものであれば特に限定されるものではなく、例えば、カテキンやフラボノイド、イソフラボン、タンニン等のポリフェノール類、キサントフィルやβ−カロチン、リコピン等カロチノイド類、ビタミンCやビタミンE等のビタミン類やミネラル類、そのほかにもアントシアニン類等も対象とすることができる。また、食品についても同様に、特に限定されるものではなく、例えば、飲料品としては、ワインやお茶等、食品としては、チョコレートや大豆、カボチャ、ニンジン、トマト、ブルーベリー等が挙げられる。 The H 2 O 2 amount, the O 2 - and the presence or absence of the measurement object by detecting the other electrode close to the generating electrode (H 2 O 2 measuring electrode), i.e. anti-oxidizing materials for food, Its antioxidant activity is measured. Here, the antioxidant substance in the present invention is not particularly limited as long as it has an activity of capturing and eliminating active oxygen, for example, polyphenols such as catechin, flavonoid, isoflavone, tannin, Xanthophylls, β-carotene, carotenoids such as lycopene, vitamins and minerals such as vitamin C and vitamin E, and anthocyanins can also be targeted. Similarly, the food is not particularly limited. Examples of the beverage include wine and tea, and examples of the food include chocolate, soybean, pumpkin, carrot, tomato, and blueberry.

ここで、水の理論電気分解電圧が1.23Vであるため、1.2V以上の電圧を印加すると、水の電気分解が起こり、Hの測定、つまりセンサ応答に影響を及ぼすことを考慮すると、H測定用電極に印加する電圧は、0.1〜1.1Vの範囲とすることで、より効率よくHの生成量を測定することができる。また、O 発生用電極において、−1.5Vを下回ると、センサ応答が不安定な状態になる。そこで、計測時間の短縮とセンサ応答の安定性を考慮すると、O 発生用電極に印加する電圧は、−1.2〜−0.3Vの範囲とすることで、効率よくO を発生させることができ、望ましい。 Here, since the theoretical electrolysis voltage of water is 1.23V, if a voltage of 1.2V or more is applied, the electrolysis of water occurs, which affects the measurement of H 2 O 2 , that is, the sensor response. in view of voltage applied to the H 2 O 2 measuring electrode is in a range of from 0.1~1.1V, can be measured more generation of efficient H 2 O 2. In addition, when the voltage for O 2 generation is lower than −1.5 V, the sensor response becomes unstable. Therefore, considering the shortening of the measurement time and the stability of the sensor response, the voltage applied to the O 2 generating electrode should be in the range of −1.2 to −0.3V, so that O 2 can be generated efficiently. Can be desirable.

なお、図1は、最適印加電圧について検証した結果を例示したグラフ図であり、(A)はH測定用電極について、(B)はO 発生用電極について示している。 Incidentally, FIG. 1 is a graph illustrating the result of verifying the optimum applied voltage, (A) for the H 2 O 2 measuring electrode, (B) is O 2 - shows the generation electrode.

そして、本願発明は、このような測定方法を簡便に実施できる、食品の抗酸化活性測定システムも提供する。具体的には、本願発明の測定システムは、少なくともH測定用電極、O 発生用電極および対極を備え、かつ、これらH測定用電極、O 発生用電極および対極いずれにおいても、電解質と接触して配置してなる食品の抗酸化活性測定システムである。そして、H測定用電極は、O 発生用電極と対面配置されていることを特徴としている。 And this invention also provides the antioxidant activity measuring system of foodstuffs which can implement such a measuring method simply. Specifically, the measurement system of the present invention includes at least an H 2 O 2 measurement electrode, an O 2 generation electrode, and a counter electrode, and these H 2 O 2 measurement electrode, O 2 generation electrode, and It is a system for measuring the antioxidant activity of foods arranged in contact with an electrolyte at any counter electrode. Then, H 2 O 2 measuring electrode, O 2 - is characterized in that it is arranged facing a generation electrode.

ここで、H測定用電極とO 発生用電極との間の距離は近接していることで、H測定用電極によるH測定と、O 発生用電極によるH測定とを、バランスよく両立させることができる。つまり、H測定用電極とO 発生用電極とを近接させることで、Hの拡散を減少させることができ、Hを検出することができる。具体的には、例えば、図2に示したように、125〜750μmの範囲であることが望ましく、特に500μmが望ましい。なお、250μm以下の場合と750μm以上の場合、再現性よくHを検出することができない。また、O 発生用電極表面でO が発生することを考慮すると、O 発生用電極の形状は、上記のとおり、Hの測定とのバランスを両立することができるのであれば、例えば、表面積を増加させた形状等、特に限定されるものではない。 Here, since the distance between the electrode for measuring H 2 O 2 and the electrode for generating O 2 is close, H 2 O 2 measurement using the electrode for measuring H 2 O 2 and for generating O 2 It is possible to achieve both H 2 O 2 measurement using an electrode in a well-balanced manner. That, H 2 O 2 measuring electrode and the O 2 - be to close the generating electrode, it is possible to reduce the diffusion of H 2 O 2, it is possible to detect the H 2 O 2. Specifically, for example, as shown in FIG. 2, it is preferably in the range of 125 to 750 μm, and particularly preferably 500 μm. In the case of 250 μm or less and 750 μm or more, H 2 O 2 cannot be detected with good reproducibility. Also, O 2 - When considering the occurrence, O 2 - - O 2 in generating electrode surface of the generating electrode shape as described above, it is possible to achieve both a balance between the measurement of H 2 O 2 If it is, it will not specifically limit, for example, the shape etc. which increased the surface area.

また、本願発明の測定システムは、例えば、作用極であるH測定用電極とO 発生用電極とによる電極構成パターンや、H測定用電極とO 発生用電極に加え、対極または参照極いずれかによる3電極構成パターン、あるいは、H測定用電極、O 発生用電極、参照極および対極による4電極構成パターンとした電気化学的な測定システムであればよく、配置パターンで定義されるものではない。 The measurement system of the present invention, for example, H 2 O 2 measuring electrode and O 2 as the working electrode - electrode configuration pattern or by a generating electrode, H 2 O 2 measuring electrode and the O 2 - generation electrode in addition, three-electrode configuration pattern according to either counter or reference electrode, or,, H 2 O 2 measuring electrode, O 2 - generation electrode, an electrochemical measurement system with 4 electrode configuration pattern according to the reference electrode and a counter electrode It only has to be, and it is not defined by the arrangement pattern.

さらに、その実施形態についても、例えば、図3や図4に例示したようなバッチ式でもよいし、あるいは、図5に例示したようなカーボンインクをスクリーン印刷し、スクリーン印刷電極式として作製してディスポーザブルタイプの測定チップとしてもよい。   Further, the embodiment may be of a batch type as exemplified in FIG. 3 or FIG. 4, or may be produced by screen printing a carbon ink as exemplified in FIG. It may be a disposable type measuring chip.

ここで、図3、図4の例においては、1はH測定用電極、2はO 発生用電極、3は参照電極、4は対極、5は電解質溶液を示す。また、図5の例について説明すると、ディスポーザブルタイプの抗酸化能測定チップはスクリーン印刷電極のH測定用電極1とO 発生用電極2とを、スペーサー6を介して重ね合わせることで構成することができ、スペーサー内に電解質溶液を含有した試料溶液を注入する試料注入口8と空気孔7を備えている。また、図5で例示したH測定用電極とO 発生用電極は、いずれもそれぞれの電極に対極と参照極を備えているが、測定原理からすればH測定用電極とO 発生用電極のいずれか一方に参照電極および対極の少なくともいずれかを備えていればよいことは明らかである。なお、図5の例では、スペーサー6の厚みは、420μmと例示しているが、本願発明の測定システムとして機能するのであれば、この厚みに限定されない。 Here, in the examples of FIGS. 3 and 4, 1 is an electrode for measuring H 2 O 2 , 2 is an electrode for O 2 generation, 3 is a reference electrode, 4 is a counter electrode, and 5 is an electrolyte solution. Further, the example of FIG. 5 will be described. In the disposable type anti-oxidation capacity measuring chip, the screen printing electrode H 2 O 2 measuring electrode 1 and the O 2 generating electrode 2 are overlapped via a spacer 6. And a sample inlet 8 and an air hole 7 for injecting a sample solution containing an electrolyte solution into the spacer. Further, the electrode for measuring H 2 O 2 and the electrode for generating O 2 illustrated in FIG. 5 are each provided with a counter electrode and a reference electrode, but from the measurement principle, it is for measuring H 2 O 2 . It is obvious that at least one of the reference electrode and the counter electrode may be provided on one of the electrode and the O 2 generating electrode. In the example of FIG. 5, the thickness of the spacer 6 is exemplified as 420 μm, but the thickness is not limited to this thickness as long as it functions as the measurement system of the present invention.

本願発明の測定システムにおいて、H測定用電極、O 発生用電極は、例えば、白金電極、金電極およびカーボン電極等が使用できるが、これらに特に限定されるものではない。さらに、本願発明の測定システムにおいて、H測定用電極は、セルロースエステル透析膜やプルシアンブルー、電導性ポリピロール等の機能性膜で修飾されていてもよい。このように、セルロースエステル透析膜で修飾することで、例えば、食品中に含まれるアスコルビン酸等の目的物質以外の還元物質による影響を防止することができ、効率よく目的物質の抗酸化活性を測定することができる。また、機能性膜を修飾することで発生したO やHを効率よく捕集、検出できる。一方、O 発生用電極は、カーボンナノチューブや炭素微粒子で修飾されていてもよい。このように、カーボンナノチューブや炭素微粒子で修飾することで、電極表面を多孔質化して電極の表面積を増大させ、O 発生量を増加させることができ高感度測定が可能となる。 In the measurement system of the present invention, for example, a platinum electrode, a gold electrode, and a carbon electrode can be used as the H 2 O 2 measurement electrode and the O 2 generating electrode, but the electrode is not particularly limited thereto. Furthermore, in the measurement system of the present invention, the electrode for measuring H 2 O 2 may be modified with a functional membrane such as a cellulose ester dialysis membrane, Prussian blue, or conductive polypyrrole. Thus, by modifying with a cellulose ester dialysis membrane, for example, the influence of reducing substances other than the target substance such as ascorbic acid contained in food can be prevented, and the antioxidant activity of the target substance is efficiently measured. can do. Moreover, O 2 and H 2 O 2 generated by modifying the functional film can be efficiently collected and detected. On the other hand, the O 2 generating electrode may be modified with carbon nanotubes or carbon fine particles. Thus, by modifying with carbon nanotubes or carbon fine particles, the electrode surface is made porous, the surface area of the electrode is increased, the amount of O 2 generated can be increased, and high-sensitivity measurement becomes possible.

また、参照電極は、銀/塩化銀電極を使用するが、これらに特に限定されるものではない。対極についても同様に、特に限定されるものではないが、導電性等を考慮すると白金電極、金電極およびカーボン電極であることが好ましい。また、電解質についても特に限定されるものではなく、例えば、電解還元に必要な電気伝導性を付与できる程度に各種の電解質を溶解した水溶液、具体的には、例えば、KCl水溶液や緩衝溶液等を用いることができる。   The reference electrode uses a silver / silver chloride electrode, but is not particularly limited thereto. Similarly, the counter electrode is not particularly limited, but is preferably a platinum electrode, a gold electrode, and a carbon electrode in consideration of conductivity and the like. Also, the electrolyte is not particularly limited. For example, an aqueous solution in which various electrolytes are dissolved to such an extent that electrical conductivity necessary for electrolytic reduction can be imparted, specifically, for example, an aqueous KCl solution or a buffer solution. Can be used.

以下、実施例に沿って、本願発明についてさらに説明するが、本願発明はこれらの実施例に限定されるものではない。   Hereinafter, although this invention is further demonstrated along an Example, this invention is not limited to these Examples.

<実施例1> O の不均化反応によるHの検出
(1) O の不均化反応によるHを効果的に検出する為、O 発生用の白金電極(O 発生用電極:以下、W2極)の対面にH測定用の白金電極(H測定用電極:以下、W1極)を配置した。また対極に白金線、参照極に銀/塩化銀電極を用いた4電極方式により、電解水溶液でとしてのKCl中でW2極に−0.9Vの電圧を印加して、O を発生させた。一方、W1極には1.1Vの電圧を印加しておき、この時のW1極のセンサ応答を計測した。また、W1極とW2極との電極間距離は500μmに設定した。
<Example 1> O 2 - detection of H 2 O 2 by disproportionation reaction (1) O 2 - for effectively detecting the H 2 O 2 by disproportionation reaction, O 2 - for generating platinum electrode (O 2 - generation electrode hereinafter, W2-pole) platinum electrode for facing the H 2 O 2 measurements (H 2 O 2 measuring electrode hereinafter, W1-pole) were placed. In addition, a four-electrode system using a platinum wire as a counter electrode and a silver / silver chloride electrode as a reference electrode applies a voltage of −0.9 V to the W2 electrode in KCl as an electrolytic aqueous solution to generate O 2 −. It was. On the other hand, a voltage of 1.1 V was applied to the W1 pole, and the sensor response of the W1 pole at this time was measured. Further, the distance between the W1 pole and the W2 pole was set to 500 μm.

また本願発明の測定方法を用いて、0.125mMのカテキン標準液をサンプルとして、そのO 消去活性を測定し、次式(4)により、カテキンのO 消去活性率を算出した。 And using the measurement method of the present invention, as a sample catechin standard solution of 0.125 mM, the with the O 2 - measuring the scavenging activity, the following equation (4), O 2 catechin - was calculated scavenging activity rate.

(式中のIは、O 発生用電極から発生したO が不均化反応によってHを生成し、これをH測定用電極で測定した際の応答電流値を示す。ここに抗酸化性物質が存在すると、これがO を捕捉するため、不均化反応によるHの生成量が減少する。Iは、抗酸化性物質が存在際のHの応答電流値を示す。 (I 1 in the formula, O 2 - O 2 generated from the generation electrode - generates an H 2 O 2 by disproportionation reaction, the response current when it was measured in H 2 O 2 measuring electrode shows a value when here antioxidant is present, this O 2 -. for capturing, .I 2 that the amount of H 2 O 2 by disproportionation is decreased, when there are antioxidant The response current value of H 2 O 2 is shown.

結果は、図6および図7に示したとおりであった。   The results were as shown in FIG. 6 and FIG.

の不均化反応によるHの検出を行った結果、W2極における電圧印加の有無により、W1極でのセンサ応答に明らかな差異が見られた。これよりW2極で発生したO に由来するHをW1極で検出できることが明らかとなった。また、O 消去活性を判定した結果、W1極のセンサ応答が減少した(図6)。これはカテキンがO を捕捉・消去し、不均化反応によるHの発生を抑制したためと思われる。また、カテキン濃度の増加と共にO 消去活性率は増加していき、その寄与率Rは、0.999であった(図7)。
(2) また、上記(1)の条件で、0.125mMのカテキン標準液を用いて、繰り返しO 消去活性の測定を行い、変動係数(繰り返し再現性)を用いて、本願発明の測定方法によるO 消去活性の測定再現性についても検討した。
結果は、図8に示したとおり、変動係数8.5%と、測定結果として信頼できる測定再現性が得られた。
As a result of detecting H 2 O 2 by the disproportionation reaction of O 2 , a clear difference was observed in the sensor response at the W1 electrode depending on the presence / absence of voltage application at the W2 electrode. This revealed that H 2 O 2 derived from O 2 generated at the W2 electrode can be detected by the W1 electrode. Also, O 2 - result of determining the scavenging activity, the sensor response of the W1-pole is reduced (FIG. 6). This is probably because catechin captures and eliminates O 2 and suppresses the generation of H 2 O 2 due to the disproportionation reaction. Furthermore, with increasing catechin concentration O 2 - scavenging activity rates continue to increase, the contribution rate R 2 was 0.999 (Fig. 7).
(2) Further, in the above condition (1), using a catechin standard solution of 0.125 mM, repeating O 2 - was measured for scavenging activity, using the coefficient of variation (repeatability), measurement of the present invention It was also examined measurement reproducibility of scavenging activity - O 2 by the method.
As a result, as shown in FIG. 8, a coefficient of variation of 8.5% and a reliable measurement reproducibility were obtained as a measurement result.

なお、変動係数(%)は、次式(5)   The coefficient of variation (%) is expressed by the following equation (5)

から求めることができる。

<実施例2> 白金電極(W1極)に及ぼすアスコルビン酸の影響とセルロースエステル膜(以下CE)透析膜の検討
本願発明の測定方法は、H測定電圧が1.1Vと高電位のため、食品中の抗酸化活性を計測する場合、アスコルビン酸等の目的物質以外の還元性物質を分解し、センサ応答に影響が出ることが考えられる。そこで、アスコルビン酸による影響を防ぐことを目的として、CE透析膜(MWCO:100)を用いて白金電極(W1極)を修飾し、本願発明の測定方法においてアスコルビン酸(MW:176)を添加した時のセンサ応答を計測した。
Can be obtained from

Measurement methods of the study present invention <Example 2> Effect of cellulose ester film of ascorbic acid on the platinum electrode (W1-pole) (hereinafter CE) dialysis membrane, H 2 O 2 the voltage is 1.1V and the high-potential Therefore, when measuring the antioxidant activity in food, it is considered that reductive substances other than the target substance such as ascorbic acid are decomposed to affect the sensor response. Therefore, for the purpose of preventing the influence of ascorbic acid, a platinum electrode (W1 electrode) was modified using a CE dialysis membrane (MWCO: 100), and ascorbic acid (MW: 176) was added in the measurement method of the present invention. The sensor response at the time was measured.

結果は図9に示したとおりであった。すなわち、白金電極に及ぼすアスコルビン酸の影響とCE透析膜の検討を行った結果、CE透析膜を用いた場合、アスコルビン酸の電気分解による応答電流値を約96%減少させた。これにより、電極法においてCE透析膜を用いることで、有意にアスコルビン酸の影響を抑制できることが明らかとなった(図9)。また、1mM以下の低濃度のアスコルビン酸はセンサ応答に影響を与えないことが明らかとなった。
<実施例3> 茶飲料のO 消去活性測定
カテキン、アスコルビン酸を含み、かつ、一般的な飲料である茶飲料(市販の4銘柄:茶飲料A,茶飲料B,茶飲料C,茶飲料D)をサンプルとして用い、本願発明の測定方法(電極法)によりそのO 消去活性を測定した。また、コントロール実験として、従来法であるDPPH法を用いて同様に測定を行い、本願発明の測定方法との相関性を検討した。
The result was as shown in FIG. That is, as a result of examining the influence of ascorbic acid on the platinum electrode and the CE dialysis membrane, when the CE dialysis membrane was used, the response current value due to the electrolysis of ascorbic acid was reduced by about 96%. Thereby, it became clear that the influence of ascorbic acid can be significantly suppressed by using a CE dialysis membrane in the electrode method (FIG. 9). It was also revealed that ascorbic acid at a low concentration of 1 mM or less does not affect the sensor response.
<Example 3> of tea beverage O 2 - scavenging activity measurement catechins include ascorbic acid, and common beverage in a tea beverage (commercially available 4 grades: tea beverage A, tea beverage B, tea beverages C, Brown used beverage D) as a sample, the O 2 by a measurement method of the present invention (electrode method) - was measured scavenging activity. In addition, as a control experiment, the same measurement was performed using the conventional DPPH method, and the correlation with the measurement method of the present invention was examined.

茶飲料AからDをサンプルに用いてそのO 消去活性の測定を行った結果、図10に示したとおり、カテキンを高濃度で含んでいるとされているもの程、高い活性を示した。また、DPPH法による測定と同様の結果を示し、本願発明の測定方法とDPPH法との間に、寄与率R=0.959と良好な相関性が得られた。
<実施例4> 果実、野菜のO 消去活性測定
果実および野菜それぞれの水抽出液をサンプルに用いて、そのO 消去活性を測定した。なお、使用した果実および野菜は、リンゴの果皮および果肉、2種の銘柄のイチゴAおよびB、シソ、ピーマン、ニンジンである。
From tea beverage A with D to sample the O 2 - result of measurement of scavenging activity, as shown in FIG. 10, as those catechin is to contain a high concentration, it showed high activity . Moreover, the same result as the measurement by the DPPH method was shown, and a good correlation with the contribution ratio R 2 = 0.959 was obtained between the measurement method of the present invention and the DPPH method.
<Example 4> fruit, O 2 vegetables - using scavenging activity measurement fruits and vegetables each aqueous extract to the sample, the O 2 - was measured scavenging activity. The fruits and vegetables used were apple peels and flesh, two brands of strawberries A and B, perilla, peppers and carrots.

このとき、DPPH法では、果実に含まれるアントシアニンが、測定の吸収波長に影響を及ぼすことを考慮し、比較実験方法として、発色試薬としてテトラゾリウム塩(WST−1)を用いた比色分析法を行った。   At this time, in the DPPH method, a colorimetric analysis method using a tetrazolium salt (WST-1) as a coloring reagent is used as a comparative experimental method in consideration of the effect of anthocyanins contained in fruits on the absorption wavelength of measurement. went.

結果は、図11に示したとおり、本願発明の測定方法(図中の電極法)とWST−1法との間に、寄与率R=0.986と良好な相関性が得られた。
<実施例5>
H2O2測定極を40mmol/Lのフェリアシアン化カリウムと、40mmol/LのFeCl3の混合溶液に浸漬後、電流密度-40μA/cm2で通電させ、電極上に電解析出法によりプルシアンブルーの機能成膜を成膜させ、図12に示すようなH測定用電極を作製した。該電極をH測定用電極として、O 発生用電極に-0.9V vs. Ag/AgCl、H2O2測定極に-0.5V vs. Ag/AgClの電圧を印加してO 発生用電極上で発生したO の不均化反応によるH量をこの機能性膜を付与したH測定用電極測定したところ、図13に示すような従来法であるDPPH法と良好な相関を得た。これにより、プルシアンブルーの機能成膜をH測定用電極に修飾した場合、従来、1.1V vs. Ag/AgClの電圧を印加してHを計測していたものが-0.5V vs. Ag/AgClで計測でき、より低電位でH計測できるため、植物中に多量に存在するアスコルビン酸等の還元性物質の妨害を受けずに計測可能となる。
As a result, as shown in FIG. 11, a good correlation with the contribution ratio R 2 = 0.986 was obtained between the measurement method of the present invention (electrode method in the drawing) and the WST-1 method.
<Example 5>
The H 2 O 2 measuring electrode is immersed in a mixed solution of 40 mmol / L potassium ferricyanide and 40 mmol / L FeCl 3 and then energized at a current density of −40 μA / cm 2, and Prussian blue functions on the electrode by electrolytic deposition. A film was formed, and an electrode for measuring H 2 O 2 as shown in FIG. 12 was produced. The electrode as H 2 O 2 measuring electrode, O 2 - -0.9V vs. Ag / AgCl in generating electrode, by applying a voltage of -0.5 V vs. Ag / AgCl in H 2 O 2 measuring electrode O 2 - O 2 generated on generating electrode - disproportionation was H 2 O 2 amount was measured H 2 O 2 measurement electrode was applied to the functional film by a conventional method as shown in FIG. 13 Good correlation with DPPH method is obtained. As a result, when the functional film of Prussian blue is modified to an electrode for measuring H 2 O 2 , the conventional measurement of H 2 O 2 by applying a voltage of 1.1 V vs. Ag / AgCl is −0.5 Since V vs. Ag / AgCl can be measured and H 2 O 2 can be measured at a lower potential, measurement can be performed without being disturbed by a reducing substance such as ascorbic acid present in a large amount in the plant.

本願発明の測定方法における電極への最適印加電圧について検証した結果を例示したグラフ図であり、(A)はH測定用電極について、(B)はO 発生用電極について示している。((A)ではO 発生用電極には-0.9V、(B)ではH測定用電極に1.1Vの電圧を印加している。)Is a graph illustrating the result of verifying the optimum voltage applied to the electrodes in the measurement method of the present invention, (A) for the H 2 O 2 measuring electrode, (B) is O 2 - shows the generation electrode Yes. (- The generating electrode -0.9 V, and a voltage of 1.1V to the H 2 O 2 measuring electrode in (B) (in A) O 2.) 本願発明の測定方法におけるH測定用電極とO 発生用電極との間の最適距離について検証した結果を例示したグラフ図である。H 2 O 2 measuring electrode and the O 2 in the measurement method of the present invention - is a graph illustrating the result of verifying the optimum distance between the generating electrode. 本願発明の測定システムの一実施形態として、バッチ式を例示した正面図である。It is the front view which illustrated the batch type as one embodiment of the measurement system of the present invention. 本願発明の測定システムの別の実施形態としてのバッチ式を例示した正面図である。It is the front view which illustrated the batch type as another embodiment of the measuring system of the present invention. 本願発明の測定システムのさらに別の実施形態として、スクリーン印刷電極式の組立前の構成を模式的に例示した分解概略図と、組立後のスクリーン印刷電極式のディスポーザブルタイプの抗酸化能測定チップを模式的に例示した平面図である。As yet another embodiment of the measurement system of the present invention, an exploded schematic view schematically illustrating the configuration before assembly of the screen print electrode type, and a disposable type anti-oxidation capacity measurement chip of the screen print electrode type after assembly. It is the top view typically illustrated. 実施例1におけるカテキンサンプル添加と、センサ応答の挙動の検証結果を示した図である。It is the figure which showed the verification result of the catechin sample addition in Example 1, and the behavior of a sensor response. 実施例1におけるカテキン濃度と、O 消去活性との関係の検証結果を示した図である。Catechin concentration in Example 1, O 2 - is a diagram showing the verification result of the relationship between the scavenging activity. 実施例1におけるO 消去活性の測定再現性についての検証結果を示した図である。O 2 in Example 1 - illustrates the verification results of the measurement reproducibility of the scavenging activity. 実施例2におけるアスコルビン酸濃度と電流値との関係の検証結果を示した図である。It is the figure which showed the verification result of the relationship between the ascorbic acid density | concentration in Example 2, and an electric current value. 実施例3における、本願発明の測定方法(電極法)と従来のDPPH法との相関性について検証した結果を示した図である。In Example 3, it is the figure which showed the result verified about the correlation with the measuring method (electrode method) of this invention, and the conventional DPPH method. 実施例4における、本願発明の測定方法(電極法)と従来のWST−1法との相関性について検証した結果を示した図である。It is the figure which showed the result verified about the correlation with the measuring method (electrode method) of this invention in Example 4, and the conventional WST-1 method. 実施例5における機能性膜を修飾したH測定用電極の断面図である。6 is a cross-sectional view of an electrode for measuring H 2 O 2 modified with a functional film in Example 5. FIG. 実施例5における本願発明の測定方法(電極法)と従来のDPPH法との相関性について検証した結果を示した図である。It is the figure which showed the result verified about the correlation with the measuring method (electrode method) of this invention in Example 5 and the conventional DPPH method.

符号の説明Explanation of symbols

1 H測定用電極
2 O 発生用電極
3 参照電極
4 対極
5 電解質溶液
6 スペーサー(420μm)
7 空気孔
8 試料注入口
9 絶縁性基板
10 機能性膜
1 H 2 O 2 measuring electrode 2 O 2 generating electrode 3 reference electrode 4 counter electrode 5 electrolyte solution 6 spacer (420 μm)
7 Air hole 8 Sample inlet 9 Insulating substrate
10 Functional membrane

Claims (9)

以下の工程:
<1> H測定用電極に電圧を印加する工程;
<2> O 発生用電極に電圧を印加し、O を発生させる工程;
<3> 発生させたO を不均化反応によってHを生成させる工程;
<4> 生成させたH量を、前記H測定用電極で測定する工程;および
<5> 測定したH量を基に、食品が有する抗酸化活性を算出する工程;
を含むことを特徴とする食品の抗酸化活性測定方法。
The following steps:
<1> a step of applying a voltage to the electrode for measuring H 2 O 2 ;
<2> a step of applying a voltage to the O 2 generating electrode to generate O 2 ;
<3> A step of generating H 2 O 2 by the disproportionation reaction of the generated O 2 ;
<4> a step of measuring the amount of generated H 2 O 2 with the electrode for measuring H 2 O 2 ; and <5> calculating the antioxidant activity of the food based on the measured amount of H 2 O 2. Process;
A method for measuring antioxidant activity of foods, comprising:
測定用電極に印加する電圧は、0.1〜1.1Vの範囲であることを特徴とする請求項1の測定方法。 Voltage applied to the H 2 O 2 measurement electrodes, the measurement method according to claim 1, characterized in that in the range of 0.1~1.1V. 発生用電極に印加する電圧は、−1.2〜−0.3Vの範囲であることを特徴とする請求項1または2の食品の抗酸化活性測定方法。 O 2 - the voltage applied to the electrode for generating the antioxidant activity measuring method of the food according to claim 1 or 2, characterized in that in the range of -1.2~-0.3V. 少なくともH測定用電極、O 発生用電極および対極を備えた3電極構成であり、かつ、これらH測定用電極、O 発生用電極および対極が電解質と接触して配置してなる食品の抗酸化活性測定システムであって、H測定用電極は、O 発生用電極と対面配置されていることを特徴とする食品の抗酸化活性測定システム。 At least H 2 O 2 measuring electrode, O 2 - is a three-electrode configuration with a generating electrode and the counter electrode, and these H 2 O 2 measuring electrode, O 2 - is generating electrode and the counter electrode in contact with the electrolyte a antioxidant activity measuring system for food comprising arranged Te to, H 2 O 2 measuring electrode, O 2 - antioxidant activity measurement system food which are arranged facing a generation electrode. 測定用電極とO 発生用電極との間の距離が1〜1000μmの範囲であることを特徴とする請求項4の食品の抗酸化活性測定システム。 H 2 O 2 measuring electrode and the O 2 - antioxidant activity measuring system for food according to claim 4, wherein the distance between the generating electrode is in the range of 1 to 1000 m. さらに対極および参照電極のいずれか、もしくは対極および参照電極の両方を備えていることを特徴とする請求項4または5の食品の抗酸化活性測定システム。 The system for measuring antioxidant activity of foods according to claim 4 or 5, further comprising any one of a counter electrode and a reference electrode, or both a counter electrode and a reference electrode. 測定用電極は、セルロースエステル透析膜で修飾されていることを特徴とする請求項4から6いずれかの食品の抗酸化活性測定システム。 The system for measuring antioxidant activity of food according to any one of claims 4 to 6, wherein the electrode for measuring H 2 O 2 is modified with a cellulose ester dialysis membrane. 測定用電極とO 発生用電極のいずれか一方、あるいは両方の電極が機能性膜で修飾されているとこを特徴とする請求項4から7のいずれかの食品の抗酸化活性測定システム。 H 2 O 2 measuring electrode and the O 2 - antioxidant in either one or any of the food from the claims 4 to 7, characterized in Toko both electrodes are modified with functional film, the generating electrode Activity measurement system. それぞれ絶縁性の基板上に形成したH測定用電極とO 発生用電極をスペーサーを介して対面に配置し、H測定用電極とO 発生用電極のいずれか一方に参照電極および対極の少なくともいずれかを備えていることを特徴とする請求項4から8のいずれかの食品の抗酸化活性測定システム。 An electrode for measuring H 2 O 2 and an electrode for O 2 generation formed on an insulating substrate are arranged facing each other via a spacer, and either the electrode for measuring H 2 O 2 or the electrode for O 2 generation is used. 9. The system for measuring antioxidant activity of food according to claim 4, wherein at least one of a reference electrode and a counter electrode is provided on one side.
JP2005366516A 2005-12-20 2005-12-20 Antioxidant activity measuring method of food and antioxidant activity measuring system of food Pending JP2007170912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366516A JP2007170912A (en) 2005-12-20 2005-12-20 Antioxidant activity measuring method of food and antioxidant activity measuring system of food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366516A JP2007170912A (en) 2005-12-20 2005-12-20 Antioxidant activity measuring method of food and antioxidant activity measuring system of food

Publications (1)

Publication Number Publication Date
JP2007170912A true JP2007170912A (en) 2007-07-05

Family

ID=38297676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366516A Pending JP2007170912A (en) 2005-12-20 2005-12-20 Antioxidant activity measuring method of food and antioxidant activity measuring system of food

Country Status (1)

Country Link
JP (1) JP2007170912A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009339A1 (en) 2007-06-28 2008-12-31 Nissan Motor Company, Limited Tube
RU2452947C1 (en) * 2011-01-11 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный медицинский университет" (ГОУ ВПО "КГМУ") Method for evaluation of antioxidant-and-energy potential of food substances
KR101473930B1 (en) 2013-09-13 2014-12-17 홍익대학교 산학협력단 Microfluidic chip for measuring antioxidation ability of foodstuff and antioxidation ability measuring system using the same
RU2791901C1 (en) * 2022-07-28 2023-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Potentiometric method for determining antioxidant capacity with 2,2'-diphenyl-1-picrylhydrazil

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228752A (en) * 1994-12-28 1996-09-10 Suntory Ltd Method for judging flavor stability of fermented liquor using electron spin resonance
JPH10282001A (en) * 1997-04-02 1998-10-23 Tohoku Denshi Sangyo Kk Method and apparatus for measuring oxidizing capacity of liquid sample
JPH11125618A (en) * 1997-08-22 1999-05-11 Nok Corp Biosensor
JP2000065778A (en) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd Biosensor
JP2000262297A (en) * 1999-03-17 2000-09-26 Toyobo Co Ltd Measurement of substance using enzyme-immobilized electrode
JP2001183338A (en) * 1999-10-12 2001-07-06 Permelec Electrode Ltd Electrode and sensor for measuring concentration
JP2002257780A (en) * 2001-02-28 2002-09-11 Toyobo Research Center Co Ltd Antioxidant material measuring device
JP2002350420A (en) * 2001-05-29 2002-12-04 Nippon Torimu:Kk Detection method and quantitative analysis method of hydrogen radical
JP2003232755A (en) * 2001-12-06 2003-08-22 Sapporo Breweries Ltd Method of measuring polyphenol content in grain by electron spin resonance analysis
JP2004108810A (en) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd Biosensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228752A (en) * 1994-12-28 1996-09-10 Suntory Ltd Method for judging flavor stability of fermented liquor using electron spin resonance
JPH10282001A (en) * 1997-04-02 1998-10-23 Tohoku Denshi Sangyo Kk Method and apparatus for measuring oxidizing capacity of liquid sample
JPH11125618A (en) * 1997-08-22 1999-05-11 Nok Corp Biosensor
JP2000065778A (en) * 1998-08-26 2000-03-03 Matsushita Electric Ind Co Ltd Biosensor
JP2000262297A (en) * 1999-03-17 2000-09-26 Toyobo Co Ltd Measurement of substance using enzyme-immobilized electrode
JP2001183338A (en) * 1999-10-12 2001-07-06 Permelec Electrode Ltd Electrode and sensor for measuring concentration
JP2002257780A (en) * 2001-02-28 2002-09-11 Toyobo Research Center Co Ltd Antioxidant material measuring device
JP2002350420A (en) * 2001-05-29 2002-12-04 Nippon Torimu:Kk Detection method and quantitative analysis method of hydrogen radical
JP2003232755A (en) * 2001-12-06 2003-08-22 Sapporo Breweries Ltd Method of measuring polyphenol content in grain by electron spin resonance analysis
JP2004108810A (en) * 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd Biosensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009339A1 (en) 2007-06-28 2008-12-31 Nissan Motor Company, Limited Tube
RU2452947C1 (en) * 2011-01-11 2012-06-10 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный медицинский университет" (ГОУ ВПО "КГМУ") Method for evaluation of antioxidant-and-energy potential of food substances
KR101473930B1 (en) 2013-09-13 2014-12-17 홍익대학교 산학협력단 Microfluidic chip for measuring antioxidation ability of foodstuff and antioxidation ability measuring system using the same
RU2791901C1 (en) * 2022-07-28 2023-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Potentiometric method for determining antioxidant capacity with 2,2'-diphenyl-1-picrylhydrazil

Similar Documents

Publication Publication Date Title
Motshakeri et al. Rapid electroanalysis of uric acid and ascorbic acid using a poly (3, 4-ethylenedioxythiophene)-modified sensor with application to milk
Akbar et al. Electrochemical determination of folic acid: A short review
Barroso et al. Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: Electrochemical (bio) sensors
Radhi et al. Electrochemical effect of ascorbic acid on redox current peaks of CoCl2 in blood medium
da Silva et al. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids
Chu et al. Study on sensitization from reactive oxygen species for electrochemiluminescence of luminol in neutral medium
Pournaghi-Azar et al. Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on the modified/palladized aluminum electrode as an improved electrocatalyst
Levent et al. Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples
Campanella et al. Comparison of fluorimetric, voltammetric and biosensor methods for the determination of total antioxidant capacity of drug products containing acetylsalicylic acid
Hasanzadeh et al. The use of chitosan as a bioactive polysaccharide in non-invasive detection of malondialdehyde biomarker in human exhaled breath condensate: a new platform towards diagnosis of some lung disease
Nagatani et al. Rapid sensing of antioxidant capacity based on electrochemiluminescence induced by electrochemically generated reactive oxygen species
Alkhawaldeh Platinum nanoparticle electrode modified iodine using cyclic voltammetry and chronoamperometry for determination of ascorbic acid
Kondo et al. Electrochemical detection of lipophilic antioxidants with high sensitivity at boron-doped diamond electrode
JP2007170912A (en) Antioxidant activity measuring method of food and antioxidant activity measuring system of food
Muthuri et al. Chronopotentiometric method for assessing antioxidant activity: A reagentless measuring technique
Razmi et al. Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C
Motshakeri et al. Electrochemical study of gold microelectrodes modified with PEDOT to quantify uric acid in milk samples
Selvi et al. Sensitive determination of quercetin in onion peel by voltammetry using a poly (4-aminobenzene sulfonic acid) modified glassy carbon electrode
Yawari et al. Determination of (S)-warfarin using an activated screen printed gold electrode modified with gold nanoparticles and an enantioselective molecularly imprinted polymer
Sharma et al. Fabrications of electrochemical sensors based on carbon paste electrode for vitamin detection in real samples
Brainina et al. State‐of‐the‐art electrochemistry for the assessment of oxidative stress and integral antioxidant activity of biological environments
Yuan et al. Vitamin C derivatives as new coreactants for tris (2, 2′-bipyridine) ruthenium (II) electrochemiluminescence
Moreno et al. Modified CUPRAC method with electrochemical detection for the determination of antioxidant capacity of gallic acid
Amjadi et al. A Simple Method for Melatonin Determination in the Presence of High Levels of Tryptophan using an Unmodified Carbon Paste Electrode and Square Wave Anodic Stripping Voltammetry
Chen et al. Quantification of ellagic acid in cosmetic products by using a partially preanodized screen-printed carbon electrode coupled with flow injection analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206