JP2007170184A - Air-fuel ratio learning and correcting device for engine - Google Patents

Air-fuel ratio learning and correcting device for engine Download PDF

Info

Publication number
JP2007170184A
JP2007170184A JP2005364342A JP2005364342A JP2007170184A JP 2007170184 A JP2007170184 A JP 2007170184A JP 2005364342 A JP2005364342 A JP 2005364342A JP 2005364342 A JP2005364342 A JP 2005364342A JP 2007170184 A JP2007170184 A JP 2007170184A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
amount
correction
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364342A
Other languages
Japanese (ja)
Inventor
Hideyuki Suzuki
秀幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005364342A priority Critical patent/JP2007170184A/en
Publication of JP2007170184A publication Critical patent/JP2007170184A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To learn and correct the deviation of air-fuel ratio due to the dispersion of wall flows according to transient operation patterns. <P>SOLUTION: During the transient operation, the maximum deviated amount P1 to the lean side of air-fuel ratio, the maximum deviated amount P2 to the rich side, the timings t1, t2 at which the air-fuel ratio is peak, and the timing t3 at which the air-fuel ratio is converged are detected. Next, these variable indicating the behavior of the air-fuel ratio are converted into the maximum increased amount HP1, the maximum decreased amount HP2, the maximum increased timing Ht1, the maximum decreased timing Ht2, and the correction stop timing Ht3. These variables HP1, HP2, Ht1, Ht2, and Ht3 are stored in a map as the learned values corresponding to the intake air amount Q and the variable amount ΔQ when the behavior of the air-fuel ratio is detected. During the next transient operation with the same intake air amount Q and the variable amount ΔQ, the fuel injection amount is corrected by the characteristics of the variables HP1, HP2, Ht1, Ht2, and Ht3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エンジンの過渡運転時における空燃比ずれを学習補正する空燃比学習補正装置に関する。   The present invention relates to an air-fuel ratio learning correction device that learns and corrects an air-fuel ratio shift during engine transient operation.

特許文献1には、燃料噴射弁部における過渡時の基本燃料噴射量を正確に算出するために、過渡時の応答の程度を定める係数の学習値を、吸気絞り弁の開度をパラメータとして記憶し、前記学習値と吸入空気量の検出値とから燃料噴射弁部での基本燃料噴射量を演算する一方、吸気管圧力の変化量に基づいてそのときの絞り弁開度に対応する学習値を更新する燃料噴射制御装置が開示されている。
特開平9−126011号公報
In Patent Document 1, in order to accurately calculate the basic fuel injection amount at the time of transition in the fuel injection valve unit, a learning value of a coefficient that determines the degree of response at the time of transition is stored using the opening of the intake throttle valve as a parameter. The basic fuel injection amount at the fuel injection valve unit is calculated from the learning value and the detected value of the intake air amount, while the learning value corresponding to the throttle valve opening at that time is calculated based on the change amount of the intake pipe pressure. Has been disclosed.
Japanese Patent Laid-Open No. 9-126011

ところで、上記従来技術によると、過渡時における噴射弁部における吸入空気量を精度良く推定することができる。
しかし、燃料噴射弁から噴射された燃料が吸気ポートの壁面に付着し液状燃料として流れる所謂壁流燃料の特性が、エンジンの固体ばらつきや燃料のばらつきなどによって変動すると、吸入空気量を精度良く推定できても、過渡時に目標空燃比の混合気を形成できず、空燃比ずれによって排気性状や運転性が悪化してしまう。
By the way, according to the above prior art, it is possible to accurately estimate the intake air amount in the injection valve portion at the time of transition.
However, if the characteristics of the so-called wall flow fuel, in which the fuel injected from the fuel injection valve adheres to the wall surface of the intake port and flows as liquid fuel, changes due to variations in engine solids or fuel variations, the intake air amount is accurately estimated. Even if it is possible, an air-fuel mixture having a target air-fuel ratio cannot be formed at the time of transition, and exhaust characteristics and drivability deteriorate due to an air-fuel ratio shift.

従来、エンジン負荷やエンジン回転速度の条件毎に、空燃比を目標空燃比に近づけるための空燃比学習補正値を学習することが行われているが、係る学習では、過渡運転パターン毎の補正要求を満たすことができず、空燃比ずれが発生してしまうという問題があった。
本発明は上記問題点に鑑みなされたものであり、過渡運転パターンそれぞれに対応して壁流ばらつきによる空燃比ずれを学習補正できるエンジンの空燃比学習補正装置を提供することを目的とする。
Conventionally, learning of an air-fuel ratio learning correction value for bringing the air-fuel ratio closer to the target air-fuel ratio is performed for each condition of engine load and engine speed. In such learning, a correction request for each transient operation pattern is used. There is a problem that the air-fuel ratio shift occurs because the air pressure cannot be satisfied.
The present invention has been made in view of the above problems, and an object thereof is to provide an air-fuel ratio learning correction device for an engine that can learn and correct an air-fuel ratio shift due to wall flow variation corresponding to each transient operation pattern.

そのため、本発明に係るエンジンの空燃比学習補正装置は、エンジンの過渡運転時に空燃比ずれの特性を検出し、該空燃比ずれの特性に基づく空燃比の学習補正値をそのときのエンジンの吸入空気量及び吸入空気量の変化量に対応させて記憶し、エンジンの過渡運転時にそのときの吸入空気量及び吸入空気量の変化量に対応して学習されている前記学習補正値に基づいてエンジンの空燃比を補正制御することを特徴とする。   Therefore, the air-fuel ratio learning correction apparatus for an engine according to the present invention detects the characteristic of the air-fuel ratio deviation during the transient operation of the engine, and the learning correction value of the air-fuel ratio based on the characteristic of the air-fuel ratio deviation at that time The engine is stored in correspondence with the amount of change in the amount of air and the amount of intake air, and the engine is based on the learned correction value learned in correspondence with the amount of change in the amount of intake air and the amount of intake air at the time of transient operation of the engine. The air-fuel ratio is corrected and controlled.

エンジンの過渡運転時における壁流による燃料量の補正要求は、吸入空気量と吸入空気量の変化量に応じて異なり、吸入空気量の変化量が大きい場合には壁流量も多くなり、燃料噴射量をより多く増量補正する必要があるが、本発明のように、吸入空気量と吸入空気量の変化量に対応させて補正値を学習させれば、上記の壁流量の違いに対応した空燃比補正制御を行え、過渡運転時の空燃比制御精度を向上させることができる。   The demand for correction of the fuel amount due to wall flow during transient engine operation differs depending on the amount of intake air and the amount of change in the intake air amount. When the amount of change in the intake air amount is large, the wall flow rate increases and the fuel injection However, if the correction value is learned in accordance with the intake air amount and the amount of change in the intake air amount as in the present invention, the air flow corresponding to the above difference in wall flow rate is required. Fuel ratio correction control can be performed, and air-fuel ratio control accuracy during transient operation can be improved.

以下に本発明の実施の形態を説明する。
図1は、実施形態における車両用エンジンのシステム図である。
図1において、エンジン(ガソリン内燃機関)1の各気筒には、エアクリーナ2を通過した空気が、吸気ダクト3,吸気コレクタ4,吸気マニホールド5,吸気バルブ6を介して吸引される。
Embodiments of the present invention will be described below.
FIG. 1 is a system diagram of a vehicle engine in the embodiment.
In FIG. 1, air that has passed through an air cleaner 2 is sucked into each cylinder of an engine (gasoline internal combustion engine) 1 through an intake duct 3, an intake collector 4, an intake manifold 5, and an intake valve 6.

エンジン1の吸入空気量は、前記吸気ダクト3に介装されるバタフライ式のスロットルバルブ7の開度TVOによって調整される。
前記スロットルバルブ7は、スロットルモータ(スロットルアクチュエータ)8で開閉駆動される電子制御式のバルブである。
各気筒の吸気ポート部には、燃料噴射弁9がそれぞれ設けられる。
The intake air amount of the engine 1 is adjusted by the opening TVO of the butterfly throttle valve 7 interposed in the intake duct 3.
The throttle valve 7 is an electronically controlled valve that is driven to open and close by a throttle motor (throttle actuator) 8.
A fuel injection valve 9 is provided in each intake port portion of each cylinder.

そして、前記燃料噴射弁9から噴射される燃料(ガソリン)によって形成される混合気は、燃焼室10内で図示省略した点火プラグによる火花点火により着火燃焼する。
前記燃焼室10内の燃焼排気は、排気バルブ11,排気マニホールド12,排気ダクト13を介して大気中へ排出される。
前記排気ダクト13には、排気中の有害成分(NOx、HC、CO)を浄化するための触媒コンバータ14が介装される。
The air-fuel mixture formed by the fuel (gasoline) injected from the fuel injection valve 9 is ignited and combusted by spark ignition by an ignition plug (not shown) in the combustion chamber 10.
The combustion exhaust in the combustion chamber 10 is discharged to the atmosphere via an exhaust valve 11, an exhaust manifold 12, and an exhaust duct 13.
The exhaust duct 13 is provided with a catalytic converter 14 for purifying harmful components (NOx, HC, CO) in the exhaust.

前記スロットルモータ8,燃料噴射弁9及び図示省略した点火コイルへの通電を制御するパワートランジスタは、マイクロコンピュータを内蔵するエンジンコントロールユニット(ECU)21によって制御される。
前記エンジンコントロールユニット21には、各種センサからの検出信号が入力される。
The power transistor for controlling the energization of the throttle motor 8, the fuel injection valve 9 and the ignition coil (not shown) is controlled by an engine control unit (ECU) 21 incorporating a microcomputer.
Detection signals from various sensors are input to the engine control unit 21.

前記各種センサとしては、前記スロットルバルブ7の上流側でエンジン1の吸入空気流量Q(L/min)を検出するエアフローメータ22、前記触媒コンバータ14の上流側に設置され排気中の酸素濃度に基づいて排気空燃比を広域に検出する空燃比センサ23、エンジン1の回転速度Ne(rpm)を検出する回転速度センサ24、運転者が操作するアクセルペダルの踏み込み量(アクセル開度)を検出するアクセル開度センサ25、前記スロットルバルブ7の開度TPO(deg)を検出するスロットルセンサ26、エンジン1の冷却水温度を検出する水温センサ27などが設けられている。   Examples of the various sensors include an air flow meter 22 that detects an intake air flow rate Q (L / min) of the engine 1 on the upstream side of the throttle valve 7, and an oxygen concentration in the exhaust gas that is installed on the upstream side of the catalytic converter 14. An air-fuel ratio sensor 23 for detecting the exhaust air-fuel ratio in a wide range, a rotational speed sensor 24 for detecting the rotational speed Ne (rpm) of the engine 1, and an accelerator for detecting the depression amount (accelerator opening) of the accelerator pedal operated by the driver. An opening sensor 25, a throttle sensor 26 for detecting the opening TPO (deg) of the throttle valve 7, a water temperature sensor 27 for detecting the coolant temperature of the engine 1, and the like are provided.

前記空燃比センサ23は、例えば特開平11−264340号公報に開示されるように、ガス拡散層内における排気空燃比の理論空燃比に対するリッチ・リーンを検出するセンシング電極と、前記ガス拡散層におけるリッチ・リーンの判別結果に応じて電圧が印加され、前記ガス拡散層内の酸素イオンを移動させる酸素ポンプ電極とを備え、前記酸素ポンプ電極に流れる電流(限界電流)に基づいて、エンジン1における燃焼混合気の空燃比を広域に検出し得るセンサである。   The air-fuel ratio sensor 23 includes, as disclosed in, for example, Japanese Patent Application Laid-Open No. 11-264340, a sensing electrode that detects rich / lean relative to the stoichiometric air-fuel ratio of the exhaust air-fuel ratio in the gas diffusion layer, A voltage is applied according to a rich / lean discrimination result, and an oxygen pump electrode that moves oxygen ions in the gas diffusion layer is provided. Based on a current (limit current) flowing through the oxygen pump electrode, It is a sensor that can detect the air-fuel ratio of the combustion mixture in a wide area.

但し、エンジン1の空燃比を検出するためのセンサは、上記の空燃比センサ23に限定されず、公知の種々のセンサを適用できる。
前記エンジンコントロールユニット21は、前記燃料噴射弁9による燃料噴射量Ti(噴射パルス幅)を以下のようにして制御する。
まず、エアフローメータ22で検出される吸入空気流量Qと、回転速度センサ24で検出されるエンジン回転速度とから、そのときのシリンダ吸入空気量において目標空燃比(例えば理論空燃比)の混合気を形成するための基本燃料噴射量Tp(基本噴射パルス幅)を算出する。
However, the sensor for detecting the air-fuel ratio of the engine 1 is not limited to the air-fuel ratio sensor 23 described above, and various known sensors can be applied.
The engine control unit 21 controls the fuel injection amount Ti (injection pulse width) by the fuel injection valve 9 as follows.
First, based on the intake air flow rate Q detected by the air flow meter 22 and the engine rotational speed detected by the rotational speed sensor 24, an air-fuel mixture having a target air-fuel ratio (for example, the theoretical air-fuel ratio) is obtained at the cylinder intake air amount at that time. A basic fuel injection amount Tp (basic injection pulse width) for formation is calculated.

更に、前記基本燃料噴射量Tpを、各種補正係数CO,空燃比フィードバック補正係数FAF,空燃比学習補正値LAF,電圧補正分Tsなどで補正して、最終的な燃料噴射量Tiを算出する。
そして、エンジンコントロールユニット21は、前記燃料噴射量Tiに相当するパルス幅の噴射パルス信号を、各気筒の吸気行程にタイミングを合わせて各燃料噴射弁9に個別に出力する。
Further, the basic fuel injection amount Tp is corrected by various correction coefficients CO, an air-fuel ratio feedback correction coefficient FAF, an air-fuel ratio learning correction value LAF, a voltage correction amount Ts, and the like to calculate a final fuel injection amount Ti.
The engine control unit 21 individually outputs an injection pulse signal having a pulse width corresponding to the fuel injection amount Ti to each fuel injection valve 9 in synchronization with the intake stroke of each cylinder.

前記各種補正係数COは、エンジン1の低温時や始動時に燃料噴射量を増量補正するための補正係数であり、冷却水温度や始動後の経過時間などから設定される。
前記空燃比フィードバック補正係数FAFは、所定のフィードバック条件成立時に、空燃比センサ23で検出される空燃比と目標空燃比との偏差に基づいて演算される。
また、空燃比学習補正値LAFは、過渡運転時に燃料噴射量をフィードフォワード補正するための値であり、後述するように、過渡運転時の吸入空気量Q及び吸入空気量Qの変化量ΔQ毎に学習される。
The various correction coefficients CO are correction coefficients for increasing the fuel injection amount when the engine 1 is at a low temperature or during startup, and are set from the coolant temperature, the elapsed time after startup, and the like.
The air-fuel ratio feedback correction coefficient FAF is calculated based on the deviation between the air-fuel ratio detected by the air-fuel ratio sensor 23 and the target air-fuel ratio when a predetermined feedback condition is satisfied.
The air-fuel ratio learning correction value LAF is a value for feedforward correction of the fuel injection amount at the time of transient operation. As will be described later, the intake air amount Q and the change amount ΔQ of the intake air amount Q at the time of transient operation are described. To be learned.

更に、電圧補正分Tsは、バッテリ電圧による無効噴射時間を補正するためのものであり、そのときのバッテリ電圧に応じて設定される。
ここで、前記空燃比学習補正値LAFについて詳細に説明する。
図2のタイムチャートは、過渡運転時の空燃比挙動の検出と、該検出結果に基づき学習される空燃比学習補正値LAF(ms)の特性を示す。
Further, the voltage correction amount Ts is for correcting the invalid injection time by the battery voltage, and is set according to the battery voltage at that time.
Here, the air-fuel ratio learning correction value LAF will be described in detail.
The time chart of FIG. 2 shows the characteristic of the air-fuel ratio learning correction value LAF (ms) detected based on the detection of the air-fuel ratio behavior during transient operation and the detection result.

図2に示すように、エンジン1が加速運転されると、シリンダに吸引される燃料量の応答遅れによって空燃比A/Fが目標空燃比に対してリーン化し、その後リッチ側への揺り戻しが発生してから、目標空燃比付近に収束する。
上記のような過渡運転時の空燃比挙動を示す変数として、リーン側にずれたときの実空燃比と目標空燃比との最大偏差P1(以下、リーン側最大偏差P1)と、過渡判定t0から前記リーン側最大偏差P1になるまでに要した時間t1と、リーン化後の揺り戻しでリッチ側に振れたときの実空燃比と目標空燃比との最大偏差P2(以下、リッチ側最大偏差P2)と、過渡判定t0から前記リッチ側最大偏差P2になるまでに要した時間t2と、過渡判定t0から目標空燃比付近に収束するまでに要した時間t3とを検出する。
As shown in FIG. 2, when the engine 1 is accelerated, the air-fuel ratio A / F leans with respect to the target air-fuel ratio due to a delay in the response of the amount of fuel sucked into the cylinder, and then swings back to the rich side. After it occurs, it converges near the target air-fuel ratio.
As a variable indicating the air-fuel ratio behavior during transient operation as described above, the maximum deviation P1 between the actual air-fuel ratio and the target air-fuel ratio when shifted to the lean side (hereinafter, lean-side maximum deviation P1), and the transient determination t0 The time t1 required to reach the lean side maximum deviation P1, and the maximum deviation P2 between the actual air-fuel ratio and the target air-fuel ratio when swinging back to the rich side by leaning back after leaning (hereinafter, rich-side maximum deviation P2) ), A time t2 required from the transition determination t0 to the rich side maximum deviation P2, and a time t3 required from the transition determination t0 to convergence to the vicinity of the target air-fuel ratio.

尚、前記時間t1,t2,t3に代えて、過渡判定からリーン側最大偏差P1になるまでの時間、リーン側最大偏差P1からリッチ側最大偏差P2になるまでに要した時間、リッチ側最大偏差P2から目標空燃比付近に収束するまでに要した時間を検出させても、実質的には同一の処理が行える。
そして、過渡運転時の空燃比挙動を示す前記変数P1,P2,t1,t2,t3に基づいて、空燃比学習補正値LAFを決定する変数HP1,HP2,Ht1,Ht2,Ht3を算出する。
Instead of the times t1, t2, and t3, the time from the transient determination until the lean side maximum deviation P1 is reached, the time required from the lean side maximum deviation P1 to the rich side maximum deviation P2, the rich side maximum deviation P1 Substantially the same processing can be performed even if the time required from P2 to converge to the vicinity of the target air-fuel ratio is detected.
Then, based on the variables P1, P2, t1, t2, and t3 indicating the air-fuel ratio behavior during the transient operation, variables HP1, HP2, Ht1, Ht2, and Ht3 that determine the air-fuel ratio learning correction value LAF are calculated.

前記変数HP1は最大増量補正値、変数Ht1は過渡判定から空燃比学習補正値LAFを最大増量補正値HP1とするタイミングまでの時間、変数HP2は最大減量補正値、変数Ht2は過渡判定から空燃比学習補正値LAFを最大減量補正値HP2とするタイミングまでの時間、Ht3は過渡判定から空燃比学習補正値LAFによる補正をゼロとする(停止させる)タイミングまでの時間であり、前記変数HP1,HP2,Ht1,Ht2,Ht3は、過渡運転を検出したときの吸入空気流量Qと該吸入空気流量Qの変化量ΔQとに対応させて、学習マップに更新可能に記憶される。   The variable HP1 is the maximum increase correction value, the variable Ht1 is the time from the transition determination to the timing at which the air-fuel ratio learning correction value LAF is set to the maximum increase correction value HP1, the variable HP2 is the maximum decrease correction value, and the variable Ht2 is the air-fuel ratio from the transient determination Time until the timing at which the learning correction value LAF is set to the maximum reduction correction value HP2, Ht3 is the time from the transient determination to the timing at which correction by the air-fuel ratio learning correction value LAF is made zero (stopped), and the variables HP1, HP2 , Ht1, Ht2, and Ht3 are stored in the learning map in an updatable manner in correspondence with the intake air flow rate Q when the transient operation is detected and the change amount ΔQ of the intake air flow rate Q.

そして、前記変数HP1,HP2,Ht1,Ht2,Ht3を学習したのと同じ吸入空気流量Q及び変化量ΔQの条件で再度過渡運転されると、学習されている変数HP1,HP2,Ht1,Ht2,Ht3に従って空燃比学習補正値LAFを変化させ、燃料噴射量を補正する。
具体的には、過渡判定から時間Ht1で空燃比学習補正値LAFを0からHP1まで一定速度で増大変化させ、最大増量補正値HP1に達すると、時間Ht2−時間Ht1の時間で空燃比学習補正値LAFをHP1からHP2まで一定速度で減少変化させ、最大減量補正値HP2に達すると、時間Ht3−時間Ht2の時間で空燃比学習補正値LAFをHP2から0にまで増大させる。
Then, when the transient operation is performed again under the same conditions of the intake air flow rate Q and the change amount ΔQ that have learned the variables HP1, HP2, Ht1, Ht2, and Ht3, the learned variables HP1, HP2, Ht1, Ht2, and so on. The air-fuel ratio learning correction value LAF is changed according to Ht3 to correct the fuel injection amount.
Specifically, the air-fuel ratio learning correction value LAF is increased and changed at a constant speed from 0 to HP1 at time Ht1 from the transient determination. When the maximum increase correction value HP1 is reached, the air-fuel ratio learning correction is performed at time Ht2−time Ht1. The value LAF is decreased and changed from HP1 to HP2 at a constant speed, and when the maximum reduction correction value HP2 is reached, the air-fuel ratio learning correction value LAF is increased from HP2 to 0 in time Ht3-time Ht2.

次に、図3のフローチャートに従って前記空燃比学習補正値LAF(変数HP1,HP2,Ht1,Ht2,Ht3)の学習制御の詳細を説明する。
尚、図3のフローチャートに示すルーチンは、所定の微小時間毎に実行される。
まず、ステップS11では、エアフローメータ22で検出される吸入空気流量Qの単位時間当たりの変化量ΔQ(ΔQ=現在値−単位時間前の値)が、過渡判定用の閾値よりも大きいか否かを判別することで、エンジン1の加速運転時であるか否かを判別する。
Next, details of the learning control of the air-fuel ratio learning correction value LAF (variables HP1, HP2, Ht1, Ht2, and Ht3) will be described with reference to the flowchart of FIG.
The routine shown in the flowchart of FIG. 3 is executed every predetermined minute time.
First, in step S11, whether or not the change amount ΔQ per unit time of the intake air flow rate Q detected by the air flow meter 22 (ΔQ = current value−value before unit time) is larger than a threshold for transient determination. Is determined to determine whether or not the engine 1 is accelerating.

前記変化量ΔQが閾値よりも大きくエンジン1の加速運転状態であると判断されると、ステップS12へ進む。
ステップS12では、吸入空気流量Qと変化量ΔQとの組み合わせ毎に、前記変数HP1,HP2,Ht1,Ht2,Ht3を更新可能に記憶する学習マップを参照して、加速判定時における吸入空気流量Q及び変化量ΔQに対応する変数HP1,HP2,Ht1,Ht2,Ht3を読み出し、読み出した変数HP1,HP2,Ht1,Ht2,Ht3に基づいて前記空燃比学習補正値LAFを前述のように変化させて、燃料噴射量(空燃比)をフィードフォワード補正する。
If it is determined that the amount of change ΔQ is greater than the threshold value and the engine 1 is in an accelerated operation state, the process proceeds to step S12.
In step S12, for each combination of the intake air flow rate Q and the change amount ΔQ, an intake air flow rate Q at the time of acceleration determination is referred to by referring to a learning map that stores the variables HP1, HP2, Ht1, Ht2, and Ht3 in an updatable manner. Then, variables HP1, HP2, Ht1, Ht2, and Ht3 corresponding to the change amount ΔQ are read, and the air-fuel ratio learning correction value LAF is changed as described above based on the read variables HP1, HP2, Ht1, Ht2, and Ht3. Then, the fuel injection amount (air-fuel ratio) is feedforward corrected.

尚、前記HP1,HP2,Ht1,Ht2,Ht3の初期値は0であり、今回の加速時における吸入空気流量Q及び変化量ΔQに対応する変数HP1,HP2,Ht1,Ht2,Ht3が学習済みでないとき(変数HP1,HP2,Ht1,Ht2,Ht3が全て0であるとき)には、空燃比学習補正値LAFによる補正は行われないことになる。
次のステップS13では、今回の過渡(加速運転)で発生した空燃比の挙動を、前記変数P1,P2,t1,t2,t3を検出することで特定する。
The initial values of the HP1, HP2, Ht1, Ht2, and Ht3 are 0, and the variables HP1, HP2, Ht1, Ht2, and Ht3 corresponding to the intake air flow rate Q and the change amount ΔQ during the current acceleration have not been learned. When (variables HP1, HP2, Ht1, Ht2, and Ht3 are all 0), correction by the air-fuel ratio learning correction value LAF is not performed.
In the next step S13, the behavior of the air-fuel ratio generated in the current transient (acceleration operation) is specified by detecting the variables P1, P2, t1, t2, and t3.

前述のように、前記変数P1,P2は、空燃比ずれのピーク値を示し、前記変数t1,t2,t3は、空燃比ずれがピーク値を示した時期、空燃比が収束した時期を示す。
ステップS14では、前記変数P1,P2,t1,t2,t3に基づいて、今回と同じ加速条件での補正要求(変数HP1,HP2,Ht1,Ht2,Ht3)を演算する。
一般に、壁流の応答遅れ時定数τは、前記変化量ΔQに相関があるので、過渡運転を検出したときの変化量ΔQから、時定数τを決定する(図4参照)。
As described above, the variables P1 and P2 indicate the peak value of the air-fuel ratio shift, and the variables t1, t2, and t3 indicate the time when the air-fuel ratio shift reaches the peak value and the time when the air-fuel ratio converges.
In step S14, a correction request (variables HP1, HP2, Ht1, Ht2, Ht3) under the same acceleration conditions as this time is calculated based on the variables P1, P2, t1, t2, and t3.
Generally, since the response delay time constant τ of the wall flow is correlated with the change amount ΔQ, the time constant τ is determined from the change amount ΔQ when transient operation is detected (see FIG. 4).

τ=f1(ΔQ)
更に、空燃比ずれのタイミングを示す変数t1,t2,t3を、空燃比補正のタイミングを示す変数Ht1,Ht2,Ht3に変換するための変換係数α1〜α3を、前記時定数τに基づいて決定する。
α=f2(τ)
尚、前記関数f1(ΔQ),f2(τ)は、予め記憶されている固定の関数である。
τ = f1 (ΔQ)
Further, conversion coefficients α1 to α3 for converting the variables t1, t2 and t3 indicating the timing of the air-fuel ratio deviation into the variables Ht1, Ht2 and Ht3 indicating the timing of the air-fuel ratio correction are determined based on the time constant τ. To do.
α = f2 (τ)
The functions f1 (ΔQ) and f2 (τ) are fixed functions stored in advance.

そして、前記変換係数α1〜α3に基づいて、空燃比ずれのタイミングを示す変数t1,t2,t3を、空燃比補正のタイミングを示す変数Ht1,Ht2,Ht3に変換する。
Ht1=t1×α1
Ht2=t2×α2
Ht3=t3×α3
一方、補正量のピーク値を示す変数HP1,HP2は、以下のようにして算出される。
Based on the conversion coefficients α1 to α3, the variables t1, t2, and t3 indicating the timing of the air-fuel ratio deviation are converted into variables Ht1, Ht2, and Ht3 indicating the timing of the air-fuel ratio correction.
Ht1 = t1 × α1
Ht2 = t2 × α2
Ht3 = t3 × α3
On the other hand, the variables HP1 and HP2 indicating the peak value of the correction amount are calculated as follows.

まず、前記変数P1,P2を前記変数HP1,HP2に変換するのに用いられる第1係数CoefQを、吸入空気流量Qと変化量ΔQとを変数とする関数f4(Q,ΔQ)に基づき算出する。
CoefQ=f4(Q,ΔQ)
更に、エンジン回転速度Neを変数とする関数f5(Ne)から第2係数CoefNを算出する。
First, a first coefficient CoefQ used to convert the variables P1 and P2 into the variables HP1 and HP2 is calculated based on a function f4 (Q, ΔQ) having an intake air flow rate Q and a change amount ΔQ as variables. .
CoefQ = f4 (Q, ΔQ)
Further, the second coefficient CoefN is calculated from the function f5 (Ne) having the engine speed Ne as a variable.

CoefN=f5(Ne)
一般に、エンジン回転速度が高くなると、空気流量が増え、ポート流速が高くなるため、補正要求量は減る傾向を示すので、前記第2補正係数CoefNは、図5に示すような特性で設定される。
そして、前記第1係数CoefQと第2係数CoefNとから、トータル係数CoefTotalを算出する。
CoefN = f5 (Ne)
In general, as the engine speed increases, the air flow rate increases and the port flow velocity increases, so the correction request amount tends to decrease. Therefore, the second correction coefficient CoefN is set with the characteristics shown in FIG. .
Then, a total coefficient CoefTotal is calculated from the first coefficient CoefQ and the second coefficient CoefN.

CoefTotal=CoefQ×CoefN
ここで、前記空燃比挙動を示す変数P1,P2に、前記トータル補正係数CoefTotalを乗算することで、空燃比学習補正値LAFの特性を示す変数HP1,HP2に変換する。
HP1=P1×CoefTotal
HP2=P2×CoefTotal
上記のようにして、今回の空燃比挙動を示す変数P1,P2,t1,t2,t3に対する、燃料噴射量の補正要求を示す変数HP1,HP2,Ht1,Ht2,Ht3が算出される。
CoefTotal = CoefQ × CoefN
Here, by multiplying the variables P1 and P2 indicating the air-fuel ratio behavior by the total correction coefficient CoefTotal, the variables HP1 and HP2 indicating the characteristics of the air-fuel ratio learning correction value LAF are converted.
HP1 = P1 × CoefTotal
HP2 = P2 × CoefTotal
As described above, the variables HP1, HP2, Ht1, Ht2, and Ht3 indicating the fuel injection amount correction request for the variables P1, P2, t1, t2, and t3 indicating the current air-fuel ratio behavior are calculated.

ステップS15では、前記補正要求に基づいて今回の加速条件(吸入空気量Q及び変化量ΔQ)に対応して前記学習マップに記憶されている変数HP1,HP2,Ht1,Ht2,Ht3の更新書き換えを行う。
即ち、学習マップにおけるそれまでの記憶値を、HP1’,HP2’,Ht1’,Ht2’,Ht3’とし、新たに求められた補正要求をHP1”,HP2”,Ht1”,Ht2”,Ht3”とすると、学習マップの該当する格子の記憶値を、HP1’+HP1”,HP2’+HP2”,Ht1’+Ht1”,Ht2’+Ht2”,Ht3’+Ht3”に書き換える。
In step S15, based on the correction request, the variables HP1, HP2, Ht1, Ht2, and Ht3 stored in the learning map are updated and rewritten corresponding to the current acceleration condition (intake air amount Q and change amount ΔQ). Do.
That is, the stored values in the learning map so far are HP1 ′, HP2 ′, Ht1 ′, Ht2 ′, Ht3 ′, and the newly obtained correction requests are HP1 ″, HP2 ″, Ht1 ″, Ht2 ″, Ht3 ″. Then, the stored value of the corresponding lattice in the learning map is rewritten to HP1 ′ + HP1 ″, HP2 ′ + HP2 ″, Ht1 ′ + Ht1 ″, Ht2 ′ + Ht2 ″, Ht3 ′ + Ht3 ″.

前記学習マップは、吸入空気量Qと変化量ΔQとの組み合わせ毎に、空燃比学習補正値LAFを特定する変数HP1,HP2,Ht1,Ht2,Ht3を更新記憶するから、過渡運転のパターン毎に補正要求を学習させることができ、過渡運転時の空燃比変動を高精度に補正することができる(図6参照)。
また、過渡運転に伴って発生した空燃比ずれのパターンを、補正量の変化パターンに変換する構成とし、更に、吸入空気量Q,変化量ΔQ,エンジン回転速度Neに応じた変換特性を設定するので、過渡運転に伴う空燃比変動を効果的に抑制できる空燃比学習補正値LAFを学習させることができる。
The learning map updates and stores the variables HP1, HP2, Ht1, Ht2, and Ht3 that specify the air-fuel ratio learning correction value LAF for each combination of the intake air amount Q and the change amount ΔQ. The correction request can be learned, and the air-fuel ratio fluctuation during the transient operation can be corrected with high accuracy (see FIG. 6).
In addition, the air-fuel ratio deviation pattern generated during the transient operation is converted into a correction amount change pattern, and further, conversion characteristics are set according to the intake air amount Q, change amount ΔQ, and engine speed Ne. Therefore, it is possible to learn the air-fuel ratio learning correction value LAF that can effectively suppress the air-fuel ratio fluctuation accompanying the transient operation.

ステップS16では、空燃比挙動を示す変数P1,P2,t1,t2,t3を、燃料噴射量の補正要求を示す変数HP1,HP2,Ht1,Ht2,Ht3に変換する特性の補正係数を学習する。
本実施形態では、空燃比ずれ変化のタイミングを示す前記変数t1、t2,t3の目標値TA1,TA2,TA3が予め設定されており、前記変数HP1,HP2,Ht1,Ht2,Ht3に基づく空燃比学習補正値LAFで燃料噴射量を補正した結果としての変数t1,t2,t3が目標値TA1,TA2,TA3に近づくように、学習補正した結果から前記変換係数α1,α2,α3の補正係数K1,K2,K3を学習する。
In step S16, a characteristic correction coefficient for converting the variables P1, P2, t1, t2, and t3 indicating the air-fuel ratio behavior into variables HP1, HP2, Ht1, Ht2, and Ht3 indicating the fuel injection amount correction request is learned.
In the present embodiment, target values TA1, TA2, TA3 of the variables t1, t2, t3 indicating the timing of the air-fuel ratio deviation change are preset, and the air-fuel ratio based on the variables HP1, HP2, Ht1, Ht2, Ht3 The correction coefficient K1 of the conversion coefficients α1, α2, α3 from the result of learning correction so that the variables t1, t2, t3 as a result of correcting the fuel injection amount with the learning correction value LAF approach the target values TA1, TA2, TA3. , K2, K3.

まず、実際値t1,t2,t3と目標値TA1,TA2,TA3との偏差Z1,Z2,Z3を演算する(図7参照)。
Z1=t1−TA1
Z2=t2−TA2
Z3=t3−TA3
そして、前記偏差Z1,Z2,Z3から、補正係数K1,K2,K3を求める。
First, deviations Z1, Z2, and Z3 between the actual values t1, t2, and t3 and the target values TA1, TA2, and TA3 are calculated (see FIG. 7).
Z1 = t1-TA1
Z2 = t2-TA2
Z3 = t3-TA3
Then, correction coefficients K1, K2, and K3 are obtained from the deviations Z1, Z2, and Z3.

K1=f6(Z1)
K2=f6(Z2)
K3=f6(Z3)
次回以降においては、変化量ΔQに基づき設定される変換係数α1,α2,α3を、前記補正係数K1,K2,K3で補正した変換係数α1’,α2’,α3’に基づいて、変数t1,t2,t3を変数Ht1,Ht2,Ht3に変換させ、前記偏差Z1,Z2,Z3が検出される毎に、それまでの補正係数K1,K2,K3を新たに設定された補正係数K1’,K2’,K3’で補正設定させるようにする。
K1 = f6 (Z1)
K2 = f6 (Z2)
K3 = f6 (Z3)
In the next and subsequent times, based on the conversion coefficients α1 ′, α2 ′, α3 ′ obtained by correcting the conversion coefficients α1, α2, α3 set based on the change amount ΔQ with the correction coefficients K1, K2, K3, the variables t1, t2 and t3 are converted into variables Ht1, Ht2 and Ht3, and each time the deviations Z1, Z2 and Z3 are detected, the correction coefficients K1, K2 and K3 so far are newly set correction coefficients K1 ′ and K2. The correction is set with “, K3”.

また、学習済みの変数HP1,HP2,Ht1,Ht2,Ht3に基づいて燃料噴射量を学習補正したときの空燃比ずれを示す変数P1,P2に基づいて、前記変数P1,P2を縮小させる方向に、前記トータル補正係数CoefTotal(第1係数CoefQ,第2係数CoefN)を補正するための補正係数K4を演算する。
即ち、学習済みの変数HP1,HP2,Ht1,Ht2,Ht3に基づいて燃料噴射量を学習補正したときの空燃比ずれを示す変数P1,P2に基づいて、目標空燃比にするための燃料噴射量の要求補正量を求め、該補正要求を満たす変数HP1,HP2が演算されるように、前記トータル補正係数CoefTotalを補正するための補正係数K4を逆算する。
Further, the variables P1 and P2 are reduced in a direction based on the variables P1 and P2 indicating the air-fuel ratio deviation when the fuel injection amount is learned and corrected based on the learned variables HP1, HP2, Ht1, Ht2, and Ht3. Then, a correction coefficient K4 for correcting the total correction coefficient CoefTotal (first coefficient CoefQ, second coefficient CoefN) is calculated.
That is, the fuel injection amount for achieving the target air-fuel ratio based on the variables P1 and P2 indicating the air-fuel ratio deviation when the fuel injection amount is learned and corrected based on the learned variables HP1, HP2, Ht1, Ht2, and Ht3 The correction coefficient K4 for correcting the total correction coefficient CoefTotal is calculated so that the variables HP1 and HP2 satisfying the correction request are calculated.

そして、補正係数K4を学習した後は、変数P1,P2を変数HP1,HP2に変換するときに、前記補正係数K4で補正したトータル補正係数CoefTotalを用いる。
また、前記第1係数CoefQに対応する補正係数K4aと、前記第2係数CoefNに対応する補正係数K4bとを、エンジン回転速度Ne、吸入空気量Q、変化量ΔQに対する要求補正量の特性から個別に学習することも可能である。
After learning the correction coefficient K4, the total correction coefficient CoefTotal corrected by the correction coefficient K4 is used when the variables P1 and P2 are converted into the variables HP1 and HP2.
The correction coefficient K4a corresponding to the first coefficient CoefQ and the correction coefficient K4b corresponding to the second coefficient CoefN are individually determined from the characteristics of the required correction amount for the engine speed Ne, the intake air amount Q, and the change amount ΔQ. It is also possible to learn.

上記のようにして、空燃比挙動を示す変数P1,P2,t1,t2,t3を、燃料噴射量の補正要求を示す変数HP1,HP2,Ht1,Ht2,Ht3に変換する特性の補正係数K1〜K4を学習すれば、空燃比挙動から補正要求を推定する精度が向上し、空燃比学習補正値LAFの収束を早めることができる。
尚、過渡運転時の空燃比ずれの特性を示す時期の変数として、空燃比がピーク値を示した時期の代わりに、空燃比が目標空燃比を横切った時期を検出させることができる。
As described above, the correction coefficients K1 to K1 for the characteristic of converting the variables P1, P2, t1, t2, and t3 indicating the air-fuel ratio behavior into the variables HP1, HP2, Ht1, Ht2, and Ht3 indicating the correction request for the fuel injection amount. If K4 is learned, the accuracy of estimating the correction request from the air-fuel ratio behavior can be improved, and the convergence of the air-fuel ratio learning correction value LAF can be accelerated.
As a time variable indicating the characteristic of the air-fuel ratio deviation during transient operation, the time when the air-fuel ratio crosses the target air-fuel ratio can be detected instead of the time when the air-fuel ratio shows a peak value.

また、吸入空気量Q及び変化量ΔQに相関するデータとして、スロットル開度・スロットル開度の変化量や、スロットル開度とエンジン回転速度とから推定される吸入空気量及び該吸入空気量の変化量を検出させることができる。   Further, as data correlated with the intake air amount Q and the change amount ΔQ, the amount of change in the throttle opening / throttle opening, the intake air amount estimated from the throttle opening and the engine speed, and the change in the intake air amount The amount can be detected.

実施形態における車両用エンジンのシステム図。The system diagram of the engine for vehicles in an embodiment. 実施形態における過渡時の空燃比挙動と該空燃比挙動に基づく空燃比学習補正値LAFとを示すタイムチャート。The time chart which shows the air-fuel ratio behavior at the time of transition in the embodiment, and the air-fuel ratio learning correction value LAF based on the air-fuel ratio behavior. 実施形態における空燃比学習補正値の学習制御を示すフローチャート。The flowchart which shows the learning control of the air fuel ratio learning correction value in embodiment. 実施形態における変化量ΔQと壁流の応答遅れ時定数との相関を示す線図。The diagram which shows the correlation with the variation | change_quantity (DELTA) Q and the response delay time constant of wall flow in embodiment. 実施形態におけるエンジン回転速度Neと変換係数CoefNとの相関を示す線図。The diagram which shows the correlation with the engine speed Ne and conversion coefficient CoefN in embodiment. 実施形態における過渡運転パターンと、対応する学習マップの格子との相関を示す図。The figure which shows the correlation with the transient driving | operation pattern in embodiment, and the grid of a corresponding learning map. 実施形態における過渡時における空燃比挙動のタイミングと目標値との相関の一例を示すタイムチャート。The time chart which shows an example of the correlation with the timing and target value of the air-fuel ratio behavior at the time of the transition in embodiment.

符号の説明Explanation of symbols

1…エンジン,2…エアクリーナ,3…吸気ダクト,4…吸気コレクタ,5…吸気マニホールド,6…吸気バルブ,7…スロットルバルブ,8…スロットルモータ,9…燃料噴射弁,10…燃焼室,11…排気バルブ,12…排気マニホールド,13…排気ダクト,14…触媒コンバータ,21…エンジンコントロールユニット,22…エアフローメータ,23…空燃比センサ,24…回転速度センサ,25…アクセル開度センサ,26…スロットルセンサ,27…水温センサ   DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Air cleaner, 3 ... Intake duct, 4 ... Intake collector, 5 ... Intake manifold, 6 ... Intake valve, 7 ... Throttle valve, 8 ... Throttle motor, 9 ... Fuel injection valve, 10 ... Combustion chamber, 11 DESCRIPTION OF SYMBOLS ... Exhaust valve, 12 ... Exhaust manifold, 13 ... Exhaust duct, 14 ... Catalytic converter, 21 ... Engine control unit, 22 ... Air flow meter, 23 ... Air-fuel ratio sensor, 24 ... Rotational speed sensor, 25 ... Accelerator opening sensor, 26 ... Throttle sensor, 27 ... Water temperature sensor

Claims (7)

エンジンの過渡運転時に空燃比ずれの特性を検出し、該空燃比ずれの特性に基づく空燃比の学習補正値をそのときのエンジンの吸入空気量及び吸入空気量の変化量に対応させて記憶し、エンジンの過渡運転時にそのときの吸入空気量及び吸入空気量の変化量に対応して学習されている前記学習補正値に基づいてエンジンの空燃比を補正制御することを特徴とするエンジンの空燃比学習補正装置。 The characteristic of the air-fuel ratio deviation is detected during the transient operation of the engine, and the learning correction value of the air-fuel ratio based on the characteristic of the air-fuel ratio deviation is stored in correspondence with the intake air amount of the engine and the change amount of the intake air amount at that time. The engine air-fuel ratio is corrected and controlled based on the learned correction value learned in accordance with the intake air amount and the change amount of the intake air amount at the time of the transient operation of the engine. Fuel ratio learning correction device. 前記空燃比ずれの特性として、空燃比ずれのピーク値,該ピーク値を示した時期及び空燃比が収束した時期を検出することを特徴とする請求項1記載のエンジンの空燃比学習補正装置。 2. The air-fuel ratio learning correction apparatus for an engine according to claim 1, wherein the air-fuel ratio deviation characteristic is detected by detecting a peak value of the air-fuel ratio deviation, a time when the peak value is shown, and a time when the air-fuel ratio converges. 前記空燃比ずれのピーク値を空燃比補正量のピーク値に変換し、前記空燃比ずれがピーク値を示した時期を、空燃比補正量をピーク値とする時期に変換し、前記空燃比が収束した時期を空燃比補正量による補正を停止させる時期に変換し、前記空燃比補正量のピーク値,空燃比補正量をピーク値とする時期及び空燃比補正量による補正を停止させる時期を前記学習補正値として学習することを特徴とする請求項2記載のエンジンの空燃比学習補正装置。 The peak value of the air-fuel ratio deviation is converted into the peak value of the air-fuel ratio correction amount, the time when the air-fuel ratio deviation shows the peak value is converted into the time when the air-fuel ratio correction amount is the peak value, and the air-fuel ratio becomes The converged timing is converted into a timing for stopping correction by the air-fuel ratio correction amount, and the peak value of the air-fuel ratio correction amount, the timing for setting the air-fuel ratio correction amount as the peak value, and the timing for stopping correction by the air-fuel ratio correction amount are described above. 3. The engine air-fuel ratio learning correction apparatus according to claim 2, wherein learning is performed as a learning correction value. 前記空燃比ずれのピーク値を、空燃比補正値のピーク値に変換する特性を、エンジン回転速度,吸入空気量,吸入空気量の変化量のうちの少なくとも1つに基づいて決定することを特徴とする請求項3記載のエンジンの空燃比学習補正装置。 The characteristic for converting the peak value of the air-fuel ratio deviation into the peak value of the air-fuel ratio correction value is determined based on at least one of the engine speed, the intake air amount, and the change amount of the intake air amount. The air-fuel ratio learning correction apparatus for an engine according to claim 3. 前記空燃比ずれがピーク値を示した時期を、空燃比補正値をピーク値とする時期に変換する特性、及び/又は、前記空燃比が収束した時期を、空燃比補正量による補正を停止させる時期に変換する特性を、吸入空気量の変化量に基づいて決定することを特徴とする請求項3又は4記載のエンジンの空燃比学習補正装置。 The characteristic of converting the time when the air-fuel ratio deviation showed a peak value into the time when the air-fuel ratio correction value is a peak value, and / or the time when the air-fuel ratio has converged, the correction by the air-fuel ratio correction amount is stopped. The engine air-fuel ratio learning correction apparatus according to claim 3 or 4, wherein the characteristic to be converted into the timing is determined based on a change amount of the intake air amount. 前記空燃比ずれがピーク値を示す時期及び/又は前記空燃比が収束する時期が目標時期になるように、前記空燃比ずれがピーク値を示した時期を、空燃比補正値をピーク値とする時期に変換する特性、及び/又は、前記空燃比が収束した時期を、空燃比補正量による補正を停止させる時期に変換する特性を更新することを特徴とする請求項3〜5のいずれか1つに記載のエンジンの空燃比学習補正装置。 The time when the air-fuel ratio deviation shows the peak value is set to the peak value as the time when the air-fuel ratio deviation shows the peak value and / or the time when the air-fuel ratio converges becomes the target time. 6. The characteristic for converting to a timing and / or the characteristic for converting the timing at which the air-fuel ratio has converged to a timing for stopping correction by the air-fuel ratio correction amount are updated. An air-fuel ratio learning correction apparatus for an engine according to claim 1. 前記空燃比ずれのピーク値を減少させるべく、空燃比ずれのピーク値を空燃比補正値のピーク値に変換する特性を更新することを特徴とする請求項3〜6のいずれか1つに記載のエンジンの空燃比学習補正装置。 The characteristic for converting the peak value of the air-fuel ratio shift into the peak value of the air-fuel ratio correction value is updated in order to reduce the peak value of the air-fuel ratio shift. Engine air-fuel ratio learning correction device.
JP2005364342A 2005-12-19 2005-12-19 Air-fuel ratio learning and correcting device for engine Pending JP2007170184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364342A JP2007170184A (en) 2005-12-19 2005-12-19 Air-fuel ratio learning and correcting device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364342A JP2007170184A (en) 2005-12-19 2005-12-19 Air-fuel ratio learning and correcting device for engine

Publications (1)

Publication Number Publication Date
JP2007170184A true JP2007170184A (en) 2007-07-05

Family

ID=38297074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364342A Pending JP2007170184A (en) 2005-12-19 2005-12-19 Air-fuel ratio learning and correcting device for engine

Country Status (1)

Country Link
JP (1) JP2007170184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090991A1 (en) * 2010-12-27 2012-07-05 日産自動車株式会社 Internal combustion engine control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090991A1 (en) * 2010-12-27 2012-07-05 日産自動車株式会社 Internal combustion engine control device
CN103080517A (en) * 2010-12-27 2013-05-01 日产自动车株式会社 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
US7650225B2 (en) Engine controller
JP4315179B2 (en) Air-fuel ratio control device for internal combustion engine
JP5001183B2 (en) Air-fuel ratio control device for internal combustion engine
JP4835692B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JP5451687B2 (en) Engine control device
JP4539211B2 (en) Control device for internal combustion engine
JP2001032739A (en) Air-fuel ratio control device for internal combustion engine
JP2007092531A (en) Control device of internal combustion engine
JP4779543B2 (en) Electric throttle learning device
JP4919945B2 (en) Air-fuel ratio control method by engine sliding mode control, and fuel control apparatus including the method
JP5116868B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009167991A (en) Idling operation control device for internal combustion engine
JP2007170184A (en) Air-fuel ratio learning and correcting device for engine
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP4807670B2 (en) Control device
JP5331931B2 (en) Air-fuel ratio control device for internal combustion engine
JP4457954B2 (en) Valve opening calculation device, valve control device, and valve opening calculation method
JP3793382B2 (en) Engine control device
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP4371028B2 (en) Engine air-fuel ratio control device
JP3765416B2 (en) Air-fuel ratio control device for internal combustion engine
JP4483657B2 (en) Fuel injection amount control device for internal combustion engine
JPH11173195A (en) Air-fuel ratio control device and air-fuel ratio control method of engine
JP3932022B2 (en) Idle rotational speed control device for internal combustion engine
JP5206221B2 (en) Method and system for controlling the fuel supply of an internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331