JP2007169325A - Electroconductive sliding material composition - Google Patents

Electroconductive sliding material composition Download PDF

Info

Publication number
JP2007169325A
JP2007169325A JP2005364884A JP2005364884A JP2007169325A JP 2007169325 A JP2007169325 A JP 2007169325A JP 2005364884 A JP2005364884 A JP 2005364884A JP 2005364884 A JP2005364884 A JP 2005364884A JP 2007169325 A JP2007169325 A JP 2007169325A
Authority
JP
Japan
Prior art keywords
lubricant
resin
conductive
sliding
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364884A
Other languages
Japanese (ja)
Inventor
Eiichiro Shimazu
英一郎 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005364884A priority Critical patent/JP2007169325A/en
Publication of JP2007169325A publication Critical patent/JP2007169325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive sliding material composition having low friction, low abrasion, and electroconductivity of more than required for its antistatic properties jointly. <P>SOLUTION: This electroconductive sliding material composition is obtained by blending a lubrication-imparting material obtained by impregnating a lubricant in a porous material and particle-formed electroconductive material with a base material. The blending ratio of them is that the lubrication-imparting agent is ≥5 and <60 vol%, the particle-formed electroconductive material is ≥0.1 and <5 vol% and the base material is ≥40%, and the particle-formed electroconductive material has ≥500 m<SP>2</SP>/g surface area by the BET method and has a form of ≤50 nm primary particle diameter. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、潤滑性と導電性とを併せ持つ樹脂組成物、エラストマー組成物、塗膜組成物などの導電性摺動材組成物に関する。   The present invention relates to a conductive sliding material composition such as a resin composition, an elastomer composition, and a coating film composition having both lubricity and conductivity.

潤滑性樹脂組成物を成形して得られる樹脂摺動材、ゴム弾性を有する摺動材、潤滑性塗膜などの摺動材組成物に求められる機能は、年々厳しさを増しており、初期状態における優れた低摩擦・低摩耗化と、最近では帯電防止に求められる以上の導電性の付与が加わり、これらの性能を併せ持ち、かつこれらの初期特性を長期間維持することが強く要求されている。これまで低摩擦・低摩耗化のためには、黒鉛やポリテトラフルオロエチレン(以下、PTFEと記す)樹脂、二硫化モリブデン(以下、MoS2と記す)、窒化硼素(以下、BNと記す)等の固体潤滑剤を配合したり、ガラス繊維やカーボン繊維等の補強材を樹脂に配合したりして摺動特性を付与してきた。しかし、固体潤滑剤の配合のみでは、摩擦特性の低下には限界があり、潤滑油などの潤滑剤を配合する手法が試みられている。 The functions required for a sliding material composition such as a resin sliding material obtained by molding a lubricating resin composition, a sliding material having rubber elasticity, and a lubricating coating film are becoming increasingly severe year by year. In addition to the excellent low friction and low wear in the state and the addition of conductivity more than required for antistatic recently, there is a strong demand to combine these performances and maintain these initial characteristics for a long period of time. Yes. Conventionally, graphite, polytetrafluoroethylene (hereinafter referred to as PTFE) resin, molybdenum disulfide (hereinafter referred to as MoS 2 ), boron nitride (hereinafter referred to as BN), etc. have been used to reduce friction and wear. The solid lubricant has been blended, or a reinforcing material such as glass fiber or carbon fiber has been blended into the resin to impart sliding properties. However, there is a limit to the reduction in frictional characteristics only by blending solid lubricants, and methods for blending lubricants such as lubricating oil have been attempted.

潤滑油を配合させた樹脂材料は、摺動時にベースの樹脂層が少しずつ摩耗して潤滑油層が摺動部に現れると、潤滑油が摺動部表面に滲み出す。潤滑油の滲み出し具合は制御することが困難であり、潤滑油が滲み出した跡の空孔は樹脂層の強度低下を引き起こすおそれがある。さらに充填材を加えて機械的強度や耐摩耗性を向上させようとすると、充填材の界面に油が局在化するため、補強効果が十分とならない場合がある。
これらの問題を解決する方法として、樹脂に多孔質シリカおよび潤滑剤を少なくとも配合してなり、潤滑剤を摺動部表面に継続的に供給することによって優れた低摩擦・低摩耗性を有する摺動材組成物が知られている(特許文献1参照)。
In the resin material in which the lubricating oil is blended, when the base resin layer is gradually worn during sliding and the lubricating oil layer appears on the sliding portion, the lubricating oil oozes out on the surface of the sliding portion. It is difficult to control the extent to which the lubricating oil oozes out, and the vacancies from which the lubricating oil has oozed out may cause a decrease in the strength of the resin layer. Furthermore, if an attempt is made to improve the mechanical strength and wear resistance by adding a filler, the effect of reinforcing may not be sufficient because the oil is localized at the interface of the filler.
As a method for solving these problems, a slide having excellent low friction and low wear properties is obtained by continuously supplying a lubricant to the surface of the sliding portion. A moving material composition is known (see Patent Document 1).

しかしながら、含油系樹脂摺動材は、通常の保油体を用いない含油樹脂や固体潤滑剤を配合した摺動材に比べて優れた低摩擦化が可能であるが、単に導電材を配合しただけでは導電性の付与が難しい。
すなわち、配合された導電材が油などの潤滑成分により隠蔽され、導電性能が発現しにくくなったり、また潤滑成分が導電材/樹脂界面に保持され、摺動に必要な潤滑成分が摺動界面に供給されず、耐摩耗性や摩擦トルクが著しく悪化し短寿命となる場合がある。またアルミ等の軟質材からなる軸を摺動相手材として使用する場合、上述の油切れや、配合した導電材により相手材を損傷する場合もある。多孔質シリカと潤滑成分とを配合した特許文献1のような樹脂組成物においては帯電防止に求められる以上の十分な導電性を有する樹脂組成物は従来知られていなかった。
特開2002−129183号公報
However, the oil-impregnated resin sliding material can reduce friction, which is superior to a sliding material blended with an oil-impregnating resin or solid lubricant that does not use a normal oil retaining body, but it simply blends a conductive material. It is difficult to impart conductivity only with this.
That is, the blended conductive material is concealed by a lubricating component such as oil, making it difficult for the conductive performance to be exhibited, or the lubricating component is held at the conductive material / resin interface, and the lubricating component necessary for sliding is the sliding interface. In some cases, the wear resistance and friction torque are remarkably deteriorated and the service life is shortened. Moreover, when using the axis | shaft which consists of soft materials, such as aluminum, as a sliding other material, the other material may be damaged by the above-mentioned oil shortage or the mix | blended electrically conductive material. In a resin composition such as Patent Document 1 in which porous silica and a lubricating component are blended, a resin composition having sufficient conductivity beyond that required for antistatic has not been known.
JP 2002-129183 A

本発明は、このような問題に対処するためになされたもので、潤滑剤を摺動部表面に継続的に供給することが可能となる優れた低摩擦・低摩耗性と、帯電防止に求められる以上の導電性とを併せ持つことができ、軟質相手材を損傷させない導電性摺動材組成物を提供することを目的とする。   The present invention has been made in order to cope with such problems, and is required to have excellent low friction / low wear property and antistatic property capable of continuously supplying the lubricant to the surface of the sliding portion. An object of the present invention is to provide a conductive sliding material composition that can have a higher conductivity than the above and that does not damage a soft counterpart.

本発明の導電性摺動材組成物は、基材に、多孔質体および潤滑剤からなる潤滑性付与材と、粒子状導電材とを少なくとも配合してなる導電性摺動材組成物であって、該導電性摺動材組成物中に占める配合割合は、上記潤滑性付与材が 5 体積%以上、60 体積%未満であり、上記粒子状導電材が 0.1 体積%以上、5 体積%未満であり、かつ上記基材が 40 体積%以上であり、上記粒子状導電材は、BET法による表面積 500 m2/g 以上で、かつ一次粒子径 50 nm 以下の形状を有することを特徴とする。なお、一次粒子径は顕微鏡法にて測定した値である。
本発明において、基材とは摺動材を形成できる物質をいい、特に樹脂材料、ゴム弾性を有する材料、塗膜を形成できる材料をいう。
The conductive sliding material composition of the present invention is a conductive sliding material composition obtained by blending a base material with at least a lubricity imparting material composed of a porous body and a lubricant and a particulate conductive material. The blending ratio in the conductive sliding material composition is 5% by volume or more and less than 60% by volume for the lubricity imparting material, and 0.1% by volume or more and less than 5% by volume for the particulate conductive material. And the base material is 40 volume% or more, and the particulate conductive material has a surface area of 500 m 2 / g or more by BET method and a primary particle diameter of 50 nm or less. . The primary particle diameter is a value measured by a microscope.
In the present invention, the base material refers to a substance capable of forming a sliding material, and particularly refers to a resin material, a material having rubber elasticity, and a material capable of forming a coating film.

また、上記粒子状導電材は炭素原子からなることを特徴とする。
また、上記多孔質体は、連通孔を有し、平均粒子径 0.5μm〜100μm であることを特徴とする。
The particulate conductive material is characterized by comprising carbon atoms.
The porous body has communication holes and has an average particle diameter of 0.5 μm to 100 μm.

本発明の導電性摺動材組成物は、潤滑剤が多孔質体内に保持され、かつ摺動界面において潤滑剤を少量ずつ供給できる潤滑性付与性能と、粒子状導電材により帯電防止に求められる以上の導電性能とを併せ持つことができ、かつ軟質相手材の損傷を防止することができる。特に、粒子状導電材であってBET法による表面積 500 m2/g 以上で、かつ一次粒子径 50 nm 以下の形状を有するので、本発明の導電性摺動材組成物は構成成分全体に導電材が分布し優れた導電性を付与できる。また、潤滑剤の供給が継続でき、導電材が導電性樹脂組成物全体に分散しているので、これらの効果は長期にわたって持続できる。 The conductive sliding material composition of the present invention is required for antistatic property by the lubricity imparting performance in which the lubricant is held in the porous body and the lubricant can be supplied little by little at the sliding interface, and the particulate conductive material. It is possible to have the above conductive performance and prevent the soft mating member from being damaged. In particular, the conductive sliding material composition of the present invention is a particulate conductive material having a surface area of 500 m 2 / g or more by the BET method and a primary particle diameter of 50 nm or less. The material is distributed and excellent conductivity can be imparted. Moreover, since the supply of the lubricant can be continued and the conductive material is dispersed throughout the conductive resin composition, these effects can be sustained over a long period of time.

本発明に用いる潤滑性付与材は、多孔質体に潤滑剤を含浸してなることで、基材と、潤滑剤との相溶性により、これまで混練できなかった潤滑剤と基材との組み合わせでも、問題なく配合・混練できる。また、基材中にも潤滑剤を配合できるので、多量の潤滑剤を配合できる。また、基材が射出成形できる樹脂である場合に、射出成形時等にスクリュがすべる、計量が不安定となってサイクルタイムが長くなる、寸法精度が出にくい、金型表面に潤滑剤が付着して成形面の仕上がりが悪くなるなどの不具合が生じない。   The lubricity-imparting material used in the present invention is a combination of a base material and a lubricant and a base material that could not be kneaded so far due to the compatibility between the base material and the lubricant by impregnating the porous body with the lubricant. However, it can be blended and kneaded without problems. Further, since a lubricant can be blended in the base material, a large amount of lubricant can be blended. In addition, when the base material is a resin that can be injection-molded, the screw slides during injection molding, the measurement becomes unstable, the cycle time becomes long, the dimensional accuracy is difficult to come out, and the lubricant adheres to the mold surface. As a result, problems such as poor finish of the molding surface do not occur.

持続性ある摺動特性と導電性とを併せ持つ導電性摺動材組成物を得るべく鋭意検討の結果、多孔質体および潤滑剤からなる潤滑性付与材と、所定の特徴を有する粒子状導電材とを少なくとも基材に所定割合で配合することにより得られた導電性摺動材組成物は摩擦・摩耗特性が向上するとともに、帯電防止に求められる以上の導電性を併せ持つことができ、かつ、これらの特性が長期間維持できることを見出した。本発明はこのような知見に基づくものである。
導電性摺動材組成物に所定の特徴を有する粒子状導電材を配合することにより、次のような作用が認められた。
(1)導電材はBET法による表面積 500 m2/g 以上で、かつ一次粒子径 50 nm 以下の形状を有するので、導電性摺動材組成物全体に対し優れた導電性を付与・持続できる。これは導電材が、非常に微小でかつ高比表面積であり、その形状から基材/導電材の界面エネルギーが非常に大きくなるので、導電性摺動材組成物を構成する他材料中で分散した際、容易に再配置され、パーコレーション現象が発生し、極小配合量であっても他材料中に均一で微細な導電性ネットワークを形成することができる。
(2)導電材は炭素原子からなるので帯電防止に求められる以上の導電性を付与できる。
(3)導電材は炭素原子からなるBET法による表面積 500 m2/g 以上で、かつ一次粒子径 50 nm 以下の形状を有するので、アルミのような軟質材料を摺動相手材とした場合でも相手材を損傷することなく使用できる。
(4)導電材を所定量配合することで、導電性摺動材組成物の摺動特性を損なわずに耐摩耗性を向上させることができ、かつ導電性を付与できる。
As a result of intensive investigations to obtain a conductive sliding material composition having both long-lasting sliding characteristics and conductivity, a lubricity-imparting material comprising a porous body and a lubricant, and a particulate conductive material having predetermined characteristics The conductive sliding material composition obtained by blending at least a base material with a predetermined ratio can improve the friction and wear characteristics, and can also have more conductivity than required for antistatic, and It has been found that these characteristics can be maintained for a long time. The present invention is based on such knowledge.
By blending a particulate conductive material having predetermined characteristics into the conductive sliding material composition, the following effects were recognized.
(1) Since the conductive material has a shape with a surface area of 500 m 2 / g or more by the BET method and a primary particle diameter of 50 nm or less, it can impart and maintain excellent conductivity to the entire conductive sliding material composition. . This is because the conductive material is very small and has a high specific surface area, and because of its shape, the interfacial energy of the base material / conductive material becomes very large, so it is dispersed in other materials constituting the conductive sliding material composition. In this case, it is easily rearranged, a percolation phenomenon occurs, and a uniform and fine conductive network can be formed in other materials even with a minimum blending amount.
(2) Since the conductive material is made of carbon atoms, it can provide more conductivity than required for antistatic.
(3) Since the conductive material has a surface area of 500 m 2 / g or more and a primary particle diameter of 50 nm or less by the BET method consisting of carbon atoms, even when a soft material such as aluminum is used as the sliding partner material Can be used without damaging the mating material.
(4) By blending a predetermined amount of the conductive material, the wear resistance can be improved without impairing the sliding characteristics of the conductive sliding material composition, and conductivity can be imparted.

また、導電性摺動材組成物に潤滑性付与材を配合することにより、次のような作用が認められた。
(1)摺動界面に継続して潤滑剤を供給できるので、優れた摩擦・摩耗特性を持続できる。
(2)潤滑剤が含浸された多孔質体を配合することで、組成物中の含油量を多くできるので、従来の潤滑剤配合量である 5 体積%〜10 体積%よりも多く配合できる。
(3)潤滑剤成分が多孔質体に保持されるので、基材が射出成形できる樹脂である場合、射出成形時等にスクリュがすべる、計量が不安定となってサイクルタイムが長くなる、寸法精度がでにくい、金型表面に潤滑剤が付着して成形面の仕上がりが悪くなるなどの不具合が生じない。
(4)基材である樹脂やエラストマー材料と潤滑剤との相溶性により、これまで混練できなかった材料の組み合わせでも、問題なく混練できる。
(5)含油基材と補強材との併用を考えた場合、潤滑剤と補強材とをそれぞれ単体で配合して混練すれば補強材と基材との界面に潤滑剤が局存化し易く、補強効果が十分発揮できない場合が生じる。しかし、潤滑剤を多孔質体に含浸させた潤滑性付与材を補強材と混練すれば、補強材と基材との界面に潤滑剤が存在しないため、所定の補強効果が得られる。
Moreover, the following effect | actions were recognized by mix | blending a lubricity imparting material with an electroconductive sliding material composition.
(1) Since the lubricant can be continuously supplied to the sliding interface, excellent friction and wear characteristics can be maintained.
(2) Since the oil content in the composition can be increased by blending the porous body impregnated with the lubricant, it can be blended more than the conventional lubricant blending amount of 5 vol% to 10 vol%.
(3) Since the lubricant component is held in the porous body, when the base material is a resin that can be injection-molded, the screw slips during injection molding, the measurement becomes unstable, and the cycle time becomes longer. There are no problems such as difficulty in accuracy and adhesion of lubricant to the mold surface, resulting in poor finish of the molding surface.
(4) Due to the compatibility of the base resin or elastomer material and the lubricant, even a combination of materials that could not be kneaded so far can be kneaded without problems.
(5) When considering the combined use of the oil-impregnated base material and the reinforcing material, if the lubricant and the reinforcing material are mixed and kneaded individually, the lubricant is easily localized at the interface between the reinforcing material and the base material. There is a case where the reinforcing effect cannot be sufficiently exhibited. However, if a lubricity imparting material in which a porous material is impregnated with a lubricant is kneaded with a reinforcing material, there is no lubricant at the interface between the reinforcing material and the base material, so that a predetermined reinforcing effect can be obtained.

本発明に用いる粒子状導電材は、BET法による表面積 500 m2/g 以上で、かつ一次粒子径 50 nm 以下の形状を有する粒子状の導電性物質であれば使用できる。
導電性物質としては、金属、炭素系物質が挙げられるが、これらの中で摺動相手材として一般に使用される金属材に対する凝着性が小さく、特にアルミのような軟質材に対する攻撃性も小さいことから炭素系物質を用いることが好ましい。炭素系物質としては導電性のカーボンブラックを用いることがさらに好ましい。
導電材を所定量配合することで、導電性摺動材組成物の摺動特性を損なわずに耐摩耗性を向上させることができ、基材に対し充填材としても作用し、基材の機械的強度を向上させることができる。
本発明に使用できる粒子状導電材の具体例としては、導電性カーボンブラックや中空のシェル状粒子の融着および凝集体からなるライオン社製ケッチェンブラック等が挙げられる。
The particulate conductive material used in the present invention may be any particulate conductive material having a surface area of 500 m 2 / g or more by the BET method and a primary particle diameter of 50 nm or less.
Examples of conductive materials include metals and carbon-based materials, but among these, adhesion to metal materials generally used as sliding counterparts is small, and especially aggressiveness against soft materials such as aluminum is also small. Therefore, it is preferable to use a carbon-based material. More preferably, conductive carbon black is used as the carbon-based material.
By blending a predetermined amount of the conductive material, it is possible to improve the wear resistance without impairing the sliding characteristics of the conductive sliding material composition, and also acts as a filler for the base material. Strength can be improved.
Specific examples of the particulate conductive material that can be used in the present invention include Ketjen Black manufactured by Lion Co., Ltd. composed of conductive carbon black and fused and aggregated hollow shell particles.

本発明の導電性摺動材組成物中に占める粒子状導電材の配合割合は 0.1 体積%以上、5 体積%未満であり、好ましくは 0.5 体積%〜4 体積%である。0.1 体積%未満の場合、十分な導電性を付与できず、帯電防止材や導電材として使用できない。5 体積%以上では特に耐摩耗性が著しく悪化し、また相手材の損傷が生じる場合もあるので好ましくない。   The mixing ratio of the particulate conductive material in the conductive sliding material composition of the present invention is 0.1 volume% or more and less than 5 volume%, preferably 0.5 volume% to 4 volume%. If it is less than 0.1% by volume, sufficient conductivity cannot be imparted and it cannot be used as an antistatic material or a conductive material. If it is 5% by volume or more, the wear resistance is particularly deteriorated, and the counterpart material may be damaged.

本発明の導電性摺動材組成物に用いられる潤滑性付与材は、多孔質体に潤滑剤を含浸したものを用いることが好ましい。潤滑剤を含浸した多孔質体を用いることによって、摺動界面に継続して潤滑剤を供給できるので、優れた摩擦・摩耗特性を持続できる。また、潤滑剤が含浸された多孔質体を配合することで、組成物中の含油量を多くできるので、従来の潤滑剤配合量である 5 体積%〜10 体積%よりも多く配合できる。
潤滑剤成分を多孔質体に保持することで、基材が射出成形できる樹脂である場合に、射出成形時等にスクリュがすべる、計量が不安定となってサイクルタイムが長くなる、寸法精度が出にくい、金型表面に潤滑剤が付着して成形面の仕上がりが悪くなるなどの不具合が生じない。また、基材と潤滑剤との相溶性により、これまで混練できなかった材料の組み合わせでも、問題なく混練できる。
含油基材と補強材との併用を考えた場合、潤滑剤と補強材とをそれぞれ単体で配合して混練すれば補強材と基材との界面に潤滑剤が局存化するため、補強効果が十分発揮できない場合が生じる。しかし、潤滑剤を多孔質体、特に球状多孔質体に含浸させた潤滑性付与材を補強材と混練すれば、補強材と基材との界面に潤滑剤が存在しないため、所定の補強効果が得られる。
As the lubricity-imparting material used in the conductive sliding material composition of the present invention, it is preferable to use a porous body impregnated with a lubricant. By using the porous body impregnated with the lubricant, the lubricant can be continuously supplied to the sliding interface, so that excellent friction and wear characteristics can be maintained. Moreover, since the oil content in the composition can be increased by blending the porous body impregnated with the lubricant, it can be blended more than the conventional lubricant blending amount of 5% by volume to 10% by volume.
By holding the lubricant component in the porous body, when the base material is a resin that can be injection molded, the screw slips during injection molding, etc., the measurement becomes unstable, the cycle time becomes long, and the dimensional accuracy is increased. It does not cause problems such as being difficult to come out, and a lubricant adhering to the mold surface, resulting in a poor finished surface. Further, due to the compatibility between the base material and the lubricant, even combinations of materials that could not be kneaded so far can be kneaded without problems.
When considering the combined use of an oil-impregnated base material and a reinforcing material, the lubricant is localized at the interface between the reinforcing material and the base material if the lubricant and the reinforcing material are blended individually and kneaded. May not be fully demonstrated. However, if a lubricity-imparting material impregnated with a porous material, in particular a spherical porous material, is kneaded with the reinforcing material, there is no lubricant at the interface between the reinforcing material and the base material. Is obtained.

多孔質体に潤滑剤を含浸する方法は、潤滑剤を多孔質体の有する連通孔に含有させることができる方法であれば、特に制限なく使用できる。例えば、多孔質体と、潤滑剤とを所定量撹拌機に入れ、所定時間撹拌して、潤滑油が含浸された多孔質体を得る方法を挙げることができる。また、多孔質体に潤滑剤を最大限含浸させる場合は、多孔質体の所定量と、過剰な潤滑剤とを撹拌機に入れ、撹拌停止後の潤滑油の液面が低下しなくなるまで撹拌することによって、含浸された多孔質体を得ることができる。
潤滑剤の粘度が高い場合には、球状多孔質体の内部に潤滑剤が浸透し難い。その際は、潤滑剤が溶解する適当な溶媒で希釈し、その希釈液を多孔質体に浸透させ、徐々に乾燥させて溶媒を揮発させることで多孔質体の内部に潤滑剤を含浸させる方法もある。
あるいは多孔質体を潤滑剤中に浸し、真空引きを行なって強制的に多孔質体の内部に潤滑剤を浸透させる方法、常温で固体の潤滑剤の場合、適当な温度に加熱し、潤滑剤を溶融させて含浸させる方法、常温で液体の潤滑剤でも、粘度が高い場合、適当な温度に加熱し、潤滑剤の粘度を低下させて含浸させる方法等が有効な手法である。また、不飽和ポリエステル樹脂などの液状樹脂に球状多孔質シリカの油含有物を混合した上で各種織布に含浸させ、それを積層して潤滑性付与材として使用することも可能である。
The method for impregnating the porous body with the lubricant can be used without particular limitation as long as the lubricant can be contained in the communicating holes of the porous body. For example, a method of obtaining a porous body impregnated with lubricating oil by putting a predetermined amount of a porous body and a lubricant in a stirrer and stirring for a predetermined time can be mentioned. In addition, when the porous body is fully impregnated with the lubricant, the predetermined amount of the porous body and excess lubricant are put into a stirrer and stirred until the liquid level of the lubricating oil does not decrease after the stirring is stopped. By doing so, an impregnated porous body can be obtained.
When the viscosity of the lubricant is high, the lubricant hardly penetrates into the spherical porous body. In that case, a method of impregnating the inside of the porous body with the lubricant by diluting with an appropriate solvent in which the lubricant dissolves, penetrating the diluted liquid into the porous body, gradually drying and volatilizing the solvent There is also.
Alternatively, the porous body is immersed in a lubricant and evacuated to force the lubricant to penetrate into the porous body. In the case of a solid lubricant at room temperature, the lubricant is heated to an appropriate temperature. Effective methods include the method of melting and impregnating, and the method of impregnating by reducing the viscosity of the lubricant by heating to an appropriate temperature when the viscosity is high even in a lubricant that is liquid at normal temperature. It is also possible to mix a liquid resin such as an unsaturated polyester resin with an oil-containing material of spherical porous silica, impregnate various woven fabrics, and laminate them to use as a lubricity imparting material.

本発明において潤滑性付与材中に占める潤滑剤の配合量は多孔質体の内部空間容積の 90 体積%〜150 体積%である。多孔質体の内部が適量の潤滑剤で満たされていない場合、潤滑効果が得られない。また、潤滑剤の配合量が多すぎると、多孔質体の内部に潤滑剤が入り切らず、潤滑性付与材同士が凝集するため、潤滑性付与剤の分散が不均一になり安定した摺動特性が得られ難くなる。また余剰な潤滑剤が成形体中で分散して、基材の種類によっては、成形体の強度低下を招いたり、あるいは成形時に不具合を起したりする原因となるおそれがある。   In the present invention, the blending amount of the lubricant in the lubricity-imparting material is 90 volume% to 150 volume% of the internal space volume of the porous body. If the inside of the porous body is not filled with an appropriate amount of lubricant, the lubricating effect cannot be obtained. In addition, if the amount of the lubricant is too large, the lubricant does not completely enter the porous body, and the lubricity-imparting materials aggregate together, so that the dispersion of the lubricity-imparting agent becomes uneven and stable sliding occurs. It becomes difficult to obtain characteristics. Further, excessive lubricant is dispersed in the molded body, and depending on the type of base material, the strength of the molded body may be reduced, or a problem may be caused during molding.

本発明の導電性摺動材組成物中に占める潤滑性付与材の配合割合は、5 体積以上、60 体積%未満であり、より好ましくは 30 体積%〜50 体積%である。5 体積%未満の場合、十分な潤滑性を付与できず、摩擦係数を低減できない。60 体積%以上では基材の量が少なくなり過ぎて成形性が悪くなる。また、強度や耐摩耗性が低化する場合もあるので好ましくない。   The blending ratio of the lubricity-imparting material in the conductive sliding material composition of the present invention is 5 vol% or more and less than 60 vol%, more preferably 30 vol% to 50 vol%. If it is less than 5% by volume, sufficient lubricity cannot be imparted and the friction coefficient cannot be reduced. If it is 60% by volume or more, the amount of the base material becomes too small and the moldability becomes poor. In addition, the strength and wear resistance may be lowered, which is not preferable.

本発明に使用できる多孔質体としては、連通孔を有し、潤滑剤を含浸・保持できる多孔質体であれば使用できる。平均粒子径は 0.5μm〜100μm 程度のものが好ましく、特に球状のものが好ましい。このような多孔質体として真球状多孔質シリカなどの無機物からなる多孔質体、アクリル樹脂等の有機物からなる多孔質体、球状に成形したフェノール樹脂等の球状高分子体を炭化させながら多孔質化させた多孔質体等が知られている。平均粒子径は顕微鏡法にて測定した値である。
ここで、球状とは長径に対する短径の比が 0.8〜1.0 の球をいい、真球状とは球状よりもより真球に近い球をいう。
これらのなかで、連通孔を有し、潤滑剤を含浸・保持でき、摺動界面のせん断力で破壊する性質があり相手材を傷つけることのない真球状多孔質シリカを用いることが好ましい。好ましい多孔質シリカは非晶質の二酸化ケイ素を主成分とする粉末である。例えば、一次粒子径が 15 nm 以上の微粒子の集合体である沈降性シリカ、あるいはアルカリ金属塩またはアルカリ土類金属塩を含有したケイ酸アルカリ水溶液を有機溶媒中で乳化し、炭酸ガスでゲル化させることにより得られる粒子径が 3 nm〜8 nm の一次微粒子の集合体である真球状多孔質シリカ(特開2000−143228号公報等)等が挙げられる。
As the porous body that can be used in the present invention, any porous body that has communication holes and can be impregnated / held with a lubricant can be used. The average particle size is preferably about 0.5 μm to 100 μm, and particularly spherical. As such a porous body, a porous body made of an inorganic material such as true spherical porous silica, a porous body made of an organic material such as an acrylic resin, and a spherical polymer body such as a phenol resin formed into a spherical shape while being carbonized are porous. Known porous bodies and the like are known. The average particle diameter is a value measured by a microscopic method.
Here, the spherical shape means a sphere having a ratio of the short diameter to the long diameter of 0.8 to 1.0, and the true sphere means a sphere closer to the true sphere than the sphere.
Among these, it is preferable to use spherical porous silica that has communication holes, can be impregnated / held with a lubricant, has a property of being broken by the shearing force of the sliding interface, and does not damage the counterpart material. A preferred porous silica is a powder mainly composed of amorphous silicon dioxide. For example, precipitated silica, which is an aggregate of fine particles with a primary particle size of 15 nm or more, or an alkali silicate aqueous solution containing an alkali metal salt or alkaline earth metal salt is emulsified in an organic solvent and gelled with carbon dioxide. Examples thereof include true spherical porous silica (JP 2000-143228 A), which is an aggregate of primary fine particles having a particle diameter of 3 nm to 8 nm.

本発明においては、粒子径が 3 nm〜8 nm の一次微粒子が集合して真球状シリカ粒子を形成した多孔質シリカが、連通孔を有しており、摺動界面のせん断力で破壊する性質があるため、特に好ましい。真球状シリカ粒子としては、平均粒子径が 0.5μm〜100μm である。このような真球状シリカ粒子は、その内部に潤滑剤を保持することが可能であり、かつ摺動界面において内部に含浸した潤滑剤を少量ずつ供給することが可能である。平均粒子径が 0.5μm 未満では、ハンドリング性が悪い。また、潤滑剤の含浸量が十分でない。平均粒子径が 100μm をこえると、溶融樹脂中での分散性が悪い。また、溶融樹脂の混練時にかかるせん断力により、集合体が破壊し、球状を保持できない可能性がある。取り扱い易さや摺動特性の付与を考慮した場合、平均粒子径は 1μm〜20μm が特に好ましい。このような真球状多孔質シリカとしては、旭硝子社製:サンスフェア、鈴木油脂工業社製:ゴットボール等を例示できる。
また、多孔質シリカとして(株)東海化学工業所製:マイクロイドがある。
In the present invention, porous silica in which primary fine particles having a particle size of 3 nm to 8 nm are aggregated to form true spherical silica particles has communication holes and is destroyed by shear force at the sliding interface. Is particularly preferable. The true spherical silica particles have an average particle size of 0.5 μm to 100 μm. Such spherical silica particles can hold a lubricant therein, and can supply a small amount of the lubricant impregnated inside at the sliding interface. When the average particle size is less than 0.5 μm, the handling property is poor. Also, the amount of lubricant impregnation is not sufficient. When the average particle size exceeds 100 μm, the dispersibility in the molten resin is poor. In addition, the aggregate is broken by the shearing force applied during the kneading of the molten resin, and there is a possibility that the spherical shape cannot be maintained. Considering ease of handling and imparting sliding properties, the average particle size is particularly preferably 1 μm to 20 μm. As such a spherical porous silica, Asahi Glass Co., Ltd. product: Sunsphere, Suzuki Oil & Fats Co., Ltd. product: Gotball etc. can be illustrated.
Further, as a porous silica, there is Microid manufactured by Tokai Chemical Industry Co., Ltd.

粒子径が 3 nm〜8 nm の一次微粒子が集合した真球状シリカ粒子は、比表面積が 200 m2/g〜900 m2/g、好ましくは 300 m2/g〜800 m2/g、細孔体積が 1 ml/g〜3.5 ml/g 、細孔径が 5 nm〜30 nm、好ましくは 20 nm〜30 nm、吸油量が 150 ml/100 g〜400 ml/100 g、好ましくは 300 ml/100 g〜400 ml/100 g の特性を有することが好ましい。また、水に浸漬したのち再度乾燥しても、上記細孔体積および吸油量が浸漬前の 90 体積%以上を保つことが好ましい。
ここで、比表面積および細孔体積は窒素吸着法により、吸油量はJIS K5101に準じて測定した値である。また、上記真球状シリカ粒子の内部と外表面はシラノール基(Si−OH)で覆われていることが、潤滑剤を内部に保持しやすくなるため好ましい。さらに、多孔質シリカは、母材に適した有機系、無機系などの表面処理を行なうことができる。
Spherical silica particles having a particle diameter was set is 3 nm~8 nm primary particles has a specific surface area 200 m 2 / g~900 m 2 / g, preferably 300 m 2 / g~800 m 2 / g, fine Pore volume 1 ml / g to 3.5 ml / g, pore diameter 5 nm to 30 nm, preferably 20 nm to 30 nm, oil absorption 150 ml / 100 g to 400 ml / 100 g, preferably 300 ml / It preferably has a characteristic of 100 g to 400 ml / 100 g. Moreover, even if it is immersed in water and then dried again, it is preferable that the pore volume and the oil absorption remain at 90% by volume or more before immersion.
Here, the specific surface area and pore volume are values measured by a nitrogen adsorption method, and the oil absorption is a value measured according to JIS K5101. Moreover, it is preferable that the inside and the outer surface of the spherical silica particles are covered with a silanol group (Si—OH) because the lubricant can be easily held inside. Furthermore, the porous silica can be subjected to surface treatment such as organic or inorganic suitable for the base material.

本発明に使用できる潤滑剤は、常温で液体の潤滑油、常温で固体のワックス、あるいは潤滑油に増ちょう剤を含んだグリース状物質等、潤滑効果を有する物質であれば特に限定されない。
潤滑油としては、スピンドル油、冷凍機油、タービン油、マシン油、ダイナモ油等の鉱油、ポリブテン、ポリ-α-オレフィン、アルキルナフタレン、脂環式化合物等の炭化水素系合成油、または、天然油脂とポリオールとのエステル油、リン酸エステル、ジエステル油、ポリグリコール油、シリコーン油、ポリフェニルエーテル油、アルキルジフェニルエーテル油、アルキルベンゼン、フッ素化油等の非炭化水素系合成油等、潤滑油として汎用されているものであれば使用できる。これらの中で、低摩擦が要求される本発明の導電性摺動材組成物には、シリコーン油などを用いることで好ましい結果が得られる。シリコーン油は上記真球状多孔質体表面に残存するシラノール基と親和性があるため特に好ましい。シリコーン油としては、官能基を有さないシリコーン油、官能基を有するシリコーン油のいずれも使用できる。
The lubricant that can be used in the present invention is not particularly limited as long as it has a lubricating effect, such as a lubricating oil that is liquid at normal temperature, a wax that is solid at normal temperature, or a grease-like substance containing a thickener in the lubricating oil.
Lubricating oils include mineral oils such as spindle oil, refrigerator oil, turbine oil, machine oil, dynamo oil, hydrocarbon-based synthetic oils such as polybutene, poly-α-olefin, alkylnaphthalene, and alicyclic compounds, or natural oils and fats. And non-hydrocarbon synthetic oils such as ester oils, phosphate esters, diester oils, polyglycol oils, silicone oils, polyphenyl ether oils, alkyl diphenyl ether oils, alkylbenzenes, and fluorinated oils. If it is, you can use it. Among these, preferable results can be obtained by using silicone oil or the like for the conductive sliding material composition of the present invention requiring low friction. Silicone oil is particularly preferred because it has an affinity for the silanol groups remaining on the surface of the true spherical porous body. As the silicone oil, either a silicone oil having no functional group or a silicone oil having a functional group can be used.

ワックスとしては、炭素数が 24 以上のパラフィン系ワックス、炭素数が 26 以上のオレフィン系ワックス、炭素数が 28 以上のアルキルベンゼン、あるいは結晶性のマイクロクリスタリンワックス等の炭化水素系ワックス、またはミリスチン酸、パルチミン酸、ステアリン酸、アラキン酸、モンタン酸、炭素数が 18 以上の不飽和脂肪酸(例えばオクタデセン酸、パリナリン酸等)等の高級脂肪酸誘導体ワックスが挙げられる。高級脂肪酸誘導体ワックスとしては、1)ベヘン酸エチル、トリコ酸エチルなどの炭素数が 22 以上の高級脂肪酸メチルおよびエチルエステル、炭素数が略 16 以上の高級脂肪酸と炭素数が 15 以上の高級1価アルコールとのエステル、ステアリン酸オクタデシルエステル、炭素数が 14 以上の高級脂肪酸トリグリセライド等の高級脂肪酸エステル類、2)パルチミン酸
アミド、ステアリン酸アミド、オレイン酸アミド等の高級脂肪酸アミド類、3)ステアリン酸リチウム、ステアリン酸カルシウム等の高級脂肪酸とアルカリ金属およびアルカリ土類金属との塩類等が挙げられる。
Examples of the wax include paraffin waxes having 24 or more carbon atoms, olefin waxes having 26 or more carbon atoms, alkylbenzenes having 28 or more carbon atoms, hydrocarbon waxes such as crystalline microcrystalline wax, or myristic acid, Examples include higher fatty acid derivative waxes such as palmitic acid, stearic acid, arachidic acid, montanic acid, and unsaturated fatty acids having 18 or more carbon atoms (eg, octadecenoic acid, parinaric acid, etc.). As higher fatty acid derivative waxes, 1) higher fatty acid methyl and ethyl esters having 22 or more carbon atoms such as ethyl behenate and ethyl tricoate, higher fatty acids having approximately 16 or more carbon atoms and higher monovalent having 15 or more carbon atoms. Esters with alcohol, octadecyl stearate, higher fatty acid esters such as higher fatty acid triglycerides having 14 or more carbon atoms, 2) higher fatty acid amides such as palmitic acid amide, stearic acid amide, oleic acid amide, 3) stearic acid And salts of higher fatty acids such as lithium and calcium stearate with alkali metals and alkaline earth metals.

グリース状物質は、基油となる上述の潤滑油に増ちょう剤が添加されている。増ちょう剤を例示すれば、1)石けん系として、カルシウム系石けん、ナトリウム系石けん、リチウム系石けん、バリウム系石けん、アルミニウム系石けん、亜鉛系石けん等、2)コンプレックス石けん系としてカルシウム系コンプレックス石けん、ナトリウム系コンプレックス石けん、リチウム系コンプレックス石けん、バリウム系コンプレックス石けん、アルミニウム系コンプレックス石けん、亜鉛系コンプレックス石けん等、3)非石けん系として、ナトリウムテレフタメート、ジウレア化合物、トリウレア化合物、テトラウレア化合物、ポリウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物、シリカエアロゲル、モンモリロナイト、ベントン、PTFE樹脂、フルオリネートエチレンプロピレンコポリマー、BN等がある。   In the grease-like substance, a thickener is added to the above-described lubricating oil that serves as a base oil. Examples of thickeners include 1) calcium soap, sodium soap, lithium soap, barium soap, aluminum soap, zinc soap, etc. 2) calcium soap as complex soap, Sodium-based complex soap, lithium-based complex soap, barium-based complex soap, aluminum-based complex soap, zinc-based complex soap, etc. There are urea / urethane compounds, diurethane compounds, silica airgel, montmorillonite, benton, PTFE resin, fluorinate ethylene propylene copolymer, BN, etc.

本発明に使用できる基材としては、樹脂材料、ゴム弾性を有する材料、塗膜を形成できる材料等が挙げられる。ここで各材料は、樹脂単体などの材料単体、または各材料単体に補強材などが配合されている場合を含む。
樹脂材料としては、熱可塑性樹脂、熱硬化性樹脂等、摺動材として使用できる形態を形成できる合成樹脂であれば特に限定されない。例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等のポリエチレン樹脂、変性ポリエチレン樹脂、水架橋ポリオレフィン樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、ウレタン樹脂、PTFE樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体樹脂、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、脂肪族ポリケトン樹脂、ポリビニルピロリドン樹脂、ポリオキサゾリン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等を例示できる。また、上記合成樹脂から選ばれた2種以上の材料の混合物、すなわちポリマーアロイなどを例示できる。
Examples of the substrate that can be used in the present invention include a resin material, a material having rubber elasticity, and a material capable of forming a coating film. Here, each material includes a material alone such as a resin alone, or a case where a reinforcing material or the like is blended in each material alone.
The resin material is not particularly limited as long as it is a synthetic resin capable of forming a form that can be used as a sliding material, such as a thermoplastic resin or a thermosetting resin. For example, polyethylene resin such as low density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, modified polyethylene resin, water cross-linked polyolefin resin, polyamide resin, aromatic polyamide resin, polystyrene resin, polypropylene resin, silicone resin, urethane resin, PTFE resin , Chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, vinylidene fluoride resin, ethylene / tetrafluoroethylene copolymer resin, polyacetal resin, Polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene ether resin, polycarbonate resin, aliphatic polyketone resin, polyvinyl pyrrole Resin, polyoxazoline resin, polyphenylene sulfide resin, polyethersulfone resin, polyetherimide resin, polyamideimide resin, polyetheretherketone resin, thermoplastic polyimide resin, thermosetting polyimide resin, epoxy resin, phenol resin, Examples thereof include saturated polyester resins and vinyl ester resins. Moreover, the mixture of 2 or more types of materials chosen from the said synthetic resin, ie, a polymer alloy, etc. can be illustrated.

ゴム弾性を有する材料としては、各種有機合成法にて合成され、加硫により室温においてゴム状弾性を有するものであれば使用することができる。また、ハードセグメントとソフトセグメントから構成されるエラストマーであっても使用できる。例えば、アクリロニトリルブタジエンゴム、イソプレンゴム、スチレンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム等の加硫ゴム類;ポリウレタンエラストマー、ポリエステルエラストマー、ポリアミドエラストマー、ポリブタジエン系エラストマー、軟質ナイロン系エラストマー等の熱可塑性エラストマー類が例示できる。   Any material having rubber elasticity can be used as long as it is synthesized by various organic synthesis methods and has rubber elasticity at room temperature by vulcanization. Further, even an elastomer composed of a hard segment and a soft segment can be used. For example, acrylonitrile butadiene rubber, isoprene rubber, styrene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, acrylic rubber, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, etc. Examples of such vulcanized rubbers include thermoplastic elastomers such as polyurethane elastomers, polyester elastomers, polyamide elastomers, polybutadiene elastomers, and soft nylon elastomers.

塗膜を形成できる材料としては、上記合成樹脂であって、有機溶媒に溶解あるいは分散できる樹脂成分であれば使用できる。また、塗膜形成時の硬化反応で高分子量化する初期縮合物であっても使用できる。   As a material capable of forming a coating film, any resin component that can be dissolved or dispersed in an organic solvent can be used. Moreover, even the initial condensate which becomes high molecular weight by the curing reaction at the time of coating film formation can be used.

本発明の導電性摺動材組成物中に占める基材の配合割合は、40 体積%以上である。40 体積%未満の場合、基材の量が少なくなり強度が大幅に低下するおそれがあるので好ましくない。   The mixing ratio of the base material in the conductive sliding material composition of the present invention is 40% by volume or more. When the amount is less than 40% by volume, the amount of the base material is decreased, and the strength may be significantly lowered.

さらに摩擦・摩耗特性を改善して各種機械物性を向上させるために適当な充填材を添加することができる。例えば、ガラス繊維、アラミド繊維、アルミナ繊維、ボロン繊維、炭化ケイ素繊維、窒化ケイ素繊維、BN繊維、石英ウール、金属繊維等の繊維類またはこれらを布状に編んだもの、炭酸カルシウム、リン酸リチウム、炭酸リチウム、硫酸カルシウム、硫酸リチウム、タルク、シリカ、クレー、マイカ等の鉱物類、酸化チタンウィスカ、チタン酸カリウムウィスカ、ホウ酸アルミニウムウィスカ、硫酸カルシウムウィスカなどの無機ウィスカ類、カーボンブラック、黒鉛、ポリエステル繊維、ポリイミド樹脂やポリベンゾイミダゾール樹脂等の各種熱硬化性樹脂が挙げられる。   Furthermore, in order to improve friction and wear characteristics and improve various mechanical properties, an appropriate filler can be added. For example, fiber such as glass fiber, aramid fiber, alumina fiber, boron fiber, silicon carbide fiber, silicon nitride fiber, BN fiber, quartz wool, metal fiber, or those knitted into a cloth shape, calcium carbonate, lithium phosphate Minerals such as lithium carbonate, calcium sulfate, lithium sulfate, talc, silica, clay, mica, inorganic whiskers such as titanium oxide whisker, potassium titanate whisker, aluminum borate whisker, calcium sulfate whisker, carbon black, graphite, Various thermosetting resins such as polyester fiber, polyimide resin and polybenzimidazole resin can be mentioned.

また、摺動性を向上させる目的で、アミノ酸化合物やポリオキシベンゾイルポリエステル樹脂、ポリベンゾイミダゾール樹脂、液晶樹脂、アラミド樹脂のパルプ、PTFE樹脂やBN、MoS2、二硫化タングステン等を配合できる。 For the purpose of improving the slidability, an amino acid compound, polyoxybenzoyl polyester resin, polybenzimidazole resin, liquid crystal resin, aramid resin pulp, PTFE resin, BN, MoS 2 , tungsten disulfide, or the like can be blended.

また、熱伝導性を向上させる目的で、金属繊維、酸化亜鉛等を配合してもよい。また、上記充填材を複数組み合わせて使用することももちろん可能である。なお、この発明の効果を阻害しない配合量で一般合成樹脂等に広く適用しえる添加剤を併用してもよい。例えば離型剤、難燃剤、耐候性改良剤、着色剤等の工業用潤滑剤を適宜添加してもよく、これらを添加する方法も特に限定されるものではない。   Moreover, you may mix | blend a metal fiber, zinc oxide, etc. in order to improve thermal conductivity. It is of course possible to use a combination of a plurality of the above fillers. In addition, you may use together the additive which can be widely applied to general synthetic resin etc. with the compounding quantity which does not inhibit the effect of this invention. For example, industrial lubricants such as mold release agents, flame retardants, weather resistance improvers, and colorants may be added as appropriate, and the method of adding them is not particularly limited.

本発明の導電性摺動材組成物は、潤滑性付与材を得る工程と、基材に、得られた潤滑性付与材と、粒子状導電材とを配合する工程とを経て製造される。
潤滑性付与材を得る工程は、多孔質シリカおよび潤滑剤を少なくとも配合する工程である。多孔質シリカ等の多孔質体と潤滑剤とをあらかじめ混練し、多孔質体の有する連通孔に潤滑剤を含浸させておくことによって、次の工程で潤滑剤が遊離することなく多孔質体の連通孔に保持されたまま、粒子状導電材とともに基材に配合され導電性摺動材に成形されるので、摺動界面において潤滑剤を少量ずつ供給できる潤滑性付与性能を発揮することができる。
なお、多孔質シリカ等の多孔質体は吸湿や吸水しやすいので、潤滑油を含浸する前に乾燥しておくことが好ましい。乾燥手段としては特に制限なく、電気炉での乾燥、真空乾燥などを採用できる。多孔質体に潤滑剤を含浸する方法は、上述のとおりである。
The conductive sliding material composition of the present invention is manufactured through a step of obtaining a lubricity imparting material and a step of blending the obtained lubricity imparting material and a particulate conductive material with a base material.
The step of obtaining the lubricity imparting material is a step of blending at least porous silica and a lubricant. A porous body such as porous silica and a lubricant are kneaded in advance, and the lubricant is impregnated in the communication holes of the porous body so that the lubricant is not released in the next step. While being held in the communication hole, it is blended into the base material together with the particulate conductive material and molded into a conductive sliding material, so that it can exhibit lubricity imparting performance that can supply a small amount of lubricant at the sliding interface. .
In addition, since porous bodies, such as porous silica, are easy to absorb moisture and absorb water, it is preferable to dry before impregnating lubricating oil. There is no particular limitation on the drying means, and drying in an electric furnace, vacuum drying, or the like can be employed. The method for impregnating the porous body with the lubricant is as described above.

得られた潤滑性付与材と、粒子状導電材とを基材に配合する工程においては、一般的な樹脂組成物の混練方法として従来からよく知られた方法を利用できる。例えば基材が樹脂である場合、ヘンシェルミキサー、リボンブレンダー、レーディゲミキサー、ボールミル、タンブラーミキサー等の混合機によって、潤滑性付与材と、基材と、導電材とを混合した後、溶融混合性のよい射出成形機もしくは溶融押出し機(例えば2軸押出し機)に供給するか、またはあらかじめ熱ローラ、ニーダ、バンバリーミキサー、溶融押出し機などを利用して溶融混合してもよく、あるいは真空成形、吹き込み成形、発泡成形、多層成形、加熱圧縮成型等を行なってもよい。   In the step of blending the obtained lubricity-imparting material and the particulate conductive material into the base material, a conventionally well-known method can be used as a general resin composition kneading method. For example, when the base material is a resin, the lubricity imparting material, the base material, and the conductive material are mixed with a mixer such as a Henschel mixer, ribbon blender, Ladige mixer, ball mill, tumbler mixer, etc., and then melt mixed. May be supplied to a good injection molding machine or a melt extruder (for example, a twin screw extruder), or may be melt-mixed in advance using a heat roller, kneader, Banbury mixer, melt extruder, or vacuum molding. Blow molding, foam molding, multilayer molding, heat compression molding, and the like may be performed.

塗膜組成物とする場合、潤滑剤を含浸した多孔質体と、導電材とを樹脂成分に配合して一般的なコーティング液と混合する。コーティング処理は、通常のコーティング処理を行なうことも可能である。コーティング処理を行なう場合、スプレー法や静電塗装法、流動浸漬法等特に限定されるものではない。   In the case of a coating composition, a porous body impregnated with a lubricant and a conductive material are blended with a resin component and mixed with a general coating liquid. The coating process can also be performed by a normal coating process. When performing the coating treatment, there is no particular limitation such as a spray method, an electrostatic coating method, or a fluidized immersion method.

さらに、本発明の導電性摺動材組成物の潤滑性および導電性を損なわない限り、中間製品または最終製品の形態において、別途、例えばアニール処理等の化学的または物理的な処理によって機械的特性や導電性などの特性改善のための変性が可能である。   Furthermore, as long as the lubricity and conductivity of the conductive sliding material composition of the present invention are not impaired, in the form of intermediate products or final products, mechanical properties are separately obtained by chemical or physical treatment such as annealing treatment. And modification for improving properties such as conductivity.

本発明の導電性摺動材組成物の使用例としては、摺動部分であれば特に限定されない。例えば、すべり軸受や歯車、すべりシート、シールリング、ローラ、各種キャリッジなどの摺動部品、転がり軸受の保持器、固形潤滑剤、転がり軸受のシール、直動軸受のシール、ボールねじのボールとボールの間に入れるスペーサ、転がり軸受のレース等の摺動材がある。   The usage example of the conductive sliding material composition of the present invention is not particularly limited as long as it is a sliding portion. For example, sliding parts such as sliding bearings, gears, sliding sheets, seal rings, rollers, various carriages, rolling bearing cages, solid lubricants, rolling bearing seals, linear bearing seals, ball screw balls and balls There are sliding materials such as spacers and rolling bearing races.

実施例1〜実施例5および比較例1〜比較例10
多孔質体として球状多孔質シリカ、旭硝子社製:サンスフェアH53(平均粒子径 5μm )を、潤滑剤としてシリコーン油、信越シリコーン社製:KF96Hを、基材としてポリエチレン樹脂、三井石油化学社製:リュブマーL5000を、それぞれ用意した。球状多孔質シリカの体積を 1 として、その 6 倍の体積のシリコーン油を球状多孔質シリカに含浸して、潤滑性付与材を作製した。得られた潤滑性付与材と、表1に示す導電材とを、表2に示す割合でポリエチレン樹脂に添加して、2軸押出し装置を用いて溶融混練し、ペレットを得た。
Examples 1 to 5 and Comparative Examples 1 to 10
Spherical porous silica as a porous material, manufactured by Asahi Glass Co., Ltd .: Sunsphere H53 (average particle size 5 μm), silicone oil as a lubricant, Shin-Etsu Silicone Co., Ltd .: KF96H, polyethylene resin as a base material, manufactured by Mitsui Chemicals Lübmer L5000 was prepared for each. Lubricating material was produced by impregnating spherical porous silica with 1 volume of spherical porous silica and impregnating spherical porous silica with 6 times the volume of silicone oil. The obtained lubricity-imparting material and the conductive material shown in Table 1 were added to the polyethylene resin in the proportions shown in Table 2, and melt-kneaded using a biaxial extruder to obtain pellets.

このペレットを用いて射出成形を行ない、直径Φ5 mm ×長さ 15 mm の摺動材試験片を成形した。得られた摺動材試験片を切削加工により、直径Φ3 mm ×長さ 10 mm のピン試験片を作製した。直径Φ 3 mm 面を回転するディスク相手に接触させ、以下の条件、評価方法で摩擦・摩耗試験および成形性試験を行なった。結果を表2に示す。
<摩擦摩耗試験>
試験機:ピンオンディスク型摩擦摩耗試験機
相手材:アルミニウム合金A5056(Ra=0.8μm )
面圧: 3 MPa
周速: 4.2 m/min.
温度: 30 ℃
時間: 20 h
雰囲気:大気中
測定項目および評価基準を以下に示す。
比摩耗量:試験前のピン試験片長さと試験後のピン試験片長さとの差から比摩耗量を計算し、500×10-8mm/(N・m)以下を可と評価して「○」を、それ以外を不可と評価して「×」を、それぞれ表2に併記した。
摩擦係数:試験終了前 1 時間における平均値を測定した。0.1 以下を可と評価して「○」を、それ以外を不可と評価して「×」を、それぞれ表2に併記した。
相手材表面の損傷状態:試験前後の相手材の状態を目視により観察し損傷がなければ可と評価して「○」を、損傷があれば不可と評価して「×」を、それぞれ表2に併記した。
<成形性試験>
成形性:摺動材試験片を作製するための射出成形時に、問題なく成形できれば可と評価して「○」を、成形できない場合や、流動性に劣る場合は不可と評価して「×」を、それぞれ表2に併記した。
The pellets were injection-molded to form a sliding material test piece having a diameter of 5 mm and a length of 15 mm. The obtained sliding material test piece was cut to produce a pin test piece having a diameter of 3 mm and a length of 10 mm. A surface with a diameter of 3 mm was brought into contact with a rotating disk counterpart, and a friction / wear test and a formability test were performed under the following conditions and evaluation methods. The results are shown in Table 2.
<Friction and wear test>
Testing machine: Pin-on-disk friction and wear testing machine Counterpart: Aluminum alloy A5056 (Ra = 0.8μm)
Surface pressure: 3 MPa
Peripheral speed: 4.2 m / min.
Temperature: 30 ℃
Time: 20h
Atmosphere: In the air Measurement items and evaluation criteria are shown below.
Specific wear amount: Calculate the specific wear amount from the difference between the length of the pin test piece before the test and the length of the pin test piece after the test, and evaluate that it is less than 500 × 10 -8 mm / (N · m). “X” is also shown in Table 2, respectively.
Coefficient of friction: The average value for 1 hour before the end of the test was measured. Table 2 also shows “○” when 0.1 or less is evaluated as acceptable, and “×” when other is evaluated as impossible.
Damage condition on the surface of the mating material: The condition of the mating material before and after the test was visually observed and evaluated as good if there was no damage. It was written together.
<Formability test>
Formability: When injection molding to produce a sliding material test piece, it is evaluated as “Yes” if it can be molded without any problem, “No” if it cannot be molded or if it is inferior in fluidity, “X” Are also shown in Table 2.

<導電性試験>
また、上記ペレットを用いて圧縮成形を行ない、直径Φ30 mm ×厚さ 1 mm の導電性試験片を成形した。得られた導電性試験片を、直径Φ20 mm ×高さ 10 mm のステンレス鋼SUS303製で、直径Φ20 mm 面の面粗さRa 0.04μm 以下の鏡面仕上げの 2 個の電極で挟み、面圧 3 MPa で加圧し、5 分後の抵抗値をデジタルマルチメータにて測定した。測定された抵抗値から体積抵抗値を求め、109Ω・cm 以下を導電性に優れると評価して「○」を、それ以外を導電性に劣ると評価して「×」を、それぞれ表2に併記した。
<総合評価>
上記摩擦摩耗試験、成形性試験および導電性試験におけるすべての評価が「○」であるものを、総合評価「○」とし、少なくともいずれかが「×」であるものを総合評価「×」とした。
<Conductivity test>
Further, compression molding was performed using the above pellets to form a conductive test piece having a diameter of 30 mm and a thickness of 1 mm. The obtained conductive test piece is made of stainless steel SUS303 with a diameter of Φ20 mm × height of 10 mm, and is sandwiched between two mirror-finished electrodes with a surface roughness Ra of 0.04 μm or less and a surface pressure of 3 mm. After pressurizing with MPa, the resistance value after 5 minutes was measured with a digital multimeter. The volume resistance value is obtained from the measured resistance value, and 10 9 Ω · cm or less is evaluated as being excellent in conductivity, ◯ is evaluated, and the others are evaluated as being inferior in conductivity, and X is displayed. It was written together in 2.
<Comprehensive evaluation>
All evaluations in the friction and wear test, the formability test, and the conductivity test are “◯”, the overall evaluation is “○”, and at least one is “×”, the overall evaluation is “×”. .

Figure 2007169325
Figure 2007169325

Figure 2007169325
Figure 2007169325

表2に示すように、実施例は全て優れた摺動特性および導電性を示した。
比較例1は摩擦摩耗特性に優れたが、導電材を配合していないため絶縁体であった。
比較例2は導電材を所定量含んでいるため導電性に優れたが、潤滑性付与材が所定量配合されていないため摩擦係数が 0.1 以上と高く摩擦摩耗特性が劣った。
比較例3は潤滑性付与材が所定量の範囲をこえて配合されており樹脂分が少ないので、ペレットは得られたが射出成形できなかった。
比較例4は導電材が所定量をこえていたため摩擦摩耗特性が著しく悪化した。また、軟質材である相手材の損傷も発生した。射出成形は可能であったが、流動性が非常に悪く成形性に劣った。
比較例5は導電材が、本発明で開示した特性を有しない導電材であったため、組成物が 109Ω・cm 以下の導電性を有しなかった。また耐摩耗性も著しく悪化した。
比較例6は比較例5に対して導電材料を増やして配合した。109Ω・cm 以下の導電性を示したが、摩擦特性、耐摩耗性が著しく悪化した。
比較例7は使用した導電材が一次粒子径は 24 nm であったが、表面積が本発明で開示した特性を有していないものであったため、109Ω・cm 以下の導電性を有しなかった。また耐摩耗性も悪化した。
比較例8は比較例7に対して導電材料を増やして配合した。109Ω・cm 以下の導電性を示したが、摩擦特性、耐摩耗性が著しく悪化した。
比較例9は本発明で開示した特性に対して著しく大きい粒子径で、かつ著しく小さい表面積を有する導電材を用いたため、109Ω・cm 以下の導電性を有しなかった。
比較例10は比較例9に対して導電材料を著しく増やして配合した。しかし、109Ω・cm 以下の導電性を示さず、摩擦特性が著しく悪化し、耐摩耗性も悪化した。
As shown in Table 2, all of the examples exhibited excellent sliding characteristics and conductivity.
Comparative Example 1 was excellent in friction and wear characteristics, but was an insulator because it did not contain a conductive material.
Comparative Example 2 was excellent in conductivity because it contained a predetermined amount of conductive material, but had a high friction coefficient of 0.1 or more and poor friction and wear characteristics because a predetermined amount of lubricity imparting material was not blended.
In Comparative Example 3, since the lubricity-imparting material was blended over a predetermined amount range and the resin content was small, pellets were obtained but injection molding could not be performed.
In Comparative Example 4, since the conductive material exceeded a predetermined amount, the friction and wear characteristics were remarkably deteriorated. In addition, damage to the mating material, which was a soft material, occurred. Although injection molding was possible, the fluidity was very poor and the moldability was poor.
In Comparative Example 5, the conductive material was a conductive material that did not have the characteristics disclosed in the present invention, so the composition did not have a conductivity of 10 9 Ω · cm or less. In addition, the wear resistance was remarkably deteriorated.
Comparative Example 6 was mixed with Comparative Example 5 by increasing the conductive material. The conductivity was 10 9 Ω · cm or less, but the frictional properties and wear resistance were significantly deteriorated.
In Comparative Example 7, the conductive material used had a primary particle size of 24 nm, but the surface area did not have the characteristics disclosed in the present invention, and therefore had a conductivity of 10 9 Ω · cm or less. There wasn't. In addition, the wear resistance deteriorated.
Comparative Example 8 was mixed with Comparative Example 7 by increasing the conductive material. The conductivity was 10 9 Ω · cm or less, but the frictional properties and wear resistance were significantly deteriorated.
In Comparative Example 9, since a conductive material having a remarkably large particle diameter and a remarkably small surface area with respect to the characteristics disclosed in the present invention was used, the conductive material did not have a conductivity of 10 9 Ω · cm or less.
Comparative Example 10 was mixed with Comparative Example 9 with a significantly increased conductive material. However, it did not exhibit conductivity of 10 9 Ω · cm or less, the friction characteristics were remarkably deteriorated, and the wear resistance was also deteriorated.

本発明の導電性摺動材組成物は優れた摺動特性と導電性とを併せ持つので、すべり軸受、歯車、すべりシート、シールリング、ローラー、各種キャリッジなどの摺動部品、転がり軸受等の軸受保持機やシールやレース材、摺動性が要求されるボールねじ等のスペーサー、固形潤滑剤など、特に摩擦等に起因する帯電の防止や、通電を要求される場合でも導電性摺動材組成物として好適に利用できる。また、アルミのような軟質材を摺動相手材とした場合でも特に相手材を損傷することなく好適に利用できる。   Since the conductive sliding material composition of the present invention has both excellent sliding characteristics and conductivity, sliding parts such as sliding bearings, gears, sliding sheets, seal rings, rollers, various carriages, and bearings such as rolling bearings. Conductive sliding material composition even when required to prevent electrification due to friction or energization, such as holders, seals, lace materials, spacers such as ball screws that require slidability, solid lubricants, etc. It can be suitably used as a product. Further, even when a soft material such as aluminum is used as a sliding partner material, it can be suitably used without particularly damaging the partner material.

Claims (3)

基材に、多孔質体および潤滑剤からなる潤滑性付与材と、粒子状導電材とを少なくとも配合してなる導電性摺動材組成物であって、
前記導電性摺動材組成物中に占める配合割合は、前記潤滑性付与材が 5 体積%以上、60 体積%未満であり、前記粒子状導電材が 0.1 体積%以上、5 体積%未満であり、かつ前記基材が 40 体積%以上であり、
前記粒子状導電材は、BET法による表面積 500 m2/g 以上で、かつ一次粒子径 50 nm 以下の形状を有することを特徴とする導電性摺動材組成物。
A conductive sliding material composition formed by blending at least a lubricity-imparting material composed of a porous body and a lubricant and a particulate conductive material on a base material,
The blending ratio in the conductive sliding material composition is 5% by volume or more and less than 60% by volume for the lubricity imparting material, and 0.1% by volume or more and less than 5% by volume for the particulate conductive material. And the substrate is at least 40% by volume,
The conductive conductive material composition, wherein the particulate conductive material has a shape with a surface area of 500 m 2 / g or more by BET method and a primary particle diameter of 50 nm or less.
前記粒子状導電材は炭素原子からなることを特徴とする請求項1記載の導電性摺動材組成物。   The conductive sliding material composition according to claim 1, wherein the particulate conductive material comprises carbon atoms. 前記多孔質体は、連通孔を有し、平均粒子径 0.5μm〜100μm であることを特徴とする請求項1または請求項2記載の導電性摺動材組成物。
The conductive sliding material composition according to claim 1, wherein the porous body has communication holes and has an average particle diameter of 0.5 μm to 100 μm.
JP2005364884A 2005-12-19 2005-12-19 Electroconductive sliding material composition Pending JP2007169325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364884A JP2007169325A (en) 2005-12-19 2005-12-19 Electroconductive sliding material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364884A JP2007169325A (en) 2005-12-19 2005-12-19 Electroconductive sliding material composition

Publications (1)

Publication Number Publication Date
JP2007169325A true JP2007169325A (en) 2007-07-05

Family

ID=38296331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364884A Pending JP2007169325A (en) 2005-12-19 2005-12-19 Electroconductive sliding material composition

Country Status (1)

Country Link
JP (1) JP2007169325A (en)

Similar Documents

Publication Publication Date Title
US6569816B2 (en) Composition having lubricity and product comprising the composition
JP4074444B2 (en) Sliding material composition
JP2005024094A (en) Sliding bearing
JP2008174593A (en) Sliding material composition
JP5170856B2 (en) Conductive sliding material composition
JP2002098189A (en) Sliding type vibration isolation apparatus
JP4848121B2 (en) Sliding material
JP4866411B2 (en) Oil-impregnated sliding material and slide bearing
JP4489512B2 (en) Conductive high precision plain bearing
JP4678190B2 (en) Solid lubricant and sliding member
JP4310053B2 (en) Oil-impregnated sliding material and slide bearing
JP2007169325A (en) Electroconductive sliding material composition
JP4282887B2 (en) Roller bearing cage
JP5033311B2 (en) Resin oil body and method
JP6317057B2 (en) Plain bearing
JP2006009834A (en) Sliding bearing
JP4851695B2 (en) Sliding material
JP2007170424A (en) Conductive sliding bearing
JP2006250262A (en) Sliding bearing for precision sliding-component
JP2008174594A (en) Sliding material composition
JP4543742B2 (en) Solid lubricant and sliding member
JP3503662B2 (en) Rolling bearing
JP4517639B2 (en) Solid lubricant and sliding member
JP6545781B2 (en) Sliding bearing
JP2008164073A (en) Conductive sliding bearing