JP2007167983A - Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work - Google Patents

Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work Download PDF

Info

Publication number
JP2007167983A
JP2007167983A JP2005365925A JP2005365925A JP2007167983A JP 2007167983 A JP2007167983 A JP 2007167983A JP 2005365925 A JP2005365925 A JP 2005365925A JP 2005365925 A JP2005365925 A JP 2005365925A JP 2007167983 A JP2007167983 A JP 2007167983A
Authority
JP
Japan
Prior art keywords
layer
cutting
abrasive
hard
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005365925A
Other languages
Japanese (ja)
Inventor
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005365925A priority Critical patent/JP2007167983A/en
Publication of JP2007167983A publication Critical patent/JP2007167983A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work. <P>SOLUTION: In this surface coated cutting tool, the following hard coating layer is formed on the surface of a cemented carbide base. The hard coating layer includes: (a) a surface layer formed of Cr boride layer; and (b) a wear resisting hard layer formed of a compound nitride layer of Ti, Al and Si, which satisfies a composition formula: (Ti<SB>1-(X+Y)</SB>Al<SB>X</SB>Si<SB>Y</SB>)N (wherein 0.45≤X≤0.65, 0.01≤Y≤0.10, and 0.50≤X+Y≤0.70 by atomic ratio). In the surface layer, the surface roughness of a cutting face at least including a cutting edge ridge part and a flank part is set at 0.2 μm or less Ra by injecting a polishing liquid mixed with aluminum oxide fine grains as an injection abrasive by a wet blast to polish under the coexistence of pulverized Cr nitride fine grains made by wet blasting the abrasive layer and aluminum oxide fine grains as the injection abrasive in the state where the abrasive layer formed of Cr nitride layer is formed on the whole surface of the surface layer by vapor deposition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硬質被覆層が、すぐれた高温硬さ、高温強度および耐熱性を有する耐摩耗硬質層と、すぐれた高温耐酸化性を有する表面層によって構成され、したがって特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの軟質難削材(被削材)の切削加工を高熱発生を伴う高速切削条件で行った場合にも、前記被削材および切粉が高温に加熱されて粘性および溶着性が一段と増大し、これに伴なって硬質被覆層表面に対する酸化反応性が増すようになるにもかかわらず、前記被削材および切粉に対する前記表面層のもつ酸化反応抑制効果によって前記硬質被覆層の摩耗進行が著しく抑制され、長期に亘ってすぐれた耐摩耗性を発揮するようになる表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   According to the present invention, the hard coating layer is composed of a wear-resistant hard layer having excellent high-temperature hardness, high-temperature strength and heat resistance, and a surface layer having excellent high-temperature oxidation resistance, and thus, particularly, the chip has a high viscosity. Even when the cutting of soft difficult-to-cut materials (work materials) such as stainless steel, high manganese steel, and mild steel, which are easily welded to the tool surface, is performed under high-speed cutting conditions with high heat generation. And the chips are heated to a high temperature, the viscosity and weldability are further increased, and the oxidation reactivity to the surface of the hard coating layer is increased accordingly. A surface-coated cemented carbide cutting tool (hereinafter referred to as coated carbide) that significantly suppresses the progress of wear of the hard coating layer due to the oxidation reaction suppressing effect of the surface layer, and exhibits excellent wear resistance over a long period of time. Craft It relates to) that.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.


また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1−(X+Y)AlSi)N(ただし、原子比で、0.45≦X≦0.65、0.01≦Y≦0.10、0.50≦X+Y≦0.70を示す)を満足するTiとAlとSiの複合窒化物[以下、(Ti,Al,Si)Nで示す]層からなる硬質被覆層を1〜10μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Ti,Al,Si)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらに同Siによる一段の耐熱性向上効果と相俟って、これを各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。

Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1- (X + Y) Al X Si Y ) N (however, in atomic ratio, 0.45 ≦ X ≦ 0.65, 0.01 ≦ Y ≦ 0.10, 0.50 ≦ X + Y ≦ 0) A hard coating layer composed of a composite nitride of Ti, Al, and Si (hereinafter referred to as (Ti, Al, Si) N) satisfying .70) is physically vapor-deposited with an average layer thickness of 1 to 10 μm. A coated carbide tool is known, and the (Ti, Al, Si) N layer, which is a hard coating layer of the coated carbide tool, has high temperature hardness and heat resistance due to Al as a component, and high temperature due to the Ti. Combined with the effect of improving heat resistance due to the same Si, it also has excellent cutting performance when used for continuous cutting and intermittent cutting of various steels and cast iron. Are known.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Si)N層からなる耐摩耗硬質層を硬質被覆層として蒸着することにより製造されることも知られている。
特許第2793773号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—Si alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a wear-resistant hard layer made of the (Ti, Al, Si) N layer as a hard coating layer.
Japanese Patent No. 2793773

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆超硬工具が強く望まれる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼、さらにダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、これを特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの軟質難削材(被削材)の切削加工を高熱発生を伴う高速切削条件で行なうのに用いた場合には、前記被削材および切粉は高温に加熱されて粘性および溶着性が一段と増し、これに伴って硬質被覆層表面に対する酸化反応が活発になることから、硬質被覆層の摩耗進行が加速し、この結果比較的短時間で使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. There is a tendency that a general-purpose coated carbide tool not limited to the above is widely desired, but in the above-mentioned conventional coated carbide tool, this is applied to general steels such as low alloy steel and carbon steel, ductile cast iron, gray cast iron, etc. There is no problem when it is used for machining of ordinary cast iron, but it is particularly difficult to cut stainless steel, high-manganese steel, and soft difficult-to-cut materials such as mild steel that have high chip viscosity and are easily welded to the tool surface ( When the cutting of the workpiece is performed under high-speed cutting conditions with high heat generation, the workpiece and the chips are heated to a high temperature and the viscosity and weldability are further increased. Hard cover Since the oxidation reaction to the layer surface becomes active, the wear progress of the hard coating layer is accelerated, the reach this result relatively short time service life at present.

そこで、本発明者等は、上述のような観点から、特に上記の軟質難削材の高速切削加工で耐摩耗硬質層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として所定の組成を有するTi−Al−Si合金、他方側に前記SP装置のカソード電極(蒸発源)としてCr硼化物(以下、CrBで示す)粉末の焼結体(以下、CrB焼結体という)を対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al−Si合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Ti,Al,Si)N層を0.8〜5μmの平均層厚で耐摩耗硬質層として蒸着形成し、ついで、前記蒸着装置内の雰囲気を、窒素雰囲気に代って、実質的にAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体のスパッタリングを開始し、前記(Ti,Al,Si)N層に重ねて表面層として0.8〜5μmの平均層厚でCrB層を蒸着形成すると、この結果の被覆超硬工具は、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの軟質難削材(被削材)の切削加工を高熱発生を伴う高速切削条件で行なうのに用いた場合にも、上記(Ti,Al,Si)N層からなる耐摩耗硬質層が、すぐれた高温耐酸化性を有する前記CrB層からなる表面層によって、高温に加熱されて粘性および溶着性が一段と増大し、これに伴って硬質被覆層に対する酸化反応性が増大した前記被削材および切粉から保護され、摩耗進行が著しく抑制されることから、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(b)しかし、上記(a)の(Ti,Al,Si)N層上に形成されたCrB層は、相対的に蒸着表面が粗く、これが原因で特に前記軟質難削材の高速切削加工では切刃部にチッピング(微少欠け)が発生し易い傾向がある。そこで、これに通常の研磨手段であるウエットブラスト、すなわち、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム(以下、Al23で示す)微粒を配合した研磨液を表面に噴射して研磨するウエットブラスト、を施すことが考えられるが、前記ウエットブラストによっても、準拠規格JIS・B0601−1994に基づいた測定(以下の表面粗さは全てかかる準拠規格に基づいた測定値を示す)で、Ra:0.3〜0.6μm程度の表面粗さを確保することができるに過ぎず、この表面粗さでは、前記軟質難削材の高速切削加工で切刃部にチッピングが発生するのを満足に抑制することはできないこと。
(c)一方、上記の被覆超硬工具における硬質被覆層の表面層を構成するCrB層の切刃稜線部を含むすくい面および逃げ面の全面に、図1に示される通り、カソード電極(蒸発源)として金属Crを配置したAIP装置を用い、装置内雰囲気を窒素雰囲気として、前記カソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、0.5〜5μmの平均層厚で、Cr窒化物(以下、CrNで示す)層を蒸着形成した状態で、
上記(b)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射すると、上記CrN層(以下、CrN研磨材層という)は、前記Al23微粒によって粉砕微粒化し、CrN微粒となって前記Al23微粒の共存下で研磨材として作用し、硬質被覆層の表面層を構成するCrB層の表面を研磨することになり、この結果研磨後の前記CrB層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この表面層であるCrB層の表面の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分がRa:0.2μm以下の表面粗さに平滑化した被覆超硬工具を用いて、特に前記軟質難削材の高速切削加工を行った場合、切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
In view of the above, the present inventors have developed the above-described coated carbide tool exhibiting excellent wear resistance with an excellent wear-resistant hard layer in high-speed cutting of the above-mentioned soft difficult-to-cut materials. As a result of conducting research focusing on conventional coated carbide tools,
(A) For example, an arc ion plating apparatus (hereinafter abbreviated as AIP apparatus) and a sputtering apparatus (hereinafter referred to as SP apparatus) having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. Is a coexisting vapor deposition apparatus, that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and a predetermined composition is provided on one side as a cathode electrode (evaporation source) of the AIP apparatus with the rotary table interposed therebetween. Ti-Al-Si alloy, the cathode electrode (vapor source) as Cr borides of the SP device on the other side with (hereinafter, indicated by CrB 2) sintered body of powder (hereinafter, CrB of 2 sintered body) opposite the Using the deposited vapor deposition apparatus, a plurality of cemented carbide substrates are mounted in a ring shape along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. Basically, the Ti-Al-Si is first rotated while rotating the rotary table in a nitrogen atmosphere and rotating the carbide substrate itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition. Arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the alloy, and the (Ti, Al, Si) N layer is resistant to an average layer thickness of 0.8 to 5 μm on the surface of the carbide substrate. After vapor deposition as a wear hard layer, the atmosphere in the vapor deposition apparatus is substantially changed to an Ar atmosphere instead of a nitrogen atmosphere, and CrB 2 is disposed as a cathode electrode (evaporation source) of the SP apparatus. When sputtering of the bonded body is started and a CrB 2 layer is deposited on the (Ti, Al, Si) N layer as a surface layer with an average layer thickness of 0.8 to 5 μm, the resulting coated carbide tool is Especially the viscosity of the chips Even when it is used to perform cutting of soft difficult-to-cut materials (work materials) such as stainless steel, high manganese steel, and mild steel that are easy to weld to the tool surface under high-speed cutting conditions with high heat generation, The wear-resistant hard layer composed of the (Ti, Al, Si) N layer is heated to a high temperature by the surface layer composed of the CrB 2 layer having excellent high-temperature oxidation resistance, and the viscosity and weldability are further increased. Along with this, it is protected from the work material and chips with increased oxidation reactivity to the hard coating layer, and the progress of wear is remarkably suppressed, so that excellent wear resistance is exhibited over a long period of time. thing.
(B) However, the CrB 2 layer formed on the (Ti, Al, Si) N layer of (a) has a relatively rough vapor deposition surface, and this causes high-speed cutting of the soft difficult-to-cut material in particular. Then, chipping (small chipping) tends to occur at the cutting edge. Therefore, 15 to 60 mass% aluminum oxide (hereinafter referred to as Al 2 O 3 ) fine particles as a proportion of the total amount with water as a wet abrasive, that is, a spray abrasive, is used as a normal polishing means. It is conceivable to apply wet blasting to the surface by spraying the polished polishing liquid, but even with the wet blasting, the measurement based on the compliant standard JIS B0601-1994 (all the following surface roughness is such compliant standard) In this case, it is only possible to ensure a surface roughness of Ra: 0.3 to 0.6 μm. With this surface roughness, high-speed cutting of the soft difficult-to-cut material can be achieved. It should not be possible to satisfactorily suppress chipping at the cutting edge.
(C) On the other hand, as shown in FIG. 1, a cathode electrode (on the entire surface of the rake face and the flank face including the cutting edge ridge line portion of the CrB 2 layer constituting the surface layer of the hard coating layer in the above-mentioned coated carbide tool, Using an AIP device in which metal Cr is disposed as the evaporation source), the atmosphere in the device is a nitrogen atmosphere, and arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode, and an average of 0.5 to 5 μm With the layer thickness, a Cr nitride (hereinafter referred to as CrN) layer is formed by vapor deposition.
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (b) above, the CrN layer ( (Hereinafter referred to as CrN abrasive layer) is pulverized and pulverized by the Al 2 O 3 fine particles, becomes CrN fine particles and acts as an abrasive in the presence of the Al 2 O 3 fine particles, and constitutes the surface layer of the hard coating layer The surface of the CrB 2 layer to be polished is polished. As a result, the surface of the CrB 2 layer after polishing is smoothed to a surface roughness of Ra: 0.2 μm or less. Using a coated carbide tool in which at least a rake face portion including a cutting edge ridge line portion and a flank portion of a surface of a certain CrB 2 layer are smoothed to a surface roughness of Ra: 0.2 μm or less, particularly the soft difficult-to-cut material When high-speed cutting is performed Chipping generation at the cutting edge is prevented, and the hard coating layer exhibits excellent wear resistance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)表面層として、SP装置を用いて蒸着形成され、かつ、0.8〜5μmの平均層厚を有するCrB層、
(b)耐摩耗硬質層として、AIP装置を用いて蒸着形成され、かつ、0.8〜5μmの平均層厚を有し、さらに、

組成式:(Ti1−(X+Y)AlSi )N(ただし、原子比で、0.45≦X≦0.65、0.01≦Y≦0.10、0.50≦X+Y≦0.70を示す)、

を満足する(Ti,Al,Si)N層、
以上(a)および(b)からなる硬質被覆層を形成してなる被覆超硬工具にして、
さらに、上記硬質被覆層のCrB層で構成された表面層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分の表面粗さを、
上記表面層全面に、AIP装置を用いて蒸着形成され、かつ、0.5〜5μmの平均層厚を有するCrN層で構成された研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化CrN微粒と、噴射研磨材としてのAl23微粒の共存下で研磨して、Ra:0.2μm以下としてなる、軟質難削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) As a surface layer, a CrB 2 layer formed by vapor deposition using an SP apparatus and having an average layer thickness of 0.8 to 5 μm,
(B) The wear-resistant hard layer is formed by vapor deposition using an AIP apparatus, and has an average layer thickness of 0.8 to 5 μm.

Composition formula: (Ti 1- (X + Y) Al X Si Y ) N (however, in atomic ratio, 0.45 ≦ X ≦ 0.65, 0.01 ≦ Y ≦ 0.10, 0.50 ≦ X + Y ≦ 0) .70),

(Ti, Al, Si) N layer satisfying
A coated carbide tool formed by forming a hard coating layer comprising the above (a) and (b),
Furthermore, the surface roughness of the rake face portion and the flank face portion including at least the cutting edge ridge line portion of the surface layer composed of the CrB 2 layer of the hard coating layer,
In a state where an abrasive layer composed of a CrN layer having an average layer thickness of 0.5 to 5 μm and formed by vapor deposition using an AIP apparatus is vapor-deposited on the entire surface layer,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed,
High-speed cutting of a soft difficult-to-cut material with Ra: 0.2 μm or less by polishing in the presence of pulverized CrN fine particles by wet blasting of the abrasive layer and Al 2 O 3 fine particles as a spray abrasive. The hard coating layer is characterized by a coated carbide tool that exhibits excellent wear resistance.

つぎに、この発明の被覆超硬工具の硬質被覆層およびCrN研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。
(a)耐摩耗硬質層の組成式のX値、Y値
耐摩耗硬質層を構成する(Ti,Al,Si)N層におけるAl成分には高温硬さと耐熱性を向上させ、一方同Ti成分には、高温強度を向上させ、さらに同Si成分にはAlとの共存において一段と耐熱性を向上させる作用があるが、Alの割合を示すX値がTiとSiの合量に占める割合(原子比、以下同じ)で0.45未満になると、相対的にTiの割合が多くなり過ぎて、高速切削に要求されるすぐれた高温硬さと耐熱性を確保することができなくなり、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピング(微少欠け)などが発生し易くなることから、X値を0.45〜0.65と定めた。また、Siの割合を示すY値がTiとAlの合量に占める割合で、0.01未満では、所望の耐熱性向上効果が得られず、一方同Y値が0.10を超えると、高温強度が低下するようになることから、Y値を0.01〜0.10と定めた。さらに、AlとSiの合計含有割合を示す(X+Y)値が0.50未満では、軟質難削材の高速切削加工で必要とされる高温硬さと耐熱性を十分満足することはできず、また、(X+Y)値が0.70を超えると、軟質難削材の高速切削加工で必要とされる高温強度を確保することができなくなることから、(X+Y)値を0.50以上0.70以下と定めた。
(b)耐摩耗硬質層の平均層厚
その平均層厚が0.8μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の硬質難削材の高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(c)表面層の平均層厚
硬質被覆層は、上記の通り耐摩耗硬質層のもつすぐれた高温硬さ、高温強度および耐熱性と、表面層であるCrB層のもつすぐれた高温耐酸化性との共存によって、高い発熱を伴なう軟質難削材の高速切削ですぐれた耐摩耗性を発揮するようになるものであるが、前記CrB層の平均層厚が0.8μm未満では、上記耐摩耗硬質層を切削時における前記軟質難削材の高い酸化反応性から使用寿命に至るまで保護するには不十分であり、一方その平均層厚が5μmを越えると切刃部にチッピングが発生し易くなることから、その平均層厚を0.8〜5μmと定めた。
(d)CrN研磨材層
上記の通り、CrN研磨材層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したAl23微粒によって粉砕微粒化し、CrN微粒となって前記Al23微粒との共存下で研磨材として作用し、硬質被覆層の表面層を構成するCrB層の表面を研磨するが、この場合、その平均層厚が0.5μm未満では、ウエットブラスト時における粉砕化CrN微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚が5μmを越えると、研磨液に噴射研磨材として配合したAl23微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合もCrB層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由で、その平均層厚を0.5〜5μmと定めた。
(e)研磨液のAl23微粒の割合
研磨液のAl23微粒には、ウエットブラスト時にCrN研磨材層の粉砕化CrN微粒と共存した状態で、CrB層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
Next, the reason why the hard coating layer and the CrN abrasive layer of the coated carbide tool of the present invention and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are numerically limited as described above will be described.
(A) X value and Y value in the composition formula of the wear resistant hard layer The Al component in the (Ti, Al, Si) N layer constituting the wear resistant hard layer improves the high temperature hardness and heat resistance, while the Ti component Has the effect of improving the high-temperature strength and further improving the heat resistance in the coexistence of Al with the same Si component, but the ratio of the X value indicating the proportion of Al to the total amount of Ti and Si (atom If the ratio is less than 0.45, the ratio of Ti will be relatively large, and it will not be possible to secure the excellent high temperature hardness and heat resistance required for high-speed cutting, resulting in rapid progress of wear. On the other hand, when the X value indicating the proportion of Al exceeds 0.65, the proportion of Ti becomes relatively small, and the high-temperature strength rapidly decreases. Chipping (slight chipping) is likely to occur The X value was determined to be 0.45 to 0.65. Moreover, if the Y value indicating the proportion of Si is a proportion of the total amount of Ti and Al, and less than 0.01, the desired heat resistance improvement effect cannot be obtained, while if the Y value exceeds 0.10, Since the high temperature strength is lowered, the Y value is set to 0.01 to 0.10. Furthermore, if the (X + Y) value indicating the total content of Al and Si is less than 0.50, the high-temperature hardness and heat resistance required for high-speed cutting of a soft difficult-to-cut material cannot be sufficiently satisfied. If the (X + Y) value exceeds 0.70, the high-temperature strength required for high-speed cutting of a soft difficult-to-cut material cannot be ensured, so the (X + Y) value is 0.50 or more and 0.70. It was determined as follows.
(B) Average layer thickness of wear-resistant hard layer If the average layer thickness is less than 0.8 μm, it is insufficient to exhibit its excellent wear resistance over a long period, while the average layer thickness is If it exceeds 5 μm, chipping is likely to occur at the cutting edge portion in the high-speed cutting of the hard difficult-to-cut material, so the average layer thickness is set to 0.8 to 5 μm.
(C) Average layer thickness of the surface layer As described above, the hard coating layer has excellent high temperature hardness, high temperature strength and heat resistance of the wear resistant hard layer, and excellent high temperature oxidation resistance of the CrB 2 layer as the surface layer. Coexistence with the high-temperature heat-extracting soft difficult-to-cut material with excellent heat resistance, the CrB 2 layer has an average layer thickness of less than 0.8 μm. , It is insufficient to protect the wear-resistant hard layer from the high oxidation reactivity of the soft difficult-to-cut material at the time of cutting to the end of its service life. On the other hand, if the average layer thickness exceeds 5 μm, chipping is applied to the cutting edge. Therefore, the average layer thickness is set to 0.8 to 5 μm.
(D) CrN abrasive layer As described above, CrN abrasive layer during wet blasting, the Al 2 O 3 fine formulated as injection abrasive in the polishing liquid milled micronized, the Al 2 O 3 becomes CrN fine Acts as an abrasive in the presence of fine particles, and polishes the surface of the CrB 2 layer constituting the surface layer of the hard coating layer. In this case, if the average layer thickness is less than 0.5 μm, grinding during wet blasting When the average layer thickness exceeds 5 μm, the proportion of Al 2 O 3 fine particles blended in the polishing liquid as a jetting abrasive is not sufficient. The balance is lost and the amount is relatively excessive. In this case as well, the polishing function suddenly decreases. In either case, the surface of the CrB 2 layer is polished to a surface roughness of Ra: 0.2 μm or less. Can Because it Kunar, defining the average layer thickness and 0.5 to 5 [mu] m.
(E) the Al 2 O 3 fine fraction polishing liquid Al 2 O 3 fine polishing liquid, while coexisting with pulverized CrN fine of CrN abrasive layer during wet blasting, polishing the surface of CrB 2 layers Even if the ratio is less than 15% by mass or more than 60% by mass with respect to the total amount with water, the polishing function will be abruptly reduced. The mass% was determined.

この発明の被覆超硬工具は、すぐれた高温硬さ、高温強度および耐熱性を有する(Ti,Al,Si)N層の耐摩耗硬質層と、すぐれた高温耐酸化性を有し、高速切削時の軟質難削材(被削材)および切粉のもつ高い酸化反応から前記耐摩耗硬質層を保護する作用を発揮するCrB層の表面層で構成された硬質被覆層によって、軟質難削材の切削加工を高い発熱を伴う高速で行っても、前記表面層の表面がRa:0.2μm以下の表面粗さに研磨され、これによって切刃部におけるチッピングの発生が防止されるようになることと相俟って、すぐれた耐摩耗性を長期に亘って発揮するものである。 The coated carbide tool of the present invention has a (Ti, Al, Si) N wear-resistant hard layer having excellent high-temperature hardness, high-temperature strength and heat resistance, excellent high-temperature oxidation resistance, and high-speed cutting. Soft hard-to-cut material (work material) and hard coating layer composed of two surface layers of CrB that protects the wear-resistant hard layer from the high oxidation reaction of chips. Even if the cutting of the material is performed at a high speed with high heat generation, the surface layer is polished to a surface roughness of Ra: 0.2 μm or less so that chipping at the cutting edge portion is prevented. In combination with this, excellent wear resistance is exhibited over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / TiCN-based cemented carbide substrates B-1 to B-6 having a chip shape of CNMG120408 were formed.

さらに、表面層形成用SP装置のカソード電極(蒸発源)として、0.8μmの平均粒径を有するCrB粉末を温度:1500℃、圧力:20MPa、保持時間:3時間の条件でホットプレスすることによりCrB焼結体を製造した。
(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として、それぞれ表4に示される目標組成に対応した成分組成を有する耐摩耗硬質層形成用Ti−Al−Si合金、他方側のSP装置のカソード電極(蒸発源)として表面層形成用CrB焼結体を対向配置し、また前記Ti−Al−Si合金およびCrB焼結体のそれぞれから90度ずれた位置に前記回転テーブルに沿って、AIP装置のカソード電極(蒸発源)として、CrN研磨材層形成用金属Crを装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Si合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表4に示される目標組成および目標層厚の(Ti,Al,Si)N層を硬質被覆層の耐摩耗硬質層として蒸着形成し、
(d)ついで、既に蒸着形成された上記の耐摩耗硬質層としての(Ti,Al,Si)N層と、これから蒸着形成される表面層としてのCrB層との密着接合性を向上させる目的で、上記耐摩耗硬質層形成用Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を継続したまま、装置内に窒素ガスに代えてArと窒素の混合ガス(N:Ar=容積比で3:1)を導入して、装置内雰囲気を同じく3Paとし、同時に前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体に、3kWの出力でスパッタを発生させ、この状態を20分間保持して、密着接合層としてのTiとAlとSiとCrの複合硼窒化物層(この場合後の測定でいずれも0.3μmの平均層厚を示したが、0.1〜0.5μmの平均層厚ですぐれた密着接合性が確保される)を形成し、
(e)引き続いて、前記SP装置のカソード電極(蒸発源)として配置したCrB焼結体とアノード電極と間のスパッタを同一条件(スパッタ出力:3kW)で続行しながら、前記装置内に導入するガスをArと窒素の混合ガスからArガスに代えると共に、装置内雰囲気を0.5Paとし、同時に上記耐摩耗硬質層形成用Ti−Al−Si合金のカソード電極とアノード電極との間のアーク放電を停止し、この条件で層厚に対応した時間スパッタリングを行い、同じく表4に示される目標層厚のCrB層を硬質被覆層の表面層として蒸着形成し、
(f)さらに、装置内にArガスに代えて窒素ガスを導入して、装置内雰囲気を同じく3Paの窒素雰囲気とし、同時に上記スパッタリングを停止すると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつAIP装置のカソード電極である前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記CrB層(表面層)の全面に、同じく表4に示される目標層厚のCrN研磨材層を蒸着形成し、
(g)引き続いて、上記のCrN研磨材層形成の被覆超硬工具に、表3に示されるブラスト条件で、かつ表4に示される組み合わせでウエットブラストを施して、CrB層で構成された表面層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を同じく表4に示される表面粗さに研磨することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
Further, as a cathode electrode (evaporation source) of the SP device for surface layer formation, CrB 2 powder having an average particle diameter of 0.8 μm is hot pressed under the conditions of temperature: 1500 ° C., pressure: 20 MPa, holding time: 3 hours. Thus, a CrB 2 sintered body was produced.
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table, and corresponded to the target composition shown in Table 4 as the cathode electrode (evaporation source) of the AIP device on one side. A Ti—Al—Si alloy for forming a wear-resistant hard layer having a component composition, a CrB 2 sintered body for forming a surface layer as a cathode electrode (evaporation source) of the SP device on the other side, and the Ti—Al— Attaching metal Cr for forming a CrN abrasive layer as a cathode electrode (evaporation source) of the AIP device along the rotary table at a position shifted by 90 degrees from each of the Si alloy and the CrB 2 sintered body,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And a current of 100 A is passed between the Ti—Al—Si alloy of the cathode electrode and the anode electrode to generate an arc discharge, whereby the surface of the carbide substrate is made to the Ti—Al—Si. Bombard washed by alloy and
(C) Nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 3 Pa, a DC bias voltage of −100 V is applied to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode A current of 100 A was passed between the Ti-Al-Si alloy and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate had a target composition and target layer thickness (Ti , Al, Si) N layer is deposited as a wear-resistant hard layer of the hard coating layer,
(D) Next, the purpose of improving the adhesion between the (Ti, Al, Si) N layer as the wear-resistant hard layer already formed by vapor deposition and the CrB 2 layer as the surface layer to be vapor-deposited from now on Then, while continuing the arc discharge between the cathode electrode and the anode electrode of the wear-resistant hard layer forming Ti—Al—Si alloy, a mixed gas of Ar and nitrogen (N 2 : Ar = 3: 1 by volume ratio is introduced, and the atmosphere in the apparatus is set to 3 Pa. At the same time, spatter is generated at a power of 3 kW on the CrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus. This state was maintained for 20 minutes, and Ti, Al, Si, and Cr composite boronitride layers as adhesion bonding layers (in this case, the average layer thickness was 0.3 μm in all subsequent measurements. Average of 0.1-0.5 μm Excellent adhesion bonding properties at a thickness to form a to) secured,
(E) Subsequently, the sputtering between the CrB 2 sintered body arranged as the cathode electrode (evaporation source) of the SP apparatus and the anode electrode is continued in the same condition (sputtering output: 3 kW) and introduced into the apparatus. The gas to be used is changed from a mixed gas of Ar and nitrogen to Ar gas, and the atmosphere in the apparatus is set to 0.5 Pa. At the same time, an arc between the cathode electrode and the anode electrode of the wear-resistant hard layer forming Ti-Al-Si alloy. Discharging is stopped, sputtering is performed for a time corresponding to the layer thickness under these conditions, and a CrB 2 layer having a target layer thickness similarly shown in Table 4 is deposited as a surface layer of the hard coating layer,
(F) Further, nitrogen gas is introduced into the apparatus instead of Ar gas, and the atmosphere in the apparatus is changed to a nitrogen atmosphere of 3 Pa. At the same time, the sputtering is stopped, and the rotation is performed while rotating on the rotary table. A DC bias voltage of −100 V is applied to the hard substrate, and a current of 100 A is passed between the metal Cr, which is the cathode electrode of the AIP device, and the anode electrode to generate an arc discharge, whereby the CrB 2 layer (surface A CrN abrasive layer having a target layer thickness also shown in Table 4 is formed on the entire surface of the layer) by vapor deposition,
(G) Subsequently, the coated carbide tool for forming the CrN abrasive layer was subjected to wet blasting under the blasting conditions shown in Table 3 and in the combinations shown in Table 4, and was composed of two CrB layers. By grinding the rake face portion and the flank face portion including at least the cutting edge ridge line portion of the surface layer to the surface roughness shown in Table 4, the surface coated carbide throwaway of the present invention as the coated carbide tool of the present invention. Chips (hereinafter referred to as the present invention-coated chips) 1 to 16 were produced.

また、上記の本発明被覆チップの表面層であるCrB層の作用効果を確認する目的で、表5に示される通り、前記CrB層の形成を行なわず、かつ、耐摩耗硬質層としての(Ti,Al,Si)N層の目標層厚を、本発明被覆チップの耐摩耗硬質層の目標層厚と表面層の目標層厚の合計とする以外は同一の条件で比較被覆超硬工具としての比較表面被覆超硬製スローアウエイチップ(以下、比較被覆チップと云う)1〜16をそれぞれ製造した。 Further, for the purpose of confirming the action and effect of the CrB 2 layer which is the surface layer of the above-described coated chip of the present invention, as shown in Table 5, the CrB 2 layer is not formed and the wear-resistant hard layer is used. Comparative coated carbide tool under the same conditions except that the target layer thickness of the (Ti, Al, Si) N layer is the sum of the target layer thickness of the wear-resistant hard layer and the target layer thickness of the surface layer of the coated chip of the present invention. Comparative surface-coated cemented carbide throwaway tips (hereinafter referred to as comparative coated tips) 1 to 16 were produced.

この結果得られた比較被覆チップ1〜16の耐摩耗硬質層を構成する(Ti,Al,Si)N層のウエットブラスト後の表面粗さを表5に示した。   Table 5 shows the surface roughness after wet blasting of the (Ti, Al, Si) N layers constituting the wear-resistant hard layers of the comparative coated chips 1 to 16 obtained as a result.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および比較被覆チップ1〜16について、
被削材:JIS・SUS304の丸棒、
切削速度: 230 m/min.、
切り込み: 2.5 mm、
送り: 0.25 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)でのステンレス鋼の乾式連続高速切削加工試験(通常の切削速度は150m/min.)、
被削材:JIS・SCMnH2の長さ方向等間隔4本縦溝入りの丸棒、
切削速度: 220 m/min.、
切り込み: 3 mm、
送り: 0.2 mm/rev.、
切削時間: 8 分、
の条件(切削条件Bという)での高マンガン鋼の乾式断続高速切削加工試験(通常の切削速度は150m/min.)、
被削材:JIS・SS400の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min.、
切り込み: 2 mm、
送り: 0.15 mm/rev.、
切削時間: 10 分、
の条件(切削条件Cという)での軟鋼の乾式断続高速切削加工試験(通常の切削速度は180m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the comparative coated chips 1-16,
Work material: JIS / SUS304 round bar,
Cutting speed: 230 m / min. ,
Cutting depth: 2.5 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 5 minutes,
A dry continuous high-speed cutting test of stainless steel under the conditions (referred to as cutting condition A) (normal cutting speed is 150 m / min.),
Work material: JIS / SCMnH2 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 220 m / min. ,
Cutting depth: 3 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 8 minutes,
Of high manganese steel under the above conditions (referred to as cutting condition B) (continuous cutting speed is 150 m / min.),
Work material: JIS / SS400 lengthwise equidistant 4 round bars with flutes,
Cutting speed: 240 m / min. ,
Incision: 2 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
A dry interrupted high-speed cutting test (normal cutting speed is 180 m / min.) Of mild steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any of the cutting tests. The measurement results are shown in Table 6.

Figure 2007167983
Figure 2007167983

Figure 2007167983
Figure 2007167983

Figure 2007167983
Figure 2007167983

Figure 2007167983
Figure 2007167983

Figure 2007167983
Figure 2007167983

Figure 2007167983
Figure 2007167983

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide rod-forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of sintered rods for round bar were subjected to grinding, as shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる耐摩耗硬質層と、同じく表8に示される目標層厚のCrB層からなる表面層で構成された硬質被覆層を蒸着形成し、さらに表3に示されるブラスト条件で、かつ表8に示される組み合わせでウエットブラストを施して、CrB層で構成された表面層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を同じく表8に示される表面粗さに研磨することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. And a wear-resistant hard layer comprising a (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 8 and a CrB 2 layer having the target layer thickness also shown in Table 8. A hard coating layer composed of a surface layer is formed by vapor deposition, and wet blasting is performed under the blasting conditions shown in Table 3 and in the combinations shown in Table 8, so that at least a surface layer composed of CrB 2 layers is cut. By grinding the rake face portion and the flank face portion including the edge line to the surface roughness shown in Table 8, the surface coated carbide end mill of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the present coated material). Called end mill) 8 were prepared, respectively.

また、上記の本発明被覆エンドミルの表面層であるCrB層の作用効果を確認する目的で、表8に示される通り、前記CrB層の形成を行なわず、かつ、耐摩耗硬質層としての(Ti,Al,Si)N層の目標層厚を、本発明被覆エンドミルの耐摩耗硬質層の目標層厚と表面層の目標層厚の合計とする以外は同一の条件で比較被覆超硬工具としての比較表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。 Further, for the purpose of confirming the action and effect of the CrB 2 layer which is the surface layer of the above-mentioned coated end mill of the present invention, as shown in Table 8, the CrB 2 layer is not formed and the wear resistant hard layer is used. Comparative coated carbide tool under the same conditions except that the target layer thickness of the (Ti, Al, Si) N layer is the sum of the target layer thickness of the wear resistant hard layer and the target layer thickness of the surface layer of the coated end mill of the present invention. Comparative surface-coated cemented carbide end mills (hereinafter referred to as comparative coated end mills) 1 to 8 were produced.

この結果得られた比較被覆エンドミル1〜8の耐摩耗硬質層を構成する(Ti,Al,Si)N層のウエットブラスト後の表面粗さを表8に示した。   Table 8 shows the surface roughness after wet blasting of the (Ti, Al, Si) N layer constituting the wear resistant hard layers of the comparative coated end mills 1 to 8 obtained as a result.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および比較被覆エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SS400の板材、
切削速度: 50 m/min.、
溝深さ(切り込み): 3 mm、
テーブル送り: 300 mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、
本発明被覆エンドミル4〜6および比較被覆エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCMnH2の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 4.5 mm、
テーブル送り: 350 mm/分、
の条件での高マンガン鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、
本発明被覆エンドミル7,8および比較被覆エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUS316の板材、
切削速度: 65 m/min.、
溝深さ(切り込み): 8 mm、
テーブル送り: 200 mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験(通常の切削速度は35m/min.)
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.15mmに至るまでの切削溝長を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and comparative coated end mills 1-8, the present invention coated end mills 1-3 and comparative coated end mills 1-3 are as follows:
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 50 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 300 mm / min,
Dry high-speed grooving test of mild steel under normal conditions (normal cutting speed is 30 m / min.),
About this invention coated end mills 4-6 and comparative coated end mills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 4.5 mm,
Table feed: 350 mm / min,
Dry high-speed grooving test of high manganese steel under the conditions of (normal cutting speed is 40 m / min.),
For the coated end mills 7 and 8 and the comparative coated end mills 7 and 8 of the present invention,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 65 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 200 mm / min,
Stainless steel dry high-speed grooving test under normal conditions (normal cutting speed is 35 m / min.)
In each of the groove cutting tests, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.15 mm, which is a guide for the service life. The measurement results are shown in Table 8, respectively.

Figure 2007167983
Figure 2007167983

Figure 2007167983
Figure 2007167983

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Ti,Al,Si)N層からなる耐摩耗硬質層と、同じく表9に示される目標層厚のCrB層からなる表面層で構成された硬質被覆層を蒸着形成し、さらに表3に示されるブラスト条件で、かつ表9に示される組み合わせでウエットブラストを施して、CrB層で構成された表面層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を同じく表9に示される表面粗さに研磨することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the wear-resistant hard layer composed of the (Ti, Al, Si) N layer having the target composition and target layer thickness shown in Table 9, and the target layer thickness also shown in Table 9 A hard coating layer composed of a surface layer composed of two layers of CrB is vapor-deposited and further subjected to wet blasting under the blasting conditions shown in Table 3 and the combinations shown in Table 9 to form a CrB two layer. The surface coated carbide drill of the present invention as the coated carbide tool of the present invention is obtained by polishing the rake face portion and the flank face portion including at least the cutting edge ridge line portion of the surface layer to the surface roughness similarly shown in Table 9. (Hereinafter, the present invention coated drill Refers) 1-8 were prepared, respectively.

また、上記の本発明被覆ドリルの表面層であるCrB層の作用効果を確認する目的で、表9に示される通り、前記CrB層の形成を行なわず、かつ、耐摩耗硬質層としての(Ti,Al,Si)N層の目標層厚を、本発明被覆ドリルの耐摩耗硬質層の目標層厚と表面層の目標層厚の合計とする以外は同一の条件で比較被覆超硬工具としての比較表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。 Further, for the purpose of confirming the effect of the CrB 2 layer, which is the surface layer of the above-described coated drill according to the present invention, as shown in Table 9, the CrB 2 layer is not formed and the wear resistant hard layer is used. A comparative coated carbide tool under the same conditions except that the target layer thickness of the (Ti, Al, Si) N layer is the sum of the target layer thickness of the wear-resistant hard layer and the surface layer of the coated drill of the present invention. Comparative surface coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 8 were manufactured.

この結果得られた比較被覆ドリル1〜8の耐摩耗硬質層を構成する(Ti,Al,Si)N層のウエットブラスト後の表面粗さを表9に示した。   Table 9 shows the surface roughness after wet blasting of the (Ti, Al, Si) N layers constituting the wear-resistant hard layers of the comparative coated drills 1 to 8 obtained as a result.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および比較被覆ドリル1〜3については、

被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCMnH2の板材、

切削速度: 50 m/min.、
送り: 0.2 mm/rev、
穴深さ: 12 mm、

の条件での高マンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、
本発明被覆ドリル4〜6および比較被覆ドリル4〜6については、

被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUS316の板材、
切削速度: 60 m/min.、
送り: 0.25 mm/rev、
穴深さ: 24 mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、
本発明被覆ドリル7,8および比較被覆ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SS400の板材、
切削速度: 65 m/min.、
送り: 0.15 mm/rev、
穴深さ: 50 mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度は35m/min.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.25mmに至るまでの穴あけ加工数を測定した。この測定結果を表9にそれぞれ示した。
Next, of the present invention coated drills 1-8 and comparative coated drills 1-8, for the present invention coated drills 1-3 and comparative coated drills 1-3,

Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,

Cutting speed: 50 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 12 mm,

Wet high speed drilling test of high manganese steel under normal conditions (normal cutting speed is 25 m / min.),
About this invention coated drill 4-6 and comparative coated drill 4-6,

Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 60 m / min. ,
Feed: 0.25 mm / rev,
Hole depth: 24 mm,
Wet high-speed drilling test of stainless steel under normal conditions (normal cutting speed is 30 m / min.),
About this invention covering drills 7 and 8 and comparative covering drills 7 and 8,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 65 m / min. ,
Feed: 0.15 mm / rev,
Hole depth: 50 mm,
Wet high-speed drilling test of mild steel under the conditions of (normal cutting speed is 35 m / min.),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.25 mm was measured. The measurement results are shown in Table 9, respectively.

Figure 2007167983
Figure 2007167983

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する耐摩耗硬質層および表面層の組成、並びに比較被覆超硬工具としての比較被覆チップ1〜16、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   Wear-resistant hard layers and surfaces constituting the hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tools obtained as a result. The composition of the layers and the composition of the wear resistant hard layers of comparative coated tips 1 to 16, comparative coated end mills 1 to 8 and comparative coated drills 1 to 8 as a comparative coated carbide tool were measured using a transmission electron microscope. When measured by energy dispersive X-ray analysis, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の表面層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the surface layer of the hard coating layer and the wear-resistant hard layer was measured with a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of five locations). )showed that.

表4〜9に示される結果から、硬質被覆層が、高温硬さ、高温強度と耐熱性を有する(Ti,Al,Si)N層の耐摩耗硬質層と、すぐれた高温耐酸化性を有し、切削時の高温酸化反応雰囲気から前記耐摩耗硬質層を保護するCrB層の表面層で構成された本発明被覆超硬工具は、いずれも各種のステンレス鋼や高マンガン鋼、さらに軟鋼などの軟質難削材の高速切削で、高い発熱を伴うのにもかかわらず、すぐれた耐摩耗性を発揮するのに対して、(Ti,Al,Si)N層の耐摩耗硬質層だけからなる比較被覆超硬工具においては、前記軟質難削材の高熱発生を伴う高速切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 9, the hard coating layer has high-temperature hardness, high-temperature strength and heat-resistant (Ti, Al, Si) N-layer wear-resistant hard layer and excellent high-temperature oxidation resistance. The coated carbide tool of the present invention composed of two surface layers of CrB that protects the wear-resistant hard layer from the high-temperature oxidation reaction atmosphere at the time of cutting are various stainless steels, high-manganese steels, mild steels, etc. In spite of high heat generation in high-speed cutting of soft difficult-to-cut materials, it has excellent wear resistance, whereas it consists only of (Ti, Al, Si) N wear-resistant hard layers In the comparative coated carbide tool, it is clear that the wear progress of the cutting edge portion is fast and the service life is reached in a relatively short time by high-speed cutting with high heat generation of the soft difficult-to-cut material.

上述のように、この発明の被覆超硬工具は、特に各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴う上記の軟質難削材の高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention is not only for cutting under normal cutting conditions such as various types of steel and cast iron, but also for high-speed cutting of the above-mentioned soft difficult-to-cut materials with high heat generation. However, because it exhibits excellent wear resistance and excellent cutting performance over a long period of time, it is possible to improve the performance and automation of cutting equipment, reduce labor and energy of cutting, and reduce costs. It can respond satisfactorily.

被覆超硬工具を構成する表面被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used for forming the surface coating layer which comprises a coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン系サーメットからなる超硬基体の表面に、
(a)表面層として、スパッタリング装置を用いて蒸着形成され、かつ0.8〜5μmの平均層厚を有するCr硼化物層、
(b)耐摩耗硬質層として、アークイオンプレーティング装置を用いて蒸着形成され、かつ、0.8〜5μmの平均層厚を有し、さらに、
組成式:(Ti1−(X+Y)AlSi )N(ただし、原子比で、0.45≦X≦0.65、0.01≦Y≦0.10、0.50≦X+Y≦0.70を示す)、
を満足するTiとAlとSiの複合窒化物層、
以上(a)および(b)からなる硬質被覆層を形成してなる表面被覆超硬合金製切削工具にして、
さらに、上記硬質被覆層のCr硼化物層で構成された表面層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分の表面粗さを、
上記表面層全面に、アークイオンプレーティング装置を用いて蒸着形成され、かつ、0.5〜5μmの平均層厚を有するCr窒化物層で構成された研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化Cr窒化物微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で研磨して、準拠規格JIS・B0601−1994に基づいた測定で、Ra:0.2μm以下としたこと、
を特徴とする軟質難削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of a cemented carbide substrate made of tungsten carbide based cemented carbide or titanium carbonitride cermet,
(A) Cr boride layer formed as a surface layer by vapor deposition using a sputtering apparatus and having an average layer thickness of 0.8 to 5 μm;
(B) The wear-resistant hard layer is formed by vapor deposition using an arc ion plating apparatus, and has an average layer thickness of 0.8 to 5 μm.
Composition formula: (Ti 1- (X + Y) Al X Si Y ) N (however, in atomic ratio, 0.45 ≦ X ≦ 0.65, 0.01 ≦ Y ≦ 0.10, 0.50 ≦ X + Y ≦ 0) .70),
Ti, Al and Si composite nitride layer satisfying
In the surface-coated cemented carbide cutting tool formed by forming a hard coating layer comprising the above (a) and (b),
Further, the surface roughness of the rake face portion and the flank face portion including at least the cutting edge ridge line portion of the surface layer composed of the Cr boride layer of the hard coating layer,
In the state where the entire surface layer is vapor-deposited using an arc ion plating apparatus and an abrasive layer composed of a Cr nitride layer having an average layer thickness of 0.5 to 5 μm is vapor-deposited,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed,
In the measurement based on the conformity standard JIS B0601-1994, it was polished in the presence of pulverized Cr nitride fine particles by wet blasting of the abrasive layer and aluminum oxide fine particles as a spray abrasive, and Ra: 0.00. 2 μm or less,
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance due to its high-speed cutting of soft, difficult-to-cut materials.
JP2005365925A 2005-12-20 2005-12-20 Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work Withdrawn JP2007167983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365925A JP2007167983A (en) 2005-12-20 2005-12-20 Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365925A JP2007167983A (en) 2005-12-20 2005-12-20 Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work

Publications (1)

Publication Number Publication Date
JP2007167983A true JP2007167983A (en) 2007-07-05

Family

ID=38295214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365925A Withdrawn JP2007167983A (en) 2005-12-20 2005-12-20 Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work

Country Status (1)

Country Link
JP (1) JP2007167983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117845180A (en) * 2024-03-07 2024-04-09 湖南沃尔博精密工具有限公司 Cutter and film coating method thereof
CN117845180B (en) * 2024-03-07 2024-05-28 湖南沃尔博精密工具有限公司 Cutter and film coating method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117845180A (en) * 2024-03-07 2024-04-09 湖南沃尔博精密工具有限公司 Cutter and film coating method thereof
CN117845180B (en) * 2024-03-07 2024-05-28 湖南沃尔博精密工具有限公司 Cutter and film coating method thereof

Similar Documents

Publication Publication Date Title
JP2007290067A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4900874B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007290066A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
JP2007167984A (en) Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work
JP2007185739A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
JP2007290065A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007136621A (en) Surface-coated cemented carbide cutting tool having hard coating layer exerting excellent abrasion resistance in high-speed cutting of soft hard-to-cut-material
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2007167983A (en) Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting soft material hard to work
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007185737A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of soft work material hard to work
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303