JP2007166746A - Distributed power system - Google Patents

Distributed power system Download PDF

Info

Publication number
JP2007166746A
JP2007166746A JP2005358227A JP2005358227A JP2007166746A JP 2007166746 A JP2007166746 A JP 2007166746A JP 2005358227 A JP2005358227 A JP 2005358227A JP 2005358227 A JP2005358227 A JP 2005358227A JP 2007166746 A JP2007166746 A JP 2007166746A
Authority
JP
Japan
Prior art keywords
power generation
power
amount
total
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005358227A
Other languages
Japanese (ja)
Other versions
JP4548790B2 (en
Inventor
Masahiko Komura
雅彦 甲村
Hiroaki Kato
浩明 加藤
Noboru Sebe
昇 瀬部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Kyushu Institute of Technology NUC filed Critical Aisin Seiki Co Ltd
Priority to JP2005358227A priority Critical patent/JP4548790B2/en
Publication of JP2007166746A publication Critical patent/JP2007166746A/en
Application granted granted Critical
Publication of JP4548790B2 publication Critical patent/JP4548790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed power system which can efficiently generate electricity by suppressing excess and deficiency in power generation and power demands, without computing the instructed value of the power generation of a generator, based on prediction results that are predicted beforehand. <P>SOLUTION: An operation controller for a distributed power system is equipped with a total power consumption measuring means which measures total power consumption consumed in each load device, a power generation output measuring means which measures a power generation output outputted severally from each generator, a power generation instructed value deriving means which derives a power generation instructed value of each generator by solving an evaluation function which is prescribed based on each power generation output and total power consumption measured severally by each measuring means, by an optimization method under constraint conditions which are prescribed based on the maximum and minimum power generation of each generator, and a generation control means which controls the power generation of each generator according to the power generation instructed value derived by the power generation instructed value deriving means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分散型電源システムに関する。   The present invention relates to a distributed power supply system.

分散型電源システムとしては、特許文献1に示されている「コージェネレーション装置のネットワークシステム」が知られている。このネットワークシステムにおいては、管理装置16が、発電機が発生する発電電力や使用電力負荷等を検出して発電電力パターンを作成し、作成した発電電力パターンをインターネット23を介して監視装置30に送信する。監視装置30では、入力した発電電力パターンと個別情報DB34Aに記憶されている平均電力単価、燃料単価、設備費等に基づいて、コージェネレーション装置6A,6B,6C,6D…毎に組み合わせ指標を作成する。そして、監視装置30は、個別情報DB34Aに記憶される個別情報に基づいて、コージェネレーション装置6A,6B,6C,6D…を間欠的に運転されるものと、連続的に運転されるものとに分類する。そして、間欠的に運転されるコージェネレーション装置6A,6C…の発電電力が不足する時間帯と、連続的に運転されるコージェネレーション装置6B、6D…が余剰電力を発生する時間帯とを比較し、各コージェネレーション装置6A,6B,6C,6D…の組み合わせ指標に基づいてコージェネレーション装置6A,6B,6C,6D…を組み合わせる。そして、このように組み合わされたコージェネレーション装置6A,6B,6C,6D…は、送電線7を介して発電電力を相互に共有する。   As a distributed power supply system, a “network system of a cogeneration apparatus” disclosed in Patent Document 1 is known. In this network system, the management device 16 detects the generated power generated by the generator, the power load used, and the like to create a generated power pattern, and transmits the generated generated power pattern to the monitoring device 30 via the Internet 23. To do. The monitoring device 30 creates a combination index for each of the cogeneration devices 6A, 6B, 6C, 6D... Based on the input generated power pattern and the average power unit price, fuel unit price, facility cost, etc. stored in the individual information DB 34A. To do. And the monitoring apparatus 30 is based on the separate information memorize | stored in separate information DB34A, and the thing which operates cogeneration apparatus 6A, 6B, 6C, 6D ... intermittently, and the thing operated continuously. Classify. Then, the time period when the generated power of the cogeneration apparatuses 6A, 6C... Operated intermittently is short and the time period when the cogeneration apparatuses 6B, 6D. The cogeneration devices 6A, 6B, 6C, 6D,... Are combined based on the combination index of the respective cogeneration devices 6A, 6B, 6C, 6D,. And cogeneration apparatus 6A, 6B, 6C, 6D ... combined in this way mutually shares generated electric power via the power transmission line 7. FIG.

また、他の形式として、特許文献2に示されている「電源装置の運転管理システム」が知られている。この電源装置の運転管理システムにおいては、システムコントローラ(運転制御手段)12が、電力負荷の需要予測に対応させて、発電装置を定格出力で運転する状態と運転を停止する状態とに切り換えることにより、電源装置の運転を制御するように構成されているタイプが知られている。
特開2003−52127号公報 特開2003−153440号公報
As another format, a “power supply operation management system” disclosed in Patent Document 2 is known. In this power supply device operation management system, the system controller (operation control means) 12 switches between a state in which the power generator is operated at the rated output and a state in which the operation is stopped in response to the demand prediction of the power load. A type that is configured to control the operation of a power supply is known.
JP 2003-52127 A JP 2003-153440 A

ところで、上述したいずれの分散型電源システムにおいても、電力消費量(電力需要量)を予め予測し、その予測結果に基づいて発電装置の発電量指示値を算出(決定)し、その発電量指示値となるように発電装置を発電するようになっている。この場合、先に予測した電力消費量が発電する際の必要電力量(電力需要量)と一致する場合には、発電量と電力需要量は過不足がないので、効率よく発電を実施することができる。一方、予期しない電力の使用の発生などに起因して先に予測した電力消費量が発電する際の必要電力量(電力需要量)と一致しない場合には、発電量と電力需要量は過不足が生じるので、効率よく発電を実施することができないという問題があった。   By the way, in any of the above-described distributed power systems, the power consumption (power demand) is predicted in advance, and the power generation amount instruction value of the power generation device is calculated (determined) based on the prediction result, and the power generation amount instruction The power generation device is configured to generate a value. In this case, if the power consumption predicted earlier matches the required power amount (power demand amount) when generating power, the power generation amount and the power demand amount are not excessive and insufficient, so the power generation should be carried out efficiently. Can do. On the other hand, if the power consumption predicted earlier due to unexpected use of power does not match the required power (power demand) for power generation, the power generation and power demand are excessive or insufficient. Therefore, there is a problem that power generation cannot be performed efficiently.

本発明は、上述した問題を解消するためになされたもので、予め予測した予測結果に基づいて発電装置の発電量指示値を算出することなく、発電量と電力需要量の過不足を極力抑制して効率よく発電することができる分散型電源システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and suppresses the excess and deficiency of the power generation amount and the power demand amount as much as possible without calculating the power generation amount instruction value of the power generation device based on the prediction result predicted in advance. An object of the present invention is to provide a distributed power supply system that can efficiently generate power.

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、複数の発電装置と、各発電装置から供給される電力で稼動する複数の負荷装置が設置された複数の負荷装置設置場所と、各負荷装置にて消費された総電力消費量を測定する総電力消費量測定手段と、各発電装置からそれぞれ出力される発電出力量をそれぞれ測定する発電出力量測定手段と、各測定手段によってそれぞれ測定された各発電出力量および総電力消費量に基づいて規定される評価関数を、各発電装置の最大および最小発電量に基づいて規定される制約条件のもと最適化手法によって解くことにより、各発電装置の発電量指示値を導出する発電量指示値導出手段と、発電量指示値導出手段によって導出された発電量指示値に応じて各発電装置の発電量を制御する発電制御手段と、を備えたことである。   In order to solve the above-mentioned problem, the structural feature of the invention according to claim 1 is that a plurality of load devices in which a plurality of power generators and a plurality of load devices that operate with electric power supplied from each power generator are installed. Installation location, total power consumption measuring means for measuring the total power consumption consumed in each load device, power generation output amount measuring means for measuring the power generation output amount output from each power generation device, The evaluation function defined based on each power generation output and total power consumption measured by the measurement means is optimized by the optimization method under the constraints defined based on the maximum and minimum power generation of each power generator. By solving, the power generation amount instruction value deriving means for deriving the power generation amount instruction value of each power generation device and the power generation amount for controlling the power generation amount of each power generation device according to the power generation amount instruction value derived by the power generation amount instruction value deriving means. And control means, is that with a.

また請求項2に係る発明の構成上の特徴は、請求項1において、評価関数は、各発電装置の発電出力量の変動量を最小に抑制し、かつ、総電力消費量と総発電出力量を一致させるように設定されていることである。   Further, the structural feature of the invention according to claim 2 is that, in claim 1, the evaluation function suppresses the fluctuation amount of the power generation output amount of each power generation device to the minimum, and the total power consumption amount and the total power generation output amount. Is set to match.

また請求項3に係る発明の構成上の特徴は、請求項2において、評価関数は、発電装置ごとの発電量指示値と発電出力量検出手段によって検出された発電出力量の差の二乗値を発電装置すべてについて総和した値、および各発電量指示値の総和と総電力消費量検出手段によって検出された総電力消費量の差の二乗値の項を含むことである。   Further, the structural feature of the invention according to claim 3 is that, in claim 2, the evaluation function is the square value of the difference between the power generation amount instruction value for each power generation device and the power generation output amount detected by the power generation output amount detection means. The sum of all the power generation devices, and the term of the square value of the difference between the sum of the power generation instruction values and the total power consumption detected by the total power consumption detection means are included.

また請求項4に係る発明の構成上の特徴は、請求項1乃至請求項3の何れか一項において、総電力消費量測定手段、発電出力量測定手段、発電量指示値導出手段、および発電制御手段の繰り返し処理を、現在の総電力消費量と総電力消費量が同一となる確率が高い所定時間をおいて実行することである。   According to a fourth aspect of the present invention, there is provided a structural feature according to any one of the first to third aspects, wherein the total power consumption measuring means, the power generation output amount measuring means, the power generation amount instruction value deriving means, and the power generation The repetition processing of the control means is executed at a predetermined time with a high probability that the current total power consumption and the total power consumption are the same.

上記のように構成した請求項1に係る発明の制御装置においては、総電力消費量測定手段が、各負荷装置にて消費された総電力消費量を測定し、発電出力量測定手段が、各発電装置からそれぞれ出力される発電出力量をそれぞれ測定し、発電量指示値導出手段が、各測定手段によってそれぞれ測定された各発電出力量および総電力消費量に基づいて規定される評価関数を、各発電装置の最大および最小発電量に基づいて規定される制約条件のもと最適化手法によって解くことにより、各発電装置の発電量指示値を導出し、発電制御手段が、発電量指示値導出手段によって導出された発電量指示値に応じて各発電装置の発電量を制御する。これにより、発電量指示値は、予め予測した予測結果に基づいて発電装置の発電量指示値を算出することなく、各測定手段によってそれぞれ測定された各発電出力量および総電力消費量に基づいて最適な値として算出することができる。したがって、発電出力量と電力需要量の過不足を極力抑制して効率よく発電することができる。   In the control device of the invention according to claim 1 configured as described above, the total power consumption measuring means measures the total power consumption consumed by each load device, and the generated power output amount measuring means The power generation output amount respectively output from the power generation device is measured, and the power generation amount instruction value deriving means has an evaluation function defined based on each power generation output amount and total power consumption respectively measured by each measurement means, The power generation instruction value of each power generator is derived by solving with an optimization method under the constraint conditions defined based on the maximum and minimum power generation of each power generator, and the power generation control means derives the power generation instruction value. The power generation amount of each power generation device is controlled according to the power generation amount instruction value derived by the means. Thereby, the power generation amount instruction value is based on each power generation output amount and total power consumption respectively measured by each measuring means without calculating the power generation amount instruction value of the power generation device based on the prediction result predicted in advance. It can be calculated as an optimum value. Therefore, it is possible to efficiently generate power while suppressing the excess and deficiency of the power generation output amount and the power demand amount as much as possible.

上記のように構成した請求項2に係る発明の制御装置においては、請求項1に係る発明において、評価関数は、各発電装置の発電出力量の変動量を最小に抑制し、かつ、総電力消費量と総発電出力量を一致させるように設定されているので、導出された発電量指示値に基づいて発電装置を発電すると、発電装置の発電出力量の変動量が最小に抑制され、かつ、総電力消費量と総発電出力量が一致する。したがって、発電装置の耐久性を向上させ、燃費を向上させることができ、かつ、効率よく発電することができる。   In the control device of the invention according to claim 2 configured as described above, in the invention according to claim 1, the evaluation function suppresses the fluctuation amount of the power generation output amount of each power generation device to the minimum, and the total power Since the power generation amount is generated based on the derived power generation amount instruction value, the fluctuation amount of the power generation output amount of the power generation device is suppressed to the minimum because the consumption amount and the total power generation output amount are set to coincide with each other. The total power consumption matches the total power output. Therefore, durability of the power generation device can be improved, fuel consumption can be improved, and power can be generated efficiently.

上記のように構成した請求項3に係る発明の制御装置においては、請求項2に係る発明において、評価関数は、発電装置ごとの発電量指示値と発電出力量検出手段によって検出された発電出力量の差の二乗値を発電装置すべてについて総和した値、および各発電量指示値の総和と総電力消費量検出手段によって検出された総電力消費量の差の二乗値の項を含むので、簡単な関数を使用し、最適な発電量指示値を容易かつ的確に算出することができる。   In the control device of the invention according to claim 3 configured as described above, in the invention according to claim 2, the evaluation function includes a power generation amount indication value for each power generation device and a power generation output detected by the power generation output amount detection means. It includes the sum of the squares of the difference in power for all the power generators, and the sum of each power generation command value and the square of the difference between the total power consumption detected by the total power consumption detection means. It is possible to easily and accurately calculate the optimum power generation amount instruction value using a simple function.

上記のように構成した請求項4に係る発明の制御装置においては、請求項1乃至請求項3の何れか一項に係る発明において、総電力消費量測定手段、発電出力量測定手段、発電量指示値導出手段、および発電制御手段の繰り返し処理を、現在の総電力消費量と総電力消費量が同一となる確率が高い所定時間をおいて実行するので、発電出力量と電力需要量の過不足を抑制して効率よく発電することができる。   In the control device of the invention according to claim 4 configured as described above, in the invention according to any one of claims 1 to 3, the total power consumption measuring means, the power generation output amount measuring means, the power generation amount The repeated processing of the instruction value deriving means and the power generation control means is executed at a predetermined time when there is a high probability that the current total power consumption and the total power consumption are the same. Electricity can be generated efficiently while suppressing the shortage.

以下、本発明による分散型電源システムの一実施形態について説明する。図1はこの分散型電源システムの概要を示す概要図である。この分散型電源システムは、負荷装置21に電力を供給する複数の発電装置10と、各発電装置から供給される電力で稼動する負荷装置21が設定された複数の負荷装置設置場所である電力使用場所20と、各発電装置10および各電力使用場所20の電力計22と電気的に接続されている運転制御装置30とを備えている。   Hereinafter, an embodiment of a distributed power supply system according to the present invention will be described. FIG. 1 is a schematic diagram showing an overview of this distributed power supply system. This distributed power supply system uses a plurality of power generation devices 10 that supply power to the load device 21 and a power use that is a plurality of load device installation locations where the load devices 21 that operate with the power supplied from each power generation device are set. A place 20 and an operation control device 30 electrically connected to each power generation device 10 and a power meter 22 at each power use place 20 are provided.

発電装置10は、燃料電池発電装置であり、直流電力を発生する発電器11と、発電器11から供給された直流電力を交流電力に変換して出力する変換器(例えばインバータ)12と、発電器11を制御する制御装置17と、電力計18とを備えている。なお、発電装置10としては、燃料電池発電装置の他に、ディーゼルエンジン、ガスエンジン、ガスタービン、マイクロガスタービンなどの原動機とこの原動機によって駆動される発電機から構成されたものでもよい。   The power generation apparatus 10 is a fuel cell power generation apparatus, and includes a generator 11 that generates DC power, a converter (for example, an inverter) 12 that converts DC power supplied from the generator 11 into AC power, and outputs power. A control device 17 for controlling the device 11 and a wattmeter 18 are provided. In addition to the fuel cell power generation device, the power generation device 10 may be configured by a prime mover such as a diesel engine, a gas engine, a gas turbine, or a micro gas turbine, and a generator driven by the prime mover.

発電器11は、改質装置、一酸化炭素低減装置(以下CO低減装置という)および燃料電池から構成されている。改質装置は、燃料供給装置13から供給される燃料を水供給装置14から供給される水で水蒸気改質して水素リッチな改質ガスを生成してCO低減装置に導出するものである。CO低減装置は、改質ガスに含まれる一酸化炭素を低減して改質ガスを燃料電池に導出するものである。燃料電池は、燃料極に供給された改質ガス中の水素および空気極に供給された酸化剤ガスである空気を用いて発電するものである。   The generator 11 includes a reformer, a carbon monoxide reduction device (hereinafter referred to as a CO reduction device), and a fuel cell. In the reformer, the fuel supplied from the fuel supply device 13 is steam-reformed with water supplied from the water supply device 14 to generate a hydrogen-rich reformed gas, which is led to the CO reduction device. The CO reduction device reduces carbon monoxide contained in the reformed gas and leads the reformed gas to the fuel cell. The fuel cell generates power using hydrogen in the reformed gas supplied to the fuel electrode and air that is an oxidant gas supplied to the air electrode.

変換器12は、電力使用場所20に設置されている複数の負荷装置21に送電線15を介してそれぞれ接続されており、変換器12から出力される交流電力は必要に応じて各負荷装置21に供給されている。   The converter 12 is connected to a plurality of load devices 21 installed at the power use place 20 via the power transmission line 15, and the AC power output from the converter 12 is supplied to each load device 21 as necessary. Has been supplied to.

制御装置17は、運転制御装置30と互いに通信可能に接続されている。制御装置17は、運転制御装置30から発電量指示値を受信し、運転制御装置30に発電装置の最大および最小発電量を送信するようになっている。制御装置17は、マイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、運転制御装置30から発電量指示値を受信してその発電量指示値に応じた発電量となるように発電器11を制御している。RAMは同プログラムの実行に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。   The control device 17 is connected to the operation control device 30 so as to communicate with each other. The control device 17 receives the power generation amount instruction value from the operation control device 30 and transmits the maximum and minimum power generation amounts of the power generation device to the operation control device 30. The control device 17 includes a microcomputer (not shown), and the microcomputer includes an input / output interface, a CPU, a RAM, and a ROM (all not shown) connected via a bus. The CPU receives the power generation amount instruction value from the operation control device 30 and controls the power generator 11 so that the power generation amount corresponds to the power generation amount instruction value. The RAM temporarily stores variables necessary for executing the program, and the ROM stores the program.

電力計18は、発電装置10から出力される発電出力量を検出する発電出力量検出手段であり、その検出した発電出力量を運転制御装置30に送信するようになっている。   The wattmeter 18 is a power generation output amount detection means for detecting the power generation output amount output from the power generation device 10, and transmits the detected power generation output amount to the operation control device 30.

負荷装置21は、電灯、アイロン、テレビ、洗濯機、電気コタツ、電気カーペット、エアコン、冷蔵庫などの電気器具である。なお、変換器12と電力使用場所20とを接続する送電線15には電力会社の系統電源16も接続されており(系統連系)、発電装置10の発電量より負荷装置21の総消費電力が上回った場合、その不足電力を系統電源16から受電して補うようになっている。電力計22は、負荷装置21にて消費された電力消費量を検出する電力消費量検出手段であり、電力使用場所20で使用される全ての負荷装置21の合計電力消費量を検出して、運転制御装置30に送信するようになっている。   The load device 21 is an electric appliance such as an electric lamp, iron, television, washing machine, electric kotatsu, electric carpet, air conditioner, and refrigerator. In addition, the power source 15 of the electric power company is also connected to the power transmission line 15 connecting the converter 12 and the power use place 20 (system connection), and the total power consumption of the load device 21 is determined from the power generation amount of the power generation device 10 Is exceeded, the insufficient power is received from the system power supply 16 and compensated. The wattmeter 22 is power consumption detection means for detecting the power consumption consumed by the load device 21, detects the total power consumption of all the load devices 21 used in the power usage place 20, The data is transmitted to the operation control device 30.

なお、各発電装置10は各電力使用場所20と対応して設置されている場合が例示できる。例えば、発電装置1,2,・・・,nは、それぞれ電力使用場所1,2,・・・,nである家庭に設置されている場合である。また各発電装置10が複数の各電力使用場所20と対応して設置されている場合が例示できる。例えば、2つの電力使用場所1,2である家庭に一つの発電装置1が対応して設置され、2つの電力使用場所3,4である家庭に一つの発電装置2が対応して設置され、という場合である。あるいは各発電装置10は1箇所に集合して設置され、各電力使用場所20が各家庭である場合が例示できる。例えば、集合住宅に専用の発電エリアが設置されている場合である。ここでは電力使用場所は家庭で例示したが、事業所、商店などでもよい。
各発電装置10で発生した熱はお湯として利用され、いわゆるコジェネレーション運転される。各発電装置10にはお湯を貯める貯湯槽(図示省略)が付属している。
In addition, the case where each power generator 10 is installed corresponding to each electric power use place 20 can be illustrated. For example, the power generators 1, 2,..., N are installed in homes that are power usage locations 1, 2,. Moreover, the case where each electric power generating apparatus 10 is installed corresponding to each some electric power usage place 20 can be illustrated. For example, one power generation device 1 is installed corresponding to a home that is two power usage locations 1 and 2, and one power generation device 2 is installed corresponding to a home that is two power usage locations 3 and 4. This is the case. Or each power generation apparatus 10 is gathered and installed in one place, and the case where each electric power usage place 20 is each household can be illustrated. For example, there is a case where a dedicated power generation area is installed in the apartment house. Here, the power use place is exemplified at home, but it may be an office, a store, or the like.
The heat generated in each power generation device 10 is used as hot water, and a so-called cogeneration operation is performed. Each power generator 10 is provided with a hot water storage tank (not shown) for storing hot water.

運転制御装置30は、マイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも図示省略)を備えている。CPUは、図2のフローチャートに対応したプログラムを実行して、各発電装置10の発電量を制御している。RAMは同プログラムの実行に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。   The operation control device 30 has a microcomputer (not shown), and the microcomputer includes an input / output interface, a CPU, a RAM, and a ROM (all not shown) connected via a bus. The CPU executes a program corresponding to the flowchart of FIG. 2 to control the power generation amount of each power generation device 10. The RAM temporarily stores variables necessary for executing the program, and the ROM stores the program.

次に、上述した分散型電源システムの作動について図2を参照して説明する。なお、以下の作動説明においては、2つの家庭に対して発電装置を設置している。つまり家庭A宅に発電装置1、家庭B宅に発電装置2を設置している。運転制御装置30は、図示しない運転開始スイッチが押されると、プログラムを起動しプログラムをステップ102に進める。運転制御装置30は、ステップ102において、各発電装置10から発電装置10の最大発電量および最小発電量を読み込んで記憶部(または図示しない記憶装置)に記憶する。発電装置10の最大発電量および最小発電量は、定格値(例えば最大発電量が1000Wであり、最小発電量が250Wである。)に設定してもよいし、経時変化を考慮する観点から所定の運転時間毎にそれまでの発電量の実績から最大発電量および最小発電量を導出しその導出した値に設定するようにしてもよい。   Next, the operation of the above-described distributed power supply system will be described with reference to FIG. In the following description of operation, a power generator is installed for two households. That is, the power generation device 1 is installed in the home A home and the power generation device 2 is installed in the home B home. When an operation start switch (not shown) is pressed, the operation control device 30 starts the program and advances the program to step 102. In step 102, the operation control device 30 reads the maximum power generation amount and the minimum power generation amount of the power generation device 10 from each power generation device 10 and stores them in a storage unit (or a storage device not shown). The maximum power generation amount and the minimum power generation amount of the power generation apparatus 10 may be set to rated values (for example, the maximum power generation amount is 1000 W and the minimum power generation amount is 250 W), or are predetermined from the viewpoint of taking time-dependent changes into account. The maximum power generation amount and the minimum power generation amount may be derived from the actual power generation amount until that time and set to the derived values.

そして、運転制御装置30は、ステップ104〜118の処理を繰り返し実行して各発電装置10の発電を制御する。運転制御装置30は、各電力計22を使用して各電力使用場所20での電力消費量を計測(測定)し(ステップ104)、その計測結果を全て加算して総電力消費量を計算する(ステップ106)。図3は、A宅の電力消費量を計測した結果を示すグラフであり、図4はB宅の電力消費量を計測した結果を示すグラフであり、図5は、A宅とB宅の総電力消費量を示すグラフである。図3〜図5においては、各横軸は一日の時刻(時間)を0時から24時までで示しており、各縦軸は電力消費量[W]を示している。なお、図3から図5に示すグラフを記憶して消費電力パターンを使用して発電量指示値を導出することはない。   And the operation control apparatus 30 controls the electric power generation of each electric power generating apparatus 10 by repeatedly performing the process of steps 104-118. The operation control device 30 measures (measures) the power consumption at each power usage place 20 using each wattmeter 22 (step 104), and adds all the measurement results to calculate the total power consumption. (Step 106). FIG. 3 is a graph showing the result of measuring the power consumption of the home A, FIG. 4 is a graph showing the result of measuring the power consumption of the home B, and FIG. It is a graph which shows electric power consumption. 3 to 5, each horizontal axis indicates the time (hour) of the day from 0:00 to 24:00, and each vertical axis indicates the power consumption [W]. Note that the graphs shown in FIGS. 3 to 5 are not stored and the power generation amount instruction value is not derived using the power consumption pattern.

運転制御装置30は、各電力計18を使用して各発電装置10から出力される発電出力量を計測(測定)する(ステップ108)。図6は発電装置1、2の発電出力量を計測した結果を示すグラフである。発電装置1の発電出力量は濃い太い実線で示されており、発電装置2の発電出力量は薄い細い実線で示されている。図6においては、横軸は一日の時刻(時間)を0時から24時までで示しており、縦軸は発電量[W]を示している。   The operation control device 30 measures (measures) the power generation output amount output from each power generation device 10 using each wattmeter 18 (step 108). FIG. 6 is a graph showing the results of measuring the power generation output amount of the power generation devices 1 and 2. The power generation output amount of the power generation device 1 is indicated by a thick thick solid line, and the power generation output amount of the power generation device 2 is indicated by a thin thin solid line. In FIG. 6, the horizontal axis indicates the time (hour) of the day from 0:00 to 24:00, and the vertical axis indicates the power generation amount [W].

次に、運転制御装置30は、ステップ110において、発電装置1,2の最大発電量および最小発電量に基づいて制約条件を設定する。制約条件は、各発電装置10の最大発電量および最小発電量に基づいて規定されるものであり、その求め方について詳述する。発電装置1,2は最大発電量および最小発電量で規定される範囲内で発電するので、発電量指示値もその範囲内を採ることになる。これは下記数1で示す不等式で表される。   Next, in step 110, the operation control device 30 sets a constraint condition based on the maximum power generation amount and the minimum power generation amount of the power generation devices 1 and 2. The constraint conditions are defined based on the maximum power generation amount and the minimum power generation amount of each power generation apparatus 10, and how to obtain them will be described in detail. Since the power generation devices 1 and 2 generate power within the range defined by the maximum power generation amount and the minimum power generation amount, the power generation amount instruction value also falls within the range. This is expressed by the inequality shown by the following equation (1).

Figure 2007166746
Figure 2007166746

ここで、Eg,Egは発電装置1、2の発電量指示値を表している。 Here, Eg 1 and Eg 2 represent power generation amount instruction values of the power generation apparatuses 1 and 2.

上記数1において不等号の向きを統一すると、下記数2となる。   If the direction of the inequality sign is unified in the above equation 1, the following equation 2 is obtained.

Figure 2007166746
Figure 2007166746

この数2を行列を用いて一つの式にまとめると、下記数3となる。この数3が制約条件を示す式である。   When this equation 2 is combined into one equation using a matrix, the following equation 3 is obtained. This number 3 is an expression indicating a constraint condition.

Figure 2007166746
Figure 2007166746

ここで、左辺のベクトルxが最適化するべき変数であり、ベクトルxは下記数4で示されている。左辺のベクトルxにかかる行列が定数Aである。右辺の2つの行列の積が定数bである。定数bは、左半分の係数行列と右半分の発電装置1,2の最大発電量および最小発電量で表される行列からなる。定数Aおよびbは下記数5および数6でそれぞれ表される。   Here, the vector x on the left side is a variable to be optimized, and the vector x is represented by the following formula 4. A matrix relating to the vector x on the left side is a constant A. The product of the two matrices on the right side is the constant b. The constant b is composed of a coefficient matrix in the left half and a matrix represented by the maximum power generation amount and the minimum power generation amount of the power generators 1 and 2 in the right half. The constants A and b are expressed by the following equations 5 and 6, respectively.

Figure 2007166746
Figure 2007166746

Figure 2007166746
Figure 2007166746

Figure 2007166746
Figure 2007166746

したがって、運転制御装置30は、ステップ110において、ステップ102で先に読み込んで記憶している発電装置1,2の最大および最小発電量を使って、上述した定数bの右半分の行列に上から順番に発電装置1の最大発電量である1000および最小発電量である250、発電装置2の最大発電量である1000および最小発電量である250を代入することにより、上記数3に示す制約条件を設定することができる。   Therefore, in step 110, the operation control device 30 uses the maximum and minimum power generation amounts of the power generation devices 1 and 2 previously read and stored in step 102 to the matrix of the right half of the constant b described above from above. By sequentially substituting 1000, which is the maximum power generation amount of the power generation device 1, and 250, which is the minimum power generation amount, 1000, which is the maximum power generation amount of the power generation device 2, and 250, which is the minimum power generation amount, Can be set.

次に、運転制御装置30は、ステップ112において、発電装置1,2の各発電出力量および総電力消費量に基づいて評価関数を設定する。評価関数は、各発電装置10の発電出力量および総電力消費量に基づいて規定されるものであり、その求め方について詳述する。評価関数は、各発電装置10の発電出力量の変動量を最小に抑制し、かつ、総電力消費量と総発電出力量を一致させるように設定されていることが望ましい。評価関数は、発電装置ごとの発電量指示値と発電出力量検出手段によって検出された発電出力量の差の二乗値を発電装置すべてについて総和した値、および各発電量指示値の総和と総電力消費量検出手段によって検出された総電力消費量の差の二乗値の項を含むことが望ましい。したがって、評価関数は下記数7に示すようになる。   Next, in step 112, the operation control device 30 sets an evaluation function based on the power generation output amounts and the total power consumption amounts of the power generation devices 1 and 2. The evaluation function is defined based on the power generation output amount and the total power consumption amount of each power generation apparatus 10, and a method for obtaining the evaluation function will be described in detail. It is desirable that the evaluation function is set so as to suppress the fluctuation amount of the power generation output amount of each power generation apparatus 10 to the minimum and to match the total power consumption amount and the total power generation output amount. The evaluation function is the sum of the square value of the difference between the power generation amount instruction value for each power generation device and the power generation output amount detected by the power generation output amount detection means for all the power generation devices, and the sum of each power generation amount instruction value and the total power. It is desirable to include a term of the square value of the difference in the total power consumption detected by the consumption detection means. Therefore, the evaluation function is as shown in the following formula 7.

Figure 2007166746

ここで、Eg1_k−1は発電装置1の現時点の発電出力量であり、ステップ108で計測された値である。Eg2_k−1は発電装置2の現時点の発電出力量であり、ステップ108で計測された値である。Eoは、現時点の総電力消費量であり、ステップ106で計測された値である。aは、重みを表しており、評価関数の右辺第3項が最も効率への寄与度が高いことから3以上に設定するのが好ましい。
Figure 2007166746

Here, Eg 1 — k−1 is the current power generation output amount of the power generator 1, and is the value measured in step 108. Eg 2 — k−1 is the current power generation output amount of the power generator 2, and is the value measured in step 108. Eo is the current total power consumption, and is a value measured in step 106. a represents a weight, and is preferably set to 3 or more because the third term on the right side of the evaluation function has the highest contribution to efficiency.

上記数7を変形すると、下記数8となり、この数8を2ノルムを用いて表すと下記数9となる。   When the above formula 7 is modified, the following formula 8 is obtained. When this formula 8 is expressed using 2 norms, the following formula 9 is obtained.

Figure 2007166746
Figure 2007166746

Figure 2007166746
Figure 2007166746

ここで、右辺第1項のベクトルxにかかる行列が定数Cであり、右辺第2項が定数dである。定数dは、発電装置1,2の現時点の発電出力量と、現時点の総電力消費量で表される行列である。定数Aおよびbは下記数5および数6でそれぞれ表される。定数Cおよびdは下記数10および数11でそれぞれ表される。   Here, the matrix relating to the vector x of the first term on the right side is the constant C, and the second term on the right side is the constant d. The constant d is a matrix represented by the current power generation output amount of the power generation apparatuses 1 and 2 and the current total power consumption. The constants A and b are expressed by the following equations 5 and 6, respectively. The constants C and d are expressed by the following equations 10 and 11, respectively.

Figure 2007166746
Figure 2007166746

Figure 2007166746
Figure 2007166746

したがって、運転制御装置30は、ステップ112において、先にステップ106で計算した現時点の総電力消費量、および先にステップ108で計測した発電装置1,2の現時点の発電出力量を使って、上述した定数dの行列に上から順番に発電装置1の現時点の発電出力量Eg1_k−1、発電装置2の現時点の発電出力量Eg2_k−1、および現時点の総電力消費量Eoにaを重み付けした値を代入することにより、上記数9に示す評価関数を設定することができる。 Therefore, the operation control device 30 uses the current total power consumption calculated in step 106 in step 112 and the current power generation output amount of the power generation devices 1 and 2 previously measured in step 108 in step 112. weighting a top to the matrix of constants d power generation output amount Eg 1_k-1 of the current generator 1 sequentially, the power generation output amount Eg 2_k-1 of the current power generation apparatus 2, and the total power consumption Eo at the present time By substituting these values, the evaluation function shown in the above equation 9 can be set.

そして、運転制御装置30は、ステップ114において、ステップ104で計測(測定)された総電力消費量に基づいて先に計算された総電力消費量、および先にステップ108で計測(測定)された各発電出力量に基づいて規定される評価関数を、各発電装置の最大および最小発電量に基づいて規定される制約条件のもと最適化手法によって解くことにより、各発電装置の発電量指示値を導出する(発電量指示値導出手段)。ここで使用する最適化手法は最小二乗法である。すなわち、運転請求項30は、上述した評価関数を最適とする変数(ベクトルx)を求める問題(最適化問題)を上述した制約条件のもと最小二乗法で解く。最小二乗法は一般によく知られているので、その解法の詳細な説明は省略する。図7に、導出された発電量指示値のグラフを示す。すなわち、発電装置1の発電量指示値1を濃い太い実線で示しており、発電装置2の発電量指示値2を薄い細い実線で示している。図7においては、横軸は一日の時刻(時間)を0時から24時までで示しており、縦軸は発電量指示値[W]を示している。また、図6および図7に示すグラフは、ある一日の発電装置1,2の各発電量および発電装置1,2への各発電量指示値を24時間に渡って例示するものであり、図2に示す制御プログラムの処理ごとに作成するものではない。すなわち、運転制御装置30は、現時点の総電力消費量、および発電装置1,2の現時点の発電出力量すなわち前回の処理サイクル時(60秒前)に導出された発電量指示値に基づいて発電された発電量から今回の発電量指示値を導出し、その導出結果を発電装置10に送信する。   Then, in step 114, the operation control device 30 has previously calculated (measured) the total power consumption previously calculated based on the total power consumption measured (measured) in step 104, and previously in step 108. By solving the evaluation function defined based on each power generation output amount by the optimization method under the constraint conditions defined based on the maximum and minimum power generation amount of each power generation device, the power generation amount indication value of each power generation device Is derived (power generation amount instruction value deriving means). The optimization method used here is the least square method. That is, the operation claim 30 solves the problem (optimization problem) for obtaining the variable (vector x) that optimizes the above-described evaluation function by the least square method under the above-described constraint conditions. Since the least square method is generally well known, a detailed description of the solution is omitted. FIG. 7 shows a graph of the derived power generation amount instruction value. That is, the power generation amount instruction value 1 of the power generation device 1 is indicated by a thick thick solid line, and the power generation amount instruction value 2 of the power generation device 2 is indicated by a thin thin solid line. In FIG. 7, the horizontal axis indicates the time (hour) of the day from 0:00 to 24:00, and the vertical axis indicates the power generation amount instruction value [W]. Moreover, the graph shown in FIG. 6 and FIG. 7 illustrates each power generation amount of the power generation devices 1 and 2 for a certain day and each power generation amount instruction value to the power generation devices 1 and 2 over 24 hours. It is not created for each process of the control program shown in FIG. That is, the operation control device 30 generates power based on the current total power consumption and the current power generation output amount of the power generation devices 1 and 2, that is, the power generation amount instruction value derived during the previous processing cycle (60 seconds before). The current power generation amount instruction value is derived from the generated power generation amount, and the derived result is transmitted to the power generation apparatus 10.

なお、最適化手法としては、最小二乗法だけでなく、他の方法例えばニュートン方、勾配法、最急降下法などを採用するようにしてもよい。この場合、各手法に合わせて評価関数を変形させる必要がある。   As an optimization method, not only the least square method but also other methods such as a Newton method, a gradient method, and a steepest descent method may be adopted. In this case, it is necessary to change the evaluation function according to each method.

運転制御装置30は、ステップ116において、ステップ114で導出された発電量指示値を対応する発電装置にそれぞれ送信して各発電装置10を発電させる。各発電装置10は、運転制御装置30からの発電量指示値に応じて発電量となるように発電する。   In step 116, the operation control device 30 transmits the power generation amount instruction value derived in step 114 to the corresponding power generation device to cause each power generation device 10 to generate power. Each power generation device 10 generates power according to the power generation amount instruction value from the operation control device 30 so as to obtain the power generation amount.

運転制御装置30は、ステップ118において、所定時間が経過するまで待機し、その後プログラムをステップ104に戻す。これにより、上述したステップ104からステップ116の処理を所定時間毎に繰り返し実行することができる。したがって、運転制御装置30から各発電装置への発電量指示値の送信は所定時間毎に行われ、各発電装置10は次の発電量指示値を受信するまで(ステップ118の所定時間経過するまで)今回受信した発電量指示値に応じた発電量で発電する。   In step 118, the operation control device 30 stands by until a predetermined time elapses, and then returns the program to step 104. As a result, the processing from step 104 to step 116 described above can be repeatedly executed at predetermined time intervals. Therefore, transmission of the power generation amount instruction value from the operation control device 30 to each power generation device is performed every predetermined time, and each power generation device 10 receives the next power generation amount instruction value (until the predetermined time of step 118 elapses). ) Power is generated with the power generation amount corresponding to the power generation amount instruction value received this time.

所定時間は、現在(現時刻)の総電力消費量と総電力消費量が同一となる確率が高い時間に設定されている。すなわち、この時間は、現在の総電力消費量と同一の総電力消費量となる確率が高い現在からの経過時間である。本実施形態においては、所定時間を60秒に設定している。現時刻の総電力消費量と60秒後の総電力消費量がほぼ同一である確率が高いということである。以下に詳述する。図8に、現時刻の総電力消費量と60秒後の総電力消費量との相関関係を示す。図8においては、横軸および縦軸は電力消費量[W]をそれぞれ示している。図8のグラフから明らかなように、現時刻の総電力消費量と60秒後の総電力消費量がほぼ同一である確率が高いということがわかる。また、60秒後の電力消費量の変化量を図9に示す。図9から明らかなように、60秒後の電力消費量の変化が100W以上である確率は22%であり、100W以下である確率は78%である。これら統計学的見地から、現時刻の電力消費量を60秒後の電力消費量とすることができることがわかった。   The predetermined time is set to a time with a high probability that the total power consumption at the present time (current time) is the same as the total power consumption. In other words, this time is an elapsed time from the present when there is a high probability that the total power consumption is the same as the current total power consumption. In the present embodiment, the predetermined time is set to 60 seconds. This means that there is a high probability that the total power consumption at the current time and the total power consumption after 60 seconds are almost the same. This will be described in detail below. FIG. 8 shows the correlation between the total power consumption at the current time and the total power consumption after 60 seconds. In FIG. 8, the horizontal axis and the vertical axis indicate the power consumption [W], respectively. As is apparent from the graph of FIG. 8, it can be seen that there is a high probability that the total power consumption at the current time and the total power consumption after 60 seconds are substantially the same. Further, the amount of change in power consumption after 60 seconds is shown in FIG. As is clear from FIG. 9, the probability that the change in the power consumption after 60 seconds is 100 W or more is 22%, and the probability that it is 100 W or less is 78%. From these statistical viewpoints, it was found that the power consumption at the current time can be the power consumption after 60 seconds.

図10に、本発明を用いない場合(従来のように電力消費量を予測して発電する場合)と本発明を用いた場合におけるそれぞれの発電量の過不足量[kWh]を示す。図10において、本発明を用いる場合を右側の棒グラフで示し、本発明を用いない場合を左側の棒グラフで示す。発電量の不足量を左上がりのハッチングで示し、発電量の過剰量を右上がりのハッチングで示す。図10に示すように、上述した本発明による分散型電源システムによれば、本発明を用いない場合と比べて発電量の過不足量を76%削減できることがわかる。したがって、過剰発電・発電不足の無駄がなくなり、効率のよい発電を実施することができる。   FIG. 10 shows the excess and deficiency [kWh] of the respective power generation amounts when the present invention is not used (when power generation is performed by predicting power consumption as in the prior art) and when the present invention is used. In FIG. 10, the case where the present invention is used is shown by a right bar graph, and the case where the present invention is not used is shown by a left bar graph. The insufficient amount of power generation is indicated by hatching with a rising left, and the excess amount of power generation is indicated by hatching with a rising right. As shown in FIG. 10, according to the above-described distributed power supply system according to the present invention, it is understood that the power generation excess / deficiency can be reduced by 76% compared to the case where the present invention is not used. Therefore, there is no waste of excess power generation and power generation deficiency, and efficient power generation can be performed.

また、図11に、本発明を適用しない発電装置2台で発電した場合の発電量および総電力消費量を時系列データで示し、図12に、本発明を適用した発電装置2台で発電した場合の発電量および総電力消費量を時系列データで示す。図11、図12において、色の薄い実線で発電装置1の発電量を示し、濃い実線で発電装置2の発電量を示し、濃い破線で発電装置1、2の電力供給先である電力消費場所での総電力消費量を示している。図11,12においては、各横軸は一日の時刻(時間)を示しており、各縦軸は電力量[W]を示している。図11および図12から明らかなように、いずれの場合も総電力消費量に応じた発電量となっているが、本発明を適用した場合の方が発電装置1、2の各発電量の変動が少ないことがわかる。また、図13に本発明を用いた場合と用いない場合における各発電量の変動量[W]を定量化したもの例えば所定時間内の積算値を示す。図13において、本発明を用いる場合を左側の棒グラフで示し、本発明を用いない場合を右側の棒グラフで示す。図13に示すように、本発明を用いた場合は、本発明を用いない場合と比べて発電量の変動量を約50%削減できることがわかる。したがって、発電装置の耐久性の向上・投入燃料の減少に貢献することができる。   In addition, FIG. 11 shows the power generation amount and the total power consumption when power is generated by two power generators to which the present invention is not applied in time series data, and FIG. The power generation amount and the total power consumption in the case are shown by time series data. In FIG. 11 and FIG. 12, the power generation amount of the power generation device 1 is indicated by a light solid line, the power generation amount of the power generation device 2 is indicated by a dark solid line, and the power consumption place that is the power supply destination of the power generation devices 1 and 2 is indicated by a dark broken line. Total power consumption is shown. 11 and 12, each horizontal axis indicates the time (hour) of the day, and each vertical axis indicates the electric energy [W]. As is clear from FIGS. 11 and 12, in each case, the power generation amount corresponds to the total power consumption. However, when the present invention is applied, fluctuations in the respective power generation amounts of the power generation devices 1 and 2 occur. It can be seen that there are few. FIG. 13 shows a quantified amount of variation [W] of each power generation amount with and without using the present invention, for example, an integrated value within a predetermined time. In FIG. 13, a case where the present invention is used is shown by a left bar graph, and a case where the present invention is not used is shown by a right bar graph. As shown in FIG. 13, it can be seen that when the present invention is used, the fluctuation amount of the power generation amount can be reduced by about 50% compared to the case where the present invention is not used. Therefore, it is possible to contribute to improvement of durability of the power generation device and reduction of input fuel.

上述した説明から明らかなように、本実施形態においては、総電力消費量測定手段(ステップ104,106)が、各負荷装置21にて消費された総電力消費量を測定し、発電出力量測定手段(ステップ108)が、各発電装置からそれぞれ出力される発電出力量をそれぞれ測定し、発電量指示値導出手段(ステップ110〜114)が、各測定手段によってそれぞれ測定された各発電出力量および総電力消費量に基づいて規定される評価関数を、各発電装置の最大および最小発電量に基づいて規定される制約条件のもと最適化手法によって解くことにより、各発電装置の発電量指示値を導出し、発電制御手段(ステップ116)が、発電量指示値導出手段によって導出された発電量指示値に応じて各発電装置の発電量を制御する。これにより、発電量指示値は、予め予測した予測結果に基づいて発電装置の発電量指示値を算出することなく、各測定手段によってそれぞれ測定された各発電出力量および総電力消費量に基づいて最適な値として算出することができる。したがって、発電出力量と電力需要量の過不足を極力抑制して効率よく発電することができる。   As is apparent from the above description, in this embodiment, the total power consumption measuring means (steps 104 and 106) measures the total power consumption consumed by each load device 21 and measures the generated power output. The means (step 108) measures the power generation output amount output from each power generation device, respectively, and the power generation amount instruction value deriving means (steps 110 to 114) and the power generation output amounts respectively measured by the measurement means and By solving the evaluation function defined based on the total power consumption by the optimization method under the constraint conditions defined based on the maximum and minimum power generation of each power generation device, the power generation amount indication value of each power generation device And the power generation control means (step 116) controls the power generation amount of each power generator according to the power generation amount instruction value derived by the power generation amount instruction value deriving means. Thereby, the power generation amount instruction value is based on each power generation output amount and total power consumption respectively measured by each measuring means without calculating the power generation amount instruction value of the power generation device based on the prediction result predicted in advance. It can be calculated as an optimum value. Therefore, it is possible to efficiently generate power while suppressing excess and deficiency of the power generation output amount and the power demand amount as much as possible.

また、評価関数は、各発電装置10の発電出力量の変動量を最小に抑制し、かつ、総電力消費量と総発電出力量を一致させるように設定されているので、導出された発電量指示値に基づいて発電装置10を発電すると、発電装置10の発電出力量の変動量が最小に抑制され、かつ、総電力消費量と総発電出力量が一致する。したがって、発電装置の耐久性を向上させ、燃費を向上させることができ、かつ、効率よく発電することができる。   Further, since the evaluation function is set so as to minimize the fluctuation amount of the power generation output amount of each power generation apparatus 10 and to match the total power consumption amount and the total power generation output amount, the derived power generation amount When the power generation device 10 generates power based on the instruction value, the amount of fluctuation in the power generation output amount of the power generation device 10 is suppressed to the minimum, and the total power consumption amount matches the total power generation output amount. Therefore, durability of the power generation device can be improved, fuel consumption can be improved, and power can be generated efficiently.

また、評価関数は、発電装置ごとの発電量指示値と発電出力量検出手段によって検出された発電出力量の差の二乗値を発電装置すべてについて総和した値、および各発電量指示値の総和と総電力消費量検出手段によって検出された総電力消費量の差の二乗値の項を含むので、簡単な関数を使用し、最適な発電量指示値を容易かつ的確に算出することができる。   In addition, the evaluation function includes a value obtained by summing the square value of the difference between the power generation amount instruction value for each power generation device and the power generation output amount detected by the power generation output amount detection means for all the power generation devices, and the sum of the power generation amount instruction values. Since the term of the square value of the difference of the total power consumption detected by the total power consumption detection means is included, the optimal power generation amount instruction value can be easily and accurately calculated using a simple function.

また、総電力消費量測定手段、発電出力量測定手段、発電量指示値導出手段、および発電制御手段の繰り返し処理を、現在(現時刻)の総電力消費量と総電力消費量が同一となる確率が高い所定時間をおいて実行するので、発電出力量と電力需要量の過不足を抑制して効率よく発電することができる。   In addition, the current power (current time) total power consumption and the total power consumption are the same for the total power consumption measuring unit, the power generation output amount measuring unit, the power generation amount instruction value deriving unit, and the power generation control unit. Since it is executed after a predetermined time with a high probability, it is possible to efficiently generate power while suppressing the excess or deficiency of the power generation output amount and the power demand amount.

また、発電装置10としては、発電器11が交流電力を発生して交換器12を介さずに直接出力するものもある。   Further, as the power generation device 10, there is a power generation device 11 in which the power generator 11 generates AC power and directly outputs it without going through the exchanger 12.

本発明による分散型電源システムの一実施形態の概要を示す概要図である。1 is a schematic diagram showing an outline of an embodiment of a distributed power supply system according to the present invention. 図2に示した運転制御装置にて実行される制御プログラムのフローチャートである。It is a flowchart of the control program performed with the operation control apparatus shown in FIG. A宅の電力消費量を示す時系列データである。It is time series data which shows the electric power consumption of A house. B宅の電力消費量を示す時系列データである。It is time series data which shows the electric power consumption of B house. 総電力消費量を示す時系列データである。It is time series data which shows total power consumption. 発電装置の発電量を示す時系列データである。It is time series data which shows the electric power generation amount of an electric power generating apparatus. 運転制御装置から発電装置への発電量指示値を示す時系列データである。It is time series data which shows the electric power generation amount instruction value from an operation control apparatus to a power generator. 現時刻と60秒後の電力消費量の確率密度関数を示すグラフである。It is a graph which shows the probability density function of the power consumption after the present time and 60 seconds. 60秒後の電力消費量の変化量の割合を示す円グラフである。It is a pie chart which shows the ratio of the amount of change of power consumption after 60 seconds. 本発明を用いた場合と用いない場合の発電量の過不足量を示すグラフである。It is a graph which shows the excess and deficiency of the electric power generation amount when not using with the case where this invention is used. 本発明を用いない場合の発電量を示すグラフである。It is a graph which shows the electric power generation amount when not using this invention. 本発明を用いた場合の発電量を示すグラフである。It is a graph which shows the electric power generation amount at the time of using this invention. 本発明を用いた場合と用いない場合の発電量の変化量を示すグラフである。It is a graph which shows the variation | change_quantity of the electric power generation amount when not using it with the case where this invention is used.

符号の説明Explanation of symbols

10…発電装置、11…発電器、12…変換器、13…燃料供給装置、14…水供給装置、15…送電線、16…系統電源、17…制御装置、18,22…電力計、20…負荷装置設置場所、21…負荷装置、30…運転制御装置。   DESCRIPTION OF SYMBOLS 10 ... Power generation device, 11 ... Generator, 12 ... Converter, 13 ... Fuel supply device, 14 ... Water supply device, 15 ... Power transmission line, 16 ... System power supply, 17 ... Control device, 18, 22 ... Wattmeter, 20 ... load device installation place, 21 ... load device, 30 ... operation control device.

Claims (4)

複数の発電装置と、
前記各発電装置から供給される電力で稼動する負荷装置が設置された複数の負荷装置設置場所と、
前記各負荷装置にて消費された総電力消費量を測定する総電力消費量測定手段と、
前記各発電装置からそれぞれ出力される発電出力量をそれぞれ測定する発電出力量測定手段と、
前記各測定手段によってそれぞれ測定された前記各発電出力量および前記総電力消費量に基づいて規定される評価関数を、前記各発電装置の最大および最小発電量に基づいて規定される制約条件のもと最適化手法によって解くことにより、前記各発電装置の発電量指示値を導出する発電量指示値導出手段と、
前記発電量指示値導出手段によって導出された発電量指示値に応じて前記各発電装置の発電量を制御する発電制御手段と、を備えたことを特徴とする分散型電源システム。
A plurality of power generators;
A plurality of load device installation places where load devices that operate with electric power supplied from each of the power generation devices are installed, and
Total power consumption measuring means for measuring the total power consumption consumed by each of the load devices;
Power generation output amount measuring means for measuring the power generation output amount output from each of the power generation devices,
An evaluation function defined on the basis of the respective power generation output amounts and the total power consumption measured by the respective measuring means is defined as a constraint condition defined on the basis of the maximum and minimum power generation amounts of the respective power generation devices. And a power generation amount instruction value deriving means for deriving a power generation amount instruction value of each of the power generation devices by solving with an optimization method,
A distributed power supply system comprising: a power generation control unit that controls a power generation amount of each of the power generation devices in accordance with a power generation amount instruction value derived by the power generation amount instruction value deriving unit.
請求項1において、前記評価関数は、前記各発電装置の発電出力量の変動量を最小に抑制し、かつ、前記総電力消費量と総発電出力量を一致させるように設定されていることを特徴とする分散型電源システム。   2. The evaluation function according to claim 1, wherein the evaluation function is set so as to suppress a fluctuation amount of the power generation output amount of each power generation device to a minimum and to match the total power consumption amount and the total power generation output amount. Features a distributed power supply system. 請求項2において、前記評価関数は、前記発電装置ごとの前記発電量指示値と前記発電出力量検出手段によって検出された前記発電出力量の差の二乗値を前記発電装置すべてについて総和した値、および前記各発電量指示値の総和と前記総電力消費量検出手段によって検出された総電力消費量の差の二乗値の項を含むことを特徴とする分散型電源システム。   3. The evaluation function according to claim 2, wherein the evaluation function is a sum total of the square value of the difference between the power generation amount instruction value for each power generation device and the power generation output amount detected by the power generation output amount detection means for all the power generation devices, A distributed power supply system including a term of a square value of a difference between the sum of the power generation amount indication values and the total power consumption detected by the total power consumption detection means. 請求項1乃至請求項3の何れか一項において、前記総電力消費量測定手段、前記発電出力量測定手段、前記発電量指示値導出手段、および発電制御手段の繰り返し処理を、現在の総電力消費量と総電力消費量が同一となる確率が高い所定時間をおいて実行することを特徴とする分散型電源システム。   4. The process according to claim 1, wherein the total power consumption measuring unit, the power generation output amount measuring unit, the power generation amount instruction value deriving unit, and the power generation control unit are repeatedly processed. A distributed power supply system, which is executed at a predetermined time with a high probability that consumption and total power consumption are the same.
JP2005358227A 2005-12-12 2005-12-12 Distributed power system Expired - Fee Related JP4548790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358227A JP4548790B2 (en) 2005-12-12 2005-12-12 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358227A JP4548790B2 (en) 2005-12-12 2005-12-12 Distributed power system

Publications (2)

Publication Number Publication Date
JP2007166746A true JP2007166746A (en) 2007-06-28
JP4548790B2 JP4548790B2 (en) 2010-09-22

Family

ID=38249020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358227A Expired - Fee Related JP4548790B2 (en) 2005-12-12 2005-12-12 Distributed power system

Country Status (1)

Country Link
JP (1) JP4548790B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030558A1 (en) * 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
CN103545846A (en) * 2013-11-11 2014-01-29 湖南大学 Microgrid economic operation method based on generalized load prediction
JP2015039247A (en) * 2009-10-27 2015-02-26 阿部 力也 Multi-terminal power conversion/distribution device, electrical equipment, distribution network system and method of operating the same
KR101515709B1 (en) 2013-10-08 2015-04-27 주식회사 삼천리 Control Method of distributed and integrated generation system
CN104821606A (en) * 2015-05-12 2015-08-05 阳光电源股份有限公司 Method and device for controlling power generation source, and distributed power generation system thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252542A (en) * 1996-03-15 1997-09-22 Mitsubishi Electric Corp Method and apparatus for decision of output of generator
JP2002271986A (en) * 2001-03-07 2002-09-20 Tokyo Gas Co Ltd Energy supplying system and center computer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252542A (en) * 1996-03-15 1997-09-22 Mitsubishi Electric Corp Method and apparatus for decision of output of generator
JP2002271986A (en) * 2001-03-07 2002-09-20 Tokyo Gas Co Ltd Energy supplying system and center computer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030558A1 (en) * 2009-09-10 2011-03-17 Abe Rikiya Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN102484369A (en) * 2009-09-10 2012-05-30 阿部力也 Multi-Terminal Power Conversion Device, Multi-Terminal Power Transfer Device, And Power Network System
EP2477297A1 (en) * 2009-09-10 2012-07-18 Rikiya Abe Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
EP2477297A4 (en) * 2009-09-10 2015-04-01 Univ Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
US9013902B2 (en) 2009-09-10 2015-04-21 The University Of Tokyo Multi-terminal power conversion device, multi-terminal power transfer device, and power network system
CN102484369B (en) * 2009-09-10 2015-12-16 国立大学法人东京大学 Multiterminal subtype power-converting device, multiterminal subtype electric power are subject to device and electric power networks system
JP2015039247A (en) * 2009-10-27 2015-02-26 阿部 力也 Multi-terminal power conversion/distribution device, electrical equipment, distribution network system and method of operating the same
JP2012010530A (en) * 2010-06-27 2012-01-12 Rikiya Abe Multiple terminal type electric power conversion device, electric power system and control program of the same
KR101515709B1 (en) 2013-10-08 2015-04-27 주식회사 삼천리 Control Method of distributed and integrated generation system
CN103545846A (en) * 2013-11-11 2014-01-29 湖南大学 Microgrid economic operation method based on generalized load prediction
CN104821606A (en) * 2015-05-12 2015-08-05 阳光电源股份有限公司 Method and device for controlling power generation source, and distributed power generation system thereof
CN104821606B (en) * 2015-05-12 2017-12-22 阳光电源股份有限公司 A kind of control method of energy source, equipment and its distributed generation system

Also Published As

Publication number Publication date
JP4548790B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US11223202B2 (en) Energy management method for an energy system and energy system
JP4548790B2 (en) Distributed power system
JP5877747B2 (en) Control device, power supply system, and control method
JPWO2006134719A1 (en) Load control device, load control method, load control circuit, load control program, and computer-readable recording medium recording load control program
EP1511108B1 (en) Cogeneration system, operation controller for cogeneration facility, and operation program for cogeneration facility
JP2017500836A (en) Charging method and charging system
JP6046938B2 (en) Power supply system
JP2014098601A (en) Insolation amount calculation method and power supply determining method
JP6166512B2 (en) Control device, power system, and control method
JP5241765B2 (en) Power management system and program
JP2018133939A (en) Power supply system and control method for power supply system
JP2006127967A (en) Cogeneration system and its operation method
JP5853144B2 (en) Power supply control device and power supply system including the same
JP2016082771A (en) Energy control system
US20110109165A1 (en) Apparatus and method for managing a power source
JP5940263B2 (en) Power control apparatus and power control method
JP2013223316A (en) Power control system
JP2008113523A (en) Power supply system, consumer group facility, and mehod of monitoring and controlling them
JP4222923B2 (en) Energy saving information provision system
JP2014003780A (en) Backup power supply system
JP2017022860A (en) Power supply system, charge/discharge control device and charge/discharge control method
JP5502299B2 (en) Fuel cell system
JP2020092544A (en) Abnormality estimation system and program
JP4270461B2 (en) Distributed power system controller and distributed power system network system
KR20120118651A (en) Controller for sofc system drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

R151 Written notification of patent or utility model registration

Ref document number: 4548790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees