JP2007164993A - Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell - Google Patents

Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell Download PDF

Info

Publication number
JP2007164993A
JP2007164993A JP2005355787A JP2005355787A JP2007164993A JP 2007164993 A JP2007164993 A JP 2007164993A JP 2005355787 A JP2005355787 A JP 2005355787A JP 2005355787 A JP2005355787 A JP 2005355787A JP 2007164993 A JP2007164993 A JP 2007164993A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
solid polymer
electrode catalyst
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005355787A
Other languages
Japanese (ja)
Inventor
Keiichi Iio
圭市 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005355787A priority Critical patent/JP2007164993A/en
Publication of JP2007164993A publication Critical patent/JP2007164993A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode catalyst layer for solid polymer fuel cell in which condensation of catalyst carrying carbon particles is few, carbon particles with small particle size are uniformly dispersed, and a catalyst layer with high effective utilization rate of platinum catalyst is produced by forming a configuration of high porosity and increasing three-phase interface area in the method of manufacturing a solid polymer fuel cell electrode catalyst layer which includes a process in which catalyst carrying carbons, proton conductive polymer, ink consisting of dispersant are atomized and sprayed on a proton conductive solid polymer film or a porous carbon sheet by ultrasonic. <P>SOLUTION: Wet pressurizing dispersion treatment in which agitation and crushing are carried out by making a high pressure stream pass through a nozzle with small diameter is performed to an ink. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、製造が容易であり、ガス拡散性が高く、触媒の有効利用率が高い固体高分子電解質型燃料電池用電極触媒層およびその製造方法に関する。   The present invention relates to an electrode catalyst layer for a solid polymer electrolyte fuel cell, which is easy to produce, has high gas diffusibility, and has a high effective catalyst utilization rate, and a method for producing the same.

燃料電池は水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す発電システムである。これは、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。中でも、室温付近で使用可能な固体高分子型燃料電池は車載用電源や家庭据置用電源などへの使用が有望視されており、近年、様々な研究開発が行われている。燃料電池の実用化に向けての課題は、出力密度、耐久性の向上などがあげられるが、最大の課題はコスト削減である。コスト削減の為に最も要求されているのは、電極に触媒として使用されている白金の使用量の低減である。   A fuel cell is a power generation system that generates electricity by using hydrogen and oxygen as fuel and causing reverse reaction of water electrolysis. This has features such as high efficiency, low environmental load and low noise compared with the conventional power generation method, and is attracting attention as a clean energy source in the future. Among these, polymer electrolyte fuel cells that can be used near room temperature are expected to be used for in-vehicle power supplies, home-use power supplies, etc., and various research and development have been conducted in recent years. Issues for the practical application of fuel cells include improvements in power density and durability, but the biggest issue is cost reduction. What is most demanded for cost reduction is a reduction in the amount of platinum used as a catalyst for the electrode.

固体高分子型燃料電池は、一般的に多数の単セルが積層されて構成されている。図1は、固体高分子型燃料電池用の膜・電極接合体の例を断面で示した部分説明図である。単セルは、二つの電極(酸化極と還元極)でプロトン伝導性固体高分子膜3を挟んで接合した膜・電極接合体10を、ガス流路を有するセパレータで挟んだ構造をしている。酸化極では水素ガスの酸化、還元極では水素イオンの還元がそれぞれ起こる。この酸化還元反応は、電極内部において電子伝導体であるカーボン粒子と、プロトン伝導体の両方に接し、かつ導入ガスが吸着しうる白金触媒の表面でのみ起こる。酸化還元反応が起こるこの部分は、三相界面と呼ばれており、この界面の面積が燃料電池の性能に大きく影響してくる。三相界面ではないところに存在する白金粒子は、電極の酸化還元反応に寄与しないため、全く機能しないことになる。白金使用量を低減させる為には、この機能しない白金の量をできるだけ減らし、使用した白金の有効利用率を高める必要がある。電極は、カーボン粒子、プロトン伝導体、触媒からなる触媒層1、2と、カーボン紙のようなガスが透過し、かつ電気を伝導するガス拡散層4との二層構成で、触媒層1、2が固体高分子膜3と接するように構成される。   A polymer electrolyte fuel cell is generally formed by laminating a large number of single cells. FIG. 1 is a partial explanatory view showing in cross section an example of a membrane / electrode assembly for a polymer electrolyte fuel cell. The single cell has a structure in which a membrane / electrode assembly 10 joined by sandwiching a proton conductive solid polymer membrane 3 between two electrodes (an oxidation electrode and a reduction electrode) is sandwiched by a separator having a gas flow path. . Oxidation of hydrogen gas occurs at the oxidation electrode, and reduction of hydrogen ions occurs at the reduction electrode. This oxidation-reduction reaction occurs only on the surface of the platinum catalyst that is in contact with both the carbon particles, which are electron conductors, and the proton conductor inside the electrode and can adsorb the introduced gas. This part where the redox reaction occurs is called a three-phase interface, and the area of this interface greatly affects the performance of the fuel cell. The platinum particles that are not at the three-phase interface do not contribute to the oxidation-reduction reaction of the electrode, and therefore do not function at all. In order to reduce the amount of platinum used, it is necessary to reduce the amount of platinum that does not function as much as possible and increase the effective utilization rate of the platinum used. The electrode has a two-layer configuration of catalyst layers 1 and 2 composed of carbon particles, proton conductors, and catalysts, and a gas diffusion layer 4 through which gas such as carbon paper permeates and conducts electricity. 2 is configured to contact the solid polymer film 3.

現状では、カーボン粒子上に担持された白金触媒がプロトン伝導体と接していなかったり、触媒がプロトン伝導体で覆われているためにガスが届かないこと等の理由から、白金の利用率は低い値となっている。このため、触媒層の微細構造を最適化し、白金の有効利用率を高めることは非常に重要な課題である。   At present, the platinum utilization rate is low because the platinum catalyst supported on the carbon particles is not in contact with the proton conductor or because the catalyst is covered with the proton conductor and the gas does not reach. It is a value. For this reason, optimizing the fine structure of the catalyst layer and increasing the effective utilization rate of platinum are very important issues.

触媒層は、これまで塗布法やスクリーン印刷法などで基材上に塗工される事が多かった。この場合、塗工されたインキを乾燥させる際に触媒担持カーボンの凝集が起こりやすく、その結果、触媒層における空孔率が低下して燃料ガスの経路が遮断される、プロトン伝導体と接触していない触媒が増加するなどの傾向が見られた。このような場合、三相界面の面積は小さくなり、白金の利用率は低くなることが予想される。利用率を高めるためには、白金担持カーボン粒子の凝集が無く、粒径の小さいカーボン粒子が均一に分散し、且つ空隙率の高い形態が必要とされる。   Until now, the catalyst layer has often been coated on a substrate by a coating method or a screen printing method. In this case, agglomeration of the catalyst-carrying carbon is likely to occur when the coated ink is dried, and as a result, the porosity in the catalyst layer is lowered and the fuel gas path is blocked, which makes contact with the proton conductor. There was a tendency to increase the number of non-existing catalysts. In such a case, it is expected that the area of the three-phase interface is reduced and the utilization rate of platinum is reduced. In order to increase the utilization rate, it is necessary to have a form in which the platinum-supporting carbon particles are not aggregated, the carbon particles having a small particle diameter are uniformly dispersed, and the porosity is high.

そこで、圧力式スプレーを用いて触媒層を形成することが提案されている(例えば、特許文献1参照)。圧力式スプレーを用いた場合では、触媒インクの乾燥速度が高くなるため、触媒の凝集が起こりにくく、その結果発電特性が改善された。しかしながら、従来の圧力式スプレーでは、ノズルから噴出してから塗着するまでの間の二次凝集、塗着後の粒
子の飛散、霧の粒子径のばらつきなどがあり、これらが三相界面の減少の要因となっていた。
Therefore, it has been proposed to form a catalyst layer using a pressure spray (see, for example, Patent Document 1). In the case of using the pressure spray, the drying speed of the catalyst ink is increased, so that the aggregation of the catalyst hardly occurs, and as a result, the power generation characteristics are improved. However, in the conventional pressure spray, there are secondary agglomeration between spraying from the nozzle and coating, scattering of particles after coating, variation in the particle size of fog, etc., and these are the three-phase interface. It was a factor of decrease.

以下に公知の文献を記す。
特開平8−115726号公報
Known documents are described below.
JP-A-8-115726

本発明は上記課題点について鑑み、固体酸化物型燃料電池用電極触媒層において、触媒担持カーボン粒子の凝集が少なく、粒径の小さいカーボン粒子が均一に分散し、且つ空隙率の高い形態をつくり、三相界面の面積を増大させることで白金触媒の有効利用率の高い触媒層を製造するための製造方法を提供することを目的とする。   In view of the above problems, the present invention provides a solid oxide fuel cell electrode catalyst layer in which a catalyst-supporting carbon particle is less aggregated, carbon particles having a small particle diameter are uniformly dispersed, and a high porosity is formed. An object of the present invention is to provide a production method for producing a catalyst layer having a high effective utilization rate of a platinum catalyst by increasing the area of the three-phase interface.

本発明は係る課題に鑑みなされたもので、請求項1の発明は、超音波により触媒担持カーボン、プロトン伝導性高分子、分散媒からなるインキを霧化させ、プロトン伝導性固体高分子膜または多孔質カーボンシート上に噴霧することにより作製する工程を含む固体高分子型燃料電池用電極触媒層の製造方法において、高圧流を小径孔を有するノズルを通過させることによって撹拌、破砕を行う、湿式加圧分散による処理をインキに対して行うことを特徴とする固体高分子型燃料電池用電極触媒層の製造方法としたものである。   The present invention has been made in view of the above problems, and the invention of claim 1 is characterized in that an ink comprising catalyst-supported carbon, a proton conductive polymer, and a dispersion medium is atomized by ultrasonic to produce a proton conductive solid polymer film or In the method for producing an electrode catalyst layer for a polymer electrolyte fuel cell comprising a step of producing by spraying on a porous carbon sheet, a high pressure flow is stirred and crushed by passing through a nozzle having a small diameter hole. This is a method for producing an electrode catalyst layer for a polymer electrolyte fuel cell, characterized in that the treatment by pressure dispersion is performed on the ink.

本発明の請求項2の発明は、前記湿式加圧分散処理において、ノズルを通過させる際の液体の圧力が30MPa〜200MPaであることを特徴とする請求項1に記載の固体高分子型燃料電池用電極触媒層の製造方法としたものである。   The invention according to claim 2 of the present invention is the polymer electrolyte fuel cell according to claim 1, wherein in the wet pressure dispersion treatment, the pressure of the liquid when passing through the nozzle is 30 MPa to 200 MPa. This is a manufacturing method of the electrode catalyst layer for use.

本発明の請求項3の発明は、前記湿式加圧分散処理において、インキがノズルを通過する回数が1回〜50回であることを特徴とする請求項1または2に記載の固体高分子型燃料電池用電極触媒層の製造方法としたものである。   According to a third aspect of the present invention, in the wet pressure dispersion treatment, the number of times the ink passes through the nozzle is 1 to 50 times, and the solid polymer type according to claim 1 or 2 This is a method for producing an electrode catalyst layer for a fuel cell.

本発明の請求項4の発明は、インキ中に存在する触媒担持カーボンとプロトン伝導性粒子からなる粒子の粒径が10〜800nmであることを特徴とする請求項1〜3いずれか1項に記載の固体高分子型燃料電池用電極触媒層の製造方法としたものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the particle size of the particles comprising the catalyst-carrying carbon and the proton conductive particles present in the ink is 10 to 800 nm. The production method of the electrode catalyst layer for a polymer electrolyte fuel cell described above is used.

本発明の請求項5の発明は、請求項1〜4に記載の製造方法により作製された固体高分子型燃料電池用電極触媒層において、層の空孔率が70〜90%であることを特徴とする固体高分子型燃料電池用電極触媒層としたものである。   According to a fifth aspect of the present invention, in the polymer electrolyte fuel cell electrode catalyst layer produced by the manufacturing method according to the first to fourth aspects, the porosity of the layer is 70 to 90%. This is an electrode catalyst layer for a solid polymer type fuel cell.

本発明の請求項6の発明は、請求項1〜4いずれか1項に記載の固体高分子型燃料電池用電極触媒層の製造方法により製造された電極触媒層、または請求項5の電極触媒層によってプロトン伝導性固体高分子膜が挟持されていることを特徴とする固体高分子型燃料電池としたものである。   Invention of Claim 6 of this invention is the electrode catalyst layer manufactured by the manufacturing method of the electrode catalyst layer for polymer electrolyte fuel cells of any one of Claims 1-4, or the electrode catalyst of Claim 5. A solid polymer fuel cell is characterized in that a proton conductive solid polymer membrane is sandwiched between layers.

このように、本発明は、触媒担持カーボン、プロトン伝導性高分子、分散媒からなる混合液を湿式加圧分散処理によって撹拌、破砕を行い、作製したインキを超音波により霧化させ、プロトン伝導性固体高分子膜または多孔質カーボンシート上に噴霧することにより電極触媒層を形成する工程を経て作製された固体高分子型燃料電池およびその製造方法である。インキの分散を行う際に混合液を高圧で小径孔を有するノズルを通過させることによって撹拌、破砕を行う湿式加圧分散を用いることでインキ中の触媒担持カーボンとプロ
トン伝導性高分子からなる粒子を比較的均一なサイズで微細化し、塗工時にインキ中の粒子の再凝集が起こらないよう超音波スプレーによって触媒層を作製するため、粒径が小さく、かつ空孔率の高い触媒層が作製できる。このようにして作製した触媒層は触媒の利用率が高く、この触媒層を用いて作製した燃料電池は少ない触媒量で優れた性能を有する。
As described above, the present invention stirs and crushes a mixed liquid composed of catalyst-carrying carbon, proton conductive polymer, and dispersion medium by wet pressure dispersion treatment, and atomizes the produced ink with ultrasonic waves to produce proton conduction. The polymer electrolyte fuel cell produced through the process of forming an electrode catalyst layer by spraying on a porous solid polymer membrane or a porous carbon sheet, and a method for producing the same. Particles composed of catalyst-carrying carbon and proton-conducting polymer in ink by using wet pressure dispersion that stirs and crushes the mixture by passing it through a nozzle having a small diameter hole at high pressure when dispersing ink Since the catalyst layer is made by ultrasonic spray so that the particles in the ink do not re-agglomerate during coating, the catalyst layer has a small particle size and a high porosity. it can. The catalyst layer thus produced has a high catalyst utilization rate, and a fuel cell produced using this catalyst layer has excellent performance with a small amount of catalyst.

以下、本発明の詳細について説明する。本発明では、触媒担持カーボン、プロトン伝導性高分子、分散媒からなる混合液を高圧で数百ミクロンの小径孔を有するノズルを通過させることによって撹拌、破砕を行う湿式加圧分散による処理を行うことでインキ中の触媒担持カーボン粒子を微細化し、作製したインキを超音波により霧化させ、基材上に噴霧することにより、固体高分子型燃料電池用の電極触媒層を作製する。   Details of the present invention will be described below. In the present invention, a treatment by wet pressure dispersion is performed in which a mixed liquid comprising catalyst-carrying carbon, proton conductive polymer, and dispersion medium is passed through a nozzle having a small-diameter hole of several hundred microns at high pressure to stir and crush. Thus, the catalyst-carrying carbon particles in the ink are refined, the produced ink is atomized by ultrasonic waves, and sprayed onto the substrate to produce an electrode catalyst layer for a polymer electrolyte fuel cell.

本発明で用いる触媒粒子としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムの白金族元素の他、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどの金属又はこれらの合金、または酸化物、複酸化物等が使用できる。またこれらの触媒の粒径は、大きすぎると触媒の活性が低下し、小さすぎると触媒の安定性が低下するため、0.5〜20nmが好ましい。更に好ましくは1〜5nmが良い。
これらの触媒を担持する電子伝導性の粉末は、一般的に炭素粉末が使用される。炭素の種類は、微粉末状で導電性を有し、触媒に犯されないものであればどのようなものでも構わないが、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、フラーレンが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると触媒層のガス拡散性が低下したり、触媒の利用率が低下するため、10〜1000nm程度が好ましい。更に好ましくは10〜100nmが良い。
The catalyst particles used in the present invention include platinum, palladium, ruthenium, iridium, rhodium, osmium, platinum group elements, iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and the like. A metal or an alloy thereof, or an oxide or a double oxide can be used. Moreover, since the activity of a catalyst will fall when the particle size of these catalysts is too large, and stability of a catalyst will fall when too small, 0.5-20 nm is preferable. More preferably, 1-5 nm is good.
Carbon powder is generally used as the electron conductive powder supporting these catalysts. Any kind of carbon may be used as long as it is in the form of fine powder, has conductivity and is not violated by the catalyst, but carbon black, graphite, graphite, activated carbon, carbon nanotubes, and fullerenes can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer is lowered or the utilization factor of the catalyst is lowered. More preferably, 10-100 nm is good.

触媒インキ中に含まれるプロトン伝導性高分子には様々なものが用いられるが、用いる電解質膜の成分によって、インキ中のプロトン伝導性高分子を選択する必要がある。市販のナフィオンを電解質膜として用いた場合は、ナフィオンを使用するのが好ましい。電解質膜にナフィオン以外の材料を用いた場合はインキ中に電解質膜と同じ成分を溶解させるなど、最適化をはかる必要がある。   Various proton conductive polymers are used in the catalyst ink, and it is necessary to select the proton conductive polymer in the ink depending on the components of the electrolyte membrane to be used. When commercially available Nafion is used as the electrolyte membrane, Nafion is preferably used. When materials other than Nafion are used for the electrolyte membrane, it is necessary to optimize such as dissolving the same components as the electrolyte membrane in the ink.

触媒インクの分散媒として使用される溶媒は、触媒粒子や水素イオン伝導性樹脂を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はないが、揮発性の液体有機溶媒が少なくとも含まれることが望ましく、特に限定されるものではないが、メタノール、エタノール、1−プロパノ―ル、2−プロパノ―ル、1−ブタノ−ル、2‐ブタノ−ル、イソブチルアルコール、tert−ブチルアルコール、ペンタノ−ル等のアルコール類、アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトンなどのケトン系溶剤、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテル等のエーテル系溶剤、その他ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1−メトキシ−2−プロパノ−ル等の極性溶剤等が使用される。また、これらの溶剤のうち二種以上を混合させたものも使用できる。また、溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。水素イオン伝導性樹脂となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化しない程度であれば特に制限はない。また、成膜後の触媒層の空孔率を制御するためにグリセリンを添加したり界面活性剤を用いることもできる。   The solvent used as the dispersion medium for the catalyst ink is not particularly limited as long as it does not erode the catalyst particles or the hydrogen ion conductive resin, and can dissolve or disperse the proton conductive polymer in a highly fluid state as a fine gel. Although there is no limitation, it is desirable that at least a volatile liquid organic solvent is contained, and although not particularly limited, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, Alcohols such as 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentaanol, and ketones such as acetone, methyl ethyl ketone, pentanone, methyl isobutyl ketone, heptanone, cyclohexanone, methyl cyclohexanone, acetonyl acetone, diisobutyl ketone Solvent, tetrahydrofuran, dioxane, di Ether solvents such as tylene glycol dimethyl ether, anisole, methoxytoluene, dibutyl ether, and other polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, diacetone alcohol, 1-methoxy-2-propanol A solvent or the like is used. Moreover, what mixed 2 or more types of these solvents can also be used. In addition, those using lower alcohol as a solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water. Water that is compatible with the hydrogen ion conductive resin may be contained. The amount of water added is not particularly limited as long as the proton conductive polymer is separated to cause white turbidity or does not gel. In addition, glycerin can be added or a surfactant can be used to control the porosity of the catalyst layer after film formation.

触媒インク中の固形分含有量は、多すぎるとインキの粘度が高くなるため超音波による霧化が困難になり、また少なすぎると成膜レートが非常に遅く、生産性が低下してしまうため、1〜50wt%であることが好ましい。固形分は触媒担持カーボンとプロトン伝導性高分子からなるが、触媒担持カーボンの含有量を多くすると同じ固形分含有量でも粘度は高くなり、少なくすると粘度は低くなる。触媒担持カーボンの固形分に占める割合は10〜80%が好ましい。またこのときの触媒インクの粘度は、超音波による霧化を行うことを考慮すると、0.1〜500cP程度が好ましい。さらに好ましくは5〜100cPが良い。またインキの分散時に分散剤を添加することで、粘度の制御をすることもできる。   If the solid content in the catalyst ink is too high, the viscosity of the ink will increase, making it difficult to atomize with ultrasonic waves, and if it is too low, the film formation rate will be very slow and productivity will be reduced. 1 to 50 wt% is preferable. The solid content is composed of a catalyst-supporting carbon and a proton conductive polymer. When the content of the catalyst-supporting carbon is increased, the viscosity is increased even at the same solid content, and when the content is decreased, the viscosity is decreased. The proportion of the catalyst-supporting carbon in the solid content is preferably 10 to 80%. Further, the viscosity of the catalyst ink at this time is preferably about 0.1 to 500 cP in consideration of atomization by ultrasonic waves. More preferably, 5-100 cP is good. Further, the viscosity can be controlled by adding a dispersing agent when the ink is dispersed.

触媒インク中の触媒担持カーボンとプロトン伝導性高分子からなる粒子はいくつかの粒子が凝集した形態でいると考えられる。凝集粒子のサイズは、小さすぎると、電子伝導パスが形成されにくくなり、また大きすぎると触媒層のガス拡散性が低下したり、触媒の利用率が低下する為、10〜2000nm程度が好ましい。更に好ましくは10〜800nmが良い。   The particles composed of the catalyst-supporting carbon and the proton conductive polymer in the catalyst ink are considered to be in a form in which several particles are aggregated. If the size of the agglomerated particles is too small, it is difficult to form an electron conduction path. If the size is too large, the gas diffusibility of the catalyst layer decreases or the utilization factor of the catalyst decreases. More preferably, the thickness is 10 to 800 nm.

触媒インクの粘度、インク中の粒子のサイズは、インクの分散処理の条件によって制御することができる。分散処理は、様々な装置を用いて行うことができる。例えば、ボールミルや超音波処理、ホモジナイザー、コニーダ、湿式加圧分散処理などが挙げられる。中でも、湿式加圧分散処理は粒径の微細化、均一化が可能であるだけでなく、ジェット流の衝突により生ずる衝突力によって触媒担持カーボンとプロトン伝導性高分子の接触面積を増加させ、触媒の有効利用率を高めることも期待できる。また、ボールミルのように媒体を用いないので不純物の混入が無いという利点もある。湿式加圧分散処理の装置のなかでも、高圧流を数百ミクロンの小径孔を有するノズルを通過させることによって撹拌、破砕を行うものはナノマイザーという装置名で市販されている。この装置は加圧条件を変えることで様々な粒径設計ができ、かつ粒径のばらつきが小さいため、触媒インキの分散を行う上で好適な手法である。   The viscosity of the catalyst ink and the size of the particles in the ink can be controlled by the conditions of the ink dispersion treatment. Distributed processing can be performed using various apparatuses. For example, a ball mill, ultrasonic treatment, a homogenizer, a kneader, a wet pressure dispersion treatment, and the like can be given. Among these, the wet pressure dispersion treatment not only enables the particle size to be made finer and uniform, but also increases the contact area between the catalyst-carrying carbon and the proton conducting polymer by the collision force generated by the collision of the jet stream, It can also be expected to increase the effective utilization rate. Further, there is an advantage that no medium is used unlike a ball mill, so that impurities are not mixed. Among wet pressure dispersion treatment devices, those that stir and crush by passing a high-pressure flow through a nozzle having a small-diameter hole of several hundred microns are commercially available under the name of nanomizer. This apparatus can be designed in various particle sizes by changing the pressurizing conditions and has a small variation in particle size, and therefore is a suitable method for dispersing the catalyst ink.

ナノマイザーは、その処理圧力によって様々な用途に用いられる。処理圧力が0〜1MPaのときは液体と粉末の混練、1〜50MPaのときは水と油の乳化、30〜120MPaのときは均一分散、100〜150MPaのときは硬い物質の破砕などに用いられている。触媒インキをナノマイザーで処理する場合、均一な分散と粒子の微細化が要求されるため、処理圧力は30〜200MPaの間であることが好ましい。さらに好ましくは80〜150MPaの間が良い。   Nanomizers are used in various applications depending on the processing pressure. When the processing pressure is 0 to 1 MPa, it is used for kneading of liquid and powder, when 1 to 50 MPa, emulsification of water and oil, uniform dispersion when 30 to 120 MPa, and crushing hard substances when it is 100 to 150 MPa. ing. When the catalyst ink is processed with a nanomizer, uniform dispersion and finer particles are required, so that the processing pressure is preferably between 30 and 200 MPa. More preferably, it is between 80 and 150 MPa.

ナノマイザーでの加圧分散処理は、一度行った後、さらに何度も繰り返して行うことができる。この処理回数は特に制限するものではないが、使用する材料や、使用目的によって1回で十分なものや、何度も処理する必要があるものがある。触媒インキの分散を行う場合は、粒子の微細化が要求されるため、処理回数は多いほうが好ましい。具体的には1回から50回程度が好ましい。   The pressure dispersion treatment in the nanomizer can be repeated once again after being performed once. There are no particular restrictions on the number of times of this treatment, but there are some that are sufficient in one use depending on the material used and the purpose of use, and some that need to be treated many times. When the catalyst ink is dispersed, it is preferable that the number of treatments is large because finer particles are required. Specifically, about 1 to 50 times is preferable.

触媒層の形成方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などの塗布法が一般的に用いられる。中でもスプレー法は、塗工されたインキを乾燥させる際に触媒担持カーボンの凝集が起こりにくく、均質で空孔率の高い触媒層が得られるため、好ましい。スプレー法の中でも超音波により霧化を行うものは、ノズルから噴出してから塗着するまでの間のインキの二次凝集、塗着後の粒子の飛散がなく、また霧の粒径のばらつきも小さいため好ましい。以下、このスプレー法について説明する。   As a method for forming the catalyst layer, a coating method such as a dipping method, a screen printing method, a roll coating method, or a spray method is generally used. Among them, the spray method is preferable because the catalyst-supporting carbon hardly aggregates when the coated ink is dried, and a homogeneous catalyst layer having a high porosity can be obtained. Among the spray methods, those that atomize by ultrasonic waves do not have secondary agglomeration of ink between spraying from the nozzle and application, scattering of particles after application, and variation in mist particle size. Is also preferable. Hereinafter, this spray method will be described.

超音波振動を利用した超音波スプレーとは、ピエゾセラミックなどによって発生させた
周波数10kHz〜200kHzの超音波をノズル部に伝え、液体膜を振動させることできめ細かい粒子を形成、噴霧させるスプレーである。超音波スプレーでは噴霧の際、圧力を必要としないため、自然落下による噴霧を実現できる。そのため、超音波スプレーによって噴霧された触媒インクはワークから粒子が弾き飛ばされるオーバースプレーや二次飛散をほとんど起こさない。したがって、インキの利用効率が高くなる。また従来の高圧スプレーの場合と比較すると超音波スプレーは霧の粒径が細かく、粒径のばらつきが小さいため、均質な膜を作製することが可能となる。霧の粒径は10〜90μm程度である。またスプレーの霧は気流の影響を受けやすく、ノズルからワークまでの全体をキャップし、補助エアを流すことにより霧の進行パターンを制御する必要がある。補助エアの圧力は、0.005〜0.02MPa程度で良く、これによって自然落下噴霧を妨げることはない。
The ultrasonic spray using ultrasonic vibration is a spray that transmits ultrasonic waves having a frequency of 10 kHz to 200 kHz generated by a piezoceramic or the like to a nozzle portion to vibrate a liquid film to form and spray fine particles. Ultrasonic spraying does not require pressure during spraying, so spraying by natural fall can be realized. Therefore, the catalyst ink sprayed by the ultrasonic spray hardly causes overspray and secondary scattering in which particles are blown off from the work. Therefore, the ink utilization efficiency is increased. Compared with the conventional high-pressure spray, the ultrasonic spray has a fine mist particle size and a small variation in particle size, so that a homogeneous film can be produced. The particle size of the mist is about 10 to 90 μm. Further, the spray mist is easily affected by the air flow, and it is necessary to cap the whole from the nozzle to the work and control the mist progression pattern by flowing auxiliary air. The pressure of the auxiliary air may be about 0.005 to 0.02 MPa, and this does not prevent spontaneous fall spray.

超音波スプレーにおける噴霧速度は、最大流量50リットル/1時間程度である。ただし、流量にかかわらずに均一な噴霧が可能であり、自然落下噴霧も保たれる。   The spraying speed in the ultrasonic spraying is about 50 liters / hour maximum flow rate. However, uniform spraying is possible regardless of the flow rate, and natural falling spraying is also maintained.

超音波スプレーを用いて触媒インクを噴霧する場合、自然落下であるため噴出から塗着までの時間が長く、また霧の粒径が小さいため、塗着時には溶媒がほとんど蒸発しており、塗着後の粒子の凝集が起こりにくい。そのため空孔率の高い触媒層を形成することが可能となる。触媒の空孔度は増大するにつれガスの拡散性は増加するが、電子及びプロトンの伝導パスは減少し、機械的強度も低下する。このことを考慮すると空孔度は50%以上であることが好ましい。更に好ましくは70〜90%が良い。   When the catalyst ink is sprayed using ultrasonic spray, the time from spraying to coating is long because it falls naturally, and the particle size of the mist is small. Aggregation of subsequent particles is unlikely to occur. Therefore, it is possible to form a catalyst layer having a high porosity. As the catalyst porosity increases, the gas diffusivity increases, but the electron and proton conduction paths decrease and the mechanical strength also decreases. Considering this, the porosity is preferably 50% or more. More preferably, 70 to 90% is good.

このように、超音波スプレーを用いてインキを噴霧させることにより触媒担持カーボンとプロトン伝導性高分子からなる粒子の粒径が均一で細かく、且つ空孔度の高い触媒層を作成することができる。また、インキを湿式ジェットミルで処理することにより更なる粒径の微細化、触媒利用率の向上が可能となる。   In this way, by spraying ink using ultrasonic spray, it is possible to create a catalyst layer having a uniform and fine particle size composed of catalyst-carrying carbon and proton conductive polymer and a high porosity. . Further, by treating the ink with a wet jet mill, the particle size can be further refined and the catalyst utilization rate can be improved.

超音波スプレーにより作製した触媒層を用いて膜・電極接合体を作製するプロセスとしては、一般的にガス拡散層の上にインクを噴霧し、これを乾燥させて、プロトン伝導性高分子膜と触媒層を熱圧着により接合する手法が用いられる。このほかにも、プロトン伝導性高分子膜の両面に直接インクを噴霧し、これをガス拡散層で挟持させる手法、また離型性の基材上にインクを噴霧し、それをプロトン伝導性高分子膜の両面に転写したものをガス拡散層で挟持させる手法を用いても何ら問題はない。   As a process for producing a membrane / electrode assembly using a catalyst layer produced by ultrasonic spraying, generally, ink is sprayed on a gas diffusion layer and dried to form a proton conductive polymer membrane. A method of joining the catalyst layers by thermocompression bonding is used. In addition to this, the ink is directly sprayed on both sides of the proton conductive polymer membrane, and this is sandwiched between the gas diffusion layers, or the ink is sprayed on the releasable base material, and the proton conductive high There is no problem even if a method in which a film transferred on both sides of the molecular film is sandwiched between gas diffusion layers is used.

超音波スプレーにより噴霧する際の基材の温度は室温付近からプロトン伝導性高分子のガラス転移点の間であればどの値でも良いが、溶媒の蒸発速度が速いほうが塗着後の液滴の流動による粒子の凝集が少なく、均質な膜を作製できるため、50〜120℃が好ましい。   The temperature of the substrate when spraying by ultrasonic spraying may be any value as long as it is between room temperature and the glass transition point of the proton conducting polymer, but the faster the evaporation rate of the solvent, 50-120 ° C. is preferable because there is little aggregation of particles due to flow and a homogeneous film can be produced.

ガス拡散層としては電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料が用いられる。また、塗工後のインキがガス拡散層の中に染みこみ、ガス拡散性が低下するのを防ぐため、ガス拡散層の上に目止め層として触媒を担持していないカーボン層を設けたものを使用することもできる。   The gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance. Generally, carbon-based porous materials such as carbon paper and carbon cloth are used. Is used. Also, in order to prevent the ink after coating from penetrating into the gas diffusion layer and reducing the gas diffusibility, a carbon layer that does not carry a catalyst as a sealing layer is provided on the gas diffusion layer Can also be used.

以下に本発明における固体高分子型燃料電池およびその製造方法について、具体的な実施例を挙げて説明するが、本発明は実施例によって制限されるものではない。   Hereinafter, the solid polymer fuel cell and the production method thereof according to the present invention will be described with reference to specific examples, but the present invention is not limited to the examples.

<実施例1>
白金担持量が45wt%である白金担持カーボン触媒と市販のプロトン伝導性高分子(ナフィオン)溶液を溶媒中で混合し、ナノマイザー(株式会社東海製TL‐1500)で分散処理を行った。出発原料の組成比は白金触媒担持カーボンとナフィオンは重量比で2:1とし、溶媒は水、1−プロパノ−ル、2−プロパノ−ルを体積比で1:1:1とした。また、固形分含有量は5wt%とした。ナノマイザーの処理は圧力50MPa、処理回数10回とした。処理後のインキの粘度は約50cPであった。またインキ中の白金担持カーボンとプロトン伝導性高分子からなる粒子の平均粒径を粒度分布計で測定したところ、約500nmであった。作製したインキを超音波スプレー(LECHLER社製 超音波アトマイザー)によりカーボンペーパー上に噴霧することで触媒層を作製した。このときカーボンペーパの温度は80℃にした。触媒層の厚さは、触媒層の白金担持量が0.5mg/cm2になるように調節した。霧化させるための超音波の周波数は100kHz、流量は50L/h、基材とノズル間の距離は20cmとした。また、ノズルからワークまでの全体をキャップし、圧力0.01MPaで補助エアを流すことにより霧の進行パターンを制御した。得られた触媒層について、触媒層のみの空孔率を細孔分布測定装置で測定したところ、空孔率は80%であった。
<Example 1>
A platinum-supported carbon catalyst having a platinum loading of 45 wt% and a commercially available proton conductive polymer (Nafion) solution were mixed in a solvent and subjected to dispersion treatment with Nanomizer (TL-1500 manufactured by Tokai Corporation). The composition ratio of the starting materials was platinum catalyst-supporting carbon and Nafion at a weight ratio of 2: 1, and the solvent was water, 1-propanol, and 2-propanol at a volume ratio of 1: 1: 1. The solid content was 5 wt%. Nanomizer treatment was performed at a pressure of 50 MPa and a treatment frequency of 10 times. The viscosity of the ink after the treatment was about 50 cP. The average particle size of particles comprising platinum-supported carbon and proton conductive polymer in the ink was measured with a particle size distribution meter, and was about 500 nm. The catalyst layer was produced by spraying the produced ink on carbon paper by ultrasonic spray (Ultrasonic atomizer manufactured by LECHLER). At this time, the temperature of the carbon paper was set to 80 ° C. The thickness of the catalyst layer was adjusted so that the platinum loading of the catalyst layer was 0.5 mg / cm 2 . The frequency of ultrasonic waves for atomization was 100 kHz, the flow rate was 50 L / h, and the distance between the substrate and the nozzle was 20 cm. Further, the entire pattern from the nozzle to the workpiece was capped, and the auxiliary air was allowed to flow at a pressure of 0.01 MPa to control the mist progression pattern. With respect to the obtained catalyst layer, the porosity of only the catalyst layer was measured with a pore distribution measuring apparatus, whereby the porosity was 80%.

<実施例2>
実施例1と同様の出発原料混合液を調製し、ナノマイザーで分散処理を行った。ナノマイザーの処理は圧力150MPa、処理回数10回とした。処理後のインキの粘度は約30cPであった。またインキ中の白金担持カーボンとプロトン伝導性高分子からなる粒子の平均粒径を粒度分布計で測定したところ、約150nmであった。作製したインキを実施例1と同様な条件でスプレーを行うことにより触媒層を作製した。触媒層の厚さは、触媒層の白金担持量が0.5mg/cm2になるように調節した。得られた触媒層について、触媒層のみの空孔率を細孔分布測定装置で測定したところ、空孔率は90%であった。
<Example 2>
A starting material mixture similar to that in Example 1 was prepared and subjected to dispersion treatment with a nanomizer. The nanomizer treatment was performed at a pressure of 150 MPa and a treatment frequency of 10 times. The viscosity of the ink after the treatment was about 30 cP. The average particle diameter of the particles comprising platinum-supported carbon and proton conductive polymer in the ink was measured with a particle size distribution meter and found to be about 150 nm. A catalyst layer was produced by spraying the produced ink under the same conditions as in Example 1. The thickness of the catalyst layer was adjusted so that the platinum loading of the catalyst layer was 0.5 mg / cm 2 . With respect to the obtained catalyst layer, the porosity of only the catalyst layer was measured with a pore distribution measuring apparatus, whereby the porosity was 90%.

<比較例1>
実施例1と同様の出発原料混合液を調製し、遊星型ボールミル(FRITSCH社製 Pulverisette7)を用いて分散処理を行った。ポット、ボールの材質はジルコニアとした。処理後のインキの粘度は約60cPであった。またインキ中の白金担持カーボンとプロトン伝導性高分子からなる粒子の平均粒径を粒度分布計で測定したところ、約700nmであった。作製したインキを実施例1と同様な条件でスプレーを行うことにより触媒層を作製した。触媒層の厚さは、触媒層の白金担持量が0.5mg/cm2になるように調節した。得られた触媒層について、触媒層のみの空孔率を細孔分布測定装置で測定したところ、空孔率は70%であった。
<Comparative Example 1>
A starting material mixture similar to that in Example 1 was prepared and subjected to dispersion treatment using a planetary ball mill (Pulversette 7 manufactured by FRITSCH). The material of the pot and ball was zirconia. The viscosity of the ink after the treatment was about 60 cP. The average particle diameter of the particles comprising platinum-supporting carbon and proton conductive polymer in the ink was measured with a particle size distribution meter, and was about 700 nm. A catalyst layer was produced by spraying the produced ink under the same conditions as in Example 1. The thickness of the catalyst layer was adjusted so that the platinum loading of the catalyst layer was 0.5 mg / cm 2 . With respect to the obtained catalyst layer, the porosity of only the catalyst layer was measured with a pore distribution measuring apparatus, whereby the porosity was 70%.

<膜・電極接合体作製>
実施例1および2、比較例1においてカーボンペーパー4上に作製した触媒層を用いて膜・電極接合体10を作製した。作製した電極を5cm2の正方形に打ち抜き、酸化極1、還元極2とした。この2つの電極でプロトン伝導性高分子膜3を挟持した状態で130℃、588×104Pa、30分の条件でホットプレスを行い、膜・電極接合体を得た。図1に膜・電極接合体の模式図を示す。プロトン伝導性高分子膜としてはデュポン株式会社製Nafion112を用いた。
<Membrane / electrode assembly production>
A membrane / electrode assembly 10 was produced using the catalyst layer produced on the carbon paper 4 in Examples 1 and 2 and Comparative Example 1. The produced electrode was punched into a 5 cm 2 square to obtain an oxidation electrode 1 and a reduction electrode 2. With the two electrodes sandwiching the proton conductive polymer membrane 3, hot pressing was performed at 130 ° C., 588 × 10 4 Pa, for 30 minutes to obtain a membrane / electrode assembly. FIG. 1 shows a schematic diagram of a membrane / electrode assembly. Nafion 112 manufactured by DuPont was used as the proton conductive polymer membrane.

<発電性能測定結果>
作製した膜・電極接合体の発電性能測定を行った。測定セルとして、膜・電極接合体を、ガス流路を有するセパレータで挟持させ、ボルトで両極を締め付けたものを用いた。評価条件はセル温度80℃、ガスは酸化極が水素、還元極は酸素とした。流量は両極とも1L/min.とした。また、ガスの相対湿度は100%とした。性能の比較は、電圧が0.7Vのときの電流密度で行った。表1に結果を示した。
<Power generation performance measurement results>
The power generation performance of the produced membrane / electrode assembly was measured. As the measurement cell, a membrane / electrode assembly was sandwiched between separators having gas flow paths, and both electrodes were tightened with bolts. The evaluation conditions were a cell temperature of 80 ° C., gas was hydrogen at the oxidation electrode, and oxygen was at the reduction electrode. The flow rate is 1 L / min. It was. The relative humidity of the gas was 100%. The performance was compared at the current density when the voltage was 0.7V. Table 1 shows the results.

表1は、実施例1および2、比較例1で作製した触媒インキおよびそれを用いて作製した触媒層、またそれを用いて作製した膜・電極接合体の評価結果である。   Table 1 shows the evaluation results of the catalyst inks produced in Examples 1 and 2 and Comparative Example 1, the catalyst layer produced using the same, and the membrane / electrode assembly produced using the same.

Figure 2007164993
Figure 2007164993

固体高分子型燃料電池用の膜・電極接合体の例を断面で示した部分説明図である。It is the partial explanatory view which showed the example of the membrane electrode assembly for polymer electrolyte fuel cells in the section.

符号の説明Explanation of symbols

1… 電極触媒層(酸化極)
2… 電極触媒層(還元極)
3… プロトン伝導性高分子膜
4… ガス拡散層(カーボンペーパー)
10… 膜・電極接合体
1 ... Electrode catalyst layer (oxidation electrode)
2 ... Electrocatalyst layer (reducing electrode)
3 ... Proton conductive polymer membrane 4 ... Gas diffusion layer (carbon paper)
10. Membrane / electrode assembly

Claims (6)

超音波により触媒担持カーボン、プロトン伝導性高分子、分散媒からなるインキを霧化させ、プロトン伝導性固体高分子膜または多孔質カーボンシート上に噴霧することにより作製する工程を含む固体高分子型燃料電池用電極触媒層の製造方法において、高圧流を小径孔を有するノズルを通過させることによって撹拌、破砕を行う、湿式加圧分散による処理をインキに対して行うことを特徴とする固体高分子型燃料電池用電極触媒層の製造方法。   Solid polymer type including the process of atomizing ink consisting of catalyst-supported carbon, proton conductive polymer, and dispersion medium with ultrasonic waves and spraying it onto the proton conductive solid polymer membrane or porous carbon sheet A solid polymer characterized in that in a method for producing an electrode catalyst layer for a fuel cell, a high-pressure flow is stirred and crushed by passing through a nozzle having small-diameter holes, and a process by wet pressure dispersion is performed on ink. For producing an electrode catalyst layer for a flat fuel cell. 前記湿式加圧分散処理において、ノズルを通過させる際の液体の圧力が30MPa〜200MPaであることを特徴とする請求項1に記載の固体高分子型燃料電池用電極触媒層の製造方法。   2. The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1, wherein in the wet pressure dispersion treatment, the pressure of the liquid when passing through the nozzle is 30 MPa to 200 MPa. 前記湿式加圧分散処理において、インキがノズルを通過する回数が1回〜50回であることを特徴とする請求項1または2に記載の固体高分子型燃料電池用電極触媒層の製造方法。   The method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to claim 1 or 2, wherein, in the wet pressure dispersion treatment, the number of times the ink passes through the nozzle is 1 to 50 times. インキ中に存在する触媒担持カーボンとプロトン伝導性粒子からなる粒子の粒径が10〜800nmであることを特徴とする請求項1〜3いずれか1項に記載の固体高分子型燃料電池用電極触媒層の製造方法。   The electrode for a solid polymer fuel cell according to any one of claims 1 to 3, wherein the particle size of the catalyst-supporting carbon and the proton conductive particles present in the ink is 10 to 800 nm. A method for producing a catalyst layer. 請求項1〜4に記載の製造方法により作製された固体高分子型燃料電池用電極触媒層において、層の空孔率が70〜90%であることを特徴とする固体高分子型燃料電池用電極触媒層。   5. The polymer electrolyte fuel cell electrode catalyst layer produced by the production method according to claim 1, wherein the layer has a porosity of 70 to 90%. Electrocatalyst layer. 請求項1〜4いずれか1項に記載の固体高分子型燃料電池用電極触媒層の製造方法により製造された電極触媒層、または請求項5の電極触媒層によってプロトン伝導性固体高分子膜が挟持されていることを特徴とする固体高分子型燃料電池。   A proton conductive solid polymer membrane is produced by the electrode catalyst layer produced by the method for producing an electrode catalyst layer for a polymer electrolyte fuel cell according to any one of claims 1 to 4, or by the electrode catalyst layer of claim 5. A solid polymer fuel cell characterized by being sandwiched.
JP2005355787A 2005-12-09 2005-12-09 Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell Pending JP2007164993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355787A JP2007164993A (en) 2005-12-09 2005-12-09 Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355787A JP2007164993A (en) 2005-12-09 2005-12-09 Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2007164993A true JP2007164993A (en) 2007-06-28

Family

ID=38247697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355787A Pending JP2007164993A (en) 2005-12-09 2005-12-09 Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2007164993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289692A (en) * 2008-05-30 2009-12-10 Electric Power Dev Co Ltd Method of manufacturing electrode layer for fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287467A (en) * 1985-04-29 1986-12-17 ジヤン・ミツシエル・アンソニ− Ultrasonic spray apparatus
JP2003068309A (en) * 2001-08-28 2003-03-07 Aisin Seiki Co Ltd Manufacturing method of electrode for fuel cell and fuel cell
JP2003173786A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell
JP2004303594A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Fuel cell, manufacturing method of the same, electronic device and automobile
WO2004095603A2 (en) * 2003-04-16 2004-11-04 Cabot Corporation Method of producing membrane electrode assemblies
JP2005310714A (en) * 2004-04-26 2005-11-04 Toshiba Corp Liquid fuel type solid polymer fuel cell, anode electrode for it, and membrane electrode complex for it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287467A (en) * 1985-04-29 1986-12-17 ジヤン・ミツシエル・アンソニ− Ultrasonic spray apparatus
JP2003068309A (en) * 2001-08-28 2003-03-07 Aisin Seiki Co Ltd Manufacturing method of electrode for fuel cell and fuel cell
JP2003173786A (en) * 2001-12-05 2003-06-20 Mitsubishi Electric Corp Forming method and device of catalyst layer for solid polymer fuel cell
JP2004303594A (en) * 2003-03-31 2004-10-28 Seiko Epson Corp Fuel cell, manufacturing method of the same, electronic device and automobile
WO2004095603A2 (en) * 2003-04-16 2004-11-04 Cabot Corporation Method of producing membrane electrode assemblies
JP2005310714A (en) * 2004-04-26 2005-11-04 Toshiba Corp Liquid fuel type solid polymer fuel cell, anode electrode for it, and membrane electrode complex for it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289692A (en) * 2008-05-30 2009-12-10 Electric Power Dev Co Ltd Method of manufacturing electrode layer for fuel cell

Similar Documents

Publication Publication Date Title
JP5202625B2 (en) Method for producing catalyst ink for membrane-electrode composite of fuel cell, and method for producing membrane-electrode composite of fuel cell using the same
Martin et al. Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method
EP2048729A1 (en) Assembly for fuel cell, fuel cell, and method for manufacturing fuel cell
JP2007214008A (en) Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and solid polymer fuel cell
JP5114859B2 (en) Method for producing catalyst electrode for fuel cell
WO2019069789A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer-type fuel cell
JP5034252B2 (en) Electrode catalyst layer for polymer electrolyte fuel cell and method for producing the same
JP5581583B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP5428493B2 (en) Method for producing polymer electrolyte fuel cell
JP2007250312A (en) Membrane/electrode assembly for solid polymer fuel cell, its manufacturing method, and solid polymer fuel cell
JP4918753B2 (en) Electrode, battery, and manufacturing method thereof
JP2007165075A (en) Manufacturing method of catalyst electrode for fuel cell, polymer electrolyte membrane for fuel cell, and mancufaturing method of electrode assembly, and manufacturing method of fuel cell
JP2008071617A (en) Electrode catalyst layer for solid polymer fuel cell and its manufacturing method
JP5423062B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5114856B2 (en) Anode manufacturing method
JP2007164993A (en) Method of manufacturing electrode catalyst layer for solid polymer fuel cell, solid polymer fuel cell electrode catalyst layer, and solid polymer fuel cell
JP2011070984A (en) Method of manufacturing electrode catalyst layer for fuel cell, and membrane-electrode assembly having the electrode catalyst layer
JP2008171702A (en) Manufacturing method of fuel cell assembly, manufacturing method of fuel cell, fuel cell assembly and fuel cell
JP2010027512A (en) Manufacturing method for membrane-electrode assembly of solid polymer fuel cell, membrane-electrode assembly of solid polymer fuel cell, and solid polymer fuel cell
JP2008300212A (en) Manufacturing method of electrode catalyst layer for solid polymer fuel cell, electrode catalyst layer for solid polymer fuel cell, and solid polymer type fuel cell using it
JP2011171120A (en) Manufacturing method of electrode catalyst
JP2005322449A (en) Coating liquid for forming catalyst electrode layer and membrane electrode assembly
JP6165359B2 (en) Catalyst carrier and method for producing the same
JP2009193910A (en) Membrane-electrode assembly and solid polymer fuel cell
JP3308936B2 (en) Method for producing gas diffusion electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529