JP2007163941A - Four-phase phase modulation circuit - Google Patents

Four-phase phase modulation circuit Download PDF

Info

Publication number
JP2007163941A
JP2007163941A JP2005361622A JP2005361622A JP2007163941A JP 2007163941 A JP2007163941 A JP 2007163941A JP 2005361622 A JP2005361622 A JP 2005361622A JP 2005361622 A JP2005361622 A JP 2005361622A JP 2007163941 A JP2007163941 A JP 2007163941A
Authority
JP
Japan
Prior art keywords
phase
optical
signal
unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005361622A
Other languages
Japanese (ja)
Inventor
Akihide Sano
明秀 佐野
Yutaka Miyamoto
宮本  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005361622A priority Critical patent/JP2007163941A/en
Publication of JP2007163941A publication Critical patent/JP2007163941A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel type four-phase phase control circuit capable of always keeping a phase difference π/2 in an orthogonal phase control part constant, thereby evading the occurrenve of receiving sensitivity penalty caused by a phase shift. <P>SOLUTION: The four-phase phase control circuit branches a part of an output optical signal of an optical coupling part, receiving the branched optical signal for a monitor and converting it into an electric signal, and detecting an AC component of power of the converted electric signal, and controls the phase of the orthogonal phase control part so that this power is minimized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、変調符号として4相位相シフトキーイング符号を用いる光伝送システムに利用する。特に、同相成分(I成分)と直交成分(Q成分)との間の位相の直交状態を安定に制御する直交位相制御技術に関する。   The present invention is used in an optical transmission system using a four-phase phase shift keying code as a modulation code. In particular, the present invention relates to a quadrature control technique for stably controlling the quadrature state of the phase between the in-phase component (I component) and the quadrature component (Q component).

長距離光伝送システムにおいては、1本の光ファイバ中に複数の波長を多重化して伝送するWDM伝送技術が適用されており、経済的かつ大容量の情報伝送が実現されている。   In a long-distance optical transmission system, a WDM transmission technology that multiplexes and transmits a plurality of wavelengths in one optical fiber is applied, and economical and large-capacity information transmission is realized.

WDM伝送装置では、変復調方式としては、従来、光強度のオン・オフによる2値の強度変調を行い、受信側ではフォトダイオードにより直接検波するIM−DD(Intensity Modulation Direct Detection)方式を用いることが一般的であった。近年、限られた光伝送帯域を有効に利用して周波数利用効率を向上させるために、多値変調方式が検討されている。特に、4値の位相変調方式である4相位相変調方式を用い、受信側では遅延干渉計による復調を行う差動4相位相シフトキーイング(Differential
Quadrature Phase-Shift Keying,DQPSK)方式が有力な方式として考えられている。
In a WDM transmission apparatus, conventionally, as a modulation / demodulation method, an IM-DD (Intensity Modulation Direct Detection) method in which binary intensity modulation is performed by turning on / off light intensity and detection is directly performed by a photodiode on the reception side is used. It was general. In recent years, multi-level modulation schemes have been studied in order to effectively use a limited optical transmission band and improve frequency utilization efficiency. In particular, differential four-phase phase shift keying (Differential differential) that uses a four-phase modulation method, which is a quaternary phase modulation method, and performs demodulation by a delay interferometer on the receiving side.
Quadrature Phase-Shift Keying (DQPSK) method is considered as an effective method.

4相位相変調回路では、連続発振しているCW(Continuous Wave)光源からの強度一定の光を2経路(I成分、Q成分)に分け、一方の信号光にπ/2の位相差を与えて、それぞれ0/πの位相変調を印加した後、再び合波することにより、4相位相変調信号を生成する並列型の変調器構成が一般的である(例えば、非特許文献1参照)。   In a four-phase phase modulation circuit, light with constant intensity from a continuously oscillating CW (Continuous Wave) light source is divided into two paths (I component and Q component), and a phase difference of π / 2 is given to one signal light. In general, a parallel-type modulator configuration that generates a four-phase phase modulation signal by applying 0 / π phase modulation and then recombining is applied (see, for example, Non-Patent Document 1).

R.A.Griffin et al.,Technical Digest of OFC2002,Paper WX6R. A. Griffin et al. , Technical Digest of OFC2002, Paper WX6

しかしながら、従来の4相位相変調回路においては以下のような課題がある。   However, the conventional four-phase phase modulation circuit has the following problems.

外部変調器としては、LiNbO3光変調器が用いられる。この場合には、位相差π/2を与える直交位相変調部に、直流電圧を印加することにより位相差を調整するが、このπ/2の位相差を与えるのに必要な電圧が時間と共にドリフトしていくことが知られている。 As the external modulator, a LiNbO 3 optical modulator is used. In this case, the phase difference is adjusted by applying a DC voltage to the quadrature modulation unit that gives the phase difference π / 2, but the voltage necessary to give the phase difference of π / 2 drifts with time. It is known to do.

直交位相変調部に与える位相差がπ/2からずれると、受信側で遅延干渉計により復調した際に、波長劣化が生じ、受信感度ペナルティが発生するという課題がある。   When the phase difference applied to the quadrature phase modulation unit deviates from π / 2, there is a problem that wavelength degradation occurs when receiving with a delay interferometer on the reception side, and a reception sensitivity penalty occurs.

本発明は、このような背景を考慮してなされたもので、並列型の4相位相変調回路において、直交位相制御部における位相差π/2を常に一定に保ち、位相ずれによる受信感度ペナルティの発生を回避することを目的とする。   The present invention has been made in view of such a background, and in a parallel type four-phase modulation circuit, the phase difference π / 2 in the quadrature phase control unit is always kept constant, and the reception sensitivity penalty due to the phase shift is reduced. The purpose is to avoid the occurrence.

本発明は、強度一定の連続光を出力するCW光源と、連続光を2経路に分離する光分離部と、一方の光信号の位相をπ/2だけシフトさせる直交位相制御部と、各々の光信号に位相変調を重畳する位相変調部と、2つの光信号を結合する光結合部とにより構成される4相位相変調回路である。   The present invention includes a CW light source that outputs continuous light with constant intensity, a light separation unit that separates continuous light into two paths, a quadrature phase control unit that shifts the phase of one optical signal by π / 2, This is a four-phase phase modulation circuit including a phase modulation unit that superimposes phase modulation on an optical signal and an optical coupling unit that couples two optical signals.

ここで、本発明の特徴とするところは、前記光結合部の出力光信号の一部を分岐する光分岐部と、分岐されたモニタ用光信号を受光して電気信号に変換するOE(Optical/Electric)変換部と、OE変換された電気信号の交流成分の電力を検出するRF(Radio Frequency)電力検出部と、前記電力が最小になるように前記直交位相制御部の位相を制御するコントローラとを備えたところにある。   Here, the present invention is characterized by an optical branching unit for branching a part of the output optical signal of the optical coupling unit, and an OE (Optical) for receiving the branched monitor optical signal and converting it into an electrical signal. / Electric) conversion unit, RF (Radio Frequency) power detection unit for detecting the power of the AC component of the OE converted electrical signal, and a controller for controlling the phase of the quadrature phase control unit so that the power is minimized It is in the place with.

これにより、直交位相制御部における位相差π/2を常に一定に保ち、位相ずれによる受信感度ペナルティの発生を回避することができる。   As a result, the phase difference π / 2 in the quadrature phase control unit can always be kept constant, and the occurrence of a reception sensitivity penalty due to a phase shift can be avoided.

あるいは、本発明の4相位相変調回路は、前記光結合部の出力光信号の一部を分岐する光分岐部と、分岐されたモニタ用光信号を受光して電気信号に変換するOE変換部と、OE変換された電気信号の交流成分の電力を検出するRF信号電力検出部と、前記直交位相制御部の位相差に低周波成分を重畳する低周波信号生成部と、前記RF信号電力検出部から出力される前記直交位相制御部の位相差に重畳された低周波信号を前記低周波信号生成部から出力されるもう一つの低周波信号で同期検波することにより前記直交位相制御部の位相差を検出する同期検波回路と、前記同期検波回路の出力信号の絶対値が最小になるように前記直交位相制御部の位相差を制御するコントローラとを備えたことを特徴とする。   Alternatively, the four-phase modulation circuit of the present invention includes an optical branching unit that branches a part of the output optical signal of the optical coupling unit, and an OE conversion unit that receives the branched monitoring optical signal and converts it into an electrical signal. An RF signal power detection unit for detecting the AC component power of the OE-converted electrical signal, a low frequency signal generation unit for superimposing a low frequency component on the phase difference of the quadrature phase control unit, and the RF signal power detection The low-frequency signal superimposed on the phase difference of the quadrature phase control unit output from the low-frequency signal is synchronously detected with another low-frequency signal output from the low-frequency signal generation unit. A synchronous detection circuit for detecting a phase difference and a controller for controlling a phase difference of the quadrature phase control unit so that an absolute value of an output signal of the synchronous detection circuit is minimized.

これによれば、位相ずれが生じた場合に、ずれの方向を検出することができるため、ずれの方向を推定する必要がなく、位相差制御の手順を簡単化することができる。   According to this, since a shift direction can be detected when a phase shift occurs, it is not necessary to estimate the shift direction, and the phase difference control procedure can be simplified.

また、前記光結合部は3dB光カプラで構成され、この3dB光カプラの一方の出力ポートから出力信号を取り出し、前記光分岐部に代えて、もう一方の出力ポートからモニタ用光信号を取り出すことができる。あるいは、前記光結合部はY分岐光導波路で構成され、前記光分岐部に代えて、このY分岐光導波路から出力導波路以外に放射される放射光をモニタ用光信号として用いることができる。   The optical coupling unit is composed of a 3 dB optical coupler, and an output signal is extracted from one output port of the 3 dB optical coupler, and a monitoring optical signal is extracted from the other output port instead of the optical branching unit. Can do. Alternatively, the optical coupling portion is configured by a Y branch optical waveguide, and instead of the optical branch portion, radiated light emitted from the Y branch optical waveguide to other than the output waveguide can be used as a monitoring optical signal.

これにより、光分岐部を省くことができるため、光分岐部による出力信号の光パワーの減衰を回避することができる。   Thereby, since the optical branching unit can be omitted, attenuation of the optical power of the output signal by the optical branching unit can be avoided.

また、前記OE変換部の出力電気信号をフィルタリングする電気フィルタ部を備えることができる。このときに、前記電気フィルタ部の通過周波数を、DC(Direct Current)成分およびシンボルレートの1/2以上の周波数帯を除去するように設定することができる。   In addition, an electric filter unit that filters an electric signal output from the OE conversion unit may be provided. At this time, the pass frequency of the electric filter unit can be set so as to remove a DC (Direct Current) component and a frequency band of 1/2 or more of the symbol rate.

これにより、直交位相制御部の位相差によって変化しないDC成分および周波数(例えば、ビットレート/2またはビットレート/4)のクロック成分をフィルタリングして除去し、位相差によって変化するRF信号成分のみの電力を検出することができ、直交位相制御部の位相差を精度良くモニタすることができる。   As a result, the DC component that does not change due to the phase difference of the quadrature phase control unit and the clock component of the frequency (for example, bit rate / 2 or bit rate / 4) are filtered out, and only the RF signal component that changes depending on the phase difference is removed. Electric power can be detected, and the phase difference of the quadrature phase control unit can be monitored with high accuracy.

本発明によれば、並列型の4相位相変調回路において、同相成分と直交成分との間の位相差を常にπ/2に一定制御することが可能となり、位相差のずれによる受信感度ペナルティの発生を抑圧し、安定な4相位相変調信号の生成が可能となる。   According to the present invention, in the parallel type four-phase modulation circuit, the phase difference between the in-phase component and the quadrature component can always be controlled to be constant at π / 2, and the reception sensitivity penalty due to the phase difference deviation can be reduced. Occurrence is suppressed, and a stable four-phase phase modulation signal can be generated.

(第一実施例)
本発明の第一の実施例を図1から図4を参照して説明する。図1は、第一実施例の構成を示す図である。図1に示すように、本発明の4相位相変調回路は、強度一定のCW光を出力するCW光源1、シンボルレート(B/2、B:ビットレート)に等しい周波数で強度変調を印加するクロック変調部2、CW光源1からの光を2経路に分離する光分離部3、2経路に分離した光信号の一方にπ/2の位相差を与える直交位相制御部4、2系統の光信号の各々に対して位相変調を印加する位相変調部5−1、5−2、位相変調された2つの信号を合波する光結合部6、光結合部6からの出力信号の一部を分岐する光分岐部7、光分岐部7で分岐された光信号の一方を受光して電気信号に変換するOE変換部8、OE変換部8の出力電気信号の交流電力を検出するRF信号電力検出部9、RF信号電力検出部9からの出力に応じて直交位相制御部4に与える位相差を制御するコントローラ10により構成される。
(First Example)
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the configuration of the first embodiment. As shown in FIG. 1, the four-phase phase modulation circuit of the present invention applies intensity modulation at a frequency equal to a symbol rate (B / 2, B: bit rate), a CW light source 1 that outputs CW light with constant intensity. Clock modulation unit 2, optical separation unit 3 that separates light from CW light source 1 into two paths, quadrature phase control unit 4 that gives a phase difference of π / 2 to one of the optical signals separated into two paths, two systems of light Phase modulation sections 5-1 and 5-2 that apply phase modulation to each of the signals, an optical coupling section 6 that multiplexes two phase-modulated signals, and a part of an output signal from the optical coupling section 6 An optical branching unit 7 that branches, an OE conversion unit 8 that receives one of the optical signals branched by the optical branching unit 7 and converts it into an electrical signal, and an RF signal power that detects the AC power of the output electrical signal of the OE conversion unit 8 Depending on the output from the detection unit 9 and the RF signal power detection unit 9, the quadrature phase control unit 4 It constituted by a controller 10 for controlling the phase difference to obtain.

ここで、本発明の特徴とするところは、出力信号の一部を分岐し、OE変換後のRF信号電力をモニタし、このRF信号電力が最小になるように直交位相制御部4の出力パワーを制御するようにした点である。   Here, a feature of the present invention is that a part of the output signal is branched, the RF signal power after OE conversion is monitored, and the output power of the quadrature phase control unit 4 so that the RF signal power is minimized. This is the point to control.

次に、図2を参照しながら第一実施例の動作を説明する。直交位相制御部4で印加される位相差がπ/2である状態では、出力される光信号は、図2(a)に示すように周波数B/2で周期的に変化する光波形となる。従って、OE変換後のRF信号スペクトルは、図2(c)に示すように、シンボルレートB/2の成分のみである。   Next, the operation of the first embodiment will be described with reference to FIG. In a state where the phase difference applied by the quadrature control unit 4 is π / 2, the output optical signal has an optical waveform that periodically changes at the frequency B / 2 as shown in FIG. . Therefore, the RF signal spectrum after the OE conversion is only a symbol rate B / 2 component as shown in FIG.

これに対し、直交位相制御部4における位相差がπ/2からずれると、図2(b)に示したように、光波形に強度変調成分が発生する。この強度変調成分は、シンボルレートB/2で、I成分、Q成分のデータに応じてランダムに変化する強度変調成分であり、そのRF信号スペクトルは図2(d)に示すような形状となる。従って、OE変換後の電気信号のRF信号電力は、直交位相制御部4における位相差がπ/2の点において最小になることがわかる。   On the other hand, when the phase difference in the quadrature control unit 4 deviates from π / 2, an intensity modulation component is generated in the optical waveform as shown in FIG. This intensity modulation component is an intensity modulation component that changes at random according to the data of the I component and the Q component at the symbol rate B / 2, and the RF signal spectrum has a shape as shown in FIG. . Therefore, it can be seen that the RF signal power of the electrical signal after the OE conversion is minimized at the point where the phase difference in the quadrature phase control unit 4 is π / 2.

なお、RF信号電力の最小値から位相差π/2となる点を精度よくモニタするためには、直交位相制御部4の位相差によって変化しないDC成分および周波数B/2のクロック成分をフィルタリングして除去し、位相差によって変化するRF信号成分のみの電力を検出することが望ましい。   In order to accurately monitor the point where the phase difference π / 2 from the minimum value of the RF signal power, the DC component that does not change due to the phase difference of the quadrature phase control unit 4 and the clock component of the frequency B / 2 are filtered. It is desirable to detect the power of only the RF signal component that changes due to the phase difference.

これは、図3に示すように、OE変換部8の後に電気バンドパスフィルタ11を挿入し、位相差のπ/2からのずれによって発生する強度変調成分以外の信号成分を除去することにより実現できる。さらに、クロック変調部2においてCS−RZ変調によりRZパルス化を行うCSRZ−DQPSK変調の場合には、図2(e)に示すように、CS−RZ変調部のDCバイアス点のずれにより、B/4、すなわちシンボルレートの半分の周波数に強度変調成分が発生することが知られている。   As shown in FIG. 3, this is realized by inserting an electric bandpass filter 11 after the OE converter 8 and removing signal components other than the intensity modulation component generated by the deviation of the phase difference from π / 2. it can. Further, in the case of CSRZ-DQPSK modulation in which RZ pulsation is performed by CS-RZ modulation in the clock modulation unit 2, as shown in FIG. 2 (e), due to the deviation of the DC bias point of the CS-RZ modulation unit, B It is known that an intensity modulation component is generated at / 4, that is, a frequency half the symbol rate.

このような場合には、B/4の強度変調成分により、直交位相制御部4の位相ずれの検出精度が低下してしまう。従って、CSRZ−DQPSK変調に対しては、図2(f)に示すように、電気バンドパスフィルタ11の通過帯域をDCおよびB/4以上のクロック成分を除去するように設定することにより、クロック変調部2の位相ずれによる直交位相制御部4の精度低下を回避することができる。   In such a case, the detection accuracy of the phase shift of the quadrature phase control unit 4 decreases due to the B / 4 intensity modulation component. Therefore, for CSRZ-DQPSK modulation, as shown in FIG. 2 (f), by setting the pass band of the electric bandpass filter 11 so as to remove clock components of DC and B / 4 or more, It is possible to avoid a reduction in accuracy of the quadrature phase control unit 4 due to the phase shift of the modulation unit 2.

図4(a)にOE変換後のRF信号電力の直交位相制御部4に印加する電圧に対する依存性の測定結果の一例を示す。ここで、本測定例は、伝送速度をB=43Gbit/sとし、OE変換後に通過帯域100k〜2.8GHzの電気バンドパスフィルタ11を用いてRF信号成分をフィルタリングした後のRF信号電力を測定した結果である。図4(b)および(c)に示すように、受信側において、1タイムスロット遅延干渉計により復調した波長からわかるように、RF信号電力が最小になる点において、位相差がπ/2になっており、最良の復調波形が得られていることが確認できる。   FIG. 4A shows an example of a measurement result of the dependence of the RF signal power after OE conversion on the voltage applied to the quadrature control unit 4. Here, in this measurement example, the transmission speed is set to B = 43 Gbit / s, and the RF signal power after the RF signal component is filtered using the electric bandpass filter 11 having a pass band of 100 k to 2.8 GHz after OE conversion is measured. It is the result. As shown in FIGS. 4B and 4C, as can be seen from the wavelength demodulated by the one time slot delay interferometer on the receiving side, the phase difference becomes π / 2 at the point where the RF signal power is minimized. It can be confirmed that the best demodulated waveform is obtained.

図4の測定結果は光強度がB/2で強度変調されているRZ−DQPSK信号の場合の測定例であったが、本発明はB/2の強度変調が重畳されていないNRZ−DQPSK信号にも適用可能である。NRZ−DQPSK信号の場合の測定結果を図5に示す。この場合には、直交位相制御部4の位相差がπ/2にあっている状態でも、OE変換後のRF信号スペクトルにB/2以外の周波数成分が存在するため、図5(a)に示すように最小値においてもわずかに出力が残っているが、位相差がπ/2の状態においてRF信号電力成分が最小になっていることが確認できる。   The measurement result of FIG. 4 is a measurement example in the case of an RZ-DQPSK signal in which the light intensity is B / 2 and is modulated, but the present invention is an NRZ-DQPSK signal in which the B / 2 intensity modulation is not superimposed. It is also applicable to. The measurement result in the case of the NRZ-DQPSK signal is shown in FIG. In this case, even when the phase difference of the quadrature phase control unit 4 is π / 2, frequency components other than B / 2 exist in the RF signal spectrum after OE conversion. As shown, the output remains slightly even at the minimum value, but it can be confirmed that the RF signal power component is minimized when the phase difference is π / 2.

(第二実施例)
第一実施例の構成では、出力側で光分岐部7により信号光の一部を分岐してモニタ用信号光を取り出す構成をとっていたため、出力信号の光パワーが光分岐部7において減衰してしまうという課題がある。本実施例では、光分岐部7における信号光の減衰を回避する構成について説明する。
(Second embodiment)
In the configuration of the first embodiment, since a part of the signal light is branched by the optical branching unit 7 on the output side and the monitor signal light is extracted, the optical power of the output signal is attenuated in the optical branching unit 7. There is a problem that it ends up. In the present embodiment, a configuration for avoiding signal light attenuation in the optical branching unit 7 will be described.

図6に示すように、4相位相変調回路において、2つに分けた信号光をそれぞれ変調した後に再び合波する光結合部6には、通常はY分岐光導波路12が用いられる。DQPSK変調では、2つの信号光にπ/2の位相差を与えて合波するが、この場合には信号光の約半分の光は出力側の光導波路以外のクラッド領域に放射光として放射される。従って、出力光導波路の側部において、この放射光を受光し、モニタ用光信号として利用することが可能である。   As shown in FIG. 6, a Y-branch optical waveguide 12 is usually used for the optical coupling unit 6 that multiplexes the signal light divided into two parts and then multiplexes them in the four-phase phase modulation circuit. In DQPSK modulation, two signal lights are combined with a phase difference of π / 2. In this case, about half of the signal light is emitted as radiated light to the cladding region other than the optical waveguide on the output side. The Therefore, it is possible to receive this radiated light at the side of the output optical waveguide and use it as an optical signal for monitoring.

この場合には、出力信号光の位相差がπ/2の場合には、放射光は光結合部6において位相差が−π/2となっているが、図4(a)に示すように位相差−π/2の点(Vb=15V)においてもOE変換後のRF信号電力は極小になるため、放射光の位相差が極小値になるように直交位相制御部4の位相差を調整することにより、出力信号光の直交状態を最適に保つことができる。   In this case, when the phase difference of the output signal light is π / 2, the phase difference of the radiated light is −π / 2 in the optical coupling unit 6 as shown in FIG. Since the RF signal power after OE conversion is minimized even at a phase difference of −π / 2 (Vb = 15 V), the phase difference of the quadrature phase control unit 4 is adjusted so that the phase difference of the emitted light is minimized. By doing so, the orthogonal state of the output signal light can be kept optimal.

さらに、図7に示すように、光結合部6においてY分岐光導波路12に代えて3dB光結合器13を用いることも可能である。この場合には、3dB光結合器13の一方の出力ポートを光出力として、もう一方の出力ポートをモニタ用光信号として用いればよい。出力信号光の位相差がπ/2のときに、モニタ用光信号の位相差は−π/2となり、Y分岐光導波路12の場合と同様に、モニタ用光信号のOE変換後のRF信号電力を極小にするように直交位相制御部4の位相差を調整することにより、出力信号光の直交状態を最適に保つことができる。なお、光結合部6において3dB光結合器13を用いる場合には、Y分岐光導波路12に比べて、出力信号光とほぼ同じ強度のモニタ光を得ることが可能であり、モニタ用光信号の効率の面で優れているといえる。   Further, as shown in FIG. 7, it is possible to use a 3 dB optical coupler 13 in place of the Y branch optical waveguide 12 in the optical coupling unit 6. In this case, one output port of the 3 dB optical coupler 13 may be used as an optical output, and the other output port may be used as a monitoring optical signal. When the phase difference of the output signal light is π / 2, the phase difference of the monitor optical signal is −π / 2, and the RF signal after the OE conversion of the monitor optical signal is performed as in the case of the Y branch optical waveguide 12. By adjusting the phase difference of the quadrature phase control unit 4 so as to minimize the power, the quadrature state of the output signal light can be kept optimal. When the 3 dB optical coupler 13 is used in the optical coupling unit 6, it is possible to obtain monitor light having almost the same intensity as the output signal light as compared with the Y branch optical waveguide 12. It can be said that it is excellent in terms of efficiency.

(第三実施例)
第一実施例では、出力信号のOE変換後のRF信号電力をモニタし、このRF信号電力が最小となるように直交位相制御部4の位相差を制御する構成を示した。この方式は、構成が簡易であるという点が大きな特徴であるが、位相ずれが生じた場合にずれの方向を検出することができないため、制御方法が複雑になるという課題がある。そこで、第三実施例では、位相ずれの方向が検出可能な4相位相変調回路構成を示す。
(Third embodiment)
In the first embodiment, the configuration is shown in which the RF signal power after OE conversion of the output signal is monitored and the phase difference of the quadrature phase control unit 4 is controlled so that the RF signal power is minimized. This method is characterized in that the configuration is simple, but there is a problem that the control method becomes complicated because the direction of the shift cannot be detected when a phase shift occurs. Therefore, the third embodiment shows a four-phase phase modulation circuit configuration capable of detecting the direction of phase shift.

図8に第三実施例の構成例を示す。本実施例では、直交位相制御部4に与える制御信号に、低周波信号生成部14から出力される低周波信号を重畳する。そして、RF信号電力検出部9から出力される直交位相制御部4の位相差に重畳された低周波信号を、低周波信号生成部14から出力されるもう一つの低周波信号で位相検波することによって、直交位相制御部4における位相ずれの方向を検出する構成をとっている。   FIG. 8 shows a configuration example of the third embodiment. In this embodiment, the low-frequency signal output from the low-frequency signal generation unit 14 is superimposed on the control signal supplied to the quadrature phase control unit 4. Then, the low frequency signal superimposed on the phase difference of the quadrature phase control unit 4 output from the RF signal power detection unit 9 is phase-detected with another low frequency signal output from the low frequency signal generation unit 14. Thus, the phase shift direction in the quadrature phase control unit 4 is detected.

次に、図9を参照しながら本実施例の動作を説明する。RF信号電力の位相ずれに対する依存性は、図9に示すように、コサイン型の出力特性となり、位相差がπ/2においてRF信号電力が最小となる。ここで、直交位相制御部4に印加する制御信号に伝送速度Bに比べて十分低速である周波数f0の成分が重畳されている場合には、RF信号電力の時間変化は、図9に示すようになる。 Next, the operation of this embodiment will be described with reference to FIG. As shown in FIG. 9, the dependency of the RF signal power on the phase shift is a cosine type output characteristic, and the RF signal power is minimized when the phase difference is π / 2. Here, when the component of the frequency f 0 that is sufficiently lower than the transmission speed B is superimposed on the control signal applied to the quadrature phase control unit 4, the time change of the RF signal power is shown in FIG. It becomes like this.

すなわち、位相差がπ/2にあっている場合には、RF信号電力は図9のAに示すように2f0の周波数で変化する。従って、周波数f0で検波した場合には出力信号は零である。次に位相差がπ/2から下がった場合には、図9のBに示すようにf0の成分が現れる。また、位相差がπ/2を上回ると、図9Cに示すようにf0の成分が現れるが、RF信号の位相はBの場合と比べて反転することがわかる。従って、位相検波した後の出力はBとCでは符号が反転しており、ずれの方向を検出可能であることがわかる。 That is, when the phase difference is π / 2, the RF signal power changes at a frequency of 2f 0 as shown in A of FIG. Therefore, the output signal is zero when detected at the frequency f 0 . Next, when the phase difference decreases from π / 2, a component of f 0 appears as shown in B of FIG. Further, when the phase difference exceeds π / 2, the component of f 0 appears as shown in FIG. 9C, but it can be seen that the phase of the RF signal is inverted compared to the case of B. Therefore, it can be seen that the output after the phase detection is inverted between B and C, and the direction of deviation can be detected.

以上より、位相検波後の出力を零にするように直交位相制御部4に与える信号に直流成分を重畳することにより、位相差を常にπ/2に一定制御することが可能となる。   As described above, it is possible to always control the phase difference to be constant at π / 2 by superimposing the DC component on the signal supplied to the quadrature phase control unit 4 so that the output after phase detection becomes zero.

本発明によれば、並列型の4相位相変調回路において、同相成分と直交成分との間の位相差を常にπ/2に一定制御することが可能となり、位相差のずれによる受信感度ペナルティの発生を抑圧し、安定な4相位相変調信号の生成が可能となるため、品質の良い4相位相変調信号を発生させることができる。   According to the present invention, in the parallel type four-phase modulation circuit, the phase difference between the in-phase component and the quadrature component can always be controlled to be constant at π / 2, and the reception sensitivity penalty due to the phase difference deviation can be reduced. Since generation can be suppressed and a stable four-phase phase modulation signal can be generated, a high-quality four-phase phase modulation signal can be generated.

第一実施例の4相位相変調回路の構成図。The block diagram of the 4-phase phase modulation circuit of a 1st Example. 4相位相変調回路の出力光波形およびRF信号スペクトルを示す図。The figure which shows the output optical waveform and RF signal spectrum of a four-phase phase modulation circuit. 第一実施例の4相位相変調回路の構成図(電気バンドパスフィルタを用いた例)。The block diagram of the four-phase phase modulation circuit of a 1st Example (example using an electric band pass filter). RF信号電力の位相ずれ依存性および復調光波長(RZ−DQPSKの例)を示す図。The figure which shows the phase shift dependence of RF signal power, and a demodulation optical wavelength (example of RZ-DQPSK). RF信号電力の位相ずれ依存性および復調光波長(NRZ−DQPSKの例)を示す図。The figure which shows the phase shift dependence of RF signal power, and a demodulation optical wavelength (example of NRZ-DQPSK). 第二実施例の4相位相変調回路の構成図(光結合部にY分岐光導波路を用いた例)。The block diagram of the 4-phase phase modulation circuit of a 2nd Example (example which used Y branch optical waveguide for the optical coupling part). 第二実施例の4相位相変調回路の構成図(光結合部に3dB光結合器を用いた例)。The block diagram of the 4 phase phase modulation circuit of a 2nd Example (example which used 3 dB optical coupler for the optical coupling part). 第三実施例の4相位相変調回路の構成図。The block diagram of the 4-phase phase modulation circuit of a 3rd Example. RF信号電力の直交位相制御部位相差に対する依存性を示す図。The figure which shows the dependence with respect to the orthogonal phase control part phase difference of RF signal power.

符号の説明Explanation of symbols

1 CW光源
2 クロック変調部
3 光分離部
4 直交位相制御部
5−1、5−2 位相変調部
6 光結合部
7 光分岐部
8 OE変換部
9 RF信号電力検出部
10 コントローラ
11 電気バンドパスフィルタ
12 Y分岐光導波路
13 3dB光結合器
14 低周波信号生成部
15 同期検波回路
DESCRIPTION OF SYMBOLS 1 CW light source 2 Clock modulation part 3 Optical separation part 4 Quadrature phase control part 5-1, 5-2 Phase modulation part 6 Optical coupling part 7 Optical branching part 8 OE conversion part 9 RF signal electric power detection part 10 Controller 11 Electric band pass Filter 12 Y branch optical waveguide 13 3 dB optical coupler 14 Low frequency signal generator 15 Synchronous detection circuit

Claims (6)

強度一定の連続光を出力するCW(Continuous Wave)光源と、連続光を2経路に分離する光分離部と、一方の光信号の位相をπ/2だけシフトさせる直交位相制御部と、各々の光信号に位相変調を重畳する位相変調部と、2つの光信号を結合する光結合部とにより構成される4相位相変調回路において、
前記光結合部の出力光信号の一部を分岐する光分岐部と、
分岐されたモニタ用光信号を受光して電気信号に変換するOE(Optical/Electric)変換部と、
OE変換された電気信号の交流成分の電力を検出するRF(Radio Frequency)電力検出部と、
前記電力が最小になるように前記直交位相制御部の位相を制御するコントローラと
を備えたことを特徴とする4相位相変調回路。
A CW (Continuous Wave) light source that outputs continuous light with a constant intensity, a light separation unit that separates continuous light into two paths, a quadrature phase control unit that shifts the phase of one optical signal by π / 2, In a four-phase phase modulation circuit configured by a phase modulation unit that superimposes phase modulation on an optical signal and an optical coupling unit that combines two optical signals
An optical branching unit for branching a part of the output optical signal of the optical coupling unit;
An OE (Optical / Electric) converter that receives the branched monitor optical signal and converts it into an electrical signal;
An RF (Radio Frequency) power detection unit for detecting the power of the alternating current component of the OE converted electrical signal;
And a controller for controlling the phase of the quadrature phase control unit so that the power is minimized.
強度一定の連続光を出力するCW光源と、連続光を2経路に分離する光分離部と、一方の光信号の位相をπ/2だけシフトさせる直交位相制御部と、各々の光信号に位相変調を重畳する位相変調部と、2つの光信号を結合する光結合部とにより構成される4相位相変調回路において、
前記光結合部の出力光信号の一部を分岐する光分岐部と、
分岐されたモニタ用光信号を受光して電気信号に変換するOE変換部と、
OE変換された電気信号の交流成分の電力を検出するRF電力検出部と、
前記直交位相制御部の位相差に低周波成分を重畳する低周波信号生成部と、
前記RF電力検出部から出力される前記直交位相制御部の位相差に重畳された低周波信号を前記低周波信号生成部から出力されるもう一つの低周波信号で同期検波することにより前記直交位相制御部の位相差を検出する同期検波回路と、
前記同期検波回路の出力信号の絶対値が最小になるように前記直交位相制御部の位相差を制御するコントローラと
を備えたことを特徴とする4相位相変調回路。
A CW light source that outputs continuous light with a constant intensity, a light separation unit that separates continuous light into two paths, a quadrature phase control unit that shifts the phase of one optical signal by π / 2, and a phase for each optical signal In a four-phase modulation circuit configured by a phase modulation unit that superimposes modulation and an optical coupling unit that couples two optical signals,
An optical branching unit for branching a part of the output optical signal of the optical coupling unit;
An OE converter that receives the branched optical signal for monitoring and converts it into an electrical signal;
An RF power detector that detects the power of the AC component of the electrical signal that has undergone OE conversion;
A low-frequency signal generation unit that superimposes a low-frequency component on the phase difference of the quadrature phase control unit;
The quadrature phase is obtained by synchronously detecting a low frequency signal superimposed on the phase difference of the quadrature phase control unit output from the RF power detection unit with another low frequency signal output from the low frequency signal generation unit. A synchronous detection circuit for detecting the phase difference of the control unit;
And a controller for controlling a phase difference of the quadrature phase control unit so that an absolute value of an output signal of the synchronous detection circuit is minimized.
前記光結合部は3dB光カプラで構成され、この3dB光カプラの一方の出力ポートから出力信号を取り出し、前記光分岐部に代えて、もう一方の出力ポートからモニタ用光信号を取り出す請求項1または2記載の4相位相変調回路。   2. The optical coupling unit is composed of a 3 dB optical coupler, an output signal is extracted from one output port of the 3 dB optical coupler, and a monitoring optical signal is extracted from the other output port instead of the optical branching unit. Or a 4-phase phase modulation circuit according to 2; 前記光結合部はY分岐光導波路で構成され、前記光分岐部に代えて、このY分岐光導波路から出力導波路以外に放射される放射光をモニタ用光信号として用いる請求項1または2記載の4相位相変調回路。   3. The optical coupling unit is constituted by a Y branch optical waveguide, and instead of the optical branch unit, radiated light emitted from the Y branch optical waveguide to a part other than the output waveguide is used as a monitor optical signal. 4 phase modulation circuit. 前記OE変換部の出力電気信号をフィルタリングする電気フィルタ部を備えた請求項1ないし4のいずれかに記載の4相位相変調回路。   5. The four-phase modulation circuit according to claim 1, further comprising an electric filter unit that filters an electric signal output from the OE conversion unit. 前記電気フィルタ部の通過周波数を、DC(Direct Current)成分およびシンボルレートの1/2以上の周波数帯を除去するように設定した請求項5記載の4相位相変調回路。   6. The four-phase phase modulation circuit according to claim 5, wherein the pass frequency of the electric filter section is set so as to remove a frequency band of 1/2 or more of a DC (Direct Current) component and a symbol rate.
JP2005361622A 2005-12-15 2005-12-15 Four-phase phase modulation circuit Pending JP2007163941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361622A JP2007163941A (en) 2005-12-15 2005-12-15 Four-phase phase modulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361622A JP2007163941A (en) 2005-12-15 2005-12-15 Four-phase phase modulation circuit

Publications (1)

Publication Number Publication Date
JP2007163941A true JP2007163941A (en) 2007-06-28

Family

ID=38246876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361622A Pending JP2007163941A (en) 2005-12-15 2005-12-15 Four-phase phase modulation circuit

Country Status (1)

Country Link
JP (1) JP2007163941A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259426A (en) * 2006-03-22 2007-10-04 Fujitsu Ltd I/q quadrature modulation transmitter and apparatus and method for monitoring i/q phase bias therein
JP2008141670A (en) * 2006-12-05 2008-06-19 Fujitsu Ltd Dqpsk modulation apparatus, optical transmission device and dqpsk modulation method
JP2009081747A (en) * 2007-09-27 2009-04-16 Hitachi Communication Technologies Ltd Four-value phase modulator
JP2009086261A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Optical modulation device
JP2009086268A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Multilevel optical phase modulator
JP2009134047A (en) * 2007-11-30 2009-06-18 Fujitsu Ltd Light modulation device
JP2009246579A (en) * 2008-03-31 2009-10-22 Yokogawa Electric Corp Optical transmission device, and optical test device
JP2009260822A (en) * 2008-04-18 2009-11-05 Fujitsu Ltd Optical transmission apparatus and method for controlling the same
JP2010243953A (en) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Transmitter and transmission method
JP2011022479A (en) * 2009-07-17 2011-02-03 Mitsubishi Electric Corp Multi-value optical transmitter
JP2011069924A (en) * 2009-09-24 2011-04-07 Nippon Telegr & Teleph Corp <Ntt> Quadrature phase shift keying (qpsk) modulator
JP2012227729A (en) * 2011-04-19 2012-11-15 Japan Oclaro Inc Optical output module
JP2012247712A (en) * 2011-05-30 2012-12-13 Fujitsu Ltd Optical transmission device, control method thereof, and optical transmission system
JP2013026758A (en) * 2011-07-20 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter
JP5506955B2 (en) * 2011-01-05 2014-05-28 三菱電機株式会社 Optical communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209018A (en) * 2000-01-26 2001-08-03 Nec Corp Optical modulator with monitor
US20050117191A1 (en) * 2001-11-30 2005-06-02 Robert Griffin Modulation control
JP2007043638A (en) * 2005-05-23 2007-02-15 Fujitsu Ltd Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them
JP2007082094A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Optical transmitter and optical communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209018A (en) * 2000-01-26 2001-08-03 Nec Corp Optical modulator with monitor
US20050117191A1 (en) * 2001-11-30 2005-06-02 Robert Griffin Modulation control
JP2007043638A (en) * 2005-05-23 2007-02-15 Fujitsu Ltd Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them
JP2007082094A (en) * 2005-09-16 2007-03-29 Fujitsu Ltd Optical transmitter and optical communication system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695613B2 (en) * 2006-03-22 2011-06-08 富士通株式会社 I / Q quadrature modulation transmitter and apparatus and method for monitoring I / Q phase difference in I / Q quadrature modulation transmitter
JP2007259426A (en) * 2006-03-22 2007-10-04 Fujitsu Ltd I/q quadrature modulation transmitter and apparatus and method for monitoring i/q phase bias therein
JP2008141670A (en) * 2006-12-05 2008-06-19 Fujitsu Ltd Dqpsk modulation apparatus, optical transmission device and dqpsk modulation method
JP2009081747A (en) * 2007-09-27 2009-04-16 Hitachi Communication Technologies Ltd Four-value phase modulator
JP2009086261A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Optical modulation device
JP2009086268A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Multilevel optical phase modulator
JP2009134047A (en) * 2007-11-30 2009-06-18 Fujitsu Ltd Light modulation device
JP2009246579A (en) * 2008-03-31 2009-10-22 Yokogawa Electric Corp Optical transmission device, and optical test device
JP2009260822A (en) * 2008-04-18 2009-11-05 Fujitsu Ltd Optical transmission apparatus and method for controlling the same
JP2010243953A (en) * 2009-04-09 2010-10-28 Nippon Telegr & Teleph Corp <Ntt> Transmitter and transmission method
JP2011022479A (en) * 2009-07-17 2011-02-03 Mitsubishi Electric Corp Multi-value optical transmitter
US8463138B2 (en) 2009-07-17 2013-06-11 Mitsubishi Electric Corporation Multi-value optical transmitter
JP2011069924A (en) * 2009-09-24 2011-04-07 Nippon Telegr & Teleph Corp <Ntt> Quadrature phase shift keying (qpsk) modulator
JP5506955B2 (en) * 2011-01-05 2014-05-28 三菱電機株式会社 Optical communication device
JP2012227729A (en) * 2011-04-19 2012-11-15 Japan Oclaro Inc Optical output module
JP2012247712A (en) * 2011-05-30 2012-12-13 Fujitsu Ltd Optical transmission device, control method thereof, and optical transmission system
US9014572B2 (en) 2011-05-30 2015-04-21 Fujitsu Limited Optical transmitter, control method for the same, and optical transmission system
JP2013026758A (en) * 2011-07-20 2013-02-04 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter

Similar Documents

Publication Publication Date Title
JP2007163941A (en) Four-phase phase modulation circuit
US7848659B2 (en) Optical transmitting apparatus and optical communication system
US8582980B2 (en) Optical device and optical modulation method
JP4516907B2 (en) Optical receiver and control method thereof
US8041228B2 (en) Fiber optical transmission system, transmitter and receiver for DQPSK modulated signals and method for stabilizing the same
EP1816763B1 (en) Optical receiving apparatus and optical communication system comprising it
US8121492B2 (en) Optical transmitting apparatus
JP4678653B2 (en) Optical transmitter
EP2197165B1 (en) Efficient QAM signal generation
US20060263097A1 (en) Optical transmitting apparatus, optical receiving apparatus, and optical communication system comprising them
US7561810B2 (en) Optical communication apparatus
JP6733912B2 (en) Pluggable optical module and optical communication system
US20110150504A1 (en) Coherent optical receiver system and method for detecting phase modulated signals
JP5487547B2 (en) Light modulation apparatus and light modulation method
JP2008010971A (en) High speed dispersion compensation controller
US10234704B2 (en) Optical module that includes optical modulator and bias control method for optical modulator
JP2011069924A (en) Quadrature phase shift keying (qpsk) modulator
EP1833179B1 (en) Optical reception device
US20090252505A1 (en) Phase-modulated signal receiving device
JP2007318483A (en) Optical phase modulation demodulation circuit and optical phase modulation demodulation method
JP2000122015A (en) Optical modulator
Christen et al. Stabilization of a 40 Gb/s DPSK delay-line interferometer using half bit-rate AM pilot tone monitoring
JP2010268191A (en) Optical modulator, method for controlling optical modulator, and optical transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108