JP2007163407A - Post-operative prognosis testing method for early-stage lung cancer - Google Patents

Post-operative prognosis testing method for early-stage lung cancer Download PDF

Info

Publication number
JP2007163407A
JP2007163407A JP2005363082A JP2005363082A JP2007163407A JP 2007163407 A JP2007163407 A JP 2007163407A JP 2005363082 A JP2005363082 A JP 2005363082A JP 2005363082 A JP2005363082 A JP 2005363082A JP 2007163407 A JP2007163407 A JP 2007163407A
Authority
JP
Japan
Prior art keywords
esrage
lung cancer
antibody
test
rage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005363082A
Other languages
Japanese (ja)
Other versions
JP4779115B2 (en
Inventor
Yuji Kubo
裕司 久保
Seiichi Kobayashi
誠一 小林
Takashi Suzuki
貴 鈴木
Satoshi Suzuki
聡 鈴木
Kouta Ishizawa
興太 石沢
Hiroshi Yamamoto
博 山本
Hideto Yonekura
秀人 米倉
Takuo Watanabe
琢夫 渡邉
Yasuhiko Yamamoto
靖彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Kanazawa University NUC
Original Assignee
Tohoku University NUC
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Kanazawa University NUC filed Critical Tohoku University NUC
Priority to JP2005363082A priority Critical patent/JP4779115B2/en
Publication of JP2007163407A publication Critical patent/JP2007163407A/en
Application granted granted Critical
Publication of JP4779115B2 publication Critical patent/JP4779115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide prognosis testing method, etc. for patients with lung cancer which clarifies the work of esRAGE in vivo, while utilizing its measurements. <P>SOLUTION: This post-operative prognosis testing method for the patients with lung cancer, which includes measuring of the amount of manifestation endogenous secretory RAGE (Endogenous Secretory Receptor for Advanced Glycation End products: esRAGE), a test kit used for the above method, a prognosis testing reagent for the patients with lung cancer comprising anti-esRAGE antibody, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内在性分泌型RAGE(Endogenous Secretory Receptor for Advanced Glycation End products :esRAGE)の発現量を測定することを含む、肺癌患者の術後予後検査方法、それに使用する検査キット、抗esRAGE抗体から成る肺癌患者の予後検査用試薬等に関する。   The present invention relates to a postoperative prognostic test method for lung cancer patients, comprising measuring the expression level of endogenous secretory receptor for advanced glycation end products (esRAGE), a test kit used therefor, and an anti-esRAGE antibody The present invention relates to a reagent for prognosis examination of lung cancer patients.

全世界的に肺癌の症例数が増加している。遠隔転移のない肺癌では、手術治療がもっとも予後の良い治療法である。しかし、臨床病期の早期(Stage I)の肺癌であっても、その手術後5年生存率は65%にとどまり、残りの35%は治癒切除術が施行されているにもかかわらず再発または遠隔転移で命を落としている(参考文献1-3)。これらの予後不良症例は、手術が終了した段階では区別することが出来ず、その後の長期経過観察期間を必要とする。   The number of lung cancer cases is increasing worldwide. For lung cancer without distant metastases, surgical treatment is the best prognosis. However, even in early stage (Stage I) lung cancer, the 5-year survival rate remains 65% after the operation, and the remaining 35% is relapsed or recurring despite curative resection. He died from distant metastasis (References 1-3). These poor prognosis cases cannot be distinguished at the stage of completion of surgery, and require a long follow-up period thereafter.

従って、この予後不良症例を術後早期に判断することが可能になれば、術後の追加治療(抗癌剤による化学療法)及び慎重な経過観察による再発の早期発見が可能になり、早期肺癌症例の生命予後を延ばすことが可能になると考えられる。それとともに、予後良好例に対しては、不必要な検査・治療が軽減でき、医療費抑制にもつながる。以上のことより,早期肺癌の術後予後予測因子の開発が重要である。   Therefore, if it becomes possible to judge this poor prognosis case early after surgery, it becomes possible to detect recurrence early by additional treatment (chemotherapy with anticancer drugs) and careful follow-up. It is considered possible to prolong the prognosis. At the same time, unnecessary examinations and treatments can be reduced for cases with good prognosis, leading to a reduction in medical costs. Therefore, it is important to develop predictive factors for postoperative prognosis of early lung cancer.

後期糖化反応生成物(Advanced Glycation Endproducts: AGE) に対する受容体(Receptor for AGE: RAGE)は様々な物質をリガンドに持つレセプターであり、炎症、糖尿病性血管症、癌転移などに関与している(参考文献4,5)。特に、RAGEとそのリガンドであるHMGB-1/amphoterinが癌浸潤転移に大きく関わっていることが明らかになった(参考文献6, 7, 8)。最近、このRAGEには一つの遺伝子から選択的スプライシングによって作り出される内在性分泌型RAGE (esRAGE)というイソフォームがあることが発見された(参考文献9、特許文献1、特許文献2)。   Receptor for AGE (RAGE) is a receptor that has various substances as ligands and is involved in inflammation, diabetic angiopathy, cancer metastasis, etc. (Advanced Glycation Endproducts: AGE) References 4, 5). In particular, it was revealed that RAGE and its ligand HMGB-1 / amphoterin are greatly involved in cancer invasion and metastasis (Reference Documents 6, 7, and 8). Recently, it has been discovered that this RAGE has an isoform called endogenous secreted RAGE (esRAGE) produced by alternative splicing from one gene (Reference 9, Patent Document 1, Patent Document 2).

esRAGEはRAGEのリガンドと結合し、本来のレセプターとしてのRAGE (full-length RAGE)と競合してRAGEを介した細胞の反応を抑制すると考えられている。しかし、その生体内における働きは明らかではない。特許文献1及び特許文献2には、それをコードする核酸及び抗esRAGE抗体等が糖尿病合併症等の様々な疾病の治療又は予防に使用できる可能性、esRAGE抗体を用いたesRAGEの測定方法、並びに、esRAGEを定量することによる糖尿病合併症罹患感受性、抵抗性の予測可能性が記載されている。又、特許文献3には、肺癌予後検査方法に関する発明が記載されているが、実際に検討されているのは臨床病期III 及びIVの後期の患者に関するものである。
特開2003−125786号公報 特開2003−128700号公報 特開平11−230966号公報
It is thought that esRAGE binds to the ligand of RAGE and competes with RAGE (full-length RAGE) as an original receptor to suppress the cell response via RAGE. However, its function in vivo is not clear. Patent Literature 1 and Patent Literature 2 describe the possibility that nucleic acids encoding them and anti-esRAGE antibodies can be used for the treatment or prevention of various diseases such as diabetic complications, methods for measuring esRAGE using esRAGE antibodies, and The susceptibility and resistance predictability of diabetic complications by quantifying esRAGE are described. Patent Document 3 describes an invention relating to a method for prognosing lung cancer, but what is actually being studied relates to patients in the later stages of clinical stage III and IV.
JP 2003-125786 A JP 2003-128700 A Japanese Patent Laid-Open No. 11-230966

従って、本発明の目的は、esRAGEの生体内における働きを明らかにすると共に、その測定を利用した肺癌患者の予後検査方法等を提供することである。   Accordingly, an object of the present invention is to clarify the function of esRAGE in vivo and to provide a prognostic method for lung cancer patients using the measurement.

本発明者は上記課題を解決すべく、182例の非小細胞肺癌手術症例を用いて癌組織及び健常組織でesRAGEの発現を検討して予後との関係を明らかにし、本発明を完成した。   In order to solve the above-mentioned problems, the present inventor examined the expression of esRAGE in cancer tissues and healthy tissues using 182 non-small cell lung cancer surgical cases and clarified the relationship with prognosis, thereby completing the present invention.

即ち、本発明は、以下の各態様に係るものである。
[1]肺癌患者由来の検体試料中の内在性分泌型RAGE(esRAGE)の発現量を測定することを含む、該肺癌患者の予後検査方法。
[2]肺癌患者が臨床病期I期である、態様1記載の検査方法。
[3]検体試料として術後に摘出した肺組織切片を使用する、態様1又は2に記載の検査方法。
[4]検体試料として術前の気管支鏡下生検標本を使用する、態様1又は2に記載の検査方法。
[5]抗esRAGE抗体を使用する抗原抗体反応によってesRAGEの発現量を測定する、態様1〜4のいずれか一項に記載の検査方法。
[6]標識抗体を使用する、態様5記載の検査方法。
[7]esRAGEの発現量を免疫染色法で測定する、態様5又は6のいずれか一項に記載の検査方法。
[8]抗esRAGE抗体から成る、肺癌患者の予後検査用試薬。
[9]標識抗体である、態様8記載の試薬。
[10]態様8又は9のいずれか一項に記載の試薬を含む、態様1〜7のいずれか一項に記載の検査方法に使用するため検査キット。
[11]esRAGEをコードする核酸分子を有効成分として含有する抗肺癌剤。
[12]核酸分子がベクターに組み込まれている、11記載の抗肺癌剤。
[13]esRAGEを有効成分として含有する抗肺癌剤。
That is, the present invention relates to the following aspects.
[1] A method for prognosing lung cancer patients, comprising measuring the expression level of endogenous secretory RAGE (esRAGE) in a specimen sample derived from a lung cancer patient.
[2] The examination method according to aspect 1, wherein the lung cancer patient is in clinical stage I.
[3] The examination method according to aspect 1 or 2, wherein a lung tissue section removed after surgery is used as a specimen sample.
[4] The examination method according to aspect 1 or 2, wherein a preoperative bronchoscopic biopsy specimen is used as a specimen sample.
[5] The test method according to any one of aspects 1 to 4, wherein the expression level of esRAGE is measured by an antigen-antibody reaction using an anti-esRAGE antibody.
[6] The test method according to aspect 5, wherein a labeled antibody is used.
[7] The examination method according to any one of aspects 5 and 6, wherein the expression level of esRAGE is measured by an immunostaining method.
[8] A reagent for prognosis testing of lung cancer patients, comprising an anti-esRAGE antibody.
[9] The reagent according to embodiment 8, which is a labeled antibody.
[10] An inspection kit for use in the inspection method according to any one of aspects 1 to 7, comprising the reagent according to any one of aspects 8 or 9.
[11] An anti-lung cancer agent containing a nucleic acid molecule encoding esRAGE as an active ingredient.
[12] The anti-lung cancer agent according to 11, wherein the nucleic acid molecule is incorporated into a vector.
[13] An anti-lung cancer agent containing esRAGE as an active ingredient.

従来、早期肺癌患者術後症例において、その予後を予測する因子は存在しなかった。本発明により、癌細胞のesRAGE発現低下が症例の予後と相関することが明らかになった。この相関は早期肺癌症例において特に認められた。このことから、肺癌手術組織のesRAGE 発現を測定することにより、その発現量に基き、長期の経過を見ることなく、肺癌患者、特に、早期肺癌患者症例の予後を検査判断することが可能となった。   Conventionally, there was no factor that predicts the prognosis of postoperative patients with early lung cancer. According to the present invention, it has been clarified that the decrease in esRAGE expression of cancer cells correlates with the prognosis of the case. This correlation was particularly observed in early lung cancer cases. Therefore, by measuring esRAGE expression in lung cancer surgical tissue, it becomes possible to examine and determine the prognosis of lung cancer patients, especially early lung cancer patients, without looking at the long-term progress based on the expression level. It was.

本発明の予後検査方法において測定の対象となる内在性分泌型RAGE(esRAGE)は可溶型RAGEのうちでも生体内で積極的に産生・分泌される、通常、ヒト由来の蛋白質を意味する。該物質に関しては、例えば、特許文献1又は特許文献2中(但し、「可溶型RAGE」と標記されている)に詳細に説明されており、当業者には公知の物質である。   The endogenous secreted RAGE (esRAGE) to be measured in the prognostic test method of the present invention usually means a human-derived protein that is actively produced and secreted in vivo among soluble RAGEs. The substance is described in detail in, for example, Patent Document 1 or Patent Document 2 (however, labeled “soluble RAGE”), and is a substance known to those skilled in the art.

即ち、より具体的には、「内在性分泌型RAGE(esRAGE)」とは、糖尿病性合併症と関連の深いReceptorfor advanced glycation endproducts (RAGE)に関連したペプチドであって、RAGEのスプライシング バリアントで膜貫通領域を有しないペプチドを指している。   That is, more specifically, “endogenous secreted RAGE (esRAGE)” is a peptide related to receptor for advanced glycation endproducts (RAGE), which is closely related to diabetic complications, and is a splicing variant of RAGE. It refers to a peptide that does not have a penetrating region.

該esRAGEは、347個のアミノ酸残基からなるペプチド(但し、実際に細胞外に分泌される場合には22個のアミノ酸残基からなるシグナル配列が外れて325個のアミノ酸残基からなるペプチドとなる)であり、そのC 末端側には特徴的な配列:GluGlyPheAspLysValArgGluAlaGluAspSerProGlnHisMet、
を有しており、膜貫通型RAGE(膜型RAGE又は膜結合型RAGEともいう)に存在する膜貫通ドメインを欠いていることを特徴としている。該esRAGEは、advanced glycation endproducts (AGE) 結合活性を有するか、あるいはAGE とそのレセプターの間の相互作用に阻害あるいは抑制活性を有することが挙げられる。典型的には、本発明のesRAGEは、生体内に存在する天然型ペプチド(内在性ペプチドあるいは内因性ペプチド)で、C末端部分の16個のアミノ酸残基においてRAGE蛋白質と異なっているものである。本発明の代表的な可溶型RAGEとしては、特許文献1又は2に記載の配列表の配列番号:1のDNA でコードされて産生されるポリペプチド、例えば配列表の配列番号:2のアミノ酸配列またはそれと実質的に同等なアミノ酸配列を有するポリペプチドが挙げられる。また、本発明の代表的な可溶型RAGEは、配列表の配列番号:2のアミノ酸配列Glu332〜Met347のうちの少なくとも 1〜16個の連続したアミノ酸残基をそのC 末端側に有し且つAGE 結合活性を有するもの、配列表の配列番号:2のアミノ酸配列Met1〜Val117のうちの少なくとも 1〜117 個の連続したアミノ酸残基をN 末端側に有し且つAGE 結合活性を有するもの、あるいはそれらの特徴を有し且つ配列表の配列番号:2のアミノ酸配列Tyr118〜Gly331に対し少なくとも60% の相同性を有するもの等が挙げられる。
The esRAGE is a peptide consisting of 347 amino acid residues (however, if it is actually secreted outside the cell, the signal sequence consisting of 22 amino acid residues is removed and the peptide consisting of 325 amino acid residues) And a characteristic sequence on the C-terminal side: GluGlyPheAspLysValArgGluAlaGluAspSerProGlnHisMet,
And is characterized by lacking a transmembrane domain present in transmembrane RAGE (also referred to as membrane-type RAGE or membrane-bound RAGE). The esRAGE has an advanced glycation endproducts (AGE) binding activity, or has an inhibitory or inhibitory activity on the interaction between AGE and its receptor. Typically, the esRAGE of the present invention is a naturally occurring peptide (endogenous peptide or endogenous peptide) that exists in a living body and differs from the RAGE protein in 16 amino acid residues in the C-terminal part. . A typical soluble RAGE of the present invention is a polypeptide encoded and produced by the DNA of SEQ ID NO: 1 of Sequence Listing described in Patent Document 1 or 2, for example, the amino acid of SEQ ID NO: 2 of Sequence Listing A polypeptide having the sequence or a substantially equivalent amino acid sequence is mentioned. The typical soluble RAGE of the present invention has at least 1 to 16 consecutive amino acid residues in the C-terminal side of the amino acid sequence Glu 332 to Met 347 of SEQ ID NO: 2 in the sequence listing. And having AGE binding activity, having at least 1 to 117 consecutive amino acid residues on the N-terminal side of amino acid sequence Met 1 to Val 117 of SEQ ID NO: 2 in the sequence listing and having AGE binding activity Or those having these characteristics and having at least 60% homology with the amino acid sequence Tyr 118 to Gly 331 of SEQ ID NO: 2 in the Sequence Listing.

ここで、「相同性」とは、ポリペプチド配列(あるいはアミノ酸配列)又はポリヌクレオチド配列(あるいは塩基配列)における2本の鎖の間で該鎖を構成している各アミノ酸残基同志又は各塩基同志の互いの適合関係において同一であると決定できるようなものの量(数)を意味し、二つのポリペプチド配列又は二つのポリヌクレオチド配列の間の配列相関性の程度を意味するものである。相同性は容易に算出できる。二つのポリヌクレオチド配列又はポリペプチド配列間の相同性を測定する方法は数多く知られており、「相同性」(「同一性」とも言われる)なる用語は、当業者には周知である (例えば、Lesk, A. M. (Ed.), Computational Molecular Biology, Oxford University Press, New York, (1988);Smith, D. W. (Ed.), Biocomputing: Informatics and Genome Projects, Academic Press, New York, (1993); Grifin, A. M. & Grifin, H. G. (Ed.), Computer Analysis of Sequence Data: Part I, Human Press, New Jersey, (1994);von Heinje, G., Sequence Analysis in Molecular Biology, Academic Press,New York, (1987); Gribskov, M. & Devereux, J. (Ed.), Sequence Analysis Primer, M-Stockton Press, New York, (1991) 等) 。二つの配列の相同性を測定するのに用いる一般的な方法には、Martin, J. Bishop (Ed.), Guide to Huge Computers, Academic Press, San Diego, (1994);Carillo, H. & Lipman, D., SIAM J. Applied Math., 48: 1073 (1988) 等に開示されているものが挙げられるが、これらに限定されるものではない。相同性を測定するための好ましい方法としては、試験する二つの配列間の最も大きな適合関係部分を得るように設計したものが挙げられる。このような方法は、コンピュータープログラムとして組み立てられているものが挙げられる。二つの配列間の相同性を測定するための好ましいコンピュータープログラム法としては、GCG プログラムパッケージ (Devereux, J. et al., Nucleic Acids Research, 12(1): 387 (1984)) 、BLASTP、BLASTN、FASTA (Atschul, S. F. et al., J. Molec. Biol., 215: 403 (1990)) 等が挙げられるが、これらに限定されるものでなく、当該分野で公知の方法を使用することができる。   Here, “homology” refers to each amino acid residue or each base constituting the chain between two chains in a polypeptide sequence (or amino acid sequence) or polynucleotide sequence (or base sequence). It means the amount (number) of things that can be determined to be identical in the mutual relationship of each other, and means the degree of sequence correlation between two polypeptide sequences or two polynucleotide sequences. Homology can be easily calculated. Many methods for measuring homology between two polynucleotide or polypeptide sequences are known, and the term “homology” (also referred to as “identity”) is well known to those skilled in the art (eg, , Lesk, AM (Ed.), Computational Molecular Biology, Oxford University Press, New York, (1988); Smith, DW (Ed.), Biocomputing: Informatics and Genome Projects, Academic Press, New York, (1993); Grifin , AM & Grifin, HG (Ed.), Computer Analysis of Sequence Data: Part I, Human Press, New Jersey, (1994); von Heinje, G., Sequence Analysis in Molecular Biology, Academic Press, New York, (1987 Gribskov, M. & Devereux, J. (Ed.), Sequence Analysis Primer, M-Stockton Press, New York, (1991), etc.). Common methods used to measure the homology of two sequences include Martin, J. Bishop (Ed.), Guide to Huge Computers, Academic Press, San Diego, (1994); Carillo, H. & Lipman , D., SIAM J. Applied Math., 48: 1073 (1988), etc., but are not limited thereto. Preferred methods for measuring homology include those designed to obtain the largest match between the two sequences being tested. An example of such a method is one assembled as a computer program. Preferred computer programming methods for measuring homology between two sequences include the GCG program package (Devereux, J. et al., Nucleic Acids Research, 12 (1): 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, SF et al., J. Molec. Biol., 215: 403 (1990)) and the like, but are not limited thereto, and methods known in the art can be used. .

検体試料としては、肺癌患者から摘出した肺組織の任意の部分を使用することが出来、好適な検体試料の例として、例えば、術後に摘出した肺組織切片、又は、術前の気管支鏡下生検標本を挙げることが出来る。これらの検体試料は測定方法等に応じて、適当な処理をした後に検査方法に供される。例えば、該組織標本等から当業者に公知の適当な手段で抽出・調製された試料を使用することも可能である。   As a specimen sample, any part of lung tissue extracted from a lung cancer patient can be used. As an example of a suitable specimen sample, for example, a lung tissue section removed after surgery, or a bronchoscope before surgery List biopsy specimens. These specimen samples are subjected to an appropriate method according to the measurement method and the like and then used for the inspection method. For example, it is possible to use a sample extracted and prepared from the tissue specimen or the like by an appropriate means known to those skilled in the art.

検査の対象となる肺癌患者の臨床病期に特に制限はないが、特に、臨床病期(TNM病期)I期のような早期の肺癌患者由来の検体試料を使用した場合に、より有意な予後検査結果を得ることが出来るので有利である。   There is no particular limitation on the clinical stage of lung cancer patients to be examined, but it is more significant when specimen samples from patients with early lung cancer such as clinical stage (TNM stage) stage I are used. Prognostic test results can be obtained, which is advantageous.

esRAGEの発現量は当業者に公知の任意の方法で測定することが可能である。例として、例えば、抗esRAGE抗体を用いた免疫染色及びEIA等の各種の免疫学的特異反応を利用する方法、エドマン法を用いた気相シークエンサー等ペプチドのアミノ酸配列分析法、更には、MALDI−TOF/MS及びESI Q−TOF/MS法等に代表される質量分析によって検出することが出来る。   The expression level of esRAGE can be measured by any method known to those skilled in the art. Examples include, for example, a method using various immunological specific reactions such as immunostaining using an anti-esRAGE antibody and EIA, an amino acid sequence analysis method for peptides such as a gas phase sequencer using Edman method, and MALDI- It can detect by mass spectrometry represented by TOF / MS, ESI Q-TOF / MS method, etc.

上記の方法の中でも、抗esRAGE抗体を使用する抗原抗体反応によってesRAGEの発現量を測定する検査方法が好適である。該抗体は、上記のesRAGE若しくはその適当な部分ポリペプチド(ペプチド断片)又はそれらの各種誘導体又は複合体等を抗原物質又は免疫原として用いて、当業者に公知の適当な方法で調製することが可能である。例えば、ポリクローナル抗体の場合には、マウス、ラット、ウサギ、ヤギ、ニワトリ等の適当な動物に投与し、その抗血清から調製することが可能である。或いは、モノクローナル抗体作成法(「単クローン抗体」、長宗香明、寺田弘共著、廣川書店、1990年; "Monoclonal Antibody" James W. Goding, third edition, Academic Press, 1996)等に記載の公知の細胞融合を用いる方法でモノクローナル抗体として調製することも可能である。例えば、特許文献1又は特許文献2に記載の方法で調製することが可能である。このような方法で作成された抗esRAGE抗体の具体例として、同特許文献の表1に挙げられた抗ヒトesRAGE抗体を挙げることが出来る。   Among the above methods, a test method for measuring the expression level of esRAGE by an antigen-antibody reaction using an anti-esRAGE antibody is preferable. The antibody can be prepared by an appropriate method known to those skilled in the art using the above esRAGE or an appropriate partial polypeptide (peptide fragment) thereof or various derivatives or complexes thereof as an antigenic substance or an immunogen. Is possible. For example, in the case of a polyclonal antibody, it can be administered to an appropriate animal such as a mouse, rat, rabbit, goat or chicken and prepared from the antiserum. Alternatively, a known monoclonal antibody production method (“monoclonal antibody”, Kamei Nagamune, Hiroaki Terada, Yodogawa Shoten, 1990; “Monoclonal Antibody” James W. Goding, third edition, Academic Press, 1996), etc. It is also possible to prepare a monoclonal antibody by a method using cell fusion. For example, it can be prepared by the method described in Patent Document 1 or Patent Document 2. Specific examples of the anti-esRAGE antibody prepared by such a method include anti-human esRAGE antibodies listed in Table 1 of the same patent document.

尚、このような抗esRAGE抗体は、その元来の抗体活性を失わない限り、遺伝子工学(DNA組換え技術)により、例えば、Fab、F(ab')2、Fv断片等の完全な抗体由来の各種誘導体を含む、当業者に公知の様々な形態に改変された誘導体、組換え体又はフラグメントであっても良い。 Such an anti-esRAGE antibody is derived from a complete antibody such as Fab, F (ab ′) 2 , Fv fragment, etc. by genetic engineering (DNA recombination technology) unless the original antibody activity is lost. It may be a derivative, recombinant or fragment modified into various forms known to those skilled in the art, including various derivatives of

又、esRAGE自体は、本明細書の実施例に記載するように、それをコードする遺伝子を形質転換した各種細胞株を培養して、該形質転換細胞にesRAGEを産生させてそこから調製したり、或いは、化学合成法により製造することが可能である。   In addition, as described in the Examples of the present specification, esRAGE itself is prepared by culturing various cell lines transformed with a gene encoding the same, and producing esRAGE in the transformed cells. Alternatively, it can be produced by a chemical synthesis method.

esRAGEをコードする遺伝子は、初代培養ヒト皮膚微小血管内皮細胞又はヒト脳組織等の様々なヒト組織に基き調製された適当なcDNAライブラリーを鋳型として、特許文献1等に記載された該遺伝子の塩基配列に基づき適宜設計したプライマーを使用したPCR、並びに、その他のNASBA(Nucleic acid sequence based amplification)法、TMA(Transcription-mediated amplification)法及びSDA(Strand Displacement Amplification)法等の当業者に公知の任意DNA増幅技術を用いることにより、該遺伝子のcDNAとして容易に得ることが可能である。   The gene encoding esRAGE is a template of an appropriate cDNA library prepared on the basis of various human tissues such as primary cultured human skin microvascular endothelial cells or human brain tissue. Known to those skilled in the art such as PCR using primers designed appropriately based on the nucleotide sequence, and other NASBA (Nucleic acid sequence based amplification), TMA (Transcription-mediated amplification) and SDA (Strand Displacement Amplification) methods By using an arbitrary DNA amplification technique, it can be easily obtained as cDNA of the gene.

或いは、上記遺伝子は当業者に周知の方法により上記cDNAライブラリーをスクリーニングすることによって単離することができる。更に、該遺伝子のcDNAに、当業者に公知の部位特異的突然変異誘発に基づき、市販のミューテーションシステム等を用いて塩基変異を導入して調製することも可能である。   Alternatively, the gene can be isolated by screening the cDNA library by methods well known to those skilled in the art. Furthermore, the cDNA of the gene can be prepared by introducing a base mutation using a commercially available mutation system or the like based on site-directed mutagenesis known to those skilled in the art.

又、上記遺伝子は、公知の方法(例えば、Carruthers(1982)Cold Spring Harbor Symp. Quant. Biol. 47:411-418; Adams(1983)J. Am. Chem. Soc. 105:661; Belousov(1997)Nucleic Acid Res. 25:3440-3444; Frenkel(1995)Free Radic. Biol. Med. 19:373-380; Blommers(1994)Biochemistry 33:7886-7896; Narang(1979)Meth. Enzymol. 68:90; Brown(1979)Meth. Enzymol. 68:109; Beaucage(1981)Tetra. Lett. 22:1859; 米国特許第4,458,066号)に記載されているような周知の化学合成技術により、in vitroにおいて合成することもできる。また、本発明のポリヌクレオチドを適当な制限酵素で切断する等の方法によって作製することもできる。   In addition, the above gene can be obtained by a known method (for example, Carruthers (1982) Cold Spring Harbor Symp. Quant. Biol. 47: 411-418; Adams (1983) J. Am. Chem. Soc. 105: 661; Belousov (1997). ) Nucleic Acid Res. 25: 3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19: 373-380; Blommers (1994) Biochemistry 33: 7886-7896; Narang (1979) Meth. Enzymol. 68:90 Synthesized in vitro by well-known chemical synthesis techniques such as described in Brown (1979) Meth. Enzymol. 68: 109; Beaucage (1981) Tetra. Lett. 22: 1859; US Pat. No. 4,458,066) You can also. It can also be produced by a method such as cleaving the polynucleotide of the present invention with an appropriate restriction enzyme.

このように、抗esRAGE抗体を使用して肺癌患者由来の検体試料中のesRAGEの発現量を測定することにより、該肺癌患者の予後を検査することが出来る。尚、発現量の測定は必ずしも定量的である必要はなく、具体的な測定法・手段に応じて、目視などによる定性的又は半定量的な判定であっても本発明の効果は十分に得ることが出来る。従って、抗esRAGE抗体は、肺癌患者の予後検査用試薬としての用途を有する。   Thus, the prognosis of the lung cancer patient can be examined by measuring the expression level of esRAGE in the specimen sample derived from the lung cancer patient using the anti-esRAGE antibody. In addition, the measurement of the expression level is not necessarily quantitative, and the effect of the present invention can be sufficiently obtained even by qualitative or semi-quantitative determination by visual observation according to a specific measurement method / means. I can do it. Accordingly, the anti-esRAGE antibody has a use as a prognostic test reagent for lung cancer patients.

本発明の肺癌患者の予後検査方法において、肺癌患者由来の検体試料中のesRAGEの発現量は、それをコードするmRNAの量により測定することも可能である。   In the prognosis test method for lung cancer patients of the present invention, the expression level of esRAGE in a specimen sample derived from a lung cancer patient can also be measured by the amount of mRNA encoding it.

このようなmRNAの測定は、本明細書中の実施例に記載のように、例えば、特許文献1等に記載された該遺伝子の塩基配列に基づき適宜設計したプライマーを使用したRT−PCR法等の各種定量的PCR法、並びにマイクロアレイ(DNAチップ)法等の当業者に公知の方法で行うことが出来る。   As described in Examples in the present specification, such mRNA measurement is performed, for example, by RT-PCR method using primers appropriately designed based on the nucleotide sequence of the gene described in Patent Document 1 and the like These methods can be performed by methods known to those skilled in the art, such as various quantitative PCR methods and microarray (DNA chip) methods.

更に、肺癌患者の予後検査方法に使用される、例えば上記のような予後検査用試薬を含む検査キットは、esRAGEの具体的な測定原理等に応じて、適当な構成をとることが出来る。該キットは、例えば、抗esRAGE抗体から成る予後検査用試薬、又は、上記のmRNAの測定の為の、esRAGE遺伝子の増幅用プライマー及びハイブリダイゼーション用のプローブを含むことが出来る。これらは、その用途に応じて、適当な長さ、例えば、10〜100個の連続した塩基配列から成る。   Furthermore, a test kit including a prognostic test reagent as described above, for example, used in a prognostic test method for lung cancer patients can have an appropriate configuration according to the specific measurement principle of esRAGE. The kit can contain, for example, a prognostic test reagent comprising an anti-esRAGE antibody, or a primer for amplification of the esRAGE gene and a probe for hybridization for the measurement of the above mRNA. These consist of a continuous base sequence of an appropriate length, for example, 10 to 100, depending on the application.

これまでに記載した、esRAGEポリペプチドの化学合成及びその遺伝子の調製、各種のプライマー又はプローブの設計等に際しては、特許文献1又は特許文献2に記載されたesRAGEのアミノ酸配列情報及びその遺伝子の塩基配列情報を参考にすることができる。   In the chemical synthesis of esRAGE polypeptide and the preparation of its gene, the design of various primers or probes described so far, the amino acid sequence information of esRAGE described in Patent Document 1 or Patent Document 2 and the base of the gene Sequence information can be consulted.

以上のキットに構成要素として含まれる、各種のプライマー、プローブ、又は、抗体は、当業者に公知の任意の放射性物質、蛍光物質、色素等の適当な標識物質によって標識されていても良い。更に、上記キットには、その構成・使用目的などに応じて、当業者に公知の他の要素又は成分、例えば、各種試薬、酵素、緩衝液、反応プレート(容器)等が含まれる。   Various primers, probes, or antibodies included as components in the above kit may be labeled with an appropriate labeling substance such as any radioactive substance, fluorescent substance, and dye known to those skilled in the art. Further, the kit includes other elements or components known to those skilled in the art, such as various reagents, enzymes, buffers, reaction plates (containers), and the like, depending on the configuration and purpose of use.

本発明の抗肺癌剤は、esRAGEをコードする核酸分子又はesRAGE自体を有効成分として含有する。本明細書の実施例に示されるように、esRAGEをコードする核酸分子を癌細胞内で導入して強制的にesRAGEを発現させることにより、又は、esRAGE活性成分として含む抗肺癌剤を投与することによってesRAGE活性成分を癌細胞に作用させることによって、癌細胞の増殖を抑制することが可能である。   The anti-lung cancer agent of the present invention contains a nucleic acid molecule encoding esRAGE or esRAGE itself as an active ingredient. As shown in the examples of the present specification, by introducing a nucleic acid molecule encoding esRAGE into cancer cells and forcibly expressing esRAGE, or administering an anti-lung cancer agent containing esRAGE as an active ingredient By causing the esRAGE active ingredient to act on cancer cells, the growth of cancer cells can be suppressed.

esRAGEをコードする核酸分子は、レトロウイルスベクター、アデノウイルスベクター、及びアデノ随伴ウイルスベクター等の各種ウィルスベクター、非ウィルス型ベクター又は混成型ベクター等の遺伝子治療に使用される適当なベクターに挿入して使用することが好ましい。このようなベクターには各種の遺伝子発現調節配列、クローニング部位、薬剤耐性遺伝子等の各種要素が適宜含まれており、当業者に公知の任意の方法で作製することができる。   Nucleic acid molecules encoding esRAGE are inserted into appropriate vectors used for gene therapy such as various viral vectors such as retroviral vectors, adenoviral vectors, and adeno-associated viral vectors, non-viral vectors, or hybrid vectors. It is preferable to use it. Such vectors appropriately contain various elements such as various gene expression regulatory sequences, cloning sites, drug resistance genes and the like, and can be prepared by any method known to those skilled in the art.

上記の抗肺癌剤には、有効成分と組合せて、薬学上許容できる、当業者に公知の任意の医薬キャリア−又は希釈剤等のその他の成分を含むことが出来る。   The anti-lung cancer agent may contain other components such as any pharmaceutical carrier or diluent known to those skilled in the art, in combination with an active ingredient, which are pharmaceutically acceptable.

本発明の有効成分の薬学的な有効量及び投与方法又は投与手段は、有効成分の種類、病状の重さ、治療方針、患者の年齢、体重、性別、全般的な健康状態、及び患者の(遺伝的)人種的背景に応じて、当業者が適宜選択することができる。例えば、esRAGE自体を有効成分として含有する場合には、該有効成分の投与量は0.1〜100mg/日/成人、より一般的には1〜10mg/日/成人である。   The pharmaceutically effective amount and administration method or means of administration of the active ingredient of the present invention include the type of active ingredient, the severity of the disease state, the treatment policy, the patient's age, weight, gender, general health condition, and the patient's ( It can be appropriately selected by those skilled in the art depending on the genetic background. For example, when esRAGE itself is contained as an active ingredient, the dose of the active ingredient is 0.1 to 100 mg / day / adult, more generally 1 to 10 mg / day / adult.

本発明の抗肺癌剤は投与方法・投与経路等に応じて当業者に公知の任意の形状とすることが出来る。それらは適当な方法で投与することが出来る。例えば、形状としては、液体状、粉末状、及びコロイド状等があり、上記のキャリア−又は希釈剤を伴った形で、静脈内、腹腔内、皮下に注射するか、又は、経口投与等が挙げられる。   The anti-lung cancer agent of the present invention can have any shape known to those skilled in the art depending on the administration method, administration route and the like. They can be administered by any suitable method. For example, liquids, powders, colloids, etc. can be used, and can be injected intravenously, intraperitoneally, subcutaneously, or orally with the carrier or diluent described above. Can be mentioned.

以下、本発明を実施例によって詳細に説明するが、本発明の技術的範囲は以下の実施例の記載によって何ら限定して解釈されるものではない。又、特に記載のない場合には、以下の実施例は、当該技術分野における常法及び当業者に公知の標準的な方法、例えば、Sambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995等に記載されている遺伝子工学及び分子生物学的技術に従い実施した。又、本明細書中に参考文献などとして引用された文献の記載内容は本明細書の開示内容の一部を構成するものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the technical scope of this invention is limited and is not interpreted at all by description of a following example. Also, unless otherwise noted, the following examples are routine methods in the art and standard methods known to those skilled in the art, such as Sambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor. Laboratory press, New York, 1989; Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1995. Moreover, the description content of the literature cited as a reference etc. in this specification constitutes a part of the disclosure content of this specification.

症例
1993年より1995年まで仙台厚生病院にて手術を受け、また術後化学療法・放射線療法を施行されなかった182例の非小細胞肺癌症例を対象とした。症例の平均年齢は65.3歳(23−82歳)だった。また、36症例で凍結組織が得られ、RNAの解析に使用した。この研究は東北大学および仙台厚生病院の倫理委員会の認定を受けている。
Case
182 non-small cell lung cancer patients who underwent surgery at Sendai Kosei Hospital from 1993 to 1995 and were not treated with postoperative chemotherapy or radiotherapy were included. The average age of the cases was 65.3 years (23-82 years). In 36 cases, frozen tissues were obtained and used for RNA analysis. This study is accredited by the Ethics Committee of Tohoku University and Sendai Kosei Hospital.

統計解析
本実施例で得られた各種結果の統計解析は、”a one-way ANOVA and Bonferroni test “又はχ2検定を使用して行った。全生存曲線及び非疾患生存曲線はカプランメイヤー法(Kaplan-Meier method)に従い作成した。単変量解析及び多変量解析はPROC PHREGを用いるCoxの比例ハザードモデルにより行い、フィッシャーの直説法をSASソフトで実施した。本試験に於いては、0.05未満のP値を有意と判定した。
Statistical analysis Statistical analysis of various results obtained in this example was performed using “a one-way ANOVA and Bonferroni test” or χ 2 test. Overall survival curves and non-disease survival curves were generated according to the Kaplan-Meier method. Univariate analysis and multivariate analysis were performed with Cox's proportional hazard model using PROC PHREG, and Fisher's direct method was implemented with SAS software. In this test, a P value of less than 0.05 was determined to be significant.

免疫染色
摘出肺は10%フォルマリンで固定・パラフィン包埋後、薄切し、抗ヒトesRAGE抗体を用いて染色した。また,癌細胞の増殖性を見るため抗Ki-67抗体を用い染色した。esRAGE染色の特異性を見るため,リコビンナントesRAGEタンパクを用い、吸収試験を行った。
尚、抗ヒトesRAGE抗体は、まず、ヒトesRAGEに特徴的な16個のアミノ酸(EGFDKVREAEDSPQHM)のN末側にCysを付加したペプチドを常法で化学合成し、ヘモシアニンと結合させ、ウサギに免疫することにより調製した。又、リコンビナントesRAGEタンパクは、ヒトesRAGE cDNAを組み込んだ発現ベクター(pCI-neo-mammalian expression vector, Promega)(作製方法については後述)を培養COS-7細胞及び293細胞に強制発現し、その培養上清から高純度に精製して得た。
The immunostained lung was fixed with 10% formalin, embedded in paraffin, sliced, and stained with anti-human esRAGE antibody. In addition, staining was performed using anti-Ki-67 antibody to see the proliferation of cancer cells. To see the specificity of esRAGE staining, an absorption test was performed using lycobinnant esRAGE protein.
The anti-human esRAGE antibody first immunizes rabbits by chemically synthesizing a peptide with 16 amino acids (EGFDKVREAEDSPQHM) characteristic of human esRAGE with Cys added to the N-terminal side in the usual manner. It was prepared by. In addition, the recombinant esRAGE protein is forcibly expressed in cultured COS-7 cells and 293 cells by expressing an expression vector (pCI-neo-mammalian expression vector, Promega) in which human esRAGE cDNA has been incorporated (described later). Obtained by purifying from a clean to high purity.

esRAGEは正常気道上皮細胞および間質細胞の細胞質に発現しており(図1A, B)、これは以前に報告された結果(参考文献10)と一致した。しかし、癌細胞においてはesRAGE発現にばらつきがあり、目視による判定の結果、182例中、癌細胞のesRAGE陽性症例(+)は 45例 (24.7%)、 発現低下症例(+/-)は78例 (42.9%)、 陰性例(-)は 59例 (32.4%)であった。病理学的T因子が高く (P = 0.0063)、組織学的に低分化で (P = 0.0061)、増殖が盛んな症例で(P < 0.0001) esRAGE発現低下例又は陰性例が多かった(表1)。尚、表1は、182例の非小細胞肺癌症(NSCLCs)例における esRAGE免疫染色及び臨床病理学的パラメーターとの相関を示したものである。 esRAGE is expressed in the cytoplasm of normal airway epithelial cells and stromal cells (FIGS. 1A and B), which is consistent with the previously reported result (Reference 10). However, esRAGE expression varies among cancer cells. As a result of visual assessment, esRAGE positive cases (+) of cancer cells are 45 cases (24.7%), and decreased expression cases (+/-) are 78 cases. There were 59 cases (32.4%) and 4 cases (42.9%) and negative cases (-). In cases with high pathological factor T (P = 0.0063), histologically poorly differentiated (P = 0.0061), and proliferating (P <0.0001), there were many cases of decreased esRAGE expression or negative cases (Table 1). ). Table 1 shows the correlation with esRAGE immunostaining and clinicopathological parameters in 182 non-small cell lung cancer (NSCLCs) cases.

更に、esRAGE 発現と生存率との相関を検討すると、esRAGE 発現が癌細胞で落ちている症例では生存率が低いことが判明した (P = 0.0003) (図2A)。この傾向は,特に TNM Stage I の早期肺癌症例において顕著であった (P = 0.0001) (図2B)。単変量解析において TNM 病期分類 (P < 0.0001) と癌細胞のesRAGE 染色性(-, +/- vs. +) (P < 0.001) が予後因子であることが示され、さらに多変量解析でTNM 病期分類 (P < 0.0001) と癌細胞のesRAGE 染色性 (P = 0.0085) は独立した予後因子であることが明らかとなった (表2)。表2は、182例の非小細胞肺癌症(NSCLCs)例の臨床結果に関する単変量及び多変量解析の結果を示したものである。   Furthermore, examination of the correlation between esRAGE expression and survival rate revealed that the survival rate was low in cases where esRAGE expression fell in cancer cells (P = 0.0003) (Fig. 2A). This tendency was particularly prominent in patients with early lung cancer at TNM Stage I (P = 0.0001) (Fig. 2B). Univariate analysis showed that TNM staging (P <0.0001) and esRAGE staining of cancer cells (-, +/- vs. +) (P <0.001) were prognostic factors, and multivariate analysis TNM staging (P <0.0001) and cancer cell esRAGE staining (P = 0.0085) were found to be independent prognostic factors (Table 2). Table 2 shows the results of univariate and multivariate analysis on the clinical results of 182 non-small cell lung cancer (NSCLCs) cases.

癌細胞におけるesRAGE mRNA 発現
癌細胞におけるesRAGE mRNA発現を調べるため、レーザーキャプチャー法にて凍結癌組織より非小細胞肺癌症(NSCLCs)例における癌細胞と周辺細胞を分けて分離し、それぞれからtotal RNAを抽出し、RT-PCRでesRAGE mRNAおよび完全長(full-length)RAGEの発現を解析した。内因性のコントロールとして、β-アクチンを使用した。使用したプライマー塩基配列は,human esRAGE, 5’-TCT GTG GGG GGC AGT AGT A-3’(配列番号1)及び 5’-CTT TAT CAA ACC CCT CAC CT-3’(配列番号2); full length RAGE, 5’-TCT GTG GGG GGC AGT AGT A -3’(配列番号3)及び5’-TGC CGC CTT TGC CAC AAG AT-3’(配列番号4); human beta-actin, 5’-GCT GTG CTA TCC CTG TAC G-3’(配列番号5)及び5’-TGC CTC AGG GCA GCG GAA-3’(配列番号6)であった。
EsRAGE mRNA expression in cancer cells To examine esRAGE mRNA expression in cancer cells, the cancer cells and peripheral cells in non-small cell lung cancer (NSCLCs) cases were separated from frozen cancer tissue by laser capture method, and total RNA from each Were extracted, and the expression of esRAGE mRNA and full-length RAGE was analyzed by RT-PCR. Β-actin was used as an endogenous control. The primer sequences used were human esRAGE, 5'-TCT GTG GGG GGC AGT AGT A-3 '(SEQ ID NO: 1) and 5'-CTT TAT CAA ACC CCT CAC CT-3' (SEQ ID NO: 2); full length RAGE, 5'-TCT GTG GGG GGC AGT AGT A-3 '(SEQ ID NO: 3) and 5'-TGC CGC CTT TGC CAC AAG AT-3' (SEQ ID NO: 4); human beta-actin, 5'-GCT GTG CTA TCC CTG TAC G-3 ′ (SEQ ID NO: 5) and 5′-TGC CTC AGG GCA GCG GAA-3 ′ (SEQ ID NO: 6).

その結果、癌細胞でのみ、36例中25例(70%)でesRAGEまたはfull-length RAGEの発現が欠失していた(表3A)。しかしながら、esRAGE とfull-length RAGE mRNAs 発現に相関は認めなれかった (p = 0.72, 表3B)。   As a result, esRAGE or full-length RAGE expression was lost in 25 out of 36 cases (70%) only in cancer cells (Table 3A). However, there was no correlation between esRAGE and full-length RAGE mRNAs expression (p = 0.72, Table 3B).

esRAGE の癌細胞増殖に及ぼす影響
esRAGEの癌細胞増殖に及ぼす影響を検討するため、肺癌細胞 A549 及びOBA-LK-1 細胞にプロモーターをつけたesRAGE, full-length RAGE、又はdominant negative RAGE (dnRAGE)の cDNA を導入し、それぞれを強制発現させてその細胞増殖に及ぼす影響を検討した。 即ち、A549またはOBA-LK-1細胞5 × 105個に、リポソーム法を用いてヒトesRAGE、 full-length RAGE、dominant negative RAGE、 または空ベクターを導入した。導入後の増殖はalamarBlue (Biosource, Camarillo, CA)を培養細胞に添加し、培養後24、48、72、96時間の時点における蛍光強度で測定した。
ここで、esRAGE、full-length RAGE cDNAは培養血管細胞からクローニングしたものを、dnRAGEはfull-length RAGEの膜貫通領域配列の直後に終止コドンが入るような遺伝子操作(PCR)によって人工的に調製し、これらをpCI-neo mammalian expression vector (Promega)にそれぞれ組み込むことによって作製した。尚、このベクターのプロモーターはヒトサイトメガロウイルスimmediate-earlyエンハンサー/プロモーター領域を使用している。
具体的には、 full-length RAGE cDNA は、夫々、AB036432(Genbank登録番号)のヌクレオチド第1-22 番目及び第1246-1268番目に該当する、5’-GAGAATTCGCCAGGACCCTGGAAGGAAGCA-3’(配列番号7)と 5’-GATCTAGACTGATGGATGGGATCTGTCTGTG-3’ (配列番号8)、esRAGE は、夫々、AB061668(Genbank登録番号)のヌクレオチド第1-22番目及び第1069-1088に該当する、5’-GAGAATTCGCCAGGACCCTGGAAGGAAGCA-3’(配列番号9)と5’-GATCTAGAGCTTGTTGACCATCCCCCCAG-3’(配列番号10)でRT-PCRを行い、dnRAGEは、5’-GAGAATTCGCCAGGACCCTGGAAGGAAGCA-3’ (配列番号11)と5’-GATCTAGATCATCGGCGTTGCCGCCTTTG-3’ (配列番号12)でPCRを行い、それぞれシークエンスを確認後、制限酵素EcoRI及びXbaIで切断しpCI-neo mammalian expression vector (Promega)に組み込み、夫々の発現ベクターを作成した。尚、肺癌細胞 A549 (ID:TKG 0184) 及びOBA-LK-1細胞(ID: TKG 0572)はいずれも東北大学加齢医学研究所附属医用細胞資源センターに保存されており自由に分譲可能である。
Effect of esRAGE on cancer cell proliferation
In order to examine the effects of esRAGE on cancer cell growth, we introduced esRAGE, full-length RAGE or dominant negative RAGE (dnRAGE) cDNA with promoters in lung cancer cells A549 and OBA-LK-1 cells. The effect of forced expression on cell proliferation was examined. That is, human esRAGE, full-length RAGE, dominant negative RAGE, or an empty vector was introduced into 5 × 10 5 A549 or OBA-LK-1 cells using the liposome method. Proliferation after the introduction was measured by adding fluorescence of alamarBlue (Biosource, Camarillo, CA) to cultured cells and measuring fluorescence intensity at 24, 48, 72, and 96 hours after culturing.
Here, esRAGE and full-length RAGE cDNA were cloned from cultured vascular cells, and dnRAGE was artificially prepared by genetic manipulation (PCR) in which a stop codon was inserted immediately after the transmembrane region sequence of full-length RAGE. They were prepared by incorporating them into pCI-neo mammalian expression vector (Promega), respectively. The promoter of this vector uses the human cytomegalovirus immediate-early enhancer / promoter region.
Specifically, full-length RAGE cDNA is 5′-GAGAATTCGCCAGGACCCTGGAAGGAAGCA-3 ′ (SEQ ID NO: 7) corresponding to nucleotides 1-22 and 1246-1268 of AB036432 (Genbank accession number), respectively. 5'-GATCTAGACTGATGGATGGGATCTGTCTGTG-3 '(SEQ ID NO: 8), esRAGE is 5'-GAGAATTCGCCAGGACCCTGGAAGGAAGCA-3' (SEQ ID NO: corresponding to nucleotides 1-22 and 1069-1088 of AB061668 (Genbank accession number), respectively. 9) and 5′-GATCTAGAGCTTGTTGACCATCCCCCCAG-3 ′ (SEQ ID NO: 10) were subjected to RT-PCR, and dnRAGE was 5′-GAGAATTCGCCAGGACCCTGGAAGGAAGCA-3 ′ (SEQ ID NO: 11) and 5′-GATCTAGATCATCGGCGTTGCCGCCTTTG-3 ′ (SEQ ID NO: 12) PCR was carried out in, and each sequence was confirmed. Then, each fragment was digested with restriction enzymes EcoRI and XbaI and incorporated into pCI-neo mammalian expression vector (Promega) to prepare each expression vector. Lung cancer cells A549 (ID: TKG 0184) and OBA-LK-1 cells (ID: TKG 0572) are both stored at the Medical Cell Resource Center, Institute for Aging Medicine, Tohoku University and can be freely distributed. .

その結果、esRAGEを癌細胞に強制発現することにより,癌細胞増殖の抑制が認められた (図3)。このことは,肺癌症例においてesRAGE発現が低下することにより,癌の増殖が促進されていると考えられる. As a result, suppression of cancer cell proliferation was observed by forcibly expressing esRAGE in cancer cells (FIG. 3). This suggests that the growth of cancer is promoted by the decrease of esRAGE expression in lung cancer cases.

Figure 2007163407
Figure 2007163407

Figure 2007163407
Figure 2007163407

Figure 2007163407
Figure 2007163407

[参考文献]
1. Williams DE, Pairolero PC, Davis CS, et al. Survival of patients surgically treated for stage I lung cancer. J Thorac Cardiovasc Surg 1981;82(1):70-6.
2. Nesbitt JC, Putnam JB, Jr., Walsh GL, Roth JA, Mountain CF. Survival in Early-Stage Non--Small Cell Lung Cancer. Ann Thorac Surg 1995;60(2):466-72.
3. Spiro SG, Porter JC. Lung Cancer--Where Are We Today? Current Advances in Staging and Nonsurgical Treatment. Am J Respir Crit Care Med 2002;166(9):1166-96.
4. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. Journal of Biological Chemistry 1992;267(21):14998-5004.
5. Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 2001;108(7):949-55.
6. Sakurai S, Yonekura H, Yamamoto Y, et al. The AGE-RAGE system and diabetic nephropathy. J Am Soc Nephrol 2003;14(8 Suppl 3):S259-63.
7. Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signaling suppresses tumor growth and metastases. Nature 2000;405(6784):354-60.
8. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002;62(16):4805-11.
9. Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 2003;370(Pt 3):1097-109.
10. Cheng C, Tsuneyama K, Kominami R, et al. Expression profiling of endogenous secretory receptor for advanced glycation end products in human organs. Mod Pathol 2005;18(10):1385-1396.
[References]
1. Williams DE, Pairolero PC, Davis CS, et al. Survival of patients surgically treated for stage I lung cancer.J Thorac Cardiovasc Surg 1981; 82 (1): 70-6.
2. Nesbitt JC, Putnam JB, Jr., Walsh GL, Roth JA, Mountain CF. Survival in Early-Stage Non--Small Cell Lung Cancer. Ann Thorac Surg 1995; 60 (2): 466-72.
3. Spiro SG, Porter JC. Lung Cancer--Where Are We Today? Current Advances in Staging and Nonsurgical Treatment. Am J Respir Crit Care Med 2002; 166 (9): 1166-96.
4. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins.Journal of Biological Chemistry 1992; 267 (21): 14998-5004.
5. Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 2001; 108 (7): 949-55.
6. Sakurai S, Yonekura H, Yamamoto Y, et al. The AGE-RAGE system and diabetic nephropathy.J Am Soc Nephrol 2003; 14 (8 Suppl 3): S259-63.
7. Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signaling suppresses tumor growth and metastases.Nature 2000; 405 (6784): 354-60.
8. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002; 62 (16): 4805- 11.
9. Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 2003; 370 (Pt 3): 1097-109.
10. Cheng C, Tsuneyama K, Kominami R, et al. Expression profiling of inherent secretory receptor for advanced glycation end products in human organs.Mod Pathol 2005; 18 (10): 1385-1396.

本発明により、予後不良早期肺癌患者が術後すぐ同定することが可能となり、それらの患者に対して早期の追加治療(抗癌剤治療)を行うことにより予後の改善が図れるものと考える。また反対に、予後良好な症例が同定されれば、不必要な術後療法及び過度の術後検査・外来診察を省くことが出来、医療費の抑制につながるものと考える。   According to the present invention, it becomes possible to identify early lung cancer patients with poor prognosis immediately after the operation, and it is considered that the prognosis can be improved by performing early additional treatment (anticancer drug treatment) on these patients. On the other hand, if a case with a good prognosis is identified, unnecessary postoperative therapy and excessive postoperative examinations / outpatient examinations can be omitted, leading to a reduction in medical costs.

尚、本発明において、esRAGE発現の測定は、手術後だけではなく術前の気管支鏡下生検標本でも測定可能である。このことは、手術前にその術後の予後が評価できることにつながり、そういった症例に対する新たな治療戦略の開発につながるものと考える。 In the present invention, the expression of esRAGE can be measured not only after surgery but also with a preoperative bronchoscopic biopsy specimen. This leads to the evaluation of the prognosis after surgery before surgery and the development of new treatment strategies for such cases.

非小細胞肺癌組織における esRAGE の発現を示す顕微鏡写真である。 A: 肺癌組織、 B: 健常肺組織、 C: esRAGE吸収試験。棒のスケール = 100 μm。It is a microscope picture which shows the expression of esRAGE in a non-small cell lung cancer tissue. A: Lung cancer tissue, B: Healthy lung tissue, C: esRAGE absorption test. Bar scale = 100 μm. 肺癌手術症例の術後生存曲線を示す。A: 全症例、B: TNM stage I期症例、C: TNM stage IIおよびIIIA期症例。The postoperative survival curve of a lung cancer operation case is shown. A: All cases, B: TNM stage I cases, C: TNM stage II and IIIA cases. esRAGE 過剰発現により、 A549 培養肺癌細胞(A) および OBA-LK-1 (B) 培養肺癌細胞の増殖が抑制されることを示す。* P< 0.05( 対 empty vector); † P < 0.05 (対 full-length RAGE)。It shows that the growth of A549 cultured lung cancer cells (A) and OBA-LK-1 (B) cultured lung cancer cells is suppressed by overexpression of esRAGE. * P <0.05 (vs. empty vector); † P <0.05 (vs. full-length RAGE).

Claims (13)

肺癌患者由来の検体試料中の内在性分泌型RAGE(esRAGE)の発現量を測定することを含む、該肺癌患者の予後検査方法。 A method for prognosing lung cancer patients, comprising measuring the expression level of endogenous secretory RAGE (esRAGE) in a specimen sample derived from a lung cancer patient. 肺癌患者が臨床病期I期である、請求項1記載の検査方法。 The test method according to claim 1, wherein the lung cancer patient is in clinical stage I. 検体試料として術後に摘出した肺組織切片を使用する、請求項1又は2に記載の検査方法。 The examination method according to claim 1 or 2, wherein a lung tissue section removed after surgery is used as a specimen sample. 検体試料として術前の気管支鏡下生検標本を使用する、請求項1又は2に記載の検査方法。 The examination method according to claim 1 or 2, wherein a preoperative bronchoscopic biopsy specimen is used as a specimen sample. 抗esRAGE抗体を使用する抗原抗体反応によってesRAGEの発現量を測定する、請求項1〜4のいずれか一項に記載の検査方法。 The test | inspection method as described in any one of Claims 1-4 which measures the expression level of esRAGE by the antigen antibody reaction which uses an anti- esRAGE antibody. 標識抗体を使用する、請求項5記載の検査方法。 The test method according to claim 5, wherein a labeled antibody is used. esRAGEの発現量を免疫染色法で測定する、請求項5又は6のいずれか一項に記載の検査方法。 The test | inspection method as described in any one of Claim 5 or 6 which measures the expression level of esRAGE with an immuno-staining method. 抗esRAGE抗体から成る、肺癌患者の予後検査用試薬。 A reagent for prognosis testing of lung cancer patients, comprising an anti-esRAGE antibody. 標識抗体である、請求項8記載の試薬。 The reagent according to claim 8, which is a labeled antibody. 請求項8又は9のいずれか一項に記載の試薬を含む、請求項1〜7のいずれか一項に記載の検査方法に使用するため検査キット。 A test kit for use in the test method according to any one of claims 1 to 7, comprising the reagent according to any one of claims 8 or 9. esRAGEをコードする核酸分子を有効成分として含有する抗肺癌剤。 An anti-lung cancer agent containing a nucleic acid molecule encoding esRAGE as an active ingredient. 核酸分子がベクターに組み込まれている、請求項11記載の抗肺癌剤。 The anti-lung cancer agent according to claim 11, wherein the nucleic acid molecule is incorporated into a vector. esRAGEを有効成分として含有する抗肺癌剤。 An anti-lung cancer agent containing esRAGE as an active ingredient.
JP2005363082A 2005-12-16 2005-12-16 Postoperative prognostic method for early lung cancer Active JP4779115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005363082A JP4779115B2 (en) 2005-12-16 2005-12-16 Postoperative prognostic method for early lung cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363082A JP4779115B2 (en) 2005-12-16 2005-12-16 Postoperative prognostic method for early lung cancer

Publications (2)

Publication Number Publication Date
JP2007163407A true JP2007163407A (en) 2007-06-28
JP4779115B2 JP4779115B2 (en) 2011-09-28

Family

ID=38246464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363082A Active JP4779115B2 (en) 2005-12-16 2005-12-16 Postoperative prognostic method for early lung cancer

Country Status (1)

Country Link
JP (1) JP4779115B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122254A (en) * 2014-01-23 2014-10-29 贵州大学 Dynamic measurement method for drug sensitivity of tumor cells
JP2019511469A (en) * 2016-02-19 2019-04-25 シワ コーポレーション Methods and compositions for treating cancer, killing metastatic cancer cells, and preventing cancer metastasis using antibodies against advanced glycation end products (AGE)
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US10960234B2 (en) 2010-11-22 2021-03-30 Siwa Corporation Selective removal of cells having accumulated agents
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US11213585B2 (en) 2016-06-23 2022-01-04 Siwa Corporation Vaccines for use in treating various diseases and disorders
US11261241B2 (en) 2008-05-23 2022-03-01 Siwa Corporation Methods, compositions and apparatuses for facilitating regeneration
US11518801B1 (en) 2017-12-22 2022-12-06 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications
US11542324B2 (en) 2017-04-13 2023-01-03 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
US11872269B2 (en) 2014-12-18 2024-01-16 Siwa Corporation Method and composition for treating sarcopenia
US11873345B2 (en) 2014-12-18 2024-01-16 Siwa Corporation Product and method for treating sarcopenia
US11958900B2 (en) 2016-04-15 2024-04-16 Siwa Corporation Anti-age antibodies for treating neurodegenerative disorders

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107917869B (en) 2017-11-16 2020-06-19 苏州浚惠生物科技有限公司 Method for detecting and typing rare tumor cells in body fluid sample and kit thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512038A (en) * 1998-04-17 2002-04-23 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Methods for inhibiting tumor invasion or spread in a subject
JP2003128700A (en) * 2001-03-19 2003-05-08 Daiichi Fine Chemical Co Ltd Soluble rage measurement method
JP2005337952A (en) * 2004-05-28 2005-12-08 Kanazawa Univ Tlo Inc Life-style related disease prediction factor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512038A (en) * 1998-04-17 2002-04-23 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Methods for inhibiting tumor invasion or spread in a subject
JP2003128700A (en) * 2001-03-19 2003-05-08 Daiichi Fine Chemical Co Ltd Soluble rage measurement method
JP2005337952A (en) * 2004-05-28 2005-12-08 Kanazawa Univ Tlo Inc Life-style related disease prediction factor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11261241B2 (en) 2008-05-23 2022-03-01 Siwa Corporation Methods, compositions and apparatuses for facilitating regeneration
US10960234B2 (en) 2010-11-22 2021-03-30 Siwa Corporation Selective removal of cells having accumulated agents
CN104122254A (en) * 2014-01-23 2014-10-29 贵州大学 Dynamic measurement method for drug sensitivity of tumor cells
US11873345B2 (en) 2014-12-18 2024-01-16 Siwa Corporation Product and method for treating sarcopenia
US11872269B2 (en) 2014-12-18 2024-01-16 Siwa Corporation Method and composition for treating sarcopenia
US11833202B2 (en) 2016-02-19 2023-12-05 Siwa Corporation Method and composition for treating cancer, killing metastatic cancer cells and preventing cancer metastasis using antibody to advanced glycation end products (AGE)
JP2019511469A (en) * 2016-02-19 2019-04-25 シワ コーポレーション Methods and compositions for treating cancer, killing metastatic cancer cells, and preventing cancer metastasis using antibodies against advanced glycation end products (AGE)
JP2020158531A (en) * 2016-02-19 2020-10-01 シワ コーポレーション Method and composition for treating cancer, killing metastatic cancer cells and preventing cancer metastasis using antibody to advanced glycation end products (age)
US11958900B2 (en) 2016-04-15 2024-04-16 Siwa Corporation Anti-age antibodies for treating neurodegenerative disorders
US11213585B2 (en) 2016-06-23 2022-01-04 Siwa Corporation Vaccines for use in treating various diseases and disorders
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
US11542324B2 (en) 2017-04-13 2023-01-03 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
US11518801B1 (en) 2017-12-22 2022-12-06 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications

Also Published As

Publication number Publication date
JP4779115B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4779115B2 (en) Postoperative prognostic method for early lung cancer
US6972170B1 (en) Markers for prostate cancer
JP6148007B2 (en) Phosphodiesterase 4D7 as a prostate cancer marker
KR20150122731A (en) Method for the prognosis and treatment of cancer metastasis
AU2023202663A1 (en) Hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) variants and uses thereof
EP3802922B1 (en) Novel immune checkpoint inhibitors
JP2008522162A (en) Mer diagnostic and therapeutic agents
KR20160061424A (en) Method for the prognosis and treatment of metastasizing cancer of the bone originating from breast cancer
WO2008118148A2 (en) Adiponectin for the treatment and diagnosis of albuminuria
KR102180982B1 (en) ADM2 gene marker for predicting diagnosis or prognosis of thyroid cancer and uses thereof
AU2011292809B2 (en) BARD1 isoforms in lung and colorectal cancer and use thereof
JP2022521535A (en) Use of BMMF1 REP protein as a biomarker for prostate cancer
AU2008296927B2 (en) Methods for diagnosing and treating cancers
EP1512755A2 (en) Markers for prostate cancer
IL179555A (en) Use of of ergothioneine for the manufacture of a pharmaceutical composition for the treatment and/or prophylaxis of autoimmune diseases
US20200003779A1 (en) Method and device for detecting siglec12
US7883896B2 (en) Marker molecules associated with lung tumors
WO1996002002A1 (en) Assay for increased invasiveness of epithelial cells
EP1849878A1 (en) Means and methods for diagnosing and treating cancer based on the frmd3 gene
KR101885946B1 (en) Biomarker for diagnosing type II diabetes and it use
US20090042782A1 (en) Diagnostic and therapeutic strategies for conditions associated with the FLJ13639 gene
KR20230165212A (en) How to treat red blood cell disorders
US7928188B2 (en) Antigen polypeptide for the diagnosis and/or treatment of ovarian cancer
WO2005021739A1 (en) ANTIBODY AGAINST Nox1 POLYPEPTIDE, METHOD OF DIAGNOSING CANCER WITH THE USE OF Nox1 GENE AND METHOD OF SCREENING CANCER GROWTH INHIBITOR
JPWO2005093068A1 (en) Novel proteins and promoters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150