JP2007163219A - Fluorescence x-ray analyzer - Google Patents

Fluorescence x-ray analyzer Download PDF

Info

Publication number
JP2007163219A
JP2007163219A JP2005357789A JP2005357789A JP2007163219A JP 2007163219 A JP2007163219 A JP 2007163219A JP 2005357789 A JP2005357789 A JP 2005357789A JP 2005357789 A JP2005357789 A JP 2005357789A JP 2007163219 A JP2007163219 A JP 2007163219A
Authority
JP
Japan
Prior art keywords
ray
fluorescent
rays
sample
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005357789A
Other languages
Japanese (ja)
Other versions
JP4253805B2 (en
Inventor
Kojiro Yamada
康治郎 山田
Kazuaki Shimizu
一明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2005357789A priority Critical patent/JP4253805B2/en
Publication of JP2007163219A publication Critical patent/JP2007163219A/en
Application granted granted Critical
Publication of JP4253805B2 publication Critical patent/JP4253805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescence X-ray analyzer capable of suppressing the generation of higher-order diffracted X rays or escape peaks and to accurately and precisely perform analysis. <P>SOLUTION: The fluorescent X-ray analyzer is equipped with an X-ray source 1 for irradiating a sample S with primary X rays 2, a multilayered film spectral element 3, of which the periodic length for spectrally diffracting the fluorescent X rays 4 emitted from the sample S is 1-2 nm and which is characterized in that the roughness σ of the boundary surface 34 of the reflecting layer and a spacer layer is 20% or higher, with respect to the periodic length and a detector 5 for measuring the intensities of the fluorescent X rays 4 that have been spectrally diffracted by the multilayer film spectral element 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線源から発生する1次X線が照射された試料から発生する蛍光X線を多層膜分光素子で分光する蛍光X線分析装置において、高次の回折X線とエスケープピークの発生を抑制することができる装置に関するものである。   The present invention relates to a high-order diffracted X-ray and an escape peak in a fluorescent X-ray analyzer that separates a fluorescent X-ray generated from a sample irradiated with a primary X-ray generated from an X-ray source with a multilayer film spectroscopic element. The present invention relates to an apparatus that can suppress the occurrence.

X線源から発生する1次X線が照射された試料から発生する蛍光X線を多層膜分光素子で分光すると、1次の回折X線のみならず2次、3次、4次・・・と高次の回折X線が分光素子により回折され、その高次の回折X線や高次の回折X線によるエスケープピークが分析対象元素の分析線である蛍光X線と重なり、分離することができず、定性分析や定量分析が困難な場合がある。   When fluorescent X-rays generated from a sample irradiated with primary X-rays generated from an X-ray source are dispersed with a multilayer spectroscopic element, not only the primary diffraction X-rays but also the second, third, fourth, etc. And higher-order diffracted X-rays are diffracted by the spectroscopic element, and escape peaks due to the higher-order diffracted X-rays and higher-order diffracted X-rays overlap with and separate from the fluorescent X-ray that is the analysis line of the analysis target element. Qualitative analysis and quantitative analysis may be difficult.

高次線とは、例えば、銅合金試料を分析した場合、X線源から1次X線を照射された試料からは照射されたエネルギにより試料中に含有する元素の蛍光X線、すなわち試料の主成分である銅(Cu)の蛍光X線が発生して分光素子であるゲルマニウム結晶に入射し、ゲルマニウム結晶の分光により1次、2次、3次、4次などの回折X線が発生する。この2次以上の次数の回折X線を高次線という。   For example, in the case of analyzing a copper alloy sample, the higher-order ray is a fluorescent X-ray of an element contained in the sample by the irradiated energy from the sample irradiated with the primary X-ray from the X-ray source, that is, the sample Fluorescent X-rays of copper (Cu) as a main component are generated and incident on a germanium crystal as a spectroscopic element, and diffracted X-rays such as first, second, third, and fourth orders are generated by spectroscopy of the germanium crystal. . This second or higher order diffracted X-ray is referred to as a higher order line.

エスケープピークとは、例えば、X線検出器がアルゴン(Ar)ガスを10%含有するP−10ガスを検出用ガスとして使用する比例計数管であれば、Ar−Kα吸収端エネルギ(3.20keV)よりもエネルギの大きい蛍光X線が入射された場合に発生し得るもので、その蛍光X線のエネルギからAr−Kα線のエネルギ(2.96keV)を差し引いたピークをいう。例えば、X線検出器にCa−Kβ線の4.01keVの蛍光X線エネルギが入射すると、Ca−Kβ線のエスケープピークは、4.01−2.96=1.05keVである。また、高次の回折X線がX線検出器である前記の比例計数管に入射した場合にもエスケープピークは発生する。 The escape peak is, for example, an Ar-Kα absorption edge energy (3.20 keV) if the X-ray detector is a proportional counter using P-10 gas containing 10% argon (Ar) gas as a detection gas. ) And a peak obtained by subtracting the Ar-Kα ray energy (2.96 keV) from the fluorescence X-ray energy. For example, the fluorescent X-ray energy of 4.01keV of Ca-Kβ 1 line in the X-ray detector is incident, escape peaks of Ca-Kβ 1 line is 4.01-2.96 = 1.05keV. An escape peak also occurs when higher-order diffracted X-rays enter the proportional counter, which is an X-ray detector.

このような場合に、多層膜分光素子と全反射ミラーを用いて高次の回折X線を抑制する方法がある(特許文献1参照)。また、偶数次数の回折X線を抑制する多層膜分光素子と奇数次数の回折X線を抑制する多層膜分光素子の2個の多層膜分光素子を用いて高次の回折X線を抑制する装置がある(特許文献2参照)。
特開平5−52778号公報 特開平8−327567号公報
In such a case, there is a method of suppressing higher-order diffracted X-rays using a multilayer spectroscopic element and a total reflection mirror (see Patent Document 1). An apparatus for suppressing higher-order diffracted X-rays using two multilayered film spectroscopic elements, a multilayered film spectroscopic element for suppressing even-order diffracted X-rays and a multilayered film spectroscopic element for suppressing odd-order diffracted X-rays (See Patent Document 2).
JP-A-5-52778 JP-A-8-327567

しかし、このような蛍光X線分析方法や装置では、多層膜分光素子と全反射ミラーや複数の多層膜分光素子を用いているので、装置の光学系が複雑で光路長も長く光学系の反射効率が低くなり、1次の回折X線の強度は低下する。   However, in such a fluorescent X-ray analysis method and apparatus, since the multilayer spectroscopic element, the total reflection mirror, and a plurality of multilayer spectroscopic elements are used, the optical system of the apparatus is complicated, the optical path length is long, and the reflection of the optical system The efficiency is lowered and the intensity of the first-order diffracted X-ray is reduced.

そこで本発明では、1枚の結晶を用いて1次の回折X線の強度を損失させずに高次の回折X線や高次の回折X線によるエスケープピークの発生を抑制し、定性分析や定量分析を正確に精度よく行うことができる蛍光X線分析装置を提供することを目的とする。   Therefore, in the present invention, the occurrence of escape peaks due to higher-order diffracted X-rays and higher-order diffracted X-rays is suppressed without losing the intensity of the first-order diffracted X-rays using a single crystal, and qualitative analysis or An object of the present invention is to provide a fluorescent X-ray analyzer capable of performing quantitative analysis accurately and accurately.

前記目的を達成するために、本発明の構成にかかる蛍光X線分析装置は、試料に1次X線を照射するX線源と、反射層とスペーサ層からなる層対を多数積層して構成され、試料から発生した蛍光X線を分光する多層膜分光素子と、その多層膜分光素子で分光された蛍光X線の強度を測定する検出器とを備える蛍光X線分析装置において、前記多層膜分光素子の周期長が1〜2ナノメータ(nm)であり、その周期長に対し前記反射層とスペーサ層の境界面のラフネスが前記周期長の20%以上で構成されている。   In order to achieve the above object, an X-ray fluorescence analyzer according to the configuration of the present invention is configured by laminating a number of layer pairs composed of an X-ray source for irradiating a sample with primary X-rays, a reflective layer and a spacer layer. In the fluorescent X-ray analysis apparatus, comprising the multilayer film spectroscopic element that separates the fluorescent X-rays generated from the sample, and a detector that measures the intensity of the fluorescent X-ray dispersed by the multilayer film spectroscopic element, the multilayer film The periodic length of the spectroscopic element is 1 to 2 nanometers (nm), and the roughness of the boundary surface between the reflective layer and the spacer layer is 20% or more of the periodic length.

本発明の構成にかかる装置によれば、多層膜分光素子の周期長が1〜2nmであり、その周期長に対し前記反射層とスペーサ層の境界面のラフネスが前記周期長の20%以上で構成されているので、3次の回折X線強度が1次の回折X線強度の5%以下になり、高次の回折X線や高次の回折X線によるエスケープピークの発生を抑制し、分析対象元素の分析線である蛍光X線と重なるスペクトルが発生せず、定性分析や定量分析を正確に精度よく行うことができる。ここで、前記周期長に対し前記反射層とスペーサ層の境界面のラフネスを前記周期長の40%以下とすることが好ましく、前記多層膜分光素子の反射層がタングステンからなり、スペーサ層が炭化ホウ素からなるようにすることがより好ましい。   According to the apparatus of the configuration of the present invention, the multilayer spectral element has a period length of 1 to 2 nm, and the roughness of the boundary surface between the reflective layer and the spacer layer is 20% or more of the period length with respect to the period length. Because it is configured, the third-order diffracted X-ray intensity is 5% or less of the first-order diffracted X-ray intensity, suppressing the occurrence of escape peaks due to higher-order diffracted X-rays and higher-order diffracted X-rays, A spectrum overlapping with the fluorescent X-ray that is the analysis line of the analysis target element does not occur, and qualitative analysis and quantitative analysis can be performed accurately and accurately. Here, the roughness of the boundary surface between the reflective layer and the spacer layer with respect to the periodic length is preferably 40% or less of the periodic length, the reflective layer of the multilayer spectral element is made of tungsten, and the spacer layer is carbonized. More preferably, it is made of boron.

以下、本発明の第1実施形態の蛍光X線分析装置について図1にしたがって説明する。試料Sに1次X線2を照射するX線管などのX線源1と、反射層とスペーサ層からなる層対を多数積層して構成され、その周期長dが1.5nmであり、周期長dに対し反射層とスペーサ層の境界面のラフネスσが0.45nmであって試料Sから発生した蛍光X線4を分光する多層膜分光素子3と、多層膜分光素子3で分光された蛍光X線4の強度を測定する検出器5とを備える蛍光X線分析装置10である。   The X-ray fluorescence analyzer according to the first embodiment of the present invention will be described below with reference to FIG. The sample S is configured by laminating a large number of layer pairs composed of an X-ray source 1 such as an X-ray tube that irradiates the primary X-ray 2 and a reflective layer and a spacer layer, and the periodic length d is 1.5 nm. The roughness σ of the boundary surface between the reflective layer and the spacer layer is 0.45 nm with respect to the periodic length d, and the multilayer spectral element 3 that splits the fluorescent X-rays 4 generated from the sample S and the multilayer spectral element 3 are spectrally separated. The X-ray fluorescence analyzer 10 includes a detector 5 that measures the intensity of the fluorescent X-ray 4.

多層膜分光素子3は、図2に示すように、反射層31にタングステン(W)を、スペーサ層32に炭化ホウ素(BC)を使用し、反射層31とスペーサ層32の膜厚比は1:1に構成されている。多層膜分光素子3の一層対を拡大した図である図3に示すように反射層31とスペーサ層32で構成される境界面34のラフネスσが0.45nmであり、周期長dが1.5nmである層対35を、図2に示すようにシリコンウエハである基板7上に、イオンビームスパッタ成膜法により150層対300層積層して構成されている。すなわち、境界面34のラフネスσは周期長dに対し30%に構成されている。 As shown in FIG. 2, the multilayer spectroscopic element 3 uses tungsten (W) for the reflective layer 31 and boron carbide (B 4 C) for the spacer layer 32, and the film thickness ratio between the reflective layer 31 and the spacer layer 32. Is configured 1: 1. As shown in FIG. 3 which is an enlarged view of a single layer pair of the multilayer spectral element 3, the roughness σ of the boundary surface 34 constituted by the reflective layer 31 and the spacer layer 32 is 0.45 nm, and the periodic length d is 1. As shown in FIG. 2, the layer pair 35 having a thickness of 5 nm is formed by laminating 150 layers to 300 layers on the substrate 7 which is a silicon wafer by ion beam sputtering deposition. That is, the roughness σ of the boundary surface 34 is configured to be 30% with respect to the period length d.

多層膜分光素子によって回折される1次の回折X線強度と2次の回折X線強度、3次の回折X線強度などの高次の回折X線強度を測定した結果を図4に示す。図4は回折X線の次数を横軸に、1次の回折X線強度と高次の回折X線強度との相対強度を縦軸にして表した回折X線の相対強度曲線であり、境界面34のラフネスσを0.45nmに、周期長dを1.5nmに構成し、ラフネスσを周期長dの30%に構成した多層膜分光素子の強度曲線41および境界面34のラフネスσを0.3nmに、周期長dを1.5nmに構成し、ラフネスσを周期長dの20%に構成した多層膜分光素子の強度曲線42を示している。強度曲線41、42の多層膜分光素子は、ともに反射層とスペーサ層の膜厚比は1:1であり、300層積層されている。   FIG. 4 shows the results of measuring higher-order diffraction X-ray intensities such as first-order diffraction X-ray intensity, second-order diffraction X-ray intensity, and third-order diffraction X-ray intensity diffracted by the multilayer spectroscopic element. FIG. 4 is a relative intensity curve of the diffracted X-ray expressed with the order of the diffracted X-ray as the horizontal axis and the relative intensity between the first-order diffracted X-ray intensity and the higher-order diffracted X-ray intensity as the vertical axis. The intensity curve 41 and the roughness σ of the boundary surface 34 of the multilayer spectroscopic element in which the roughness σ of the surface 34 is configured to be 0.45 nm, the periodic length d is configured to 1.5 nm, and the roughness σ is configured to be 30% of the periodic length d. An intensity curve 42 of the multilayer spectroscopic element in which the periodic length d is configured to be 1.5 nm and the roughness σ is configured to be 20% of the periodic length d is shown at 0.3 nm. In the multilayer spectroscopic elements having the intensity curves 41 and 42, the thickness ratio of the reflective layer to the spacer layer is 1: 1, and 300 layers are laminated.

図4の測定結果によると、境界面34のラフネスσを周期長dに対し30%に構成した第1実施形態の多層膜分光素子は、2次の回折X線強度は7%であり、3次の回折X線強度は0.1%以下になっている。境界面34のラフネスσを周期長dに対し20%に構成した多層膜分光素子の場合には、2次の回折X線強度は1次の回折X線強度に対し30%であり、3次の回折X線は5%以下の強度になっている。この測定結果によれば、高次の回折X線を抑制するためには、境界面34のラフネスσは周期長dに対する比率は20%以上にすべきであることが分かる。境界面34のラフネスσ値を大きくして、周期長dに対する比率をあまり大きくすると1次の回折X線強度も低下することになる。そのため、境界面34のラフネスσを周期長dの40%以下にすることが好ましい。   According to the measurement result of FIG. 4, the multilayer spectroscopic element of the first embodiment in which the roughness σ of the boundary surface 34 is set to 30% with respect to the period length d has a secondary diffraction X-ray intensity of 7%. The next diffraction X-ray intensity is 0.1% or less. In the case of a multilayer spectroscopic element in which the roughness σ of the boundary surface 34 is set to 20% with respect to the period length d, the second-order diffraction X-ray intensity is 30% with respect to the first-order diffraction X-ray intensity, and the third-order The diffracted X-ray has an intensity of 5% or less. According to this measurement result, in order to suppress higher-order diffracted X-rays, it can be understood that the ratio of the roughness σ of the boundary surface 34 to the period length d should be 20% or more. If the roughness σ value of the boundary surface 34 is increased and the ratio with respect to the period length d is increased too much, the primary diffraction X-ray intensity also decreases. Therefore, it is preferable to set the roughness σ of the boundary surface 34 to 40% or less of the periodic length d.

第1実施形態では、周期長dを1.5nmに構成したが、多層膜分光素子の回折X線強度を充分得るとともに周期長dに対するラフネスσの比率を20〜40%にするためには、周期長dは1〜2nmであることが好ましい。従来の多層膜分光素子では、周期長dは7〜15nmであり、境界面34のラフネスσは0.3nm程度のものが多く、周期長dに対するラフネスσの比率は2〜4%程度である。周期長dが15nmであり、境界面34のラフネスσが0.3nmである従来の多層膜分光素子の強度曲線43を図4に示しているが、2次の回折X線の相対強度は1次の回折X線強度の約90%であり、3次の回折X線の相対強度は約70%になっており、高次の回折X線の発生が抑制されていない。   In the first embodiment, the period length d is configured to 1.5 nm, but in order to obtain sufficient diffraction X-ray intensity of the multilayer spectral element and to set the ratio of roughness σ to the period length d to 20 to 40%, The period length d is preferably 1 to 2 nm. In conventional multilayer spectroscopic elements, the periodic length d is 7 to 15 nm, the roughness σ of the boundary surface 34 is often about 0.3 nm, and the ratio of the roughness σ to the periodic length d is about 2 to 4%. . FIG. 4 shows an intensity curve 43 of a conventional multilayer spectroscopic element in which the period length d is 15 nm and the roughness σ of the boundary surface 34 is 0.3 nm. The relative intensity of the second-order diffracted X-ray is 1 It is about 90% of the next diffraction X-ray intensity, the relative intensity of the third diffraction X-ray is about 70%, and the generation of higher-order diffraction X-rays is not suppressed.

前記したように第1実施形態である蛍光X線分析装置10では、X線源1から1次X線2が照射された試料Sから発生する蛍光X線4を分光する多層膜分光素子3において、図4の強度曲線41が示すように高次の回折X線の発生が充分に抑制されているので、高次の回折X線によるエスケープピークの発生も抑制され、分析対象元素の分析線である蛍光X線と重なるスペクトルが発生せず、分析を正確に精度よく行うことができる。   As described above, in the X-ray fluorescence analyzer 10 according to the first embodiment, in the multilayer spectroscopic element 3 that splits the fluorescent X-rays 4 generated from the sample S irradiated with the primary X-rays 2 from the X-ray source 1. Since the generation of high-order diffraction X-rays is sufficiently suppressed as shown by the intensity curve 41 in FIG. 4, the generation of escape peaks due to high-order diffraction X-rays is also suppressed, and the analysis line of the analysis target element A spectrum overlapping with a certain fluorescent X-ray does not occur, and the analysis can be performed accurately and accurately.

第1実施形態では、反射層がタングステン、スペーサ層が炭化ホウ素であり、その膜厚比が1:1であり、300層をイオンビームスパッタ法で積層した多層膜分光素子であったが、この構成に限られるものでなく反射層をモリブデン、ランタン、ニッケルなど、スペーサ層を炭素などで構成し、膜厚比を1:2や1:3にして、100〜400層に積層するなど適宜構成することができる。   In the first embodiment, the reflective layer is tungsten, the spacer layer is boron carbide, the film thickness ratio is 1: 1, and the multilayer spectroscopic element is formed by stacking 300 layers by ion beam sputtering. Not limited to the configuration, the reflective layer is made of molybdenum, lanthanum, nickel, etc., the spacer layer is made of carbon, etc., and the film thickness ratio is 1: 2 or 1: 3, and the layers are laminated in 100 to 400 layers. can do.

次に、第2実施形態の蛍光X線分析装置について説明する。まず、この装置の構成について、図5にしたがって説明する。試料Sに1次X線2を照射するX線源1と、反射層とスペーサ層からなる層対を多数積層して構成され、試料Sから発生した蛍光X線4を分光する多層膜分光素子3と、多層膜分光素子3で分光された2次X線4の強度を測定する検出器5と、検出器5に入射する蛍光X線4の波長が変化するように、多層膜分光素子3と検出器5を連動させる連動手段7、すなわちいわゆるゴニオメータと、定性分析手段13と、定量分析手段14と、半定量分析手段15と、分析条件や分析結果を表示する表示手段16とを備える蛍光X線分析装置20である。多層膜分光素子3は前記第1の実施形態と同一のもので構成されている。   Next, a fluorescent X-ray analyzer according to the second embodiment will be described. First, the configuration of this apparatus will be described with reference to FIG. Multilayer film spectroscopic element that is configured by laminating a number of layer pairs composed of a reflective layer and a spacer layer and radiating fluorescent X-rays 4 generated from the sample S. 3, a detector 5 that measures the intensity of the secondary X-ray 4 dispersed by the multilayer spectroscopic element 3, and the multilayer spectroscopic element 3 so that the wavelength of the fluorescent X-ray 4 incident on the detector 5 changes. Linking means 7 that links the detector 5 with each other, that is, a so-called goniometer, a qualitative analysis means 13, a quantitative analysis means 14, a semi-quantitative analysis means 15, and a display means 16 for displaying analysis conditions and analysis results. X-ray analyzer 20. The multilayer spectroscopic element 3 is the same as that in the first embodiment.

蛍光X線4がある入射角θで多層膜分光素子3に入射すると、その蛍光X線4の延長線9と多層膜分光素子3で分光された蛍光X線6は入射角θの2倍の分光角2θをなすが、連動手段7すなわちゴニオメータは、分光角2θを変化させて分光される蛍光X線6の波長を変化させつつ、その分光された蛍光X線6が検出器5に入射し続けるように、多層膜分光素子3を、その表面の中心を通る紙面に垂直な軸Oを中心に回転させ、その回転角の2倍だけ、検出器5を、軸Oを中心に円12に沿って回転させる。この動作が蛍光X線分析装置のゴニオメータの走査である。連動手段7において、例えば、前記軸Oに取付けたポテンショメータ等により、多層膜分光素子3および検出器5が回転した結果形成される入射角θ、分光角2θが確認される。   When the fluorescent X-ray 4 is incident on the multilayer spectroscopic element 3 at a certain incident angle θ, the extension line 9 of the fluorescent X-ray 4 and the fluorescent X-ray 6 dispersed by the multilayer spectroscopic element 3 are twice the incident angle θ. The interlocking means 7, that is, the goniometer, changes the wavelength of the fluorescent X-ray 6 that is split by changing the spectral angle 2θ, while the spectral X-ray 6 is incident on the detector 5. In order to continue, the multilayer spectroscopic element 3 is rotated around an axis O perpendicular to the paper surface passing through the center of the surface, and the detector 5 is made a circle 12 around the axis O by twice the rotation angle. Rotate along. This operation is a goniometer scan of the fluorescent X-ray analyzer. In the interlocking means 7, for example, the incident angle θ and the spectral angle 2θ formed as a result of the rotation of the multilayer film spectroscopic element 3 and the detector 5 are confirmed by a potentiometer or the like attached to the axis O.

多層膜分光素子3と検出器5を連動手段7で連続的に連動させることにより、試料Sから発生した蛍光X線4をそれぞれの波長に分光し、検出する。これにより、連動手段7からの分光角2θに関する信号および検出器5からの蛍光X線6の強度に関する信号に基づいて、各分光角2θにおける蛍光X線6の強度を示すスペクトルが得られ、定性分析手段13、定量分析手段14または半定量分析手段15により定性、定量または半定量分析が行われ、その結果が表示手段16に表示される。   By continuously interlocking the multilayer film spectroscopic element 3 and the detector 5 with the interlocking means 7, the fluorescent X-rays 4 generated from the sample S are spectrally separated into respective wavelengths and detected. As a result, a spectrum indicating the intensity of the fluorescent X-ray 6 at each spectral angle 2θ is obtained based on the signal related to the spectral angle 2θ from the interlocking means 7 and the signal related to the intensity of the fluorescent X-ray 6 from the detector 5. Qualitative, quantitative or semi-quantitative analysis is performed by the analyzing means 13, quantitative analyzing means 14 or semi-quantitative analyzing means 15, and the result is displayed on the display means 16.

次に、第2の実施形態の蛍光X線分析装置の動作として、銅合金中のリン(P)を半定量分析する方法について説明する。まず、比較のためにゴニオメータの分光素子がゲルマニウム結晶(Ge)で構成された従来の蛍光X線分析装置を用いた半定量分析について説明する。試料である銅合金を試料台に載置し、所定の半定量分析条件に設定し、ゴニオメータを走査させ半定量分析を行い、表示手段に分析結果を表示させる。半定量分析とは、分析対象元素の分析線の近傍を、ゴニオメータを走査し得られた定性チャートのスペクトルピークの強度に基づき、試料中の元素の含有量を求める分析であって、高精度の定量値を必要としない場合に用いられる。   Next, a method for semi-quantitative analysis of phosphorus (P) in a copper alloy will be described as an operation of the fluorescent X-ray analyzer of the second embodiment. First, for comparison, a semi-quantitative analysis using a conventional fluorescent X-ray analyzer in which a goniometer spectroscopic element is composed of germanium crystals (Ge) will be described. A copper alloy, which is a sample, is placed on a sample stage, set to predetermined semi-quantitative analysis conditions, a goniometer is scanned to perform semi-quantitative analysis, and the analysis result is displayed on the display means. Semi-quantitative analysis is an analysis that determines the content of an element in a sample based on the intensity of the spectral peak of a qualitative chart obtained by scanning a goniometer in the vicinity of the analysis line of the target element. Used when no quantitative value is required.

本発明の効果が容易に分かるようにリンの含有量が既知である銅合金試料A、Bを用いる。リンの含有率が0mass%である銅合金試料Aとリンの含有率が0.035mass%である銅合金試料Bの2つの試料についてリンの分析線であるP−Kα(2.01keV)の近傍を、ゴニオメータを走査し定性分析を行った定性チャートを図8に示す。図8は横軸がX線のエネルギであり、縦軸が検出器によって検出されたX線強度を表している。図8をみると、リンの分析線であるP−Kα線の位置に試料A、Bともにスペクトルピークが検出されており、この定性チャートから判断すると試料Aにもリンが含有されていることになる。このように従来の装置で銅合金中のリンの定性分析や半定量分析を行うとリンの含有率が0mass%である試料Aにリンが含有するという誤った分析結果が出してしまう。   Copper alloy samples A and B having a known phosphorus content are used so that the effects of the present invention can be easily understood. In the vicinity of P-Kα (2.01 keV) which is an analytical line of phosphorus for two samples of a copper alloy sample A having a phosphorus content of 0 mass% and a copper alloy sample B having a phosphorus content of 0.035 mass% FIG. 8 shows a qualitative chart obtained by performing a qualitative analysis by scanning a goniometer. In FIG. 8, the horizontal axis represents X-ray energy, and the vertical axis represents the X-ray intensity detected by the detector. When FIG. 8 is seen, the spectrum peak is detected in the position of the P-Kα line, which is the analytical line of phosphorus, in both samples A and B. Judging from this qualitative chart, sample A also contains phosphorus. Become. As described above, when qualitative analysis or semi-quantitative analysis of phosphorus in a copper alloy is performed with a conventional apparatus, an erroneous analysis result that the sample A having a phosphorus content of 0 mass% contains phosphorus is generated.

これは、前記したように銅合金を分析した場合、Cu−Kαの高次線が発生し、その中の4次線のエネルギが2.01keVであり、リンの分析線であるP−Kα線と重なるためである。   This is because, as described above, when a copper alloy is analyzed, a Cu-Kα higher-order line is generated, the energy of the quaternary line therein is 2.01 keV, and the P-Kα line which is a phosphorus analysis line Because it overlaps with.

試料Aと同様に試料BのスペクトルピークにもCu−Kαの4次線が重なっており、取得した定性チャートをそのまま解析すると試料Bのリンの真の含有量よりも高い値となり不正確な半定量分析結果になる。   Like the sample A, the spectral peak of the sample B overlaps with the Cu-Kα quaternary line, and when the obtained qualitative chart is analyzed as it is, the value becomes higher than the true phosphorus content of the sample B and an inaccurate half It becomes a quantitative analysis result.

第2実施形態の蛍光X線分析装置を用いて、従来の装置を用いた場合と同様に銅合金試料A、BについてリンのP−Kα(2.01keV)の近傍を走査し得られた定性チャートを図6に示す。図6では、第2実施形態の蛍光X線分析装置の多層膜分光素子3をRX25と表示している。この定性チャートをみると、リンの含有率が0mass%である銅合金試料Aでは、リンのP−Kα(2.01keV)に隣接した位置にスペクトルピークは検出されていない。すなわち、第2実施形態の蛍光X線分析装置を用いて銅合金中のリンの半定量分析を行った場合には、従来の装置では検出されたCu―Kα線の4次の回折X線のピークが検出されないので、リンの含有率が0mass%である銅合金試料Aにリンが含有されているという誤った分析結果が出ることがない。また、試料BについてもCu―Kαの4次線ピークが重なることはなく、正確な半定量分析が行える。   Using the X-ray fluorescence analyzer of the second embodiment, qualitative results obtained by scanning the vicinity of phosphorus P-Kα (2.01 keV) for copper alloy samples A and B as in the case of using the conventional apparatus. A chart is shown in FIG. In FIG. 6, the multilayer spectroscopic element 3 of the X-ray fluorescence spectrometer of the second embodiment is indicated as RX25. Looking at this qualitative chart, in the copper alloy sample A in which the phosphorus content is 0 mass%, no spectral peak is detected at a position adjacent to P-Kα (2.01 keV) of phosphorus. That is, when the semi-quantitative analysis of phosphorus in a copper alloy is performed using the fluorescent X-ray analyzer of the second embodiment, the fourth-order diffracted X-ray of the Cu—Kα ray detected by the conventional apparatus is detected. Since no peak is detected, there is no erroneous analysis result that the copper alloy sample A having a phosphorus content of 0 mass% contains phosphorus. In addition, Cu-Kα quaternary peak does not overlap for sample B, and accurate semi-quantitative analysis can be performed.

第2実施形態の蛍光X線分析装置を用いて未知試料の半定量分析を行うには、前記の既知試料の場合と同様に分析対象元素の分析線の近傍を、ゴニオメータを走査し定性チャートを取得することにより、公知の半定量分析方法によって未知試料の分析対象元素の含有量を求めればよい。   In order to perform semi-quantitative analysis of an unknown sample using the fluorescent X-ray analyzer according to the second embodiment, a qualitative chart is obtained by scanning a goniometer in the vicinity of the analysis line of the element to be analyzed as in the case of the known sample. By acquiring, the content of the element to be analyzed in the unknown sample may be obtained by a known semi-quantitative analysis method.

次に、第2実施形態の蛍光X線分析装置の動作として、チタン酸バリウム中のアルミニウムを半定量分析する方法について、銅合金中のリンの分析と同様に従来の半定量分析の結果と比較しながら説明する。銅合金試料分析と同様に、本発明の効果が容易に分かるように、アルミニウムを含有していないチタン酸バリウム試料Cを用いる。PET結晶をゴニオメータの分光素子としている従来の蛍光X線分析装置を用いて、アルミニウムの含有率が0mass%であるチタン酸バリウム試料Cについて、アルミニウムの分析線であるAl−Kα(1.49keV)の近傍を、ゴニオメータを走査し定性分析を行った定性チャートを図9に示す。図9も図8同様に横軸がX線のエネルギであり、縦軸が検出器によって検出されたX線強度を表している。図9をみると、アルミニウムのAl−Kαの位置にスペクトルピークが検出されており、この定性チャートから判断すると試料Cにはアルミニウムが含有されていることになる。   Next, as the operation of the fluorescent X-ray analyzer of the second embodiment, a method for semi-quantitative analysis of aluminum in barium titanate is compared with the result of conventional semi-quantitative analysis in the same manner as the analysis of phosphorus in copper alloy. While explaining. As in the copper alloy sample analysis, the barium titanate sample C containing no aluminum is used so that the effect of the present invention can be easily understood. Using a conventional fluorescent X-ray analyzer using a PET crystal as a spectroscopic element of a goniometer, Al-Kα (1.49 keV), which is an aluminum analysis line, of a barium titanate sample C having an aluminum content of 0 mass% FIG. 9 shows a qualitative chart obtained by performing a qualitative analysis by scanning a goniometer in the vicinity. In FIG. 9, as in FIG. 8, the horizontal axis represents the energy of X-rays, and the vertical axis represents the X-ray intensity detected by the detector. Referring to FIG. 9, a spectrum peak is detected at the position of Al—Kα of aluminum, and judging from this qualitative chart, sample C contains aluminum.

このように従来の装置でチタン酸バリウム中のアルミニウムの定性分析や半定量分析を行うとアルミニウムの含有率が0mass%である試料Cにアルミニウムが含有するという誤った分析結果が出してしまう。   As described above, when qualitative analysis or semi-quantitative analysis of aluminum in barium titanate is performed by a conventional apparatus, an erroneous analysis result that sample C having aluminum content of 0 mass% contains aluminum is produced.

これは、前記の銅合金の分析と同様に、チタン酸バリウムである試料Cの主成分であるバリウム(Ba)の蛍光X線が分光素子であるPET結晶に入射し、PET結晶で分光され、エネルギが4.466keVのBa−Lαの3次線と共に、そのエスケープピークが発生し、1.49keVのアルミニウムの分析線であるAl−Kα線と重なるためである。   As in the analysis of the copper alloy, the fluorescent X-ray of barium (Ba), which is the main component of the sample C, which is barium titanate, is incident on the PET crystal as the spectroscopic element, and is separated by the PET crystal. This is because an escape peak is generated together with a Ba-Lα tertiary line having an energy of 4.466 keV and overlaps with an Al-Kα line which is an analysis line of 1.49 keV aluminum.

第2実施形態の蛍光X線分析装置を用いて、従来の装置を用いた場合と同様にチタン酸バリウム試料Cについてアルミニウムの分析線であるAl−Kα線(1.49keV)の近傍を、ゴニオメータを走査し定性分析を行った定性チャートを図7に示す。図7では、第2実施形態の蛍光X線分析装置の多層膜分光素子3をRX25と表示している。この定性チャートをみると、アルミニウムの含有率が0mass%であるチタン酸バリウム試料Cでは、Al−Kα線(1.49keV)の近傍に隣接した位置にスペクトルピークは検出されていない。すなわち、第2実施形態の蛍光X線分析装置を用いてチタン酸バリウム中のアルミニウムの半定量分析を行った場合には、従来の装置では検出されたBa―Lαの3次線およびそのエスケープピークが検出されないので、アルミニウムの含有率が0mass%であるチタン酸バリウム試料Cにアルミニウムが含有しているという誤った分析結果が出ることがない。   Using the fluorescent X-ray analysis apparatus of the second embodiment, a goniometer is used in the vicinity of an Al-Kα line (1.49 keV), which is an aluminum analysis line, for the barium titanate sample C as in the case of using the conventional apparatus. FIG. 7 shows a qualitative chart obtained by performing a qualitative analysis by scanning. In FIG. 7, the multilayer spectroscopic element 3 of the X-ray fluorescence spectrometer of the second embodiment is indicated as RX25. Looking at this qualitative chart, in the barium titanate sample C in which the aluminum content is 0 mass%, no spectral peak is detected at a position adjacent to the vicinity of the Al-Kα line (1.49 keV). That is, when semi-quantitative analysis of aluminum in barium titanate is performed using the fluorescent X-ray analyzer of the second embodiment, the Ba-Lα tertiary line detected by the conventional apparatus and its escape peak are detected. Is not detected, so that an erroneous analysis result that aluminum is contained in the barium titanate sample C in which the aluminum content is 0 mass% does not occur.

このように、第2実施形態の蛍光X線分析装置を用いた場合、高次の回折X線が抑制されるので、正確で精度のよい分析を行うことができる。   As described above, when the fluorescent X-ray analyzer of the second embodiment is used, higher-order diffracted X-rays are suppressed, so that accurate and accurate analysis can be performed.

本発明の第1実施形態の蛍光X線分析装置を示す概略図である。1 is a schematic diagram showing a fluorescent X-ray analysis apparatus according to a first embodiment of the present invention. 同上の分析装置の多層膜分光素子を示す断面図である。It is sectional drawing which shows the multilayer film spectroscopic element of an analyzer same as the above. 同上の多層膜分光素子の1層対を示す断面図である。It is sectional drawing which shows 1 layer pair of a multilayer film spectroscopy element same as the above. 高次の回折X線の相対強度曲線の一例を示す図である。It is a figure which shows an example of the relative intensity curve of a high-order diffraction X-ray. 本発明の第2実施形態の蛍光X線分析装置を示す概略図である。It is the schematic which shows the fluorescent-X-ray-analysis apparatus of 2nd Embodiment of this invention. 同上の分析装置を用いた銅合金の定性チャートである。It is a qualitative chart of a copper alloy using the analyzer same as the above. 同上の分析装置を用いたチタン酸バリウムの定性チャートである。It is a qualitative chart of barium titanate using the analyzer same as the above. 従来の蛍光X線分析装置を用いた銅合金の定性チャートである。It is a qualitative chart of a copper alloy using a conventional fluorescent X-ray analyzer. 同上の分析装置を用いたチタン酸バリウムの定性チャートである。It is a qualitative chart of barium titanate using the analyzer same as the above.

符号の説明Explanation of symbols

1 X線源
2 1次X線
3 多層膜分光素子
4 2次X線
5 検出器
6 蛍光X線
10,20 蛍光X線分析装置
31 反射層
32 スペーサ層
34 境界面
S 試料
d 周期長
σ ラフネス
DESCRIPTION OF SYMBOLS 1 X-ray source 2 Primary X-ray 3 Multilayer film | membrane spectroscopy element 4 Secondary X-ray 5 Detector 6 Fluorescence X-rays 10 and 20 Fluorescence X-ray analyzer 31 Reflective layer 32 Spacer layer 34 Boundary surface S Sample d Period length σ Roughness

Claims (2)

試料に1次X線を照射するX線源と、
反射層とスペーサ層からなる層対を多数積層して構成され、試料から発生した蛍光X線を分光する多層膜分光素子と、
その多層膜分光素子で分光された蛍光X線の強度を測定する検出器とを備える蛍光X線分析装置において、
前記多層膜分光素子の周期長が1〜2nmであり、その周期長に対し前記反射層とスペーサ層の境界面のラフネスが前記周期長の20%以上であることを特徴とする蛍光X線分析装置。
An X-ray source for irradiating the sample with primary X-rays;
A multilayer film spectroscopic element that is configured by laminating a large number of layer pairs each including a reflective layer and a spacer layer, and that separates fluorescent X-rays generated from a sample;
In a fluorescent X-ray analyzer equipped with a detector for measuring the intensity of fluorescent X-rays dispersed by the multilayer spectroscopic element,
X-ray fluorescence analysis characterized in that the periodic length of the multilayer spectroscopic element is 1 to 2 nm, and the roughness of the boundary surface between the reflective layer and the spacer layer is 20% or more of the periodic length with respect to the periodic length apparatus.
請求項1において、
前記反射層がタングステンからなり、前記スペーサ層が炭化ホウ素からなる蛍光X線分析装置。
In claim 1,
A fluorescent X-ray analysis apparatus in which the reflective layer is made of tungsten and the spacer layer is made of boron carbide.
JP2005357789A 2005-12-12 2005-12-12 X-ray fluorescence analyzer and method Active JP4253805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357789A JP4253805B2 (en) 2005-12-12 2005-12-12 X-ray fluorescence analyzer and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357789A JP4253805B2 (en) 2005-12-12 2005-12-12 X-ray fluorescence analyzer and method

Publications (2)

Publication Number Publication Date
JP2007163219A true JP2007163219A (en) 2007-06-28
JP4253805B2 JP4253805B2 (en) 2009-04-15

Family

ID=38246288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357789A Active JP4253805B2 (en) 2005-12-12 2005-12-12 X-ray fluorescence analyzer and method

Country Status (1)

Country Link
JP (1) JP4253805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141129A (en) * 2010-01-05 2011-07-21 Japan Atomic Energy Agency Multilayer film optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141129A (en) * 2010-01-05 2011-07-21 Japan Atomic Energy Agency Multilayer film optical element

Also Published As

Publication number Publication date
JP4253805B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
Szlachetko et al. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies
Pascarelli et al. Energy-dispersive absorption spectroscopy for hard-X-ray micro-XAS applications
EP2012113B1 (en) X-ray fluorescence spectrometer
JP4908119B2 (en) X-ray fluorescence analyzer
JP7395775B2 (en) Systems and methods for X-ray absorption spectroscopy using a crystal analyzer and multiple detector elements
JP6142135B2 (en) Obliquely incident X-ray fluorescence analyzer and method
JP2008032749A (en) X-ray fluorescence spectroscopy system and x-ray fluorescence spectroscopy method
WO2013108876A1 (en) X-ray diffractometer
JP2013113782A (en) Fluorescence x-ray analyzer
WO2005005969A1 (en) Energy dispersion type x-ray diffraction/spectral device
US6310935B1 (en) Fluorescent x-ray analyzer
JP2001124711A (en) Fluorescence x-ray analysis method and evaluation method of sample structure
JP4253805B2 (en) X-ray fluorescence analyzer and method
Chandler et al. Cross calibration of new x-ray films against direct exposure film from 1 to 8keV using the X-pinch x-ray source
Unterumsberger et al. Focusing of soft X-ray radiation and characterization of the beam profile enabling X-ray emission spectrometry at nanolayered specimens
Guo et al. A von Hamos full-cylindrical spectrometer based on striped Si/Ge crystal for advanced x-ray spectroscopy
WO2017169247A1 (en) X-ray fluorescence analyzer and x-ray fluorescence analysis method
Loisel et al. A compact multi-plane broadband (0.5-17 keV) spectrometer using a single acid phthalate crystal
JPH11295245A (en) X-ray spectroscopic element and x-ray analysis apparatus using the same
US6650728B2 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive X-ray spectrometric devices
JP3312001B2 (en) X-ray fluorescence analyzer
JP2005140719A (en) Fluorescent x-ray analyzer and x-ray spectroscopic instrument using the same
JP2002365245A (en) Wavelength dispersive x-ray fluorescence analyzer
JP2000009666A (en) X-ray analyzer
JP2006133000A (en) Minute-part layered structure inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4253805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250