JP2007163015A - Mounting structure of heat exchanger - Google Patents

Mounting structure of heat exchanger Download PDF

Info

Publication number
JP2007163015A
JP2007163015A JP2005359084A JP2005359084A JP2007163015A JP 2007163015 A JP2007163015 A JP 2007163015A JP 2005359084 A JP2005359084 A JP 2005359084A JP 2005359084 A JP2005359084 A JP 2005359084A JP 2007163015 A JP2007163015 A JP 2007163015A
Authority
JP
Japan
Prior art keywords
heat exchanger
bolt
bracket
mounting structure
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005359084A
Other languages
Japanese (ja)
Inventor
Tatsuto Yamada
達人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Roki Co Ltd
Original Assignee
Tokyo Roki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Roki Co Ltd filed Critical Tokyo Roki Co Ltd
Priority to JP2005359084A priority Critical patent/JP2007163015A/en
Publication of JP2007163015A publication Critical patent/JP2007163015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting structure of a heat exchanger for reducing thermal stresses that are generated on a bracket part and a heat exchanger body when a thermal expansion difference occurs between the heat exchanger body and the side to which it is mounted. <P>SOLUTION: In the mounting structure of the heat exchanger, the bracket part 110 is provided with a bolt hole 111 formed in the shape of an oblong hole along the longitudinal direction of the heat exchanger body 2. A stepped bolt 150 is passed through the bolt hole 111, a compressed telescopic member 120 is interposed between the head 150a of the stepped bolt and the bracket part 110, and the stepped bolt 150 is tightly secured to the side 200 to which the body is mounted. When thermal expansion of the heat exchanger body 2 in the longitudinal direction relative to the side 200 occurs as the result of a thermal expansion difference between the heat exchanger body 2 and the side 200, the bracket part 100 can move relative to the bolt 150. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ブラケット部が熱交換器本体と一体成形された熱交換器を、該ブラケット部を介して被取付側に取り付ける熱交換器の取付構造に関し、特に、熱交換器本体と被取付側との間に熱膨張差が生じた際に、ブラケット部に生じる熱応力を緩和するための熱交換器の取付構造に関する。   The present invention relates to a heat exchanger mounting structure in which a heat exchanger in which a bracket portion is integrally formed with a heat exchanger main body is attached to the mounted side via the bracket portion, and more particularly, the heat exchanger main body and the mounted side. It is related with the attachment structure of the heat exchanger for relieving the thermal stress which arises in a bracket part when a thermal expansion difference arises between.

近年、熱交換器本体(例えば、EGRクーラ等)を被取付側(例えば、エキゾマニホールドや吸気インテークマニホールド等)に取り付けるために、図3(a)〜(c)に示す如く、ブラケット部1,10が熱交換器本体2の長手方向両端部に一体成形された熱交換器100が開発されている。同図に示す熱交換器100において、熱交換器本体2の長手方向両端部には、ブラケット部3,30、コーン部4,40及びパイプ6,60が一対ずつ設けられ、前述のブラケット部1,10はコーン部4,40に設けられている。そして、高温流体(例えば、EGRガス等)と低温流体(例えば、エンジン冷却水等)は、それぞれコーン部4,40及びパイプ6,60を通じて熱交換器本体2内に供給され、この熱交換器本体2内のコア部のプレート7を介して相互に熱交換を行うようになっている。   In recent years, in order to attach a heat exchanger body (for example, an EGR cooler) to a mounted side (for example, an exo manifold or an intake intake manifold), as shown in FIGS. A heat exchanger 100 in which 10 is integrally formed at both longitudinal ends of the heat exchanger body 2 has been developed. In the heat exchanger 100 shown in the drawing, a pair of bracket portions 3, 30, cone portions 4, 40 and pipes 6, 60 are provided at both ends in the longitudinal direction of the heat exchanger body 2, and the bracket portion 1 described above is provided. , 10 are provided in the cone portions 4 and 40. A high-temperature fluid (for example, EGR gas) and a low-temperature fluid (for example, engine coolant) are supplied into the heat exchanger body 2 through the cone portions 4, 40 and the pipes 6, 60, respectively. Heat exchange is performed with each other via the plate 7 of the core portion in the main body 2.

かかる熱交換器100は、ブラケット部1,10を介して被取付側200に取り付けられる構造となっており、具体的には、ブラケット部1,10に設けられたボルト孔11にボルト5,50を挿通して該ボルト5,50を被取付側200に締結固定し、該ボルト5,50の頭部5a,50a側をそれぞれブラケット部1,10側に締め付けるようにして該ブラケット部1,10を被取付側200に取り付ける構造となっている(例えば、特許文献1参照)。このようにして、ブラケット部1,10と熱交換器本体2とが一体成形された熱交換器100は、ブラケット部1,10を介して被取付側200に取り付けられる。
特開2002−285917号公報
The heat exchanger 100 is structured to be attached to the attached side 200 via the bracket portions 1 and 10, and specifically, bolts 5 and 50 are inserted into the bolt holes 11 provided in the bracket portions 1 and 10. The bolts 5 and 50 are fastened and fixed to the attached side 200, and the head portions 5a and 50a of the bolts 5 and 50 are fastened to the bracket portions 1 and 10, respectively. Is attached to the attached side 200 (see, for example, Patent Document 1). Thus, the heat exchanger 100 in which the bracket portions 1 and 10 and the heat exchanger body 2 are integrally formed is attached to the attached side 200 via the bracket portions 1 and 10.
JP 2002-285117 A

しかしながら、上記のような従来技術には、次のような問題があった。すなわち、従来の熱交換器の取付構造にあっては、ブラケット部1,10に設けられたボルト孔11の形状がボルト5,50の形状とほぼ同一に形成されており、しかもブラケット部1,10がボルト5,50の頭部5a,50aにより被取付側200に対して強く締め付けられていて、いずれも被取付側200に完全に固定された状態にある。そのため、ブラケット部1,10はいずれもボルト5,50に対して相対移動することができず、熱交換器本体2と被取付側200との間に熱膨張差が生じて熱交換器本体2が被取付側200に対して長手方向に熱膨張する際に、ブラケット部1,10及び熱交換器本体2に過大な熱応力が生じてしまう(例えば、図3(b)のブラケット部1,10の斜線部参照)。   However, the conventional techniques as described above have the following problems. That is, in the conventional heat exchanger mounting structure, the shape of the bolt hole 11 provided in the bracket portions 1 and 10 is substantially the same as the shape of the bolts 5 and 50, and 10 is strongly tightened to the mounted side 200 by the heads 5a and 50a of the bolts 5 and 50, and both are completely fixed to the mounted side 200. Therefore, none of the bracket portions 1 and 10 can move relative to the bolts 5 and 50, and a difference in thermal expansion occurs between the heat exchanger main body 2 and the attached side 200, and the heat exchanger main body 2. Is thermally expanded in the longitudinal direction with respect to the mounted side 200, excessive thermal stress is generated in the bracket portions 1 and 10 and the heat exchanger body 2 (for example, the bracket portion 1 in FIG. 3B). 10).

例えば、ブラケット部1,10が一体成形されたEGRクーラ100を、アルミ鋳物製の吸気インテークマニホールド200に完全に固定して取り付けた場合には、エンジン運転時における吸気インテークマニホールド200の熱膨張量は比較的低温の吸気温度に支配されて微少であるが、EGRクーラ100の熱交換器本体2には比較的高温のEGRガスが流れるためその熱膨張量は過多となり、後者の熱膨張量が前者の約2〜5倍に達することがある。その結果、熱交換器本体2と吸気インテークマニホールド200との間に大きな熱膨張差が生じることとなり、熱交換器本体2が吸気インテークマニホールド200に対して長手方向(図3(a)の場合には左右両方向)に熱膨張する。その際、従来の熱交換器の取付構造にあっては、前述したようにブラケット部1,10が、いずれも被取付側の吸気インテークマニホールド200に完全に固定された状態にあるので、ボルト5,50に対して相対移動することができない。そのため、ブラケット部1,10及びこれらと一体成形された熱交換器本体2(例えば、図3(c)のプレート7等)に過大な熱応力が生じて、亀裂破損などが発生することがあった。   For example, when the EGR cooler 100 in which the bracket portions 1 and 10 are integrally formed is attached to the intake intake manifold 200 made of cast aluminum, the amount of thermal expansion of the intake intake manifold 200 during engine operation is Although it is very small under the control of the relatively low intake air temperature, since the relatively high temperature EGR gas flows through the heat exchanger body 2 of the EGR cooler 100, the thermal expansion amount is excessive, and the latter thermal expansion amount is the former. May reach about 2 to 5 times. As a result, a large difference in thermal expansion occurs between the heat exchanger body 2 and the intake intake manifold 200, and the heat exchanger body 2 is in the longitudinal direction with respect to the intake intake manifold 200 (in the case of FIG. 3A). Expands in both directions. At that time, in the conventional heat exchanger mounting structure, as described above, since the bracket portions 1 and 10 are all fixed to the intake intake manifold 200 on the mounting side, the bolt 5 , 50 cannot be moved relative to each other. Therefore, excessive thermal stress is generated in the bracket portions 1 and 10 and the heat exchanger main body 2 (for example, the plate 7 in FIG. 3C) integrally formed therewith, and crack damage or the like may occur. It was.

本発明は、上記の課題を解決するためのものであり、その目的は、熱交換器本体と被取付側との間に熱膨張差が生じた際に、ブラケット部及び熱交換器本体に生じる熱応力を緩和するための熱交換器の取付構造を提供することにある。   This invention is for solving said subject, The objective arises in a bracket part and a heat exchanger main body, when a thermal expansion difference arises between a heat exchanger main body and a to-be-attached side. An object of the present invention is to provide a heat exchanger mounting structure for relieving thermal stress.

上記課題を解決するために、本発明は、ブラケット部が熱交換器本体と一体成形された熱交換器を、該ブラケット部を介して被取付側に取り付ける熱交換器の取付構造であって、前記ブラケット部には、前記熱交換器本体の長手方向に対して長穴状に形成されたボルト孔が設けられ、該ボルト孔にボルトを挿通し、該ボルト頭部と前記ブラケット部との間に圧縮した伸縮部材を介在させて該ボルトを前記被取付側に締結固定するとともに、前記熱交換器本体と前記被取付側との間に熱膨張差が生じて該熱交換器本体が該被取付側に対して長手方向に熱膨張する際に、前記ブラケット部が前記ボルトに対して相対移動可能となるように構成したことを特徴とする。   In order to solve the above problems, the present invention is a heat exchanger mounting structure in which a heat exchanger in which a bracket portion is integrally formed with a heat exchanger body is attached to a mounted side via the bracket portion, The bracket portion is provided with a bolt hole formed in a long hole shape with respect to the longitudinal direction of the heat exchanger body, and a bolt is inserted into the bolt hole so that a gap between the bolt head and the bracket portion is provided. The bolt is fastened and fixed to the attached side with a compressed elastic member interposed therebetween, and a difference in thermal expansion occurs between the heat exchanger body and the attached side, so that the heat exchanger body is attached to the attached side. When the thermal expansion is performed in the longitudinal direction with respect to the mounting side, the bracket portion is configured to be relatively movable with respect to the bolt.

かかる構成によれば、ボルト孔が長穴状に形成されているので、熱交換器本体と被取付側との間に熱膨張差が生じると、これに伴ってブラケット部が熱膨張と同じ方向にスライド移動する。このブラケット部のスライド移動により、ブラケット部及び熱交換器本体に生じる熱応力が分散若しくは吸収されることとなり、かかる熱応力を緩和することが可能となる。なお、ボルト孔を長穴状に形成しただけで、ボルト頭部をブラケット部に当接させた状態で該ボルトを締結固定した場合には、ボルトのブラケット部に対する押圧力を微調整しにくくなり、熱交換器の取付強度の保持と、ブラケット部のスライド移動とをうまく両立させることができない。すなわち、ボルト頭部をブラケット部に当接させた状態で該ボルトを強く締結固定すると、ブラケット部に対する押圧力が増加して熱交換器の取付強度が向上する一方、ブラケット部のスライド移動に対する抵抗が上昇してスムースな移動が阻害されてしまう。逆に、その状態でボルトを緩く締結固定すると、ブラケット部のスライド移動に対する抵抗が低下してスムースな移動が可能となる一方、ブラケット部に対する押圧力が減少して熱交換器の取付強度が低下してしまう。しかし、本発明のように、ボルト孔を長穴状に形成しただけでなく、ボルト頭部とブラケット部との間に伸縮部材を介在させた場合には、伸縮部材の付勢により間接的にブラケット部を押圧することとなり、ボルト頭部により直接的にブラケット部を押圧する場合と比べると、前述した押圧力を微調整しやすくなる。その結果、熱交換器の取付強度の保持と、ブラケット部のスライド移動とを両立させることが可能となる。   According to such a configuration, since the bolt hole is formed in the shape of a long hole, if a difference in thermal expansion occurs between the heat exchanger main body and the mounted side, the bracket portion is accompanied by the same direction as the thermal expansion. Move to slide. By the sliding movement of the bracket portion, the thermal stress generated in the bracket portion and the heat exchanger body is dispersed or absorbed, and the thermal stress can be relaxed. If the bolt is tightened and fixed with the bolt head in contact with the bracket just by forming the bolt hole into a long hole, it will be difficult to make fine adjustments to the pressing force of the bolt against the bracket. Therefore, it is not possible to achieve a good balance between maintaining the mounting strength of the heat exchanger and sliding the bracket portion. That is, if the bolt is firmly tightened and fixed with the bolt head in contact with the bracket portion, the pressing force against the bracket portion increases and the mounting strength of the heat exchanger is improved, while the resistance against the slide movement of the bracket portion is improved. Rises and smooth movement is hindered. Conversely, if the bolts are loosely tightened and fixed in this state, the resistance to the sliding movement of the bracket portion will be reduced and smooth movement will be possible, while the pressing force on the bracket portion will be reduced and the mounting strength of the heat exchanger will be reduced. Resulting in. However, as in the present invention, when the bolt hole is not only formed in the shape of a long hole, but also when an expansion / contraction member is interposed between the bolt head and the bracket portion, it is indirectly caused by the bias of the expansion / contraction member. The bracket portion is pressed, and the above-described pressing force can be finely adjusted as compared with the case where the bracket portion is directly pressed by the bolt head. As a result, it is possible to achieve both the mounting strength of the heat exchanger and the sliding movement of the bracket portion.

また、本発明において、前記ボルトは、段付ボルトであり、該段付ボルトの段差部を前記被取付側に接触させた状態にして、該段付ボルトを前記被取付側に締結固定したこととしてもよい。或いは、前記ボルト孔にカラーを挿通して該カラーを前記被取付側に接触させた状態にし、該カラー内に前記ボルトを挿通して該ボルトを前記被取付側に締結固定したこととしてもよい。   In the present invention, the bolt is a stepped bolt, and the stepped bolt is fastened and fixed to the mounted side with the stepped portion of the stepped bolt in contact with the mounted side. It is good. Alternatively, the collar may be inserted into the bolt hole so that the collar is in contact with the attached side, and the bolt is inserted into the collar and the bolt is fastened and fixed to the attached side. .

かかる構成によれば、段付ボルト或いはカラーによって、前記伸縮部材の圧縮代が適切に管理されることとなり、熱交換器の取付強度の保持と、ブラケット部のスライド移動との両立が容易となる。従って、熱交換器を被取付側に取り付けた状態を維持しつつ、ブラケット部をスライド移動させることにより、ブラケット部及び熱交換器本体に生じる熱応力をよりいっそう緩和することができる。   According to this configuration, the compression allowance of the expansion / contraction member is appropriately managed by the stepped bolt or the collar, and it is easy to maintain both the mounting strength of the heat exchanger and the sliding movement of the bracket portion. . Therefore, the thermal stress generated in the bracket portion and the heat exchanger body can be further alleviated by sliding the bracket portion while maintaining the state where the heat exchanger is attached to the attached side.

本発明によれば、ブラケット部が熱交換器本体と一体成形された熱交換器を、該ブラケット部を介して被取付側に取り付ける熱交換器の取付構造において、熱交換器本体と被取付側との間に熱膨張差が生じた際に、ブラケット部及び熱交換器本体に生じる熱応力を緩和することができる。   According to the present invention, in the heat exchanger mounting structure in which the heat exchanger in which the bracket portion is integrally formed with the heat exchanger main body is attached to the mounted side via the bracket portion, the heat exchanger main body and the mounted side When a difference in thermal expansion occurs between them, the thermal stress generated in the bracket portion and the heat exchanger body can be relaxed.

以下、添付図面を参照しながら、本発明の各実施形態について説明する。図1A及び図1Bは本発明の第一実施形態の説明図、図2は本発明の第二実施形態の説明図である。なお、同図において、図3と同一若しくは類似の箇所には同一の符号を付し、変更箇所及び新たに追加した箇所には新たな符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1A and 1B are explanatory diagrams of the first embodiment of the present invention, and FIG. 2 is an explanatory diagram of the second embodiment of the present invention. In the figure, the same or similar parts as those in FIG. 3 are denoted by the same reference numerals, and changed parts and newly added parts are denoted by new reference numerals.

===第一実施形態===
図1A及び図1Bは、本発明の第一実施形態における熱交換器の取付構造を示す説明図であり、図1Aは熱膨張前の状態を示し、図1Bは熱膨張時の状態を示す。
=== First Embodiment ===
1A and 1B are explanatory views showing a heat exchanger mounting structure according to the first embodiment of the present invention. FIG. 1A shows a state before thermal expansion, and FIG. 1B shows a state during thermal expansion.

同図に示す熱交換器の取付構造は、ブラケット部10,110が熱交換器本体2と一体成形された熱交換器100を、これらのブラケット部10,110を介して被取付側200に取り付ける構造となっている。同図右側のブラケット部110には、熱交換器本体2の長手方向(同図の場合には左右両端側の方向)に対して長穴状に形成されたボルト孔111が設けられている。ボルト孔111には、段付ボルト150が挿通されており、この段付ボルト150を被取付側200に締結固定している。また、段付ボルト150の頭部150aとブラケット部110との間には、圧縮した伸縮部材120を介在させており、この伸縮部材120によりブラケット部110を被取付側200に付勢若しくは押圧した状態で取り付けている。そして、熱交換器本体2と被取付側200との間に熱膨張差が生じて、熱交換器本体2が被取付側200に対して長手方向に熱膨張すると、ブラケット部110が段付ボルト150に対して相対移動可能となっている。   In the heat exchanger mounting structure shown in the figure, the heat exchanger 100 in which the bracket portions 10 and 110 are integrally formed with the heat exchanger main body 2 is attached to the attached side 200 via these bracket portions 10 and 110. It has a structure. The bracket portion 110 on the right side of the figure is provided with a bolt hole 111 formed in a long hole shape with respect to the longitudinal direction of the heat exchanger main body 2 (in the case of FIG. A stepped bolt 150 is inserted into the bolt hole 111, and the stepped bolt 150 is fastened and fixed to the attached side 200. Further, a compressed expansion / contraction member 120 is interposed between the head portion 150a of the stepped bolt 150 and the bracket portion 110, and the bracket portion 110 is urged or pressed against the attached side 200 by the expansion / contraction member 120. It is installed in the state. And when a thermal expansion difference arises between the heat exchanger main body 2 and the to-be-attached side 200, and the heat exchanger main body 2 thermally expands to a longitudinal direction with respect to the to-be-attached side 200, the bracket part 110 will become a stepped bolt. The relative movement with respect to 150 is possible.

すなわち、前述したようにボルト孔111を長穴状に形成しておくことにより、熱交換器本体2が被取付側200に対して長手方向(同図の場合には右側方向)に熱膨張する際に、ブラケット部110が被取付部200に締結固定された段付ボルト150に対してスライド移動するようになっている(同図の場合には、右側方向に移動)。なお、ボルト孔111の形状、大きさ等については、ボルト孔111と先端部150cとの間に遊びを設けた構成となるように設計する。   That is, by forming the bolt hole 111 in the shape of a long hole as described above, the heat exchanger main body 2 is thermally expanded in the longitudinal direction (the right direction in the case of the figure) with respect to the attached side 200. At this time, the bracket part 110 slides with respect to the stepped bolt 150 fastened and fixed to the attached part 200 (in the case of the same figure, it moves in the right direction). In addition, about the shape of a bolt hole 111, a magnitude | size, etc., it designs so that it may become the structure which provided the play between the bolt hole 111 and the front-end | tip part 150c.

段付ボルト150は、頭部150aと柱部150bと先端部150cとで構成され、柱部150bと先端部150cとの間に段差部が形成されている。この段付ボルト150は、柱部150bの先端側がボルト孔111内に挿通され、前述した段差部が被取付側200に接触している。   The stepped bolt 150 includes a head portion 150a, a column portion 150b, and a tip portion 150c, and a step portion is formed between the column portion 150b and the tip portion 150c. In the stepped bolt 150, the tip end side of the column portion 150 b is inserted into the bolt hole 111, and the stepped portion described above is in contact with the attached side 200.

伸縮部材120は、予め収縮量と反発力の特性を把握したものを使用する。また、段付ボルト150の締結加重の程度は、熱交換器本体2の重量やブラケット部110のスライド移動に伴う動的な加重などを考慮して、熱交換器100の取付強度の保持と、ブラケット部110のスライド移動とが両立するように管理する。   As the expansion / contraction member 120, a member that has previously grasped the characteristics of the contraction amount and the repulsive force is used. In addition, the degree of fastening weight of the stepped bolt 150 is to maintain the mounting strength of the heat exchanger 100 in consideration of the weight of the heat exchanger body 2 and the dynamic weight associated with the sliding movement of the bracket part 110, and the like. It manages so that the slide movement of the bracket part 110 may be compatible.

以上の構成によれば、熱交換器本体2と被取付側200との間に熱膨張差が生じて、該熱交換器本体2が該被取付側200に対して長手方向に熱膨張する際に、ブラケット部110は、被取付部200に締結固定された段付ボルト150に対してスライド移動する。   According to the above configuration, when a difference in thermal expansion occurs between the heat exchanger body 2 and the attached side 200, the heat exchanger body 2 thermally expands in the longitudinal direction with respect to the attached side 200. In addition, the bracket part 110 slides with respect to the stepped bolt 150 fastened and fixed to the attached part 200.

このようなブラケット部110のスライド移動により、ブラケット部110に生じる熱応力を分散若しくは吸収するとともに、その反対側(図中左側)のブラケット部10に生じる熱応力についても分散若しくは吸収することとなる。その結果、ブラケット部10,110の双方に生じる熱応力が緩和され、これに伴って、ブラケット部10,110と一体成形された熱交換器本体2に生じる熱応力も緩和される。なお、ブラケット部110のスライド移動は、熱交換器本体2が熱膨張して過大な熱応力が発生し、その熱応力がブラケット部110の摩擦限界を超えた場合に開始する。   By such sliding movement of the bracket part 110, the thermal stress generated in the bracket part 110 is dispersed or absorbed, and the thermal stress generated in the bracket part 10 on the opposite side (left side in the drawing) is also dispersed or absorbed. . As a result, the thermal stress generated in both the bracket portions 10 and 110 is relieved, and accordingly, the thermal stress generated in the heat exchanger body 2 integrally formed with the bracket portions 10 and 110 is also relieved. The sliding movement of the bracket part 110 starts when the heat exchanger body 2 is thermally expanded to generate excessive thermal stress and the thermal stress exceeds the friction limit of the bracket part 110.

ところで、本実施形態では、ボルト頭部150aとブラケット部110との間に伸縮部材120を介在させ、この伸縮部材120の付勢力により間接的にブラケット部110を被取付側200に押圧するように構成している。そのため、ボルト頭部150aをブラケット部110に当接させて、このボルト頭部150aにより直接的にブラケット部110を押圧する場合と比べると、押圧力を微調整しやすくなり、熱交換器100の取付強度の保持と、ブラケット部110のスライド移動とを両立させることが可能となる。しかも、段付ボルト150によって、伸縮部材120の圧縮代が適切に管理されるので、その両立が容易である。   By the way, in this embodiment, the expansion / contraction member 120 is interposed between the bolt head 150a and the bracket portion 110, and the bracket portion 110 is indirectly pressed against the attached side 200 by the urging force of the expansion / contraction member 120. It is composed. Therefore, compared with the case where the bolt head portion 150a is brought into contact with the bracket portion 110 and the bracket portion 110 is directly pressed by the bolt head portion 150a, the pressing force can be easily finely adjusted. It becomes possible to achieve both the holding of the attachment strength and the sliding movement of the bracket part 110. Moreover, since the compression margin of the expansion / contraction member 120 is appropriately managed by the stepped bolts 150, it is easy to achieve both.

また、本実施形態では、ブラケット部10,110のうち一端側のブラケット部110に対してのみ本発明を適用し、上記のように改良している。しかし、ブラケット部10,110の双方に本発明を適用して、前述のように改良することが好ましい。かかる場合には、ブラケット部10,110がいずれも段付ボルト150に対して相対移動可能となり、熱交換器本体2が被取付側200に対して長手方向に熱膨張した際に、ブラケット部10は左側方向にスライド移動する一方で、ブラケット部110は右側方向にスライド移動する。従って、ブラケット部10,110に生じる熱応力を両端側で分散若しくは吸収するとともに、これらと一体成形された熱交換器本体2に生じる熱応力についても分散若しくは吸収することとなる。そのため、例えば、熱交換器本体2がEGRクーラであり、且つ被取付側200が吸気インテークマニホールドの場合、すなわち熱交換器本体2と被取付側200との間に大きな熱膨張差が生じる場合であっても、ブラケット部10,110及び熱交換器本体2に生じる熱応力をよりいっそう緩和することができるようになり、具体的には、熱応力を約50%まで低減することも可能である。   Moreover, in this embodiment, this invention is applied only to the bracket part 110 of the one end side among the bracket parts 10 and 110, and it has improved as mentioned above. However, it is preferable to apply the present invention to both the bracket portions 10 and 110 and improve as described above. In such a case, both the bracket portions 10 and 110 can move relative to the stepped bolt 150, and when the heat exchanger body 2 thermally expands in the longitudinal direction with respect to the attached side 200, the bracket portion 10 Slides in the left direction, while the bracket part 110 slides in the right direction. Accordingly, the thermal stress generated in the bracket portions 10 and 110 is dispersed or absorbed at both ends, and the thermal stress generated in the heat exchanger body 2 integrally formed with these is also dispersed or absorbed. Therefore, for example, when the heat exchanger body 2 is an EGR cooler and the attached side 200 is an intake intake manifold, that is, when a large thermal expansion difference occurs between the heat exchanger body 2 and the attached side 200. Even in such a case, the thermal stress generated in the bracket portions 10 and 110 and the heat exchanger body 2 can be further reduced, and specifically, the thermal stress can be reduced to about 50%. .

===第二実施形態===
図2は、本発明の第二実施形態における熱交換器の取付構造を示す説明図である。同図に示す熱交換器の取付構造は、第一実施形態とほぼ同様の構成である。しかし、本実施形態においては、ボルト孔11にカラー160を挿通し、このカラー160を被取付側200に接触させた状態にするとともに、該カラー160にボルト5を挿通した状態でボルト5を被取付側200に締結固定している。
=== Second Embodiment ===
FIG. 2 is an explanatory view showing a heat exchanger mounting structure in the second embodiment of the present invention. The heat exchanger mounting structure shown in the figure is substantially the same as that of the first embodiment. However, in this embodiment, the collar 160 is inserted into the bolt hole 11 so that the collar 160 is in contact with the attached side 200, and the bolt 5 is inserted with the bolt 5 inserted into the collar 160. Fastened and fixed to the mounting side 200.

以上の構成によれば、カラー160は、第一実施形態で示した段付ボルト150と同様の機能を有し、これにより伸縮部材120の圧縮代が適切に管理されることとなる。そのため、熱交換器100の取付強度の保持と、ブラケット部110のスライド移動との両立が容易となる。従って、熱交換器100を被取付側に取り付けた状態を維持しつつ、ブラケット部110をスライド移動させることにより、前述した熱応力をよりいっそう緩和することができる。   According to the above configuration, the collar 160 has a function similar to that of the stepped bolt 150 shown in the first embodiment, whereby the compression allowance of the expansion / contraction member 120 is appropriately managed. Therefore, it becomes easy to maintain both the mounting strength of the heat exchanger 100 and the sliding movement of the bracket part 110. Therefore, the above-described thermal stress can be further alleviated by sliding the bracket portion 110 while maintaining the state where the heat exchanger 100 is attached to the attached side.

本発明の第一実施形態における熱膨張前の熱交換器の取付構造を示す説明図であり、(a)は側面図、(b)は(a)に示した熱交換器の取付構造を下側から視た図、(c)は(a)に示した熱交換器の取付構造を右側から視た図である(但し一部断面図を含む)。It is explanatory drawing which shows the attachment structure of the heat exchanger before thermal expansion in 1st embodiment of this invention, (a) is a side view, (b) is the attachment structure of the heat exchanger shown to (a) below. The figure seen from the side, (c) is the figure which looked at the attachment structure of the heat exchanger shown in (a) from the right side (however, including a partial sectional view). 本発明の第一実施形態における熱膨張時の熱交換器の取付構造を示す説明図であり、(a)は側面図、(b)は(a)に示した熱交換器の取付構造を下側から視た図である(但し一部断面図を含む)。It is explanatory drawing which shows the attachment structure of the heat exchanger at the time of the thermal expansion in 1st embodiment of this invention, (a) is a side view, (b) is the attachment structure of the heat exchanger shown to (a) below. It is the figure seen from the side (however, including a partial sectional view). 本発明の第二実施形態における熱交換器の取付構造を示す説明図である。It is explanatory drawing which shows the attachment structure of the heat exchanger in 2nd embodiment of this invention. 従来技術における熱交換器の取付構造を示す説明図であり、(a)は側面図、(b)は(a)に示した熱交換器の取付構造を下側から視た図、(c)は(a)に示した熱交換器の取付構造を右側から視た図である(但し一部断面図を含む)。It is explanatory drawing which shows the attachment structure of the heat exchanger in a prior art, (a) is a side view, (b) is the figure which looked at the attachment structure of the heat exchanger shown to (a) from the lower side, (c) FIG. 4 is a view of the heat exchanger mounting structure shown in (a) as viewed from the right side (including a partial cross-sectional view).

符号の説明Explanation of symbols

110 ブラケット部
111 ボルト孔
120 伸縮部材
150 段付ボルト
160 カラー
110 Bracket part 111 Bolt hole 120 Elastic member 150 Stepped bolt 160 Color

Claims (3)

ブラケット部が熱交換器本体と一体成形された熱交換器を、該ブラケット部を介して被取付側に取り付ける熱交換器の取付構造であって、
前記ブラケット部には、前記熱交換器本体の長手方向に対して長穴状に形成されたボルト孔が設けられ、該ボルト孔にボルトを挿通し、該ボルト頭部と前記ブラケット部との間に圧縮した伸縮部材を介在させて該ボルトを前記被取付側に締結固定するとともに、前記熱交換器本体と前記被取付側との間に熱膨張差が生じて該熱交換器本体が該被取付側に対して長手方向に熱膨張する際に、前記ブラケット部が前記ボルトに対して相対移動可能となるように構成したことを特徴とする熱交換器の取付構造。
A heat exchanger mounting structure in which a heat exchanger in which a bracket portion is integrally formed with a heat exchanger main body is attached to a mounted side via the bracket portion,
The bracket portion is provided with a bolt hole formed in a long hole shape with respect to the longitudinal direction of the heat exchanger body, and a bolt is inserted into the bolt hole so that a gap between the bolt head and the bracket portion is provided. The bolt is fastened and fixed to the attached side with a compressed elastic member interposed therebetween, and a difference in thermal expansion occurs between the heat exchanger body and the attached side, so that the heat exchanger body is attached to the attached side. The heat exchanger mounting structure, wherein the bracket portion is configured to be relatively movable with respect to the bolt when thermally expanding in the longitudinal direction with respect to the mounting side.
請求項1に記載の熱交換器の取付構造において、
前記ボルトは、段付ボルトであり、該段付ボルトの段差部を前記被取付側に接触させた状態にして、該段付ボルトを前記被取付側に締結固定したことを特徴とする熱交換器の取付構造。
In the heat exchanger mounting structure according to claim 1,
The bolt is a stepped bolt, and the stepped bolt is fastened and fixed to the mounted side with the stepped portion of the stepped bolt in contact with the mounted side. Mounting structure of the vessel.
請求項1に記載の熱交換器の取付構造において、
前記ボルト孔にカラーを挿通して該カラーを前記被取付側に接触させた状態にし、該カラー内に前記ボルトを挿通して該ボルトを前記被取付側に締結固定したことを特徴とする熱交換器の取付構造。

In the heat exchanger mounting structure according to claim 1,
The heat is characterized in that a collar is inserted into the bolt hole so that the collar is in contact with the mounted side, the bolt is inserted into the collar and the bolt is fastened and fixed to the mounted side. Exchanger mounting structure.

JP2005359084A 2005-12-13 2005-12-13 Mounting structure of heat exchanger Pending JP2007163015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359084A JP2007163015A (en) 2005-12-13 2005-12-13 Mounting structure of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359084A JP2007163015A (en) 2005-12-13 2005-12-13 Mounting structure of heat exchanger

Publications (1)

Publication Number Publication Date
JP2007163015A true JP2007163015A (en) 2007-06-28

Family

ID=38246116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359084A Pending JP2007163015A (en) 2005-12-13 2005-12-13 Mounting structure of heat exchanger

Country Status (1)

Country Link
JP (1) JP2007163015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503500A (en) * 2007-11-12 2011-01-27 ベール ゲーエムベーハー ウント コー カーゲー Exhaust gas cooler for automobile
JP2014035176A (en) * 2012-08-10 2014-02-24 Calsonic Kansei Corp Fixing structure of heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279105A (en) * 1988-05-02 1989-11-09 Komatsu Ltd Parts fastener
JPH0254075U (en) * 1988-10-07 1990-04-19
JPH033671U (en) * 1989-05-30 1991-01-16
JPH10206044A (en) * 1997-01-27 1998-08-07 Honda Motor Co Ltd Heat exchanger
JP2000008972A (en) * 1998-06-22 2000-01-11 Nissan Diesel Motor Co Ltd Egr device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279105A (en) * 1988-05-02 1989-11-09 Komatsu Ltd Parts fastener
JPH0254075U (en) * 1988-10-07 1990-04-19
JPH033671U (en) * 1989-05-30 1991-01-16
JPH10206044A (en) * 1997-01-27 1998-08-07 Honda Motor Co Ltd Heat exchanger
JP2000008972A (en) * 1998-06-22 2000-01-11 Nissan Diesel Motor Co Ltd Egr device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503500A (en) * 2007-11-12 2011-01-27 ベール ゲーエムベーハー ウント コー カーゲー Exhaust gas cooler for automobile
US8794300B2 (en) 2007-11-12 2014-08-05 Behr Gmbh & Co. Kg Exhaust gas cooler for a motor vehicle
JP2014035176A (en) * 2012-08-10 2014-02-24 Calsonic Kansei Corp Fixing structure of heat exchanger

Similar Documents

Publication Publication Date Title
US6834625B2 (en) Cooling apparatus of an internal combustion engine
US8037851B2 (en) Heat accumulator and engine
TW552360B (en) Frictional damping strut
JP2004019472A (en) Spacer for cylinder block, and cylinder block
JP2007315541A (en) Opposed piston type disk brake
JP2007163015A (en) Mounting structure of heat exchanger
JP2010138778A (en) Cooling structure of fuel injection valve
JP4475327B2 (en) Bracket fastening structure
JP5981038B2 (en) Device for overcoming play
CN207280277U (en) A kind of efficient small heat-dissipating device
JPH1047052A (en) Exhaust manifold mounting structure
JP4135608B2 (en) Piston engine
CN212614932U (en) Shockproof automobile engine oil cooler
EP1455083A3 (en) Cooling structure for fuel injection valve
TWI751743B (en) Rim assembly structure of floating brake disc
JPH0890379A (en) Feed screw mechanism
JPS6136776Y2 (en)
CN213064702U (en) High-temperature ball valve
JPH089400Y2 (en) Cylinder liner mounting structure
CN219287291U (en) Radiator with stable unit
JP4853469B2 (en) Piston for internal combustion engine and internal combustion engine
JP3222510U (en) Casting accessories
CN211266630U (en) Motor core suitable for automobile body stable system
JPH0693927A (en) Piston of internal combustion engine
JPS593505Y2 (en) Internal combustion engine spark plug mounting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081120

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628