JP2007162548A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2007162548A
JP2007162548A JP2005358850A JP2005358850A JP2007162548A JP 2007162548 A JP2007162548 A JP 2007162548A JP 2005358850 A JP2005358850 A JP 2005358850A JP 2005358850 A JP2005358850 A JP 2005358850A JP 2007162548 A JP2007162548 A JP 2007162548A
Authority
JP
Japan
Prior art keywords
fuel
injection
internal combustion
combustion engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005358850A
Other languages
Japanese (ja)
Other versions
JP4502946B2 (en
Inventor
Katsuji Wada
勝治 和田
Norio Suzuki
典男 鈴木
Tomoko Morita
智子 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005358850A priority Critical patent/JP4502946B2/en
Publication of JP2007162548A publication Critical patent/JP2007162548A/en
Application granted granted Critical
Publication of JP4502946B2 publication Critical patent/JP4502946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine capable of properly setting a boundary for change-over according to a cetane number when changing over a plurality of rich combustion modes according to operation condition. <P>SOLUTION: When enriching control of A/F is performed, a post-injection mode and an EGR increasing mode are changed over according to operation condition and the boundary for change-over of them is varied according to an estimation of the cetane number. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の制御装置に関し、特に、複数の空燃比リッチ化モードを切り替えるための制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for switching between a plurality of air-fuel ratio enrichment modes.

ディーゼル内燃機関の排気通路には、排出ガス中の窒素酸化物(以下、NOと略称する)を還元浄化するためのリーンNO浄化触媒(以下、LNCと略称する)が設けられることがある。このLNCにおいては、排出ガスの空燃比(以下、排気A/Fと略称する)が所定値よりも高い(以下、リーンと呼称する)時、換言すると酸素濃度が高い時に取り込んだNOを、排気A/Fが所定値よりも低い(以下、リッチと呼称する)時、換言すると酸素濃度が低下した時に放出し且つ還元して無害化する処理を行っている。 The exhaust passage of a diesel internal combustion engine may be provided with a lean NO X purification catalyst (hereinafter abbreviated as LNC) for reducing and purifying nitrogen oxide (hereinafter abbreviated as NO X ) in exhaust gas. . In this LNC, when the air-fuel ratio of exhaust gas (hereinafter referred to as exhaust A / F) is higher than a predetermined value (hereinafter referred to as lean), in other words, NO X taken in when the oxygen concentration is high, When the exhaust A / F is lower than a predetermined value (hereinafter referred to as rich), in other words, when the oxygen concentration is reduced, the exhaust A / F is released and reduced to be harmless.

このLNCは、NO吸収量が増大するとその吸収性能が低下するので、適時、排出ガスをリッチ化して還元剤であるCOやHC濃度を高めると共に酸素濃度を低下させ、それによってLNCからのNO放出を促進させ且つ十分に還元浄化させるようにしている。 The LNC is, NO if X absorption amount increases because the absorbing performance is reduced, timely, exhaust gas reduces the oxygen concentration to increase the CO and HC concentration of the reducing agent by enriching the, whereby NO from LNC X release is promoted and reduced and purified sufficiently.

この排気A/Fをリッチ化する手法として、膨張行程で微量な燃料を燃焼室に噴射するポスト噴射を行うこと(特許文献1を参照されたい)や、排気通路から吸気通路へ再循環させる排出ガス(以下、EGRと略称す)の増量を行うこと(特許文献2を参照されたい)などが知られている。
特開2000−356126号公報 特開2003−138970号公報
As a method for enriching the exhaust A / F, post-injection for injecting a small amount of fuel into the combustion chamber in the expansion stroke (see Patent Document 1), or exhaust for recirculation from the exhaust passage to the intake passage It is known to increase the amount of gas (hereinafter abbreviated as EGR) (see Patent Document 2).
JP 2000-356126 A JP 2003-138970 A

しかるに、排気A/Fをリッチ化するに当たり、ポスト噴射を付加した場合は、ポスト噴射によって余分に供給された燃料の一部がシリンダ壁面に当たり、それがオイル中に混入するオイルダイリューションを生じたり、エンジン出力に寄与しない燃料が噴射されるために燃費が悪化したり、あるいはミスト状の未燃燃料が触媒に直接触れることによって触媒が熱劣化したりする等の悪影響の及ぶことがある。   However, when enriching the exhaust A / F, if post-injection is added, a part of the fuel supplied by post-injection hits the cylinder wall surface, which causes oil dilution that gets mixed into the oil. In some cases, fuel that does not contribute to engine output is injected and fuel efficiency is deteriorated, or that the catalyst is thermally deteriorated by direct contact of mist-like unburned fuel with the catalyst.

他方、大量のEGRを導入して排気A/Fをリッチ化した場合は、新気流入量が相対的に減少するので、燃料の噴射量を増大させずに済む反面、中高負荷領域においてスモークの大量発生を招くことや、着火性が低下した分、燃料噴射時期を進角する必要があり、それに伴って燃焼音が増大することなどが問題となる。   On the other hand, when a large amount of EGR is introduced to enrich the exhaust A / F, the amount of fresh air inflow is relatively reduced. There is a problem in that a large amount of fuel is generated and the fuel injection timing needs to be advanced by an amount corresponding to a decrease in ignitability, resulting in increased combustion noise.

本発明は、このような従来技術の不都合を解消すべく案出されたものであり、その主な目的は、排気A/Fをリッチ化するに当たり、上述の問題を生ぜずに済むように改善された内燃機関の制御装置を提供することにある。   The present invention has been devised to eliminate such disadvantages of the prior art, and its main object is to improve the exhaust A / F so as not to cause the above-mentioned problems. It is another object of the present invention to provide a control device for an internal combustion engine.

このような課題を解決するため、本発明は、内燃機関の燃焼室への吸気流量を制御する吸気流量制御手段(吸気制御弁5)と、燃焼室に燃料を噴射する燃料噴射手段(燃料噴射弁14)と、燃料噴射手段からの燃料噴射を1回の燃料噴射プロセスの中で主噴射、副噴射と複数回に分けて実行するように制御する燃料噴射制御手段(ECU18に含まれる)と、排気通路へ排出された排気を吸気通路へ環流させる排気環流手段(EGR通路11)および排気還流量を制御する排気還流量制御手段(EGR制御弁13)とを備えた内燃機関の制御装置において、副噴射による第1の空燃比リッチ化手段と、排気還流量による第2の空燃比リッチ化手段と、燃料性状の推定手段(セタン価マップ32)と、第1の空燃比リッチ化手段と第2の空燃比リッチ化手段との実行を運転状況に応じて切り替える切替手段(領域判別マップ33及び選択器34)とを有し、第1の空燃比リッチ化手段と第2の空燃比リッチ化手段とを切り替える境界を、燃料性状の推定結果に応じて変更することを特徴とするものとした。   In order to solve such problems, the present invention provides an intake flow rate control means (intake control valve 5) for controlling the intake flow rate to the combustion chamber of the internal combustion engine, and a fuel injection means (fuel injection) for injecting fuel into the combustion chamber. And a fuel injection control means (included in the ECU 18) for controlling the fuel injection from the fuel injection means to be executed in a plurality of times as main injection and sub-injection in one fuel injection process. An internal combustion engine control device comprising exhaust gas recirculation means (EGR passage 11) for recirculating exhaust gas discharged to the exhaust passage to the intake passage and exhaust gas recirculation amount control means (EGR control valve 13) for controlling the exhaust gas recirculation amount The first air-fuel ratio enrichment means by sub-injection, the second air-fuel ratio enrichment means by exhaust gas recirculation amount, the fuel property estimation means (cetane number map 32), the first air-fuel ratio enrichment means, Second air / fuel ratio Switching means (region discriminating map 33 and selector 34) for switching the execution with the switching means according to the driving situation, and the first air-fuel ratio enrichment means and the second air-fuel ratio enrichment means The switching boundary is changed according to the estimation result of the fuel property.

このような本発明によれば、排気A/Fのリッチ化に伴う燃焼音やスモーク発生量がさほど問題にならない低負荷領域においては、EGRの増量でリッチ化を行うことにより、オイルダイリューション、燃費の悪化、並びに触媒の熱劣化を軽減させることができる。また中高負荷領域においては、ポスト噴射を行うことにより、燃焼音やスモーク発生量の増加を抑えられる。そしてリッチ化制御モードを切り替える境界線をセタン価に応じて変化させることにより、低セタン価の場合の着火性低下による悪影響を受けることを回避することができる。   According to the present invention, in the low load region where the combustion noise and the amount of smoke generated due to the enrichment of the exhaust A / F do not matter so much, the oil dilution is performed by performing enrichment by increasing the EGR amount. In addition, deterioration of fuel consumption and thermal deterioration of the catalyst can be reduced. Further, in the middle and high load region, the increase in combustion noise and smoke generation can be suppressed by performing the post injection. Then, by changing the boundary line for switching the enrichment control mode according to the cetane number, it is possible to avoid the adverse effects caused by the decrease in ignitability in the case of a low cetane number.

以下に添付の図面を参照して本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明が適用される内燃機関Eの基本的な構成図である。この内燃機関(ディーゼルエンジン)Eは、その機械的な構成自体は周知のものと何ら変わるところはなく、過給圧可変機構付きターボチャージャ1を備えるものであり、ターボチャージャ1のコンプレッサ側に吸気通路2が連結され、ターボチャージャ1のタービン側に排気通路3が連結されている。そして吸気通路2の上流端にエアクリーナ4が接続され、吸気通路2の適所に燃焼室に流入する新気の流量を調節するための吸気制御弁5と、低回転速度・低負荷運転域で流路断面積を絞って吸気流速を高めるためのスワールコントロール弁6とが設けられている。また排気通路3の下流端には、三元触媒(以下、TWCと略称する)7と、煤などの粒子状物質を除去するフィルタ(以下、DPFと略称する)8と、前記したLNC9とを、排気の流れに沿ってこの順に連設してなる排気浄化装置10が接続されている。   FIG. 1 is a basic configuration diagram of an internal combustion engine E to which the present invention is applied. The internal combustion engine (diesel engine) E has a mechanical configuration that is not different from that of a known one, and includes a turbocharger 1 with a supercharging pressure variable mechanism. A passage 2 is connected, and an exhaust passage 3 is connected to the turbine side of the turbocharger 1. An air cleaner 4 is connected to the upstream end of the intake passage 2, and an intake control valve 5 for adjusting the flow rate of fresh air flowing into the combustion chamber at an appropriate position of the intake passage 2, and flows in a low rotation speed / low load operation region. A swirl control valve 6 is provided for reducing the cross-sectional area of the road and increasing the intake air flow velocity. At the downstream end of the exhaust passage 3, a three-way catalyst (hereinafter abbreviated as TWC) 7, a filter (hereinafter abbreviated as DPF) 8 for removing particulate matter such as soot, and the LNC 9 described above are provided. The exhaust gas purification device 10 is connected in series in this order along the flow of exhaust gas.

スワールコントロール弁6と排気通路3における燃焼室の直後との間は、排出ガス再循環(以下、EGRと略称す)通路11を介して互いに連結されている。このEGR通路11は、切換弁12を介して分岐されたクーラー通路11aとバイパス通路11bとからなり、その合流部に、燃焼室に流入するEGR量を調節するEGR制御弁13が設けられている。   The swirl control valve 6 and the exhaust passage 3 immediately after the combustion chamber are connected to each other via an exhaust gas recirculation (hereinafter abbreviated as EGR) passage 11. The EGR passage 11 includes a cooler passage 11a and a bypass passage 11b branched via a switching valve 12, and an EGR control valve 13 for adjusting the amount of EGR flowing into the combustion chamber is provided at the junction. .

内燃機関Eのシリンダヘッドには、その先端を燃焼室に臨ませた燃料噴射弁14が設けられている。この燃料噴射弁14は、燃料を所定の高圧状態で蓄えるコモンレール15に連結され、コモンレール15には、クランク軸にて駆動されて燃料タンク16から燃料を汲み上げる燃料ポンプ17が接続されている。   The cylinder head of the internal combustion engine E is provided with a fuel injection valve 14 with its tip facing the combustion chamber. The fuel injection valve 14 is connected to a common rail 15 that stores fuel in a predetermined high pressure state, and a fuel pump 17 that is driven by a crankshaft and pumps fuel from the fuel tank 16 is connected to the common rail 15.

これらのターボチャージャ1の過給圧可変機構19、吸気制御弁5、EGR通路切換弁12およびEGR制御弁13、燃料噴射弁14、燃料ポンプ17・・・等は、電子制御装置(以下、ECUと略称する)18からの制御信号によって作動するように構成されている(図2参照)。   These turbocharger 1 supercharging pressure variable mechanism 19, intake control valve 5, EGR passage switching valve 12 and EGR control valve 13, fuel injection valve 14, fuel pump 17... (Referred to as “abbreviated”) 18 (see FIG. 2).

一方、ECU18には、図2に示すように、内燃機関Eの所定箇所に配置された吸気弁開度センサ20、クランク軸回転速度センサ21、吸気流量センサ22、過給圧センサ23、EGR弁開度センサ24、コモンレール圧センサ25、アクセルペダル操作量センサ26、筒内圧センサ27、クランク軸回転角度センサ28、LNC温度センサ29・・・等からの出力信号が入力されている。   On the other hand, as shown in FIG. 2, the ECU 18 includes an intake valve opening sensor 20, a crankshaft rotation speed sensor 21, an intake flow rate sensor 22, a supercharging pressure sensor 23, and an EGR valve disposed at predetermined locations of the internal combustion engine E. Output signals from the opening sensor 24, common rail pressure sensor 25, accelerator pedal operation amount sensor 26, in-cylinder pressure sensor 27, crankshaft rotation angle sensor 28, LNC temperature sensor 29, etc. are input.

ECU18のメモリには、クランク軸回転速度および要求トルク(アクセルペダル操作量)に応じて実験等によって予め求めた最適燃料噴射量をはじめとする各制御対象の制御目標値を設定したマップが格納されており、内燃機関Eの運転状況に応じて最適な燃焼状態が得られるように、各部の制御が行われる。   The memory of the ECU 18 stores a map in which control target values for each control object including the optimum fuel injection amount obtained in advance by experiments or the like according to the crankshaft rotation speed and the required torque (accelerator pedal operation amount) are set. Therefore, each part is controlled so that an optimal combustion state is obtained in accordance with the operating state of the internal combustion engine E.

このディーゼル内燃機関Eにおいては、例えば、LNC9の再生処理の際に、A/Fのリッチ化制御が行われる。そしてリッチ化制御に当たっては、EGR増量モード並びにポスト噴射モードが選択的に実行される。   In the diesel internal combustion engine E, for example, A / F enrichment control is performed during regeneration processing of the LNC 9. In the enrichment control, the EGR increase mode and the post injection mode are selectively executed.

ポスト噴射は、燃焼音の悪化やスモークの発生が少なく、全ての運転領域で実行可能である反面、オイルダイリューション、燃費の悪化、及び触媒の熱劣化などといったデメリットがある。   Post-injection is less susceptible to combustion noise and smoke, and can be executed in all operating areas, but has disadvantages such as oil dilution, fuel consumption deterioration, and catalyst heat deterioration.

他方EGR増量は、上述のポスト噴射のデメリットが無い代わりに、高負荷域ではスモークが大量発生し、また燃焼音が悪化するので、実質的に低負荷領域でないと実行できないというデメリットがある。   On the other hand, the EGR increase has a demerit that a large amount of smoke is generated in a high load region and combustion noise is deteriorated instead of the demerit of the above-described post injection, and can only be executed in a low load region.

そこで本発明においては、要求トルクとクランク軸回転速度とで与えられるエンジンの負荷状況に応じてEGR増量モードとポスト噴射モードとを切り替えてA/Fリッチ化制御を行うものとした。   Therefore, in the present invention, the A / F enrichment control is performed by switching between the EGR increase mode and the post injection mode according to the engine load given by the required torque and the crankshaft rotational speed.

また、ディーゼル内燃機関の場合は、燃料噴射時期が同一であってもセタン価によって実際の着火時期が変動し、セタン価が低い場合には、燃料噴射時期をある程度進角させないと燃焼安定性を確保できず、この逆に燃料噴射時期を過度に進角させると圧力上昇率が増大するために燃焼音が高くなるという不都合がある。そこで本発明においては、現在使用されている燃料のセタン価を推定し、このセタン価に応じてA/Fリッチ化制御モードを切り替える境界線を変更するものとした。   Also, in the case of a diesel internal combustion engine, even if the fuel injection timing is the same, the actual ignition timing varies depending on the cetane number, and if the cetane number is low, combustion stability will not be improved unless the fuel injection timing is advanced to some extent. On the other hand, if the fuel injection timing is advanced excessively, the rate of increase in pressure increases, which causes a disadvantage that the combustion noise becomes high. Therefore, in the present invention, the cetane number of the currently used fuel is estimated, and the boundary line for switching the A / F enrichment control mode is changed according to the cetane number.

以下に本発明の制御の要領について図3〜図6を参照して説明する。   The control procedure of the present invention will be described below with reference to FIGS.

先ず、燃料噴射弁14への作動指令信号から噴射時期を検出する(ステップ1)と共に、筒内圧センサ27の信号により、実際の着火時期を検出する(ステップ2)。これらの信号とクランク軸回転角度センサ28の出力とを着火遅れ角演算手段31にて対比し、クランク軸回転角度換算の着火遅れ角を算出する(ステップ3)。   First, the injection timing is detected from the operation command signal to the fuel injection valve 14 (step 1), and the actual ignition timing is detected from the signal of the in-cylinder pressure sensor 27 (step 2). These signals and the output of the crankshaft rotation angle sensor 28 are compared by the ignition delay angle calculation means 31 to calculate an ignition delay angle in terms of crankshaft rotation angle (step 3).

次いで、この着火遅れ角に対応するセタン価を、予め設定しておいたセタン価マップ32(図5)を参照して推定する(ステップ4)。   Next, a cetane number corresponding to this ignition delay angle is estimated with reference to a cetane number map 32 (FIG. 5) set in advance (step 4).

その結果により、予め設定しておいたセタン価に対応した制御モード領域判別マップ33(図6)を参照し、現在使用している燃料のセタン価に対応したA/Fリッチ化制御モードを切り替える境界線を読み取る(ステップ5)。そして現在の負荷状況に対応した適正リッチ化制御モードが、ポスト噴射モードかEGR増量モードかを判別する(ステップ6)。この結果に基づいて、EGR増量モードとポスト噴射モードとのいずれかを選択器34によって選択し(ステップ7、8)、A/Fリッチ化制御を行う。   Based on the result, the control mode region discrimination map 33 (FIG. 6) corresponding to the cetane number set in advance is referred to, and the A / F enrichment control mode corresponding to the cetane number of the currently used fuel is switched. The boundary line is read (step 5). Then, it is determined whether the appropriate enrichment control mode corresponding to the current load state is the post injection mode or the EGR increase mode (step 6). Based on this result, either the EGR increase mode or the post injection mode is selected by the selector 34 (steps 7 and 8), and A / F enrichment control is performed.

これにより、EGRの増量によるリッチ化制御を実行しても、燃焼音やスモークの大幅な増加を伴わずに済む運転領域の境界が変えられる。特に、低セタン価の燃料を使用する場合は、着火性が低下するために燃料噴射時期をある程度進角しないと燃焼安定性を確保できず、この逆に燃料噴射時期を進角し過ぎると圧力上昇率が高くなるために燃焼音の増大を招くが、この場合は、EGR増量モード領域を狭めることで、燃焼音の増大を回避することができる。   Thereby, even if the enrichment control by increasing the amount of EGR is executed, the boundary of the operation region that does not require a significant increase in combustion noise and smoke can be changed. In particular, when using a low cetane fuel, combustion stability cannot be ensured unless the fuel injection timing is advanced to some extent because the ignitability is reduced, and conversely, if the fuel injection timing is advanced too much, the pressure An increase in the increase rate causes an increase in combustion noise. In this case, an increase in combustion noise can be avoided by narrowing the EGR increase mode region.

なお、EGR増量モードからポスト噴射モードへの移行時と、この逆のポスト噴射モードからEGR増量モードへの移行時とで、境界線付近でハンチングを生じないように、境界線には所定幅のヒステリシス領域が設けられている。   It should be noted that the boundary line has a predetermined width so that hunting does not occur in the vicinity of the boundary line during the transition from the EGR increase mode to the post injection mode and when the reverse post injection mode shifts to the EGR increase mode. A hysteresis region is provided.

本発明が適用される内燃機関の全体構成図である。1 is an overall configuration diagram of an internal combustion engine to which the present invention is applied. 本発明が適用される制御装置のブロック図である。It is a block diagram of a control device to which the present invention is applied. モード切替制御に関わるブロック図である。It is a block diagram in connection with mode switching control. モード切替制御に関わるフロー図である。It is a flowchart in connection with mode switching control. セタン価推定マップの概念図である。It is a conceptual diagram of a cetane number estimation map. 制御モード領域判別マップの概念図である。It is a conceptual diagram of a control mode area | region discrimination | determination map.

符号の説明Explanation of symbols

5 吸気制御弁
11 EGR通路
13 EGR制御弁
14 燃料噴射弁
18 ECU
32 セタン価マップ
33 領域判別マップ
34 選択器
5 Intake control valve 11 EGR passage 13 EGR control valve 14 Fuel injection valve 18 ECU
32 Cetane number map 33 Area discrimination map 34 Selector

Claims (1)

内燃機関の燃焼室への吸気流量を制御する吸気流量制御手段と、前記燃焼室に燃料を噴射する燃料噴射手段と、該燃料噴射手段からの燃料噴射を1回の燃料噴射プロセスの中で主噴射、副噴射と複数回に分けて実行するように制御する燃料噴射制御手段と、排気通路へ排出された排気を吸気通路へ環流させる排気環流手段および排気還流量を制御する排気還流量制御手段とを備えた内燃機関の制御装置であって、
前記副噴射による第1の空燃比リッチ化手段と、
前記排気還流量による第2の空燃比リッチ化手段と、
燃料性状の推定手段と、
前記第1の空燃比リッチ化手段と前記第2の空燃比リッチ化手段との実行を当該内燃機関の運転状況に応じて切り替える切替手段と、を有し、
前記第1の空燃比リッチ化手段と前記第2の空燃比リッチ化手段とを切り替える境界を、前記燃料性状の推定結果に応じて変更することを特徴とする内燃機関の制御装置。
Intake flow rate control means for controlling the intake flow rate to the combustion chamber of the internal combustion engine, fuel injection means for injecting fuel into the combustion chamber, and fuel injection from the fuel injection means are mainly performed in one fuel injection process. Fuel injection control means for controlling injection and sub-injection to be executed in a plurality of times, exhaust recirculation means for recirculating exhaust gas discharged to the exhaust passage to the intake passage, and exhaust recirculation amount control means for controlling the exhaust gas recirculation amount An internal combustion engine control device comprising:
First air-fuel ratio enrichment means by the sub-injection;
Second air-fuel ratio enrichment means by the exhaust gas recirculation amount;
Means for estimating fuel properties;
Switching means for switching the execution of the first air-fuel ratio enrichment means and the second air-fuel ratio enrichment means in accordance with the operating status of the internal combustion engine,
A control apparatus for an internal combustion engine, wherein a boundary for switching between the first air-fuel ratio enrichment means and the second air-fuel ratio enrichment means is changed according to the estimation result of the fuel property.
JP2005358850A 2005-12-13 2005-12-13 Control device for internal combustion engine Expired - Fee Related JP4502946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358850A JP4502946B2 (en) 2005-12-13 2005-12-13 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358850A JP4502946B2 (en) 2005-12-13 2005-12-13 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007162548A true JP2007162548A (en) 2007-06-28
JP4502946B2 JP4502946B2 (en) 2010-07-14

Family

ID=38245757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358850A Expired - Fee Related JP4502946B2 (en) 2005-12-13 2005-12-13 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4502946B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065116A (en) * 2001-08-24 2003-03-05 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004346844A (en) * 2003-05-23 2004-12-09 Isuzu Motors Ltd Exhaust emission control system
JP2005188341A (en) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd Exhaust emission control device of diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065116A (en) * 2001-08-24 2003-03-05 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004346844A (en) * 2003-05-23 2004-12-09 Isuzu Motors Ltd Exhaust emission control system
JP2005188341A (en) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd Exhaust emission control device of diesel engine

Also Published As

Publication number Publication date
JP4502946B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP2005048716A (en) Exhaust circulation control device for internal combustion engine
JP4309908B2 (en) Exhaust gas purification device for internal combustion engine
US10443521B2 (en) Exhaust emission control system of engine
JP2008008241A (en) Control device for engine
JP4435300B2 (en) Control device for internal combustion engine
JP4591403B2 (en) Control device for internal combustion engine
JP4510651B2 (en) Exhaust gas purification device for internal combustion engine
JP4447510B2 (en) Exhaust gas purification device for internal combustion engine
JP4510655B2 (en) Exhaust gas purification device for internal combustion engine
JP2006214322A (en) Exhaust emission control device for internal combustion engine
JP5472082B2 (en) Combustion mode control system for compression ignition internal combustion engine
JP5287797B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
JP4502946B2 (en) Control device for internal combustion engine
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine
JP4404841B2 (en) Control device for internal combustion engine
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JP2006242170A (en) Exhaust emission control device of internal combustion engine
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP2006316742A (en) Control device for internal combustion engine
JP2005320940A (en) Exhaust gas recirculation system of internal combustion engine
JP4328758B2 (en) Control device for internal combustion engine
JP2006017056A (en) Exhaust emission control device for internal combustion engine
JP2011099335A (en) Exhaust gas treatment device of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100113

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees