JP2007162547A - Liquid-cooled fuel injection valve - Google Patents

Liquid-cooled fuel injection valve Download PDF

Info

Publication number
JP2007162547A
JP2007162547A JP2005358846A JP2005358846A JP2007162547A JP 2007162547 A JP2007162547 A JP 2007162547A JP 2005358846 A JP2005358846 A JP 2005358846A JP 2005358846 A JP2005358846 A JP 2005358846A JP 2007162547 A JP2007162547 A JP 2007162547A
Authority
JP
Japan
Prior art keywords
cooling
liquid
nozzle tip
groove
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005358846A
Other languages
Japanese (ja)
Other versions
JP4592577B2 (en
Inventor
Kenichi Iwanaga
健一 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005358846A priority Critical patent/JP4592577B2/en
Publication of JP2007162547A publication Critical patent/JP2007162547A/en
Application granted granted Critical
Publication of JP4592577B2 publication Critical patent/JP4592577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-cooled fuel injection valve enabled to improve a cooling effect of a nozzle tip without increasing an outer diameter of the fuel injection valve and with a relatively simple construction. <P>SOLUTION: The liquid-cooled fuel injection valve, that is constructed to form a cooling chamber in the nozzle tip in which a needle valve is fitted for reciprocation and which is fixed to a cylinder cover, and to supply cooling liquid into the cooling chamber to cool the nozzle tip and its peripheral members, is characterized in that the cooling chamber is comprised of a cooling groove which is spirally scored in an outer periphery of a cylinder portion of the nozzle tip to extend from an upper side to an end side of the nozzle tip, and an outer periphery of the cooling groove is covered in a fluid tight manner with a cylindrical nozzle cap. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として大型ディーゼルエンジン用燃料噴射弁に適用され、内側に針弁が往復動自在に嵌合され、シリンダカバーに固定されるノズルチップに冷却室を形成し、該冷却室に冷却液を供給して該ノズルチップ及びその周辺部材を冷却するように構成された液冷式燃料噴射弁に関する。   The present invention is mainly applied to a fuel injection valve for a large diesel engine, a needle valve is fitted in a reciprocating manner inside, a cooling chamber is formed in a nozzle tip fixed to a cylinder cover, and a cooling liquid is formed in the cooling chamber. And a liquid-cooled fuel injection valve configured to cool the nozzle tip and its peripheral members.

重油を燃料とする大型ディーゼルエンジンにおいては、重油を燃料予熱器で130℃程度に予熱し粘度を下げて燃料噴射装置に供給するようになっている。かかる高温の燃料(重油)を噴射する燃料噴射弁は、たとえば特許文献1(特開平6−123255号公報)に開示されているように、高温になるノズルチップに冷却室を形成し、該冷却室内に冷却水を通流して該燃料噴射弁を冷却している。   In a large diesel engine using heavy oil as a fuel, the heavy oil is preheated to about 130 ° C. by a fuel preheater, the viscosity is lowered, and the fuel is supplied to the fuel injection device. Such a fuel injection valve that injects high-temperature fuel (heavy oil) forms a cooling chamber in a nozzle tip that becomes high temperature as disclosed in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 6-123255). The fuel injection valve is cooled by flowing cooling water through the room.

図4は、前記特許文献1に開示されている液冷式燃料噴射弁におけるノズルチップ01の縦断面図である。
図4において、011はノズルチップ01の本体で、該本体011の中心部には図示しない針弁が往復摺動可能に嵌合される針弁穴02が軸線方向に穿孔され、該針弁穴02の底部には該針弁とのシート面08が形成されている。04は該ノズルチップ01の先端部に複数個穿孔された噴孔である。
FIG. 4 is a longitudinal sectional view of the nozzle tip 01 in the liquid-cooled fuel injection valve disclosed in Patent Document 1.
In FIG. 4, reference numeral 011 denotes a main body of the nozzle tip 01, and a needle valve hole 02 into which a needle valve (not shown) is slidably fitted is formed in the center of the main body 011 in the axial direction. A seat surface 08 with the needle valve is formed at the bottom of 02. Reference numeral 04 denotes a nozzle hole that is perforated at the tip of the nozzle tip 01.

09は前記本体011の下部に溶接あるいはろう付け(010は溶接あるいはろう付け部)によって固着されたキャップで、該キャップ09の内面と前記本体011の下部側面とで環状の水室05が形成されている。該水室05には、前記本体011の軸方向に穿孔された冷却水入口穴06及び冷却水出口穴07が開口されている。
該ノズルチップ01を冷却するための冷却水は、前記冷却水入口穴06をC1矢印のように流れて水室05に入り、該水室05内を流動することによってノズルチップ01下部の高温部を冷却し、前記冷却水出口穴07をC2矢印のように流れて冷却水出口管に送出される。
09 is a cap fixed to the lower portion of the main body 011 by welding or brazing (010 is a welding or brazing portion). An annular water chamber 05 is formed by the inner surface of the cap 09 and the lower side surface of the main body 011. ing. The water chamber 05 has a cooling water inlet hole 06 and a cooling water outlet hole 07 which are drilled in the axial direction of the main body 011.
Cooling water for cooling the nozzle tip 01 flows through the cooling water inlet hole 06 as indicated by an arrow C1 and enters the water chamber 05, and flows in the water chamber 05, thereby causing a high temperature portion below the nozzle tip 01 to flow. Is cooled, flows through the cooling water outlet hole 07 as indicated by the arrow C2, and is sent to the cooling water outlet pipe.

特開平6−123255号公報JP-A-6-123255

図4に示されるような、前記特許文献1等にて提供されている従来の液冷式燃料噴射弁にあっては、ノズルチップ01先端部近くの高温部の周辺に環状の水室05を形成して、ノズルチップ01の本体011の上端部から軸方向に貫通された冷却水入口穴06及び冷却水出口穴07の2つの冷却水通路穴を該水室05に連通させた構造であることから、かかる水室05及び2つの冷却水通路穴06,07を形成するためにノズルチップ01の外径が全長に亘って大きくなる。   In the conventional liquid-cooled fuel injection valve provided in Patent Document 1 and the like as shown in FIG. 4, an annular water chamber 05 is provided around the high temperature portion near the tip of the nozzle tip 01. The cooling water inlet hole 06 and the cooling water outlet hole 07 which are formed and penetrated in the axial direction from the upper end of the main body 011 of the nozzle chip 01 are connected to the water chamber 05. Therefore, the outer diameter of the nozzle tip 01 increases over the entire length in order to form the water chamber 05 and the two cooling water passage holes 06 and 07.

しかるに、前記液冷式燃料噴射弁をシリンダの中央部に配置したディーゼルエンジンにおいては、該燃料噴射弁の周りには吸気弁、排気弁、水噴射エンジンの場合は水噴射弁等が配置されていることから、前記従来技術のようにノズルチップ01の外径が全長に亘って大きくなって燃料噴射弁の外径が大きくなると、燃料噴射弁の周りがスペース的に狭隘となって、前記吸気弁、排気弁、水噴射弁等の機器、部材の所要配置が困難になるという事態が発生し易くなる。   However, in a diesel engine in which the liquid-cooled fuel injection valve is arranged at the center of the cylinder, an intake valve, an exhaust valve, and a water injection valve in the case of a water injection engine are arranged around the fuel injection valve. Therefore, when the outer diameter of the nozzle tip 01 is increased over the entire length and the outer diameter of the fuel injection valve is increased as in the prior art, the space around the fuel injection valve becomes narrow and the intake air is reduced. It becomes easy to generate a situation in which the required arrangement of devices and members such as valves, exhaust valves, and water injection valves becomes difficult.

本発明はかかる従来技術の課題に鑑み、燃料噴射弁の外径の増加を伴うことなく且つ比較的簡単な構造で以って、ノズルチップの冷却効果を向上可能とした液冷式燃料噴射弁を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and a liquid-cooled fuel injection valve capable of improving the nozzle tip cooling effect without increasing the outer diameter of the fuel injection valve and with a relatively simple structure. The purpose is to provide.

本発明はかかる目的を達成するもので、内側に針弁が往復動自在に嵌合されシリンダカバーに固定されるノズルチップに冷却室を形成し、該冷却室に冷却液を供給して該ノズルチップ及びその周辺部材を冷却するように構成された液冷式燃料噴射弁において、前記冷却室を、前記ノズルチップの円筒部外周に該ノズルチップの上部側から先端側に延びるような螺旋状に刻設された冷却溝で構成し、該冷却溝の外周を円筒状のノズルキャップで流体密に覆ったことを特徴とする(請求項1)。   The present invention achieves such an object, and forms a cooling chamber in a nozzle tip fitted inside the needle valve so as to be reciprocally movable and fixed to a cylinder cover, and supplying a cooling liquid to the cooling chamber to supply the nozzle. In the liquid-cooled fuel injection valve configured to cool the tip and its peripheral members, the cooling chamber is formed in a spiral shape so as to extend from the upper side of the nozzle tip to the tip side on the outer periphery of the cylindrical portion of the nozzle tip. The cooling groove is engraved, and the outer periphery of the cooling groove is fluid-tightly covered with a cylindrical nozzle cap (Claim 1).

かかる発明において、具体的にはつぎのように構成するのが好ましい。
(1)前記螺旋状の冷却溝を2条の螺旋状溝で形成し、前記ノズルチップの上部に冷却液入口及び冷却液出口を設けて、該冷却液入口を前記2条の螺旋状溝の一方に接続するとともに冷却液出口を前記螺旋状溝の他方に接続し、前記冷却溝は、前記冷却液入口から前記螺旋状溝の一方が前記ノズルチップの先端方向に延びて該ノズルチップの先端寄りの部位で前記螺旋状溝の他方に接続されるとともに該接続部から前記螺旋状溝の他方がノズルチップの反先端方向に延びて前記冷却液出口に接続されてなる(請求項2)。
In this invention, specifically, the following configuration is preferable.
(1) The spiral cooling groove is formed by two spiral grooves, a cooling liquid inlet and a cooling liquid outlet are provided on the upper part of the nozzle tip, and the cooling liquid inlet is formed by the two spiral grooves. The cooling liquid outlet is connected to the other one of the spiral grooves, and the cooling groove has one of the spiral grooves extending from the cooling liquid inlet toward the tip of the nozzle tip. The other side of the spiral groove is connected to the other end of the spiral groove at a position close to the other end, and the other end of the spiral groove extends in the opposite tip direction of the nozzle tip and is connected to the coolant outlet.

(2)前記螺旋状の冷却溝の上端部を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに、前記ノズルチップの先端部側の終端部には前記シリンダカバー内の冷却室に連通される冷却液排出孔を接続し、前記冷却液入口に導入された冷却液を前記螺旋状の冷却溝をノズルチップの先端部側へと流動させてから前記冷却液排出孔を通して前記シリンダカバー内の冷却室に排出するように構成する(請求項3)。
また好ましくは、前記螺旋状の冷却溝を互いに逆方向に旋回する2条の冷却溝にて構成し、前記2条の冷却溝の双方の入口側を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに該冷却溝の双方の出口側を前記冷却液排出孔に接続する(請求項4)。
(2) The upper end portion of the spiral cooling groove is connected to a coolant inlet provided at the upper portion of the nozzle tip, and a terminal portion on the tip end side of the nozzle tip is connected to a cooling chamber in the cylinder cover. A coolant discharge hole connected to the cylinder cover is connected, the coolant introduced into the coolant inlet is caused to flow through the spiral cooling groove toward the tip of the nozzle tip, and then the cylinder cover is passed through the coolant discharge hole. It discharges to the inside cooling chamber (claim 3).
Preferably, the spiral cooling groove is composed of two cooling grooves that rotate in opposite directions to each other, and both inlet sides of the two cooling grooves are provided in the upper part of the nozzle chip. In addition to being connected to the inlet, both the outlet sides of the cooling groove are connected to the coolant discharge hole.

(3)前記冷却液に水を用い、前記螺旋状の冷却溝の上端部を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに、前記ノズルチップの先端部側の終端を前記水をエンジンの燃焼室に噴射する水噴射孔に接続し、前記冷却液入口に導入された冷却液を前記螺旋状の冷却溝をノズルチップの先端部側へと流動させてから前記水噴射孔を通して燃焼室に噴射するように構成する(請求項5)。
また好ましくは、前記螺旋状の冷却溝を互いに逆方向に旋回する2条の冷却溝にて構成し、前記2条の冷却溝の双方の入口側を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに該冷却溝の双方の出口側を逆止弁を備えた冷却水溜めに接続し、前記冷却液を前記逆止弁を介して前記水噴射孔から燃焼室に噴射するように構成する(請求項6)。
(3) Water is used as the cooling liquid, and an upper end portion of the spiral cooling groove is connected to a cooling liquid inlet provided at an upper portion of the nozzle chip, and a terminal end of the nozzle chip is terminated at the water end. Is connected to a water injection hole for injecting into the combustion chamber of the engine, and the coolant introduced into the coolant inlet is caused to flow through the spiral cooling groove toward the tip of the nozzle tip and then through the water injection hole. It is configured to inject into the combustion chamber (claim 5).
Preferably, the spiral cooling groove is composed of two cooling grooves that rotate in opposite directions to each other, and both inlet sides of the two cooling grooves are provided in the upper part of the nozzle chip. Connected to the inlet and both outlet sides of the cooling groove are connected to a cooling water reservoir provided with a check valve so that the coolant is injected from the water injection hole into the combustion chamber via the check valve. (Claim 6).

本発明によれば、ノズルチップに形成された冷却室を、該ノズルチップの円筒部外周に上部側から先端側に延びるような螺旋状に刻設された冷却溝で構成し、該冷却溝の外周を円筒状のノズルキャップで流体密に覆うように構成したので(請求項1)、該冷却室が、半径方向の幅が小さくノズルチップの長手方向に延びる冷却溝であることから、該冷却溝を設けることによるノズルチップ外径の増加量は僅かで済み、従来技術のようなノズルチップの下部外周に環状の冷却室を該ノズルチップとは別部材で外周側を覆うように設けた燃料噴射弁に比べて燃料噴射弁の外径を小さくすることが可能となり、該燃料噴射弁を小型化することができる。
これにより、水噴射エンジンの場合の水噴射弁、吸気弁、排気弁等のような多くの機器、部材が装着される燃料噴射弁周りのスペースにゆとりができ、これらの機器、部材の配置が容易にできるとともに、配置に自由度を持たせることが可能となる。
According to the present invention, the cooling chamber formed in the nozzle tip is constituted by a cooling groove engraved in a spiral shape extending from the upper side to the tip side on the outer periphery of the cylindrical portion of the nozzle tip, Since the outer periphery is configured to be fluid-tightly covered with a cylindrical nozzle cap (Claim 1), the cooling chamber is a cooling groove having a small radial width and extending in the longitudinal direction of the nozzle tip. The amount of increase in the outer diameter of the nozzle tip by providing the groove is small, and a fuel in which an annular cooling chamber is provided on the outer periphery of the lower portion of the nozzle tip as in the prior art so as to cover the outer periphery with a member different from the nozzle tip The outer diameter of the fuel injection valve can be made smaller than that of the injection valve, and the fuel injection valve can be reduced in size.
As a result, the space around the fuel injection valve to which many devices and members such as water injection valves, intake valves, exhaust valves, etc. in the case of a water injection engine are mounted can be freed, and the arrangement of these devices and members can be reduced. In addition to being easy, it is possible to provide flexibility in arrangement.

また、前記冷却室を、ノズルチップの円筒部外周に沿って上部側から先端側に延びるような螺旋状に刻設された冷却溝で形成したので、ノズルチップを冷却する冷却液の通路長さが長くなって、該ノズルチップと冷却液との間の伝熱面積が大きくなり、冷却溝による燃料噴射弁の外径増加を最小限に抑えてノズルチップの冷却効果を向上できる。   Further, since the cooling chamber is formed by a cooling groove that is spirally engraved so as to extend from the upper side to the tip side along the outer periphery of the cylindrical portion of the nozzle tip, the passage length of the cooling liquid for cooling the nozzle tip As a result, the heat transfer area between the nozzle tip and the coolant increases, and the increase in the outer diameter of the fuel injection valve due to the cooling groove can be minimized to improve the nozzle tip cooling effect.

また、前記螺旋状の冷却溝を2条の螺旋状溝で形成し、前記ノズルチップの上部に設けた冷却液入口及び冷却液出口に前記2条の螺旋状溝のそれぞれを接続してノズルチップの先端方向に延ばし、先端寄りの部位で両者を接続するように構成すれば(請求項2)、往き側の冷却溝と戻り側の冷却溝とを長手方向においては異なる層、半径方向においては同一径の層で形成できて、ノズルチップ内の往き側の冷却溝に加えて戻り側の冷却溝を設けることによるノズルチップの外径増加を回避でき、従って前記2条の螺旋状溝の形成によってノズルチップ外径の増加を抑制しつつ伝熱面積をより増加することができる。   Further, the spiral cooling groove is formed by two spiral grooves, and each of the two spiral grooves is connected to a cooling liquid inlet and a cooling liquid outlet provided at an upper portion of the nozzle chip, thereby forming a nozzle chip. If the two are connected to each other at a portion closer to the tip (Claim 2), the cooling groove on the forward side and the cooling groove on the return side are different in the longitudinal direction, and in the radial direction, It is possible to avoid the increase in the outer diameter of the nozzle tip by providing the cooling groove on the return side in addition to the cooling groove on the forward side in the nozzle tip, thus forming the two spiral grooves. Thus, the heat transfer area can be further increased while suppressing an increase in the outer diameter of the nozzle tip.

また、ノズルチップ上部の冷却液入口から該ノズルチップの先端側に向けて延設された螺旋状の冷却溝の先端部側終端部をシリンダカバー内の冷却室に連通される冷却液排出孔を接続したので(請求項3)、冷却液出口側の冷却溝をノズルチップの外周に設ける必要がなくなって、ノズルチップの冷却通路の構造が簡単になるとともに該冷却通路の加工工数を低減できる。
さらには、ノズルチップに形成された螺旋状の冷却溝の出口側が通路面積の大きいシリンダカバー内の冷却室に開放されるので、冷却液通路の流動抵抗が小さくなり冷却液の流速が増加して冷却液とノズルチップ壁面間の熱伝達率が上昇することにより、冷却効果が向上する。
In addition, a coolant discharge hole that communicates the end portion of the spiral cooling groove extending from the coolant inlet at the top of the nozzle tip toward the tip side of the nozzle tip to the cooling chamber in the cylinder cover. Since it is connected (Claim 3), there is no need to provide a cooling groove on the coolant outlet side on the outer periphery of the nozzle tip, the structure of the cooling passage of the nozzle tip is simplified and the number of processing steps of the cooling passage can be reduced.
Furthermore, since the exit side of the spiral cooling groove formed in the nozzle tip is opened to the cooling chamber in the cylinder cover having a large passage area, the flow resistance of the coolant passage is reduced and the flow rate of the coolant is increased. The cooling effect is improved by increasing the heat transfer coefficient between the coolant and the nozzle tip wall surface.

また、前記螺旋状の冷却溝を互いに逆方向に旋回する2条の冷却溝にて構成して、冷却溝の双方の入口側を冷却液入口に接続するとともに該冷却溝の双方の出口側を冷却液排出孔に接続すれば(請求項4)、冷却溝を互いに逆方向に旋回する2条の冷却溝に構成することにより、2条の冷却溝をノズルチップの長手方向においては異なる層、半径方向においては同一径の層で形成できて、ノズルチップ外径の増加することなく伝熱面積を増加することができる。   Further, the spiral cooling groove is composed of two cooling grooves that rotate in opposite directions, and both the inlet sides of the cooling groove are connected to the coolant inlet, and both the outlet sides of the cooling groove are connected to each other. If connected to the coolant discharge hole (Claim 4), the cooling groove is formed into two cooling grooves that rotate in opposite directions, whereby the two cooling grooves are different in the longitudinal direction of the nozzle tip, In the radial direction, a layer having the same diameter can be formed, and the heat transfer area can be increased without increasing the outer diameter of the nozzle tip.

また、冷却液に水を用い、好ましくは逆方向に旋回する2条の冷却溝にて構成された螺旋状の冷却溝の上端部を冷却液入口に接続するとともに、ノズルチップ先端部側の終端を、好ましくは逆止弁を備えた冷却水溜めを介して水噴射孔に接続すれば(請求項5,6)、水噴射エンジンにおいて、冷却溝を通すことによりノズルチップを冷却した冷却水を、水噴射孔から燃焼室内に噴射してNOxの発生を抑制した燃焼をせしめることができ、1系統の水をノズルチップの冷却と水噴射孔からの燃焼室への噴射によるNOx発生の抑制運転の双方に活用できる。   In addition, the upper end of a spiral cooling groove composed of two cooling grooves that preferably use water as the cooling liquid and swirl in the opposite direction is connected to the cooling liquid inlet, and the end on the nozzle tip front end side Is preferably connected to the water injection hole via a cooling water reservoir having a check valve (Claims 5 and 6), in the water injection engine, the cooling water that has cooled the nozzle tip by passing through the cooling groove is supplied. The combustion can be caused by injecting into the combustion chamber from the water injection hole to suppress the generation of NOx, and the NOx generation can be suppressed by cooling the nozzle tip and injecting the water from the water injection hole into the combustion chamber. It can be used for both.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は本発明の第1実施例に係るディーゼル機関用液冷式燃料噴射弁の主要部を示す縦断面図である。
図1において、100は燃料噴射弁で、この図ではノズルチップ周りの主要部を示している。1はノズルチップ、2aは該ノズルチップ1の中心部に軸方向に穿孔された針弁穴、2bは該針弁穴2aの底部に形成された円錐状のシート面である。4は該ノズルチップ1の先端部に穿孔された複数の噴孔、11は前記シート面2bと噴孔4との間に形成されたサック部である。
FIG. 1 is a longitudinal sectional view showing a main part of a liquid-cooled fuel injection valve for a diesel engine according to a first embodiment of the present invention.
In FIG. 1, reference numeral 100 denotes a fuel injection valve, and this figure shows a main part around the nozzle tip. 1 is a nozzle tip, 2a is a needle valve hole drilled in the axial direction in the center of the nozzle tip 1, and 2b is a conical seat surface formed at the bottom of the needle valve hole 2a. Reference numeral 4 denotes a plurality of nozzle holes perforated at the tip of the nozzle chip 1, and reference numeral 11 denotes a sack portion formed between the sheet surface 2 b and the nozzle holes 4.

2は前記針弁穴2aに往復動可能に嵌合された針弁で、該針弁2の先端に形成されたシート部1aが前記ノズルチップ1のシート面2bに着脱するようになっている。
即ち、図示しない燃料通路からの高圧燃料が前記針弁2のシート部1aに作用し、該針弁2が図示しない針弁ばねのばね力に打ち勝って開弁すると、前記高圧燃料がサック部11を通って、複数の噴孔4から燃焼室103内に噴射される。
A needle valve 2 is fitted in the needle valve hole 2a so as to be reciprocally movable. A sheet portion 1a formed at the tip of the needle valve 2 is attached to and detached from the sheet surface 2b of the nozzle chip 1. .
That is, when high pressure fuel from a fuel passage (not shown) acts on the seat portion 1a of the needle valve 2 and the needle valve 2 overcomes the spring force of a needle valve spring (not shown), the high pressure fuel is sucked into the sack portion 11. It passes through the plurality of nozzle holes 4 and is injected into the combustion chamber 103.

前記ノズルチップ1のほぼ下半分は上半分の大径部1cよりも小径の円筒状部1bとなっており、該円筒状部1bの外周には該ノズルチップ1の上部側から先端側に延びるような螺旋状に刻設された往き側冷却溝5及び戻り側冷却溝6が互いに逆方向に旋回せしめて形成されている。
前記ノズルチップ1の大径部1cの内部には、冷却水入口通路7及び冷却水出口通路8が、前記ノズルチップ1の上部側から軸方向に延びてそれぞれ穿孔されている。
A substantially lower half of the nozzle tip 1 is a cylindrical portion 1b having a diameter smaller than that of the large-diameter portion 1c of the upper half, and the outer periphery of the cylindrical portion 1b extends from the upper side of the nozzle tip 1 to the tip side. The forward-side cooling groove 5 and the return-side cooling groove 6 that are engraved in a spiral shape are formed by turning in opposite directions.
Inside the large-diameter portion 1 c of the nozzle tip 1, a cooling water inlet passage 7 and a cooling water outlet passage 8 extend from the upper side of the nozzle tip 1 in the axial direction and are perforated.

3は円筒状に形成されたノズルキャップで、該ノズルキャップ3の内周に前記ノズルチップ1の円筒状部1bが嵌合されて、該ノズルキャップ3により前記往き側冷却溝5及び戻り側冷却溝6の外周を流体密に覆って、前記往き側冷却溝5及び戻り側冷却溝6内からの冷却水の漏洩を阻止している。12は前記ノズルキャップ3とノズルチップ1の円筒状部1bとの間の流体シール部で、該流体シール部12において前記燃焼室103側からのガスのシールを行なっている。
前記ノズルキャップ3の上面と前記ノズルチップ1の大径部1c下面との接合部13は、ろう付けにて接合されている。
Reference numeral 3 denotes a nozzle cap formed in a cylindrical shape, and the cylindrical portion 1b of the nozzle tip 1 is fitted to the inner periphery of the nozzle cap 3, and the forward cooling groove 5 and the return side cooling are cooled by the nozzle cap 3. The outer periphery of the groove 6 is fluid-tightly covered to prevent leakage of cooling water from the forward cooling groove 5 and the return cooling groove 6. Reference numeral 12 denotes a fluid seal portion between the nozzle cap 3 and the cylindrical portion 1b of the nozzle tip 1, and the fluid seal portion 12 seals gas from the combustion chamber 103 side.
A joint portion 13 between the upper surface of the nozzle cap 3 and the lower surface of the large-diameter portion 1c of the nozzle chip 1 is joined by brazing.

9は前記ノズルキャップ1の上面に刻設された入口側冷却水溜めで、該入口側冷却水溜め9には前記冷却水入口通路7の下端部が開口するとともに前記往き側冷却溝5の上端入口が開口されている。10は前記ノズルキャップ1の上面に刻設された出口側冷却水溜めで、該出口側冷却水溜め10には前記冷却水出口通路8の下端部が開口するとともに前記戻り側冷却溝6の上端出口が開口されている。そして、前記往き側冷却溝5と戻り側冷却溝6とは両者の下端部で連通されている。   Reference numeral 9 denotes an inlet side cooling water reservoir carved on the upper surface of the nozzle cap 1. The lower end portion of the cooling water inlet passage 7 is opened in the inlet side cooling water reservoir 9 and the upper end of the forward cooling groove 5 is opened. The entrance is open. Reference numeral 10 denotes an outlet side cooling water reservoir carved on the upper surface of the nozzle cap 1. The lower end portion of the cooling water outlet passage 8 is opened in the outlet side cooling water reservoir 10 and the upper end of the return side cooling groove 6 is opened. The outlet is open. The forward cooling groove 5 and the return cooling groove 6 are communicated with each other at the lower ends.

以上のように構成された燃料噴射弁100において、冷却水は前記冷却水入口通路7からA矢印のように流れて入口側冷却水溜め9に入り、該入口側冷却水溜め9を経て螺旋状の往き側冷却溝5に入り、該往き側冷却溝5を旋回しながら下方に流動して、高温になっているノズルチップ1の円筒状部1b周辺を冷却し、前記往き側冷却溝5と戻り側冷却溝6との連通部から該戻り側冷却溝6に入り、前記往き側冷却溝5とは逆方向に旋回せしめられた戻り側冷却溝6を該往き側冷却溝5とは逆方向に旋回しながら上方に流動してノズルチップ1の円筒状部1b周辺を再度冷却し、前記出口側冷却水溜め10を経て冷却水出口通路8に入り、該冷却水出口通路8をA2矢印のように流れて、上端出口から外部に導出される。   In the fuel injection valve 100 configured as described above, the cooling water flows from the cooling water inlet passage 7 as indicated by an arrow A, enters the inlet side cooling water reservoir 9, and passes through the inlet side cooling water reservoir 9 to form a spiral shape. And flows downward while swiveling the forward cooling groove 5 to cool the periphery of the cylindrical portion 1b of the nozzle tip 1 that is at a high temperature. The return side cooling groove 6 enters the return side cooling groove 6 from the communicating part with the return side cooling groove 6 and is swung in the direction opposite to the forward side cooling groove 5. To the upper part of the nozzle tip 1 to cool the periphery of the cylindrical portion 1b again, enter the cooling water outlet passage 8 through the outlet-side cooling water reservoir 10, and pass the cooling water outlet passage 8 in the direction indicated by the arrow A2. And flows out from the upper end outlet.

かかる第1実施例によれば、ノズルチップ1に形成された冷却室を、該ノズルチップ1の小径円筒部1b外周に上部側から先端側に延びるような、互いに逆方向に旋回する螺旋状の往き側冷却溝5及び戻り側冷却溝6で構成し、該往き側冷却溝5及び戻り側冷却溝6の外周を円筒状のノズルキャップ3で流体密に覆うように構成したので、該往き側冷却溝5及び戻り側冷却溝6が半径方向の幅が小さくノズルチップの長手方向に延びる冷却溝であることから、該往き側冷却溝5及び戻り側冷却溝6を設けることによるノズルチップ1の外径の増加量は僅かで済み、図4の従来技術のようなノズルチップ1の下部外周に環状の冷却室05を該ノズルチップ1とは別部材09で外周側を覆うように設けた燃料噴射弁100に比べて、燃料噴射弁100の外径を小さくして該燃料噴射弁100を小型化することができる。
これにより、水噴射エンジンの場合の水噴射弁、吸気弁及び排気弁等のような多くの機器、部材が装着される燃料噴射弁100周りのスペースにゆとりができ、これらの機器、部材の配置が容易にできるとともに、配置に自由度を持たせることが可能となる。
According to the first embodiment, the cooling chamber formed in the nozzle tip 1 is spirally rotated in opposite directions so as to extend from the upper side to the distal end side on the outer periphery of the small diameter cylindrical portion 1b of the nozzle tip 1. The forward cooling groove 5 and the return cooling groove 6 are configured so that the outer periphery of the forward cooling groove 5 and the return cooling groove 6 is fluid-tightly covered with the cylindrical nozzle cap 3. Since the cooling groove 5 and the return side cooling groove 6 are cooling grooves having a small radial width and extending in the longitudinal direction of the nozzle chip, the nozzle chip 1 is provided by providing the forward side cooling groove 5 and the return side cooling groove 6. The amount of increase in the outer diameter is small, and a fuel in which an annular cooling chamber 05 is provided on the outer periphery of the lower part of the nozzle tip 1 as in the prior art of FIG. Compared to the injection valve 100, the fuel injection valve 1 The outer diameter of 0 is reduced it is possible to miniaturize the fuel injection valve 100.
As a result, the space around the fuel injection valve 100 to which many devices and members such as a water injection valve, an intake valve, and an exhaust valve in the case of a water injection engine are mounted can be provided. Therefore, it is possible to provide a degree of freedom in arrangement.

また前記冷却室を、ノズルチップ1の小径円筒部1b外周に沿って上部側から先端側に延びるような螺旋状に刻設された往き側冷却溝5及び戻り側冷却溝6で形成したので、ノズルチップ1を冷却する冷却液の通路長さが長くなって、該ノズルチップ1と冷却水との間の伝熱面積が大きくなり、前記往き側冷却溝5及び戻り側冷却溝6による燃料噴射弁100の外径増加を最小限に抑えつつ、ノズルチップ1の冷却効果を向上できる。   Further, since the cooling chamber is formed by the forward cooling groove 5 and the return cooling groove 6 which are spirally engraved so as to extend from the upper side to the tip side along the outer periphery of the small diameter cylindrical portion 1b of the nozzle tip 1, The passage length of the coolant for cooling the nozzle tip 1 is increased, the heat transfer area between the nozzle tip 1 and the cooling water is increased, and the fuel injection by the forward cooling groove 5 and the return cooling groove 6 is performed. The cooling effect of the nozzle tip 1 can be improved while minimizing an increase in the outer diameter of the valve 100.

また、前記螺旋状の往き側冷却溝5及び戻り側冷却溝6を互いに逆方向に旋回する2条の螺旋状溝で形成し、前記ノズルチップ1の上部に設けた冷却液入口7及び冷却液出口8に前記2条の往き側冷却溝5及び戻り側冷却溝6のそれぞれを接続してノズルチップ1の先端方向に延ばし、先端寄りの部位で往き側冷却溝5と戻り側冷却溝6とを接続するように構成したので、往き側冷却溝5と戻り側冷却溝6とを長手方向においては異なる層、半径方向においては同一径の層で形成できて、ノズルチップ1内の往き側冷却溝5に加えて戻り側冷却溝6を設けることによるノズルチップ1の外径増加を回避でき、従って前記2条の往き側冷却溝5及び戻り側冷却溝6の形成によって、ノズルチップ1外径の増加を抑制しつつ伝熱面積をより増加することができる。   Further, the spiral forward cooling groove 5 and the return cooling groove 6 are formed by two spiral grooves that rotate in opposite directions, and the coolant inlet 7 and the coolant provided in the upper part of the nozzle chip 1 are formed. Each of the two forward-side cooling grooves 5 and the return-side cooling grooves 6 is connected to the outlet 8 and extends in the direction of the tip of the nozzle chip 1. The forward-side cooling groove 5 and the return-side cooling groove 6 Since the forward cooling groove 5 and the return cooling groove 6 can be formed of different layers in the longitudinal direction and layers of the same diameter in the radial direction, the forward cooling in the nozzle chip 1 can be performed. An increase in the outer diameter of the nozzle tip 1 due to the provision of the return cooling groove 6 in addition to the groove 5 can be avoided. Therefore, the outer diameter of the nozzle tip 1 can be prevented by forming the two forward cooling grooves 5 and the return cooling groove 6. Increase the heat transfer area while suppressing the increase of It is possible.

図2は、本発明の第2実施例に係る液冷式燃料噴射弁の主要部を示す縦断面図である。
この第2実施例においては、往き側冷却溝51,52を互いに逆方向に旋回する2条の冷却溝にて構成し、該往き側冷却溝51,52の上端入口を前記ノズルキャップ1の上面の円周方向2箇所に刻設された入口側冷却水溜め91,92にそれぞれ接続し、前記2条の往き側冷却溝51,52の出口側は、該往き側冷却溝51,52の出口端が開口する環状溝21を介して、シリンダカバー101内の冷却室102に連通される冷却水排出孔20に接続されている。
また、前記入口側冷却水溜め91,92は、前記ノズルキャップ1の軸方向に2個穿孔された冷却水入口通路7,71の下端開口部に連通されている。53は前記冷却水入口通路7,71の上端開口部が連通される入口環状溝である。
22,23は前記環状溝21の上下に設けられたシールリングで、耐熱ゴム製Oリング、金属Oリング等の耐熱性を有するOリングで構成されている。
FIG. 2 is a longitudinal sectional view showing the main part of the liquid-cooled fuel injection valve according to the second embodiment of the present invention.
In this second embodiment, the forward cooling grooves 51 and 52 are constituted by two cooling grooves that rotate in opposite directions, and the upper inlet of the forward cooling grooves 51 and 52 is the upper surface of the nozzle cap 1. Are connected to inlet-side cooling water reservoirs 91 and 92 engraved in two circumferential directions, respectively, and the outlet sides of the two forward cooling grooves 51 and 52 are outlets of the outgoing cooling grooves 51 and 52, respectively. It is connected to a cooling water discharge hole 20 that communicates with the cooling chamber 102 in the cylinder cover 101 via an annular groove 21 that is open at the end.
The inlet-side cooling water reservoirs 91 and 92 are communicated with lower end openings of the cooling water inlet passages 7 and 71 that are perforated in the axial direction of the nozzle cap 1. Reference numeral 53 denotes an inlet annular groove through which the upper end openings of the cooling water inlet passages 7 and 71 communicate.
22 and 23 are seal rings provided above and below the annular groove 21, and are configured by heat-resistant O-rings such as heat-resistant rubber O-rings and metal O-rings.

かかる第2実施例において、冷却水は前記冷却水入口通路7,71をA矢印のように流れて入口側冷却水溜め91,92に入り、該入口側冷却水溜め91,92を経て螺旋状に形成された2条の往き側冷却溝51,52に入り、該往き側冷却溝51,52を旋回しながら下方に流動して高温になっているノズルチップ1の円筒状部1b周辺を冷却してから環状溝21に流出し、該環状溝21から前記冷却水排出孔20を通ってシリンダカバー101内の冷却室102に排出される。   In the second embodiment, the cooling water flows in the cooling water inlet passages 7 and 71 as indicated by the arrow A, enters the inlet side cooling water reservoirs 91 and 92, and spirals through the inlet side cooling water reservoirs 91 and 92. Cools the periphery of the cylindrical portion 1b of the nozzle tip 1 that has entered the two forward cooling grooves 51, 52 formed in the nozzle and flows downward while swiveling the forward cooling grooves 51, 52 and is hot. Then, it flows out into the annular groove 21 and is discharged from the annular groove 21 through the cooling water discharge hole 20 to the cooling chamber 102 in the cylinder cover 101.

かかる第2実施例によれば、ノズルチップ1上部の冷却水入口通路7,71に接続される2条の往き側冷却溝51,52の先端部側終端部を、環状溝21を介してシリンダカバー101内の冷却室102に連通される冷却水排出孔20に接続したので、冷却水出口側の冷却溝をノズルチップ1の外周に設ける必要がなくなって、該ノズルチップ1の冷却通路の構造が簡単になるとともに、該冷却通路の加工工数を低減できる。
さらには、ノズルチップ1に形成された螺旋状の往き側冷却溝51,52のの出口側が通路面積の大きいシリンダカバー101内の冷却室102に開放されるので、冷却水通路の流動抵抗が小さくなり冷却水の流速が増加して冷却水とノズルチップ1の壁面間の熱伝達率が上昇することにより、冷却効果が向上する。
According to the second embodiment, the distal end side end portions of the two forward-side cooling grooves 51 and 52 connected to the cooling water inlet passages 7 and 71 in the upper part of the nozzle chip 1 are connected to the cylinder via the annular groove 21. Since it is connected to the cooling water discharge hole 20 communicated with the cooling chamber 102 in the cover 101, it is not necessary to provide a cooling groove on the cooling water outlet side on the outer periphery of the nozzle chip 1, and the structure of the cooling passage of the nozzle chip 1 is eliminated. Is simplified, and the number of processing steps for the cooling passage can be reduced.
Furthermore, since the outlet side of the spiral forward cooling grooves 51 and 52 formed in the nozzle chip 1 is opened to the cooling chamber 102 in the cylinder cover 101 having a large passage area, the flow resistance of the cooling water passage is small. As the flow rate of the cooling water increases and the heat transfer coefficient between the cooling water and the wall surface of the nozzle tip 1 increases, the cooling effect is improved.

また、前記螺旋状の往き側冷却溝51,52を互いに逆方向に旋回する2条の冷却溝にて構成して、往き側冷却溝51,52の双方の入口側を冷却水入口通路7,71に接続するとともに該往き側冷却溝51,52の双方の出口側を冷却水排出孔20に接続したので、往き側冷却溝51,52を互いに逆方向に旋回する2条の冷却溝に構成することにより、2条の冷却溝をノズルチップ1の長手方向においては異なる層、半径方向においては同一径の層で形成できて、ノズルチップ1外径を増加することなく伝熱面積を増加することができる。
その他の構成は図1に示す第1実施例と同様であり、これと同一の部材は同一の符号で示す。
Further, the spiral forward cooling grooves 51, 52 are constituted by two cooling grooves that rotate in opposite directions, and the inlet sides of both the forward cooling grooves 51, 52 are connected to the cooling water inlet passage 7, 71, and both outlet sides of the forward cooling grooves 51 and 52 are connected to the cooling water discharge hole 20, so that the forward cooling grooves 51 and 52 are configured as two cooling grooves that rotate in opposite directions. By doing so, the two cooling grooves can be formed of different layers in the longitudinal direction of the nozzle tip 1 and layers of the same diameter in the radial direction, thereby increasing the heat transfer area without increasing the outer diameter of the nozzle tip 1. be able to.
Other configurations are the same as those of the first embodiment shown in FIG. 1, and the same members are denoted by the same reference numerals.

図3は、本発明の第3実施例に係る液冷式燃料噴射弁の主要部を示す縦断面図である。
この第3実施例においては、往き側冷却溝51,52を互いに逆方向に旋回する2条の冷却溝にて構成し、該往き側冷却溝51,52の上端入口を前記ノズルキャップ1の上面の円周方向2箇所に刻設された入口側冷却水溜め91,92にそれぞれ接続し、前記2条の往き側冷却溝51,52の出口側は、該往き側冷却溝51,52の出口端が開口する2つの冷却水溜め40,40を介して、前記燃焼室103に開口する水噴射孔31に接続されている。32は前記冷却水溜め40,40に設けられた逆止弁で、前記燃焼室103側から冷却水溜め40,40及び往き側冷却溝51,52側へのガス流を遮断するものである。
また、前記入口側冷却水溜め91,92は、前記ノズルキャップ1の軸方向に2個穿孔された冷却水入口通路7,71の下端開口部に連通されている。53は前記冷却水入口通路7,71の上端開口部が連通される入口環状溝である。
FIG. 3 is a longitudinal sectional view showing the main part of the liquid-cooled fuel injection valve according to the third embodiment of the present invention.
In this third embodiment, the forward cooling grooves 51 and 52 are constituted by two cooling grooves that rotate in opposite directions, and the upper end inlet of the forward cooling grooves 51 and 52 is the upper surface of the nozzle cap 1. Are connected to inlet-side cooling water reservoirs 91 and 92 engraved in two circumferential directions, respectively, and the outlet sides of the two forward cooling grooves 51 and 52 are outlets of the outgoing cooling grooves 51 and 52, respectively. The two ends of the cooling water reservoirs 40, 40 that are open at the ends are connected to the water injection holes 31 that open to the combustion chamber 103. A check valve 32 is provided in the cooling water reservoirs 40 and 40, and blocks the gas flow from the combustion chamber 103 side to the cooling water reservoirs 40 and 40 and the outward cooling grooves 51 and 52 side.
The inlet-side cooling water reservoirs 91 and 92 are communicated with lower end openings of the cooling water inlet passages 7 and 71 that are perforated in the axial direction of the nozzle cap 1. Reference numeral 53 denotes an inlet annular groove through which the upper end openings of the cooling water inlet passages 7 and 71 communicate.

39は前記入口環状溝53に接続される冷却水管、34は該冷却水管39の管路を開閉する電磁弁で、図示しない水ポンプから圧送された冷却水が該冷却水管39及び電磁弁34を通って前記入口環状溝53に供給されるようになっている。
35は前記電磁弁34を開閉制御する電磁弁コントローラ、36はエンジンのクランク角を検出するクランク角センサ、37はエンジンの負荷(エンジン出力)を検出する負荷センサ、38はエンジンのシリンダ(気筒)の着火順序を検出して発振する気筒識別信号発振器であり、前記クランク角センサ36からのエンジンのクランク角検出信号、負荷センサ37からのエンジン負荷の検出信号、及び気筒識別信号発振器38からのシリンダの着火順序の発振信号は前記電磁弁コントローラ35に入力される。
Reference numeral 39 is a cooling water pipe connected to the inlet annular groove 53, and 34 is an electromagnetic valve for opening and closing the pipe of the cooling water pipe 39. Cooling water pumped from a water pump (not shown) passes through the cooling water pipe 39 and the electromagnetic valve 34. The inlet annular groove 53 is passed through.
35 is a solenoid valve controller for controlling the opening and closing of the solenoid valve 34, 36 is a crank angle sensor for detecting the crank angle of the engine, 37 is a load sensor for detecting the engine load (engine output), and 38 is a cylinder of the engine. Is a cylinder identification signal oscillator that oscillates by detecting the ignition order of the engine, and detects the crank angle detection signal of the engine from the crank angle sensor 36, the detection signal of the engine load from the load sensor 37, and the cylinder from the cylinder identification signal oscillator 38. The ignition signal of the ignition order is input to the solenoid valve controller 35.

かかる第2実施例において、前記電磁弁コントローラ35が、前記クランク角センサ36からのエンジンのクランク角検出信号、負荷センサ37からのエンジン負荷の検出信号、及び気筒識別信号発振器38からのシリンダの着火順序の発振信号に基づき、燃焼室103内への水の噴射時期および噴射期間(即ち噴射量)を算出し、その結果により設定された水の噴射時期および噴射期間で前記電磁弁34を開くと、前記冷却水管39からの冷却水は入口環状溝53に供給される。
そして、この冷却水は前記冷却水入口通路7,71をA矢印のように流れて入口側冷却水溜め91,92に入り、該入口側冷却水溜め91,92を経て螺旋状に形成された2条の往き側冷却溝51,52に入り、該往き側冷却溝51,52を旋回しながら下方に流動して高温になっているノズルチップ1の円筒状部1b周辺を冷却してから冷却水溜め40,40に入り、逆止弁32を押し開き、前記水噴射孔31から燃焼室103内に噴射される。
In the second embodiment, the solenoid valve controller 35 detects the engine crank angle detection signal from the crank angle sensor 36, the engine load detection signal from the load sensor 37, and the cylinder ignition signal from the cylinder identification signal oscillator 38. When the injection timing and injection period (that is, the injection amount) of water into the combustion chamber 103 are calculated based on the oscillation signal of the sequence, and the electromagnetic valve 34 is opened at the water injection timing and injection period set based on the calculation result. The cooling water from the cooling water pipe 39 is supplied to the inlet annular groove 53.
The cooling water flows in the cooling water inlet passages 7 and 71 as indicated by the arrow A, enters the inlet side cooling water reservoirs 91 and 92, and is formed in a spiral shape through the inlet side cooling water reservoirs 91 and 92. Cooling is performed after cooling the periphery of the cylindrical portion 1b of the nozzle tip 1 which has entered the two forward cooling grooves 51, 52 and flows downward while swiveling the forward cooling grooves 51, 52 and is at a high temperature. It enters the water reservoirs 40, 40, pushes the check valve 32 open, and is injected into the combustion chamber 103 from the water injection hole 31.

かかる第3実施例によれば、逆方向に旋回する2条の該往き側冷却溝51,52にて構成された螺旋状の冷却溝の上端部を冷却液入口通路7,71に接続するとともに、ノズルチップ1先端部側の終端を、逆止弁32を備えた冷却水溜め40を介して水噴射孔31に接続したので、水噴射エンジンにおいて、該往き側冷却溝51,52を通すことによりノズルチップ1を冷却した冷却水を、水噴射孔31から燃焼室103内に噴射してNOxの発生を抑制した燃焼をせしめることができ、1系統の水をノズルチップ1の冷却と水噴射孔31からの燃焼室への噴射によるNOx発生の抑制運転の双方に活用できる。
その他の構成は図1に示す第1実施例あるいは図2に示す第2実施例と同様であり、これらと同一の部材は同一の符号で示す。
また、前記冷却液としては、前記のような水以外にオイル等の液体も使用できる。
According to the third embodiment, the upper ends of the spiral cooling grooves formed by the two forward cooling grooves 51 and 52 swirling in opposite directions are connected to the coolant inlet passages 7 and 71. Since the end of the nozzle tip 1 on the tip side is connected to the water injection hole 31 via the cooling water reservoir 40 provided with the check valve 32, the forward cooling grooves 51 and 52 are passed through the water injection engine. Thus, the cooling water that has cooled the nozzle tip 1 can be injected into the combustion chamber 103 from the water injection hole 31 to cause combustion with suppressed generation of NOx, and cooling of the nozzle tip 1 and water injection can be performed for one system of water. This can be utilized for both NOx generation suppression operation by injection from the hole 31 into the combustion chamber.
Other configurations are the same as those of the first embodiment shown in FIG. 1 or the second embodiment shown in FIG. 2, and the same members are denoted by the same reference numerals.
In addition to the water as described above, a liquid such as oil can be used as the cooling liquid.

本発明によれば、燃料噴射弁の外径の増加を伴うことなく且つ比較的簡単な構造で以って、ノズルチップの冷却効果を向上可能とした液冷式燃料噴射弁を提供できる。   According to the present invention, it is possible to provide a liquid-cooled fuel injection valve that can improve the cooling effect of the nozzle tip without increasing the outer diameter of the fuel injection valve and with a relatively simple structure.

本発明の第1実施例に係るディーゼル機関用液冷式燃料噴射弁の主要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the liquid cooling type fuel injection valve for diesel engines which concerns on 1st Example of this invention. 本発明の第2実施例に係る液冷式燃料噴射弁の主要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the liquid cooling type fuel injection valve which concerns on 2nd Example of this invention. 本発明の第3実施例に係る液冷式燃料噴射弁の主要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the liquid cooling type fuel injection valve which concerns on 3rd Example of this invention. 従来技術に係る液冷式燃料噴射弁のノズルチップのの縦断面図である。It is a longitudinal cross-sectional view of the nozzle tip of the liquid cooling type fuel injection valve which concerns on a prior art.

符号の説明Explanation of symbols

1 ノズルチップ
1b 円筒状部
2 針弁
3 ノズルキャップ
4 噴孔
5,51,52 往き側冷却溝
6 戻り側冷却溝
7 冷却水入口通路
8 冷却水出口通路
9,91,92 入口側冷却水溜め
10 出口側冷却水溜め
12 流体シール部
20 冷却水排出孔
21 環状溝
31 水噴射孔
34 電磁弁
35 電磁弁
40 冷却水溜め
100 燃料噴射弁
101 シリンダカバー
102 冷却室
103 燃焼室
DESCRIPTION OF SYMBOLS 1 Nozzle tip 1b Cylindrical part 2 Needle valve 3 Nozzle cap 4 Injection hole 5, 51, 52 Outgoing side cooling groove 6 Return side cooling groove 7 Cooling water inlet passage 8 Cooling water outlet passage 9, 91, 92 Inlet side cooling water reservoir DESCRIPTION OF SYMBOLS 10 Outlet side cooling water reservoir 12 Fluid seal part 20 Cooling water discharge hole 21 Annular groove 31 Water injection hole 34 Solenoid valve 35 Solenoid valve 40 Cooling water reservoir 100 Fuel injection valve 101 Cylinder cover 102 Cooling chamber 103 Combustion chamber

Claims (6)

内側に針弁が往復動自在に嵌合されシリンダカバーに固定されるノズルチップに冷却室を形成し、該冷却室に冷却液を供給して該ノズルチップ及びその周辺部材を冷却するように構成された液冷式燃料噴射弁において、前記冷却室を、前記ノズルチップの円筒部外周に該ノズルチップの上部側から先端側に延びるような螺旋状に刻設された冷却溝で構成し、該冷却溝の外周を円筒状のノズルキャップで流体密に覆ったことを特徴とする液冷式燃料噴射弁。   A cooling chamber is formed in the nozzle tip that is reciprocally fitted inside and fixed to the cylinder cover, and a cooling liquid is supplied to the cooling chamber to cool the nozzle tip and its peripheral members. In the liquid-cooled fuel injection valve, the cooling chamber is configured by a cooling groove that is spirally engraved on the outer periphery of the cylindrical portion of the nozzle tip so as to extend from the upper side to the tip side of the nozzle tip, A liquid-cooled fuel injection valve characterized in that the outer periphery of a cooling groove is fluid-tightly covered with a cylindrical nozzle cap. 前記螺旋状の冷却溝を2条の螺旋状溝で形成し、前記ノズルチップの上部に冷却液入口及び冷却液出口を設けて、該冷却液入口を前記2条の螺旋状溝の一方に接続するとともに冷却液出口を前記螺旋状溝の他方に接続し、前記冷却溝は、前記冷却液入口から前記螺旋状溝の一方が前記ノズルチップの先端方向に延びて該ノズルチップの先端寄りの部位で前記螺旋状溝の他方に接続されるとともに該接続部から前記螺旋状溝の他方がノズルチップの反先端方向に延びて前記冷却液出口に接続されてなることを特徴とする請求項1記載の液冷式燃料噴射弁。   The spiral cooling groove is formed by two spiral grooves, a cooling liquid inlet and a cooling liquid outlet are provided on the upper part of the nozzle chip, and the cooling liquid inlet is connected to one of the two spiral grooves. In addition, the coolant outlet is connected to the other of the spiral grooves, and the cooling groove is located near one end of the nozzle tip with one of the spiral grooves extending from the coolant inlet toward the tip of the nozzle tip. 2. The other end of the spiral groove is connected to the other end of the spiral groove, and the other end of the spiral groove extends in a direction opposite to the tip of the nozzle tip and is connected to the coolant outlet. Liquid-cooled fuel injection valve. 前記螺旋状の冷却溝の上端部を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに、前記ノズルチップの先端部側の終端部には前記シリンダカバー内の冷却室に連通される冷却液排出孔を接続し、前記冷却液入口に導入された冷却液を前記螺旋状の冷却溝をノズルチップの先端部側へと流動させてから前記冷却液排出孔を通して前記シリンダカバー内の冷却室に排出するように構成されたことを特徴とする請求項1記載の液冷式燃料噴射弁。   The upper end of the spiral cooling groove is connected to a coolant inlet provided at the upper part of the nozzle tip, and the end of the nozzle tip is communicated with the cooling chamber in the cylinder cover. A cooling liquid discharge hole is connected, and the cooling liquid introduced into the cooling liquid inlet is allowed to flow through the helical cooling groove toward the tip end side of the nozzle tip, and then cooled in the cylinder cover through the cooling liquid discharge hole. The liquid-cooled fuel injection valve according to claim 1, wherein the liquid-cooled fuel injection valve is configured to discharge into the chamber. 前記螺旋状の冷却溝を互いに逆方向に旋回する2条の冷却溝にて構成し、前記2条の冷却溝の双方の入口側を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに該冷却溝の双方の出口側を前記冷却液排出孔に接続したことを特徴とする請求項3記載の液冷式燃料噴射弁。   The spiral cooling groove is composed of two cooling grooves that rotate in opposite directions to each other, and both inlet sides of the two cooling grooves are connected to a cooling liquid inlet provided above the nozzle chip. 4. The liquid-cooled fuel injection valve according to claim 3, wherein both outlet sides of the cooling groove are connected to the coolant discharge hole. 前記冷却液に水を用い、前記螺旋状の冷却溝の上端部を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに、前記ノズルチップの先端部側の終端を、前記水をエンジンの燃焼室に噴射する水噴射孔に接続し、前記冷却液入口に導入された冷却液を前記螺旋状の冷却溝をノズルチップの先端部側へと流動させてから前記水噴射孔を通して燃焼室に噴射するように構成されたことを特徴とする請求項1記載の液冷式燃料噴射弁。   Water is used as the cooling liquid, and the upper end of the spiral cooling groove is connected to a cooling liquid inlet provided at the upper part of the nozzle chip, and the end of the nozzle chip at the tip end side is connected to the engine. The coolant introduced into the combustion chamber is made to flow, and the coolant introduced into the coolant inlet is caused to flow through the spiral cooling groove toward the tip end side of the nozzle tip, and then through the water injection hole. The liquid-cooled fuel injection valve according to claim 1, wherein the liquid-cooled fuel injection valve is configured to inject into the fuel. 前記螺旋状の冷却溝を、互いに逆方向に旋回する2条の冷却溝にて構成し、前記2条の冷却溝の双方の入口側を前記ノズルチップの上部に設けられた冷却液入口に接続するとともに、該冷却溝の双方の出口側を逆止弁を備えた冷却水溜めに接続し、前記冷却液を前記逆止弁を介して前記水噴射孔から燃焼室に噴射するように構成されたことを特徴とする請求項5記載の液冷式燃料噴射弁。
The spiral cooling groove is composed of two cooling grooves swirling in opposite directions, and both inlet sides of the two cooling grooves are connected to a cooling liquid inlet provided in the upper part of the nozzle chip. In addition, both outlet sides of the cooling groove are connected to a cooling water reservoir having a check valve, and the cooling liquid is injected from the water injection hole into the combustion chamber via the check valve. 6. A liquid-cooled fuel injection valve according to claim 5, wherein
JP2005358846A 2005-12-13 2005-12-13 Water-cooled fuel injection valve Expired - Fee Related JP4592577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358846A JP4592577B2 (en) 2005-12-13 2005-12-13 Water-cooled fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358846A JP4592577B2 (en) 2005-12-13 2005-12-13 Water-cooled fuel injection valve

Publications (2)

Publication Number Publication Date
JP2007162547A true JP2007162547A (en) 2007-06-28
JP4592577B2 JP4592577B2 (en) 2010-12-01

Family

ID=38245756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358846A Expired - Fee Related JP4592577B2 (en) 2005-12-13 2005-12-13 Water-cooled fuel injection valve

Country Status (1)

Country Link
JP (1) JP4592577B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225344A (en) * 2011-04-15 2012-11-15 Waertsilae Schweiz Ag Fluid injection device
KR20180101508A (en) * 2016-01-29 2018-09-12 바르실라 핀랜드 오이 Water sprayer
JP2019518170A (en) * 2016-06-27 2019-06-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Nozzle body for fuel injectors
CN112943497A (en) * 2021-03-25 2021-06-11 东风商用车有限公司 Forced cooling structure of diesel injector
CN113818978A (en) * 2021-09-14 2021-12-21 南京中远海运船舶设备配件有限公司 Composite forming fuel nozzle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4733510U (en) * 1971-05-15 1972-12-14
JPS5818063U (en) * 1981-07-30 1983-02-03 株式会社ボッシュオートモーティブ システム Cooled Adiabatic Fuel Injection Nozzle for Internal Combustion Engines
JPS58130075U (en) * 1982-02-26 1983-09-02 ヤンマーディーゼル株式会社 Fuel injection valve cooling system
JPH06101589A (en) * 1992-09-18 1994-04-12 Mitsubishi Heavy Ind Ltd Water injection valve
JPH06123255A (en) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd Water injection diesel engine
JPH07139436A (en) * 1993-11-19 1995-05-30 Mitsubishi Heavy Ind Ltd Fuel water injection device
JPH07150965A (en) * 1993-11-26 1995-06-13 Mitsubishi Heavy Ind Ltd Dual fluid injection device
JPH10159559A (en) * 1996-12-02 1998-06-16 Waertsilae Nsd Schweiz Ag Cooling member in reciprocating piston internal combustion engine and injection nozzle provided with the same cooling member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4733510U (en) * 1971-05-15 1972-12-14
JPS5818063U (en) * 1981-07-30 1983-02-03 株式会社ボッシュオートモーティブ システム Cooled Adiabatic Fuel Injection Nozzle for Internal Combustion Engines
JPS58130075U (en) * 1982-02-26 1983-09-02 ヤンマーディーゼル株式会社 Fuel injection valve cooling system
JPH06101589A (en) * 1992-09-18 1994-04-12 Mitsubishi Heavy Ind Ltd Water injection valve
JPH06123255A (en) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd Water injection diesel engine
JPH07139436A (en) * 1993-11-19 1995-05-30 Mitsubishi Heavy Ind Ltd Fuel water injection device
JPH07150965A (en) * 1993-11-26 1995-06-13 Mitsubishi Heavy Ind Ltd Dual fluid injection device
JPH10159559A (en) * 1996-12-02 1998-06-16 Waertsilae Nsd Schweiz Ag Cooling member in reciprocating piston internal combustion engine and injection nozzle provided with the same cooling member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225344A (en) * 2011-04-15 2012-11-15 Waertsilae Schweiz Ag Fluid injection device
KR20180101508A (en) * 2016-01-29 2018-09-12 바르실라 핀랜드 오이 Water sprayer
KR102106231B1 (en) * 2016-01-29 2020-04-29 바르실라 핀랜드 오이 Water jet
JP2019518170A (en) * 2016-06-27 2019-06-27 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Nozzle body for fuel injectors
CN112943497A (en) * 2021-03-25 2021-06-11 东风商用车有限公司 Forced cooling structure of diesel injector
CN113818978A (en) * 2021-09-14 2021-12-21 南京中远海运船舶设备配件有限公司 Composite forming fuel nozzle

Also Published As

Publication number Publication date
JP4592577B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4550011B2 (en) Internal combustion engine
JP4592577B2 (en) Water-cooled fuel injection valve
US10385800B2 (en) Cylinder head assembly, cylinder head, and method
KR20150034084A (en) Arrangement comprising a cylinder head and a prechamber system
JP2010031843A (en) Cylinder head structure having valve cooling device and valve lubricating device
JP2007205295A (en) Cooling device of pilot fuel injection valve for gas engine
JP6757805B2 (en) Nozzle body for fuel injector
JPS6014907B2 (en) unit injector
JP2007278220A (en) Piston cooling structure for internal combustion engine
JP2009264255A (en) Cooling device of fuel injection valve
US9458807B2 (en) Four-stroke engine
JP2005240805A (en) Fuel injection nozzle
CN215860523U (en) Cylinder head
WO2005005804A1 (en) Engine
JP2003329216A5 (en)
JP6176279B2 (en) Exhaust system for multi-cylinder engine
CN113756979A (en) Cylinder head
JP4160975B2 (en) High temperature fluid injection valve and high temperature water injection internal combustion engine equipped with the same
JP2005201218A (en) Secondary air supply device
CN110325728B (en) Fuel injector
JP4882922B2 (en) Diesel engine premixing device
KR20100066350A (en) Cylinder head for a self-igniting internal combustion engine
JPH0791314A (en) Cooling device for sub-chamber type diesel engine
JP6737149B2 (en) engine
JP2004100545A (en) Oil jet for cooling piston of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4592577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees