JP2007161894A - Cold insulator and cold-insulating material - Google Patents

Cold insulator and cold-insulating material Download PDF

Info

Publication number
JP2007161894A
JP2007161894A JP2005360514A JP2005360514A JP2007161894A JP 2007161894 A JP2007161894 A JP 2007161894A JP 2005360514 A JP2005360514 A JP 2005360514A JP 2005360514 A JP2005360514 A JP 2005360514A JP 2007161894 A JP2007161894 A JP 2007161894A
Authority
JP
Japan
Prior art keywords
cold
temperature
hydrate
melting
tri
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360514A
Other languages
Japanese (ja)
Other versions
JP4736776B2 (en
Inventor
Keiji Tomura
啓二 戸村
Yoshinari Fujisawa
能成 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005360514A priority Critical patent/JP4736776B2/en
Publication of JP2007161894A publication Critical patent/JP2007161894A/en
Application granted granted Critical
Publication of JP4736776B2 publication Critical patent/JP4736776B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold insulator which is used for maintaining coolness of a cold-insulated target article whose optimum temperature is within the range of from above 0°C to below 10°C and is characterized by (1) a phase change temperature (melting point) corresponding to an optimum temperature or temperature range for the cold-insulated target article, (2) a large latent heat, (3) a large specific heat in a liquid state, (4) the lack of phase separation or performance deterioration after repeating a solidification-melting cycle, (5) a minimum change in the melting temperature and (6) incombustibility, and to provide a cold-insulating material composed of a container or a bag filled with the cold insulator. <P>SOLUTION: The cold insulator comprises tri-n-butylalkylammonium salt and water. The cold insulator comprises tri-n-butyl-n-pentylammonium bromide and water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食材、加工食料品、医療等の分野で低温で保存、搬送、冷却等の用途に用いられる保冷剤およびその保冷剤を容器に充填した保冷材に関する。
なお、本発明では、保冷(或いは冷却)機能を有する物質を「保冷剤」と称し、該保冷剤が容器、袋体等に充填され、保冷に供されるものを「保冷材」と称する。
The present invention relates to a cold insulation agent used for storage, transportation, cooling and the like at low temperatures in the fields of foodstuffs, processed food products, medicine, and the like, and a cold insulation material filled with the cold insulation agent in a container.
In the present invention, a substance having a cold-retaining (or cooling) function is referred to as a “cold-retaining agent”, and a substance that is filled in a container, a bag, or the like and used for cold-retention is referred to as a “cold-retaining material”.

鮮魚貝類、生鮮野菜、果実、食肉、その他の生鮮食料品、加工食料品、乳製品、花、フィルム、医薬品、医療検体等を低温管理して搬送したり、保冷設備のない場所で一時的に低温保管したりする場合に、これらの鮮度、食味、品質、性能、効用を維持するために、保冷材が用いられている。
また、保冷材は人体の局部冷却等の冷却用途にも用いられている。
Fresh fish and shellfish, fresh vegetables, fruits, meat, other fresh foods, processed foods, dairy products, flowers, films, medicines, medical specimens etc. are transported under low temperature control or temporarily in a place without cold storage facilities In order to maintain these freshness, taste, quality, performance, and utility when stored at a low temperature, a cold insulating material is used.
The cold insulator is also used for cooling such as local cooling of the human body.

保冷剤として相変化に伴う潜熱を利用した組成物が種々採用されている。あらかじめ冷却されて凝固している潜熱保冷剤は、潜熱を有するため一定の融解温度で融解するため、被保冷物を低温に維持することができる。   Various compositions that utilize latent heat associated with phase change have been employed as a cryogen. Since the latent heat cooling agent that has been cooled and solidified in advance has latent heat, it is melted at a certain melting temperature, so that the object to be cooled can be kept at a low temperature.

保冷剤に求められる性質として、以下が挙げられる。
(1)保冷する物品(以下「被保冷物」という)に望ましい適切な温度又は温度範囲(以下「適冷温度」という)に応じた相変化温度(融点)であること
すなわち、凝固した保冷剤が融解し蓄熱した潜熱を放出し終わるまでに維持される融解温度(融点に相当する)又は融解温度範囲が被保冷物の適冷温度に対応していることが望ましい。
(2)潜熱量が大きいこと
潜熱量が大きいと、凝固した保冷剤が融解し蓄熱した潜熱を放出し終わるまでの時間が長く、融解温度に維持される時間が長いので、適冷温度に維持される時間が長くなり好ましい。
The following are listed as properties required for the refrigerant.
(1) Phase change temperature (melting point) corresponding to an appropriate temperature or temperature range (hereinafter referred to as “appropriate cooling temperature”) desired for an article to be kept cold (hereinafter referred to as “cooled object”). It is desirable that the melting temperature (corresponding to the melting point) or the melting temperature range that is maintained until the latent heat that has been melted and stored is released corresponds to the appropriate cooling temperature of the object to be cooled.
(2) Large amount of latent heat If the amount of latent heat is large, it takes a long time for the solidified cryogen to melt and release the stored latent heat, and the time for maintaining the melting temperature is long. This is preferable because it takes a long time.

(3)保冷剤の液体状態における比熱が大きいこと
凝固した保冷剤が融解して潜熱の放出が終了した後、液体状態の保冷剤の温度が上昇するが、保冷剤の液体状態における比熱が大きいと、該保冷剤の温度がその雰囲気温度に達するまでの時間が長く、被保冷物を適冷温度により近い温度により長時間保持することができ、被保冷物の鮮度、品質、性能、効用等の劣化を遅延させることができる。
(4)凝固融解の繰返しにより相分離が生じたり性能が低下したりしないこと
保冷剤には、凝固融解の繰返し使用に耐え得るという性質が求められる。それ故、潜熱の蓄積と放出を繰り返す凝固融解の繰返しにより、融解時に一部融解せずに固相のまま残留する相分離現象が生じたり蓄熱性能が劣化したりしないことが必要である。
以上要すれば、(1)適冷温度に応じた融点であり、(2)潜熱量が大きく、(3)液体状態における比熱が大きく、(4)繰り返し使用に耐え得ることが保冷剤として使用される潜熱保冷剤が有すべき重要な性質であるといえる。
(3) The specific heat of the cryogen in the liquid state is large. After the solidified cryogen is melted and the release of latent heat is completed, the temperature of the cryogen in the liquid state rises, but the specific heat in the liquid state of the cryogen is large. And it takes a long time for the temperature of the cryogen to reach the ambient temperature, and the object to be cooled can be held for a long time at a temperature closer to the appropriate cooling temperature, and the freshness, quality, performance, utility, etc. of the object to be cooled Can be delayed.
(4) Phase separation does not occur due to repeated solidification and melting, and the performance does not deteriorate. The cryogen must be able to withstand repeated use of solidification and melting. Therefore, it is necessary that the phase separation phenomenon that does not partially melt at the time of melting and remain as a solid phase or the heat storage performance deteriorate due to repeated solidification and melting that repeatedly accumulate and release latent heat.
If necessary, (1) the melting point according to the appropriate cooling temperature, (2) large latent heat, (3) large specific heat in the liquid state, and (4) the ability to withstand repeated use is used as a cryogen. It can be said that it is an important property to be possessed by the latent heat cryogen.

また、(5)あらかじめ冷却されて凝固している潜熱保冷剤が融解する際に、融解の進行に伴って融解温度が変化せず一定温度で融解するか、融解温度の変化ができるだけ小さいと、被保冷物を一定温度で低温に維持することができるのでさらに好ましい。
さらに、(6)不燃性も求められる。
In addition, (5) when the latent heat cooling agent that has been cooled and solidified in advance is melted, the melting temperature does not change with the progress of melting, or the melting temperature changes as little as possible. More preferably, the object to be cooled can be kept at a constant temperature and a low temperature.
Furthermore, (6) nonflammability is also required.

また、空調の分野で潜熱を利用した蓄冷材として、氷、パラフィン、無機系水和物、有機系水和物等を主剤とするものがあり、これらを潜熱保冷剤として用いることが考えられる。
有機系水和物を主剤とする潜熱蓄冷剤としては、トリメチロールエタン(TME)水和物が知られており、TME−水−尿素の三成分系を中心とした検討がなされている(特許文献1参照)。
また、有機系水和物を主剤とする潜熱蓄冷剤の他の例として、第4級アンモニウム化合物の水和物がある(特許文献2参照)。
特開2000−256659号公報 特許3641362号公報
Further, in the field of air conditioning, there are materials that mainly use ice, paraffin, inorganic hydrates, organic hydrates, etc. as regenerators using latent heat, and it is conceivable to use these as latent heat coolers.
Trimethylolethane (TME) hydrate is known as a latent heat regenerator mainly composed of organic hydrates, and studies are being made centering on TME-water-urea ternary systems (patents). Reference 1).
Moreover, there exists a hydrate of a quaternary ammonium compound as another example of the latent heat cool storage agent which uses an organic hydrate as a main ingredient (refer patent document 2).
JP 2000-256659 A Japanese Patent No. 3641362

鮮魚、生鮮食料品、乳製品等の食料品を中心とする被保冷物は、0〜10℃の範囲に適冷温度を有するものが多い。この温度範囲に融点を有する潜熱蓄冷剤としては、上記したように例えば、氷、パラフィン、無機系水和物、有機系水和物等を主剤とするものがある。   Many of the objects to be kept cool mainly for food such as fresh fish, fresh food, and dairy products have an appropriate cooling temperature in the range of 0 to 10 ° C. As described above, the latent heat regenerator having a melting point in this temperature range includes, for example, ice, paraffin, inorganic hydrate, organic hydrate and the like as a main ingredient.

氷は鮮魚の流通時の保冷に一般的に用いられているが、0℃で保冷されるため、活魚と同等の高い商品価値がある死直後から完全硬直までの「生き」と称される状態を保持するのに適した5〜10℃の範囲で保冷できず、高い商品価値の「生き」鮮魚を流通させるため0℃より高い温度の保冷剤としては用いることができないという課題がある。   Ice is generally used for cold storage during the distribution of fresh fish, but since it is kept cold at 0 ° C, it has the same high commercial value as live fish and is called "living" from just after death to complete rigidity. There is a problem that it cannot be kept in the range of 5 to 10 ° C. suitable for maintaining the temperature, and cannot be used as a cryogen at a temperature higher than 0 ° C. in order to distribute “live” fresh fish with high commercial value.

パラフィンは可燃性であるので、保冷剤として用いるには問題がある。無機系水和物は、凝固融解の繰返しにより相分離が生じたり性能が低下したりしないことという上記の条件(4)を充足せず、保冷剤としては不向きである。例えば、硫酸ナトリウム十水塩に融点調整剤として塩化アンモニウム等を添加した蓄冷剤は融点9℃の無機塩水和物蓄冷剤として知られているが、凝固融解を繰返すと相分離を起こし易く問題がある。   Since paraffin is flammable, it is problematic for use as a cryogen. Inorganic hydrates do not satisfy the above condition (4) that phase separation does not occur or performance deteriorates due to repeated solidification and melting, and are unsuitable as a cryogen. For example, a cold storage agent in which ammonium chloride or the like is added as a melting point adjusting agent to sodium sulfate decahydrate is known as an inorganic salt hydrate cold storage agent having a melting point of 9 ° C. However, if solidification and melting are repeated, it tends to cause phase separation. is there.

特許文献1の包接水和物を主剤とする蓄熱材組成物は、凝固融解を100回繰返しても相分離は生じないとされているが、融点は10℃より高いので、0〜10℃の範囲に適冷温度を有する被保冷物、特に5〜10℃の範囲で保冷することが要望される「生き」鮮魚の保冷には適さない。   The heat storage material composition comprising the clathrate hydrate of Patent Document 1 as a main ingredient is said not to cause phase separation even if the solidification and melting are repeated 100 times, but the melting point is higher than 10 ° C, so 0 to 10 ° C. Therefore, it is not suitable for the cooling of “living” fresh fish that is required to be kept in the range of 5 to 10 ° C.

また、特許文献2の第4級アンモニウム化合物の包接水和物を主剤とする潜熱蓄冷剤のうち、臭化テトラnブチルアンモニウム(TBAB)を例に説明すると、調和融点を与える濃度である40重量%程度のTBAB水溶液の融点(調和融点)は約12℃であり、この温度で相分離することなく蓄熱と放熱を繰り返す。しかし、繰り返し使用に耐え得るという保冷剤の条件は充足するものの、0〜10℃の範囲に適冷温度を有する被保冷物の保冷剤には使用できない。(調和融点については後述する。)
以上のように、これまでに実用化あるいは提案されてきた潜熱保冷剤には、それぞれ問題点があった。
In addition, among the latent heat regenerators mainly composed of clathrate hydrates of quaternary ammonium compounds of Patent Document 2, tetra nbutylammonium bromide (TBAB) will be described as an example. The melting point (harmonic melting point) of the TBAB aqueous solution of about% by weight is about 12 ° C., and heat storage and heat dissipation are repeated without phase separation at this temperature. However, although the condition of the cryogen that can withstand repeated use is satisfied, it cannot be used as a cryogen for an object to be cooled having an appropriate cooling temperature in the range of 0 to 10 ° C. (The harmonic melting point will be described later.)
As described above, the latent heat coolers that have been put to practical use or proposed so far have their respective problems.

本発明は、これらの課題を解決すべくなされたもので、0℃より高く10℃未満の範囲に適冷温度を有する被保冷物の保冷に使用され、上記(1)乃至(6)を充足する保冷剤を提供することを目的とし、併せて、その保冷剤を容器または袋体に充填されることで構成される保冷材を提供することを目的とする。   The present invention has been made to solve these problems, and is used for keeping a cold object having an appropriate cooling temperature in a range higher than 0 ° C. and lower than 10 ° C., and satisfies the above (1) to (6). An object of the present invention is to provide a cold insulation material that is configured by filling a container or a bag with the cold insulation agent.

(1)本発明に係る保冷剤は、トリnブチルアルキルアンモニウム塩と水を含有してなることを特徴とするものである。 (1) The cryogen according to the present invention is characterized by containing a tri-n-butylalkylammonium salt and water.

トリnブチルアルキルアンモニウム塩と水を含有してなる水溶液を冷却してトリnブチルアルキルアンモニウム塩水和物を生成して該水和物を主成分とする保冷材とすることができる。
アルキルとして、nブチル以外の、nペンチル、isoペンチル、nプロピル、isoプロピル、エチル、メチル、nヘキシル、isoヘキシル、nヘプチル、isoヘプチル、isoブチル等が挙げられる。
また、アンモニウム塩として、臭化アンモニウム塩、塩化アンモニウム塩、弗化アンモニウム塩、硝酸アンモニウム塩、亜硝酸アンモニウム塩、塩素酸アンモニウム塩、過塩素酸アンモニウム塩、臭素酸アンモニウム塩、よう素酸アンモニウム塩、炭酸アンモニウム塩、りん酸アンモニウム塩、タングステン酸アンモニウム塩、硫酸アンモニウム塩、水酸化アンモニウム塩、カルボン酸アンモニウム塩、ジカルボン酸アンモニウム塩、スルホン酸アンモニウム塩、ジスルホン酸アンモニウム塩等が挙げられる。
An aqueous solution containing a tri-n-butylalkylammonium salt and water is cooled to produce a tri-n-butylalkylammonium salt hydrate, which can be used as a cold insulation material mainly composed of the hydrate.
Examples of the alkyl include n-pentyl, isopentyl, npropyl, isopropyl, ethyl, methyl, nhexyl, isohexyl, nheptyl, isoheptyl, isobutyl and the like other than nbutyl.
As ammonium salts, ammonium bromide, ammonium chloride, ammonium fluoride, ammonium nitrate, ammonium nitrite, ammonium chlorate, ammonium perchlorate, ammonium bromate, ammonium iodate, carbonic acid Ammonium salts, ammonium phosphate salts, ammonium tungstate salts, ammonium sulfate salts, ammonium hydroxide salts, ammonium carboxylates, ammonium dicarboxylates, ammonium sulfonates, ammonium disulfonates and the like can be mentioned.

(2)また、臭化トリnブチルnペンチルアンモニウムと水を含有してなることを特徴とするものである。 (2) Further, it is characterized by containing tri-n-butyl-n-pentylammonium bromide and water.

(3)また、臭化トリnブチルnペンチルアンモニウム水和物を主成分とすることを特徴とするものである。 (3) Further, the main component is tri-n-butyl-n-pentylammonium bromide hydrate.

臭化トリnブチルnペンチルアンモニウムは包接水和物を形成し、調和融点を与える濃度は重量濃度34%でその調和融点はおよそ6℃である。この調和融点における潜熱量は193J/gであり、高い潜熱量を有している。水和物が融解した水溶液の比熱は3.7J/g・Kであり、比熱が大きいため昇温しにくい。また、凝固融解を繰返しても相分離や蓄熱性能の低下がない。このような特性を有しているため、0℃より高く10℃未満の範囲に適冷温度を有する被保冷物の保冷剤として好適である。   Tri-n-butyl-n-pentylammonium bromide forms clathrate hydrate, the concentration giving a harmonic melting point is 34% by weight and the harmonic melting point is approximately 6 ° C. The amount of latent heat at this harmonic melting point is 193 J / g, which has a high amount of latent heat. The specific heat of the aqueous solution in which the hydrate is melted is 3.7 J / g · K. Further, even if solidification and melting are repeated, there is no decrease in phase separation or heat storage performance. Since it has such a characteristic, it is suitable as a cold-retaining agent for a cold object having an appropriate cooling temperature in a range higher than 0 ° C. and lower than 10 ° C.

(4)また、塩化トリnブチルnペンチルアンモニウムと水を含有してなることを特徴とするものである。 (4) Further, it is characterized by containing tri-n-butyl-n-pentylammonium chloride and water.

(5)また、塩化トリnブチルnペンチルアンモニウム水和物を主成分とすることを特徴とするものである。 (5) Further, it is characterized by containing tri-n-butyl-n-pentylammonium chloride hydrate as a main component.

塩化トリnブチルnペンチルアンモニウムは包接水和物を形成し、調和融点を与える濃度は重量濃度33%でその調和融点はおよそ9℃であり、調和融点における潜熱量は195J/gであり、高い潜熱量を有している。水和物が融解した水溶液の比熱は3.7J/g・Kであり、比熱が大きいため昇温しにくい。また、凝固融解を繰返しても相分離や蓄熱性能の低下がない。このような特性を有しているため、0℃より高く10℃未満の範囲に適冷温度を有する被保冷物の保冷剤として好適である。   Tri-n-butyl-n-pentylammonium chloride forms a clathrate hydrate, the concentration giving the harmonic melting point is 33% by weight, the harmonic melting point is approximately 9 ° C., and the latent heat at the harmonic melting point is 195 J / g, It has a high amount of latent heat. The specific heat of the aqueous solution in which the hydrate is melted is 3.7 J / g · K. Further, even if solidification and melting are repeated, there is no decrease in phase separation or heat storage performance. Since it has such a characteristic, it is suitable as a cold-retaining agent for a cold object having an appropriate cooling temperature in a range higher than 0 ° C. and lower than 10 ° C.

(6)また、トリnブチルアルキルアンモニウム塩とテトラアルキルアンモニウム塩と水を含有してなることを特徴とするものである。 (6) Further, it is characterized by containing tri-n-butylalkylammonium salt, tetraalkylammonium salt and water.

トリnブチルアルキルアンモニウム塩とテトラアルキルアンモニウム塩の水溶液を冷却すると、トリnブチルアルキルアンモニウム塩水和物とテトラアルキルアンモニウム塩水和物が生成される。2種の融点の異なる水和物が生成されることにより、単独の水和物と異なった熱特性が得られる。   When the aqueous solution of tri-n-butylalkylammonium salt and tetraalkylammonium salt is cooled, tri-n-butylalkylammonium salt hydrate and tetraalkylammonium salt hydrate are produced. By producing two hydrates having different melting points, thermal characteristics different from those of a single hydrate can be obtained.

テトラアルキルアンモニウム塩における、アルキルとして、nブチル、isoブチル、nペンチル、isoペンチル、nプロピル、isoプロピル、エチル、メチル、nヘキシル、isoヘキシル、nヘプチル、isoヘプチル、isoブチル等が挙げられ、また、アンモニウム塩として、臭化アンモニウム塩、塩化アンモニウム塩、弗化アンモニウム塩、硝酸アンモニウム塩、亜硝酸アンモニウム塩、塩素酸アンモニウム塩、過塩素酸アンモニウム塩、臭素酸アンモニウム塩、よう素酸アンモニウム塩、炭酸アンモニウム塩、りん酸アンモニウム塩、タングステン酸アンモニウム塩、硫酸アンモニウム塩、水酸化アンモニウム塩、カルボン酸アンモニウム塩、ジカルボン酸アンモニウム塩、スルホン酸アンモニウム塩、ジスルホン酸アンモニウム塩等が挙げられる。
テトラアルキルアンモニウム塩の具体例としては、例えば、臭化テトラnブチルアンモニウムが挙げられる。
Examples of the alkyl in the tetraalkylammonium salt include n-butyl, isobutyl, npentyl, isopentyl, npropyl, isopropyl, ethyl, methyl, nhexyl, isohexyl, nheptyl, isoheptyl, isobutyl and the like. As ammonium salts, ammonium bromide, ammonium chloride, ammonium fluoride, ammonium nitrate, ammonium nitrite, ammonium chlorate, ammonium perchlorate, ammonium bromate, ammonium iodate, carbonic acid Ammonium salt, ammonium phosphate salt, ammonium tungstate salt, ammonium sulfate salt, ammonium hydroxide salt, carboxylic acid ammonium salt, dicarboxylic acid ammonium salt, sulfonic acid ammonium salt, disulfonic acid ammonium salt Umm salts and the like.
Specific examples of the tetraalkylammonium salt include, for example, tetra nbutylammonium bromide.

(7)また、臭化トリnブチルnペンチルアンモニウムと臭化テトラnブチルアンモニウムと水を含有してなることを特徴とするものである。 (7) Further, it is characterized by containing tri-n-butyl-n-pentylammonium bromide, tetra-n-butylammonium bromide and water.

(8)また、臭化トリnブチルnペンチルアンモニウム水和物と臭化テトラnブチルアンモニウム水和物を主成分とすることを特徴とするものである。 (8) Further, it is characterized by comprising tri-n-butyl-n-pentylammonium bromide hydrate and tetra-n-butylammonium bromide hydrate as main components.

臭化トリnブチルnペンチルアンモニウム水和物と融点の異なる水和物を生成する、例えば臭化テトラnブチルアンモニウムのようなテトラアルキルアンモニウム塩と、臭化トリnブチルnペンチルアンモニウムを水と混合することにより、混合水溶液を冷却した際に水和物が生成する温度(混合物融点)を臭化トリnブチルnペンチルアンモニウム水和物単独の融点より低く、あるいは高くすることができる。
したがって、臭化トリnブチルnペンチルアンモニウムと、テトラアルキルアンモニウム塩との配合組成を調整することにより、混合物融点を所望の範囲に調整することができる。このため、被保冷物に望ましい適切な適冷温度に適合する融解温度を有する保冷材を提供できる。
なお、混合物の総潜熱量は臭化トリnブチルnペンチルアンモニウム水和物とテトラアルキルアンモニウム塩水和物それぞれ単独の潜熱量に配合組成比率を乗じた総和とほぼ等しいことを確認している。
Produces a hydrate with a different melting point from tri-n-butyl-n-pentylammonium bromide hydrate, for example, a tetraalkylammonium salt such as tetra-n-butylammonium bromide and tri-n-butyl-n-pentylammonium bromide mixed with water By doing so, the temperature at which the hydrate is formed when the mixed aqueous solution is cooled (mixture melting point) can be made lower or higher than the melting point of tri-n-butyl-n-pentylammonium bromide hydrate alone.
Therefore, the melting point of the mixture can be adjusted to a desired range by adjusting the blending composition of tri-n-butyl-n-pentylammonium bromide and the tetraalkylammonium salt. For this reason, it is possible to provide a cold insulating material having a melting temperature that matches an appropriate cooling temperature desired for the object to be cooled.
It has been confirmed that the total latent heat amount of the mixture is substantially equal to the sum of the latent heat amounts of tri-n-butyl-n-pentylammonium bromide hydrate and tetraalkylammonium salt hydrate multiplied by the blending composition ratio.

(9)また、塩化トリnブチルnペンチルアンモニウムと臭化テトラnブチルアンモニウムと水を含有してなることを特徴とするものである。 (9) Further, it is characterized by containing tri-n-butyl-n-pentylammonium chloride, tetra-n-butylammonium bromide and water.

(10)また、塩化トリnブチルnペンチルアンモニウム水和物と臭化テトラnブチルアンモニウム水和物を主成分とすることを特徴とするものである。 (10) It is also characterized by comprising tri-n-butyl-n-pentylammonium chloride hydrate and tetra-n-butylammonium bromide hydrate as main components.

(11)本発明に係る保冷材は、上記(1)〜(10)の何れかに記載の保冷剤を容器または袋体に充填してなることを特徴とするものである。 (11) The cold insulating material according to the present invention is characterized by filling a container or a bag with the cold insulating agent according to any one of the above (1) to (10).

保冷剤を充填する容器または袋体としては、保冷材の容器または袋体として用いられている公知のものを用いることができる。例えば、金属箔(アルミニウム箔など)をラミネートした合成樹脂フィルムからなるフレキシブルな材質のシートで形成された袋体や容器(ゼリー飲料や詰め替え用シャンプーが入っているような袋・パック)、プラスチック成形容器などが挙げられる。
保冷剤をプラスチック製容器や袋体に充填して保冷材を作成して、予めこの保冷材を冷却しておき、保冷容器に被保冷物と共に収納して流通、貯蔵に供する。
As the container or bag body filled with the cold insulation agent, a known one used as a container or bag body of a cold insulation material can be used. For example, bags or containers (bags / packs that contain jelly drinks or shampoos for refills), plastic molding, made of a flexible material sheet made of synthetic resin film laminated with metal foil (such as aluminum foil) Examples include containers.
A cold insulation material is prepared by filling a plastic container or bag body with a cold insulation agent, and the cold insulation material is cooled in advance, and is stored in a cold insulation container together with an object to be cooled and distributed and stored.

本発明の保冷剤は、トリnブチルアルキルアンモニウム塩と水を含有してなるものであり、0℃〜10℃の融点という適冷温度に応じた融点を有し、また潜熱量が大きく、さらに液体状態における比熱が大きく、またさらに繰り返し使用に耐え得るという特性を有しているため、0℃より高く10℃未満の範囲に適冷温度を有する被保冷物の保冷剤として好適である。   The cooling agent of the present invention contains tri-n-butylalkylammonium salt and water, has a melting point corresponding to an appropriate cooling temperature of 0 ° C. to 10 ° C., has a large latent heat, Since it has a characteristic that it has a large specific heat in a liquid state and can withstand repeated use, it is suitable as a cryogen for a cold object having an appropriate cooling temperature in a range higher than 0 ° C. and lower than 10 ° C.

本発明保冷剤の実施例の特性について以下の表1に示し、表1に基づいて各実施例について説明する。   The characteristic of the Example of this invention cooler is shown in the following Table 1, and each Example is demonstrated based on Table 1. FIG.

Figure 2007161894
Figure 2007161894

1)実施例1:臭化トリnブチルnペンチルアンモニウム(TBPAB)調和濃度水和物
臭化トリnブチルnペンチルアンモニウム水溶液について、濃度を変えてDSC(差動走査型熱量計)測定を実施し水和物の融点と潜熱量を測定した。その結果縦軸を融点温度、横軸を濃度とした状態図では重量濃度34%で融点が極大となり、調和融点を与える濃度(調和濃度という)は重量濃度34%であることを確認した。なお、調和融点の定義は後述する。
1) Example 1: Tri-n-butyl-n-pentylammonium bromide (TBPAB) harmonic concentration hydrate DSC (differential scanning calorimeter) measurement was carried out at different concentrations for tri-n-butyl-n-pentylammonium bromide aqueous solution. The melting point and latent heat of the hydrate were measured. As a result, it was confirmed that the melting point became maximum at a weight concentration of 34% in the phase diagram with the melting point temperature on the vertical axis and the concentration on the horizontal axis, and the concentration giving the harmonic melting point (called the harmonic concentration) was 34%. The definition of the harmonic melting point will be described later.

また、調和融点は6℃であり、その潜熱量は193J/gであり、水和物が融解した水溶液の比熱は3.7J/g・Kであった。
このように臭化トリnブチルnペンチルアンモニウム水和物の調和融点における潜熱量は193J/gであり、大きい潜熱量を有しているので、凝固した水和物が融解し蓄熱した冷熱を放出し終わるまでの時間が長い。したがって、融解温度に維持される時間が長いので、保冷剤として用いる場合に適冷温度に維持される時間が長く優れている。
The harmonic melting point was 6 ° C., the amount of latent heat was 193 J / g, and the specific heat of the aqueous solution in which the hydrate was melted was 3.7 J / g · K.
Thus, the latent heat amount at the harmonic melting point of tri-n-butyl-n-pentylammonium bromide hydrate is 193 J / g, and since it has a large latent heat amount, the solidified hydrate melts and releases the stored heat. It takes a long time to finish. Therefore, since the time that is maintained at the melting temperature is long, the time that is maintained at the appropriate cooling temperature is excellent when used as a cryogen.

また、水和物が融解した水溶液の比熱は3.7J/g・Kであり、比熱が大きいため昇温しにくく、水溶液の温度がその雰囲気温度に達するまでの時間が長くなる。したがって、保冷剤として用いる場合に被保冷物を適冷温度に近い温度に長時間保持することができ好適である。
また、凝固融解を1000回繰返しても相分離や蓄熱性能の低下がないことを確認した。
またさらに、臭化トリnブチルnペンチルアンモニウム水和物は、毒性もなく好ましい。
In addition, the specific heat of the aqueous solution in which the hydrate is melted is 3.7 J / g · K, and since the specific heat is large, it is difficult to raise the temperature, and the time until the temperature of the aqueous solution reaches the ambient temperature becomes long. Therefore, it is preferable that the object to be cooled can be kept at a temperature close to the appropriate cooling temperature for a long time when used as a cryogen.
It was also confirmed that there was no decrease in phase separation or heat storage performance even after solidification and melting 1000 times.
Furthermore, tri-n-butyl-n-pentylammonium bromide hydrate is preferred without toxicity.

以上のように、臭化トリnブチルnペンチルアンモニウム水和物はこのような特性を有しているため、0℃より高く10℃未満の範囲に適冷温度を有する被保冷物の保冷剤として好適である。   As described above, since tri-n-butyl-n-pentylammonium bromide hydrate has such characteristics, it is used as a cold-retaining agent for an object to be cooled having an appropriate cooling temperature in a range higher than 0 ° C. and lower than 10 ° C. Is preferred.

なお、調和融点とは水和物を生成する化合物の水溶液を冷却して水和物を生成する際、水溶液(液相)から水和物(固相)に変相する前後の組成が変わらない場合(例えばもとの水溶液中の水和物を生成する化合物濃度と同じ濃度の水和物を生じる)の温度をいう。なお、縦軸を融点温度、横軸を濃度とした状態図では極大点が調和融点となる。
本明細書においては、調和融点を与える濃度を調和濃度という。
調和濃度の水溶液を冷却すると、調和融点で水和物が生成しはじめ、水溶液が全て水和物になるまでこの融点温度で温度は一定になる。融解時も同様にこの一定の融点温度で融解する。調和濃度の水和物であれば融解時の融解温度の変化がなく、融解温度は調和融点で一定であるので、被保冷物を一定温度で保冷できるため保冷剤として最も好ましい。
調和濃度より濃度が低くなるか高くなると、融解温度は調和融点より低くなる。
調和濃度より低い濃度の水溶液を冷却して凝固した水和物を融解する場合には、調和融点より低い温度で融解しはじめ、融解の進行に伴って融解温度が次第に高くなる。
The harmonic melting point means that the composition before and after the phase change from an aqueous solution (liquid phase) to a hydrate (solid phase) does not change when an aqueous solution of a compound that forms a hydrate is cooled to produce a hydrate. The temperature of the case (eg, producing a hydrate with the same concentration as the compound concentration that produces the hydrate in the original aqueous solution). In the state diagram in which the vertical axis represents the melting point temperature and the horizontal axis represents the concentration, the maximum point is the harmonic melting point.
In the present specification, a concentration that provides a harmonic melting point is referred to as a harmonic concentration.
When an aqueous solution with a harmonic concentration is cooled, hydrates begin to form at the harmonic melting point, and the temperature is constant at this melting temperature until all aqueous solutions are hydrated. Similarly, melting occurs at this constant melting temperature. If the hydrate has a harmonic concentration, there is no change in the melting temperature at the time of melting, and the melting temperature is constant at the harmonic melting point.
When the concentration is lower or higher than the harmonic concentration, the melting temperature becomes lower than the harmonic melting point.
When an aqueous solution having a concentration lower than the harmonic concentration is cooled to melt the solidified hydrate, melting begins at a temperature lower than the harmonic melting point, and the melting temperature gradually increases as the melting proceeds.

2)実施例2:臭化トリnブチルnペンチルアンモニウム(TBPAB)調和濃度未満水和物
調和濃度未満の水和物では、融解温度は融解の進行に伴い高くなるように変化するが、濃度を調和濃度未満の濃度にすることにより、融解温度領域を調和融点より低い温度の領域にすることができるので、被保冷物を一定の温度領域に保冷可能な保冷剤として用いることができる。
本実施例2では表1に示すように、臭化トリnブチルnペンチルアンモニウムの調和濃度未満である例えば18%水溶液を冷却して水和物を生成した。この調和濃度未満水和物の融解開始温度は4℃で融解終了温度は6℃であった。その融解時の潜熱量は144J/gで、水和物が融解した水溶液の比熱は3.8J/g・Kであった。調和濃度水和物にくらべて潜熱量は少なくなるが、4〜6℃の範囲で保冷可能な保冷剤として用いることができる。
2) Example 2: Tri-n-butyl-n-pentylammonium bromide (TBPAB) less than harmonious hydrate For hydrates less than harmonious, the melting temperature changes as the melting progresses, By setting the concentration to less than the harmonic concentration, the melting temperature region can be made a region having a temperature lower than the harmonic melting point, so that the object to be cooled can be used as a cold insulating agent that can be kept in a certain temperature region.
In Example 2, as shown in Table 1, a hydrate was formed by cooling, for example, an 18% aqueous solution having a concentration lower than the harmonic concentration of tri-n-butyl-n-pentylammonium bromide. The melting start temperature of the hydrate below this harmonic concentration was 4 ° C. and the melting end temperature was 6 ° C. The amount of latent heat at the time of melting was 144 J / g, and the specific heat of the aqueous solution in which the hydrate was melted was 3.8 J / g · K. Although the amount of latent heat is less than that of harmonically concentrated hydrates, it can be used as a cryogen that can be kept cold in the range of 4 to 6 ° C.

3)実施例3:塩化トリnブチルnペンチルアンモニウム(TBPACl)調和濃度水和物
実施例3の塩化トリnブチルnペンチルアンモニウム水和物は、表1に示すようにその調和融点(調和濃度33%)は、9℃で、調和融点における潜熱量は195J/gで、水和物が融解した水溶液の比熱は3.7J/g・Kであり、臭化トリnブチルnペンチルアンモニウム水和物と同等程度の潜熱量を有する保冷剤として用いることができる。
3) Example 3: Tri-n-butyl-n-pentylammonium chloride (TBPACl) harmonic concentration hydrate The tri-n-butyl-n-pentylammonium chloride hydrate of Example 3 has a harmonic melting point (harmonic concentration of 33) as shown in Table 1. %) Is 9 ° C, the latent heat at the harmonic melting point is 195 J / g, the specific heat of the aqueous solution in which the hydrate is melted is 3.7 J / g · K, and tri-n-butyl-n-pentylammonium bromide hydrate. It can be used as a cryogen having a latent heat amount equivalent to that of.

4)実施例4、5、6:臭化トリnブチルnペンチルアンモニウム(TBPAB)と臭化テトラnブチルアンモニウム(TBAB)の混合水和物
臭化トリnブチルnペンチルアンモニウム(TBPAB)の調和濃度水和物と、臭化テトラnブチルアンモニウム(TBAB)の調和濃度水和物とを重量比率で50:50(実施例4)、30:70(実施例5)、20:80(実施例6)の比率で混合した混合水和物の特性を調べた。
4) Examples 4, 5, and 6: Mixed hydrate of tri-n-butyl-n-pentylammonium bromide (TBPAB) and tetra-n-butylammonium bromide (TBAB) Harmonic concentration of tri-n-butyl-n-pentylammonium bromide (TBPAB) Hydrate and harmonic concentration hydrate of tetra-n-butylammonium bromide (TBAB) in a weight ratio of 50:50 (Example 4), 30:70 (Example 5), 20:80 (Example 6) The characteristics of the mixed hydrate mixed at a ratio of

表1に示すように、これら3種類の水和物は、融解温度は8〜9.5℃で、潜熱量は182〜186J/gで、水和物が融解した水溶液の比熱は3.6〜3.7J/g・Kであり、8〜9.5℃の範囲で保冷可能な保冷剤として用いることができる。
また、表1から分かるように、実施例4〜6ではその融解温度がそれぞれ8℃、9℃、9.5℃と変化している。このことから、臭化トリnブチルnペンチルアンモニウム(TBPAB)の調和濃度水和物と、臭化テトラnブチルアンモニウム(TBAB)の調和濃度水和物との重量比率を変えることにより、所望の温度範囲に融解温度を有する混合水和物を得ることができ、保冷剤の保冷温度を調整することができることが確認できた。
As shown in Table 1, these three types of hydrates have a melting temperature of 8 to 9.5 ° C, a latent heat of 182 to 186 J / g, and a specific heat of the aqueous solution in which the hydrate has melted is 3.6 to 3 It is 0.7 J / g · K, and can be used as a cryogen that can be kept cold in the range of 8 to 9.5 ° C.
Further, as can be seen from Table 1, in Examples 4 to 6, the melting temperatures are changed to 8 ° C., 9 ° C., and 9.5 ° C., respectively. From this, by changing the weight ratio between the tri-n-butyl-n-pentylammonium bromide (TBPAB) harmonic hydrate and the tetra-n-butylammonium bromide (TBAB) harmonic hydrate, the desired temperature can be changed. It was confirmed that a mixed hydrate having a melting temperature in the range could be obtained, and the cold keeping temperature of the cryogen could be adjusted.

上記のことから、保冷剤の融点を設定する方法として、保冷剤は臭化トリnブチルnペンチルアンモニウム水和物と臭化テトラnブチルアンモニウム水和物を主成分とするものとし、臭化トリnブチルnペンチルアンモニウム水和物と臭化テトラnブチルアンモニウム水和物のそれぞれの配合比を1〜95重量%の範囲で定めることが考えられる。
なお、それぞれの水和物は調和濃度水和物であることが望ましい。なぜなら、潜熱量を最大にして保冷できるからである。
From the above, as a method for setting the melting point of the cryogen, the cryogen is mainly composed of tri-n-butyl-n-pentylammonium bromide hydrate and tetra-n-butylammonium bromide hydrate. It is conceivable that the blending ratio of n-butyl-n-pentylammonium hydrate and tetra-n-butylammonium bromide hydrate is determined in the range of 1 to 95% by weight.
Each hydrate is preferably a harmonic hydrate. This is because the amount of latent heat can be maximized to keep cold.

上記の実施例1、4について保冷性能試験を行ったので、その結果について説明する。保冷性能試験は、実施例1、4と比較例としてパラフィン(nテトラデカン)それぞれ3kgをポリエチレン製袋に充填した保冷材を、0℃に冷却して凝固させ、保冷材を真空断熱パネルを用いた容量20lの保冷箱の底面に装着し、保冷箱を30℃の恒温室に置き、保冷箱内部の温度の経時変化を測定した。   Since the cold insulation performance test was done about said Example 1, 4, the result is demonstrated. In the cold insulation performance test, the cold insulation material in which 3 kg of paraffin (n-tetradecane) was filled in polyethylene bags in Examples 1 and 4 and a comparative example was cooled to 0 ° C. and solidified, and the cold insulation material was used as a vacuum insulation panel. It was attached to the bottom of a 20 l capacity cold box, the cold box was placed in a constant temperature room at 30 ° C., and the temperature change inside the cold box was measured.

図1、図2は保冷性能試験の結果を示すグラフであり、図1が実施例1,2を示し、図2が比較例を示している。なお、各図において縦軸が温度(℃)を示し、横軸が経過日数(日)を示している。
図1から分かるように、実施例1では保冷箱内部の温度は6℃で一定のままであり、3.5日経過後に保冷材の融解が終了し温度が上昇した。
また、実施例4では保冷箱内部の温度は8℃で一定のままであり、3.5日経過後に保冷材の融解が終了し温度が上昇した。
他方、比較例では保冷箱内部の温度は6℃で一定のままであり、2.7日経過後に保冷材の融解が終了し温度が急上昇した。
以上から、実施例1,4は比較例にくらべて、保冷時間が長く、また融解後の温度上昇が小さく保冷剤として好適であることがわかる。
1 and 2 are graphs showing the results of the cold insulation performance test. FIG. 1 shows Examples 1 and 2, and FIG. 2 shows a comparative example. In each figure, the vertical axis represents temperature (° C.) and the horizontal axis represents elapsed days (days).
As can be seen from FIG. 1, in Example 1, the temperature inside the cold insulation box remained constant at 6 ° C., and the melting of the cold insulation material was completed after 3.5 days and the temperature rose.
In Example 4, the temperature inside the cold box remained constant at 8 ° C., and the melting of the cold insulator was completed after 3.5 days and the temperature rose.
On the other hand, in the comparative example, the temperature inside the cold insulation box remained constant at 6 ° C., and after 2.7 days had elapsed, melting of the cold insulation material was completed and the temperature rose rapidly.
From the above, it can be seen that Examples 1 and 4 are suitable as a cooling agent because the cooling time is long and the temperature rise after melting is small compared to the comparative example.

なお、上記保冷剤は冷却防止剤として用いることもできる。つまり、周囲環境が保存対象物より低温の時に、保存対象物の周囲に融解している保冷剤を容器に充填した冷却防止材を配置し、水溶液から水和物を生成して凝固する際に周囲環境からの冷熱を吸熱して保存対象物の冷却を防止する。冬季に生鮮野菜、食品の凍結を防止して、適切な温度にて保存する場合などに用いる。   In addition, the said cold insulating agent can also be used as a cooling inhibitor. In other words, when the ambient environment is cooler than the object to be stored, a cooling material filled with a cryogen that is melted around the object to be stored is placed in the container, and when a hydrate is generated from the aqueous solution and solidifies. It absorbs the cold from the surrounding environment and prevents the storage object from cooling. Used to prevent fresh vegetables and foods from freezing in winter and store at an appropriate temperature.

以下においては、本発明例ではないが、テトラnブチルアンモニウム塩水和物を保冷剤の主成分とすることができるというテトラnブチルアンモニウム塩水和物の新用途を見出したので、これらについて参考例として説明する。これら参考例1〜3の特性を下記の表2に示す。   In the following, although it is not an example of the present invention, since a new use of tetra nbutylammonium salt hydrate that tetra nbutylammonium salt hydrate can be a main component of a cryogen is found, these are used as reference examples. explain. The properties of Reference Examples 1 to 3 are shown in Table 2 below.

Figure 2007161894
Figure 2007161894

A)参考例1
臭化テトラnブチルアンモニウム水和物の調和融点を与える濃度(以下調和濃度という)未満の臭化テトラnブチルアンモニウムを含む水溶液を主成分とする保冷剤。
参考例1では表2に示すように、臭化テトラnブチルアンモニウムの調和濃度未満である例えば22%水溶液を冷却して水和物を生成した。この調和濃度未満水和物の融解開始温度は7℃で融解終了温度は9℃であった。その融解時の潜熱量は140J/gで、水和物が融解した水溶液の比熱は3.8J/g・Kであった。潜熱量は若干少ないが、7〜9℃の範囲で保冷可能な保冷剤として用いることができる。
A) Reference Example 1
A cryogen mainly composed of an aqueous solution containing tetra-n-butylammonium bromide hydrate having a concentration lower than the concentration (hereinafter referred to as a harmonic concentration) that gives a harmonic melting point of tetra-n-butylammonium bromide hydrate.
In Reference Example 1, as shown in Table 2, a hydrate was produced by cooling, for example, a 22% aqueous solution having a concentration lower than the harmonic concentration of tetra-n-butylammonium bromide. The melting start temperature of the hydrate below this harmonic concentration was 7 ° C., and the melting end temperature was 9 ° C. The latent heat at the time of melting was 140 J / g, and the specific heat of the aqueous solution in which the hydrate was melted was 3.8 J / g · K. Although the amount of latent heat is slightly small, it can be used as a cold-retaining agent that can be kept cold in the range of 7 to 9 ° C.

B)参考例2、3
臭化テトラnブチルアンモニウムと融点降下剤と水を含有してなることを特徴とする保冷剤。
臭化テトラnブチルアンモニウムの水溶液に融点降下剤を添加することにより、臭化テトラnブチルアンモニウム水和物の融解温度を低くすることができる。融点降下剤の種類、添加量を適宜選定することにより、所望の融解温度領域の保冷剤として用いることができる。融点降下剤としては、エチレングリコール、プロピレングリコール、エチルアルコールなど融点が0℃以下のものを、臭化テトラnブチルアンモニウムの水溶液に添加して、融解温度領域を0〜10℃の範囲に設定できる。
B) Reference examples 2 and 3
A cryoprotectant comprising tetra-n-butylammonium bromide, a melting point depressant and water.
By adding a melting point depressant to an aqueous solution of tetra nbutylammonium bromide, the melting temperature of tetra nbutylammonium bromide hydrate can be lowered. By appropriately selecting the type and amount of the melting point depressant, it can be used as a cryogen in a desired melting temperature region. As a melting point depressant, an ethylene glycol, propylene glycol, ethyl alcohol or the like having a melting point of 0 ° C. or lower can be added to an aqueous solution of tetra-n-butylammonium bromide to set the melting temperature range to 0 to 10 ° C. .

表2では、臭化テトラnブチルアンモニウム水和物とエタノールを重量比率で97:3としたもの(参考例2)、臭化テトラnブチルアンモニウム水和物とエチレングリコールを重量比率で97:3としたもの(参考例3)を示した。
参考例2の融解開始温度は8℃で融解終了温度は10℃であった。その融解時の潜熱量は162J/gで、水和物が融解した水溶液の比熱は3.6J/g・Kであった。潜熱量は若干少ないが、8〜10℃の範囲で保冷可能な保冷剤として用いることができる。
参考例3の融解開始温度は8℃で融解終了温度は10℃であった。その融解時の潜熱量は155J/gで、水和物が融解した水溶液の比熱は3.6J/g・Kであった。潜熱量は若干少ないが、8〜10℃の範囲で保冷可能な保冷剤として用いることができる。
In Table 2, tetra-n-butylammonium bromide hydrate and ethanol in a weight ratio of 97: 3 (Reference Example 2), tetra-n-butylammonium bromide hydrate and ethylene glycol in a weight ratio of 97: 3 (Reference Example 3).
In Reference Example 2, the melting start temperature was 8 ° C. and the melting end temperature was 10 ° C. The amount of latent heat at the time of melting was 162 J / g, and the specific heat of the aqueous solution in which the hydrate was melted was 3.6 J / g · K. Although the amount of latent heat is slightly small, it can be used as a cold-retaining agent that can be kept cold in the range of 8 to 10 ° C.
In Reference Example 3, the melting start temperature was 8 ° C. and the melting end temperature was 10 ° C. The amount of latent heat at the time of melting was 155 J / g, and the specific heat of the aqueous solution in which the hydrate was melted was 3.6 J / g · K. Although the amount of latent heat is slightly small, it can be used as a cold-retaining agent that can be kept cold in the range of 8 to 10 ° C.

参考例1,2についても上記の実施例1,4と同様の保冷性能試験を行ったので、その結果を図3に示し、これらについて説明する。
参考例1では8時間経過後には7℃で、3日経過後には9℃となり、保冷材の融解が終了し温度が上昇した。
また、参考例2では8時間経過後には8℃で、3日経過後には10℃となり、保冷材の融解が終了し温度が上昇した。
以上の結果から、7〜9℃または8〜10℃の範囲に保冷できる保冷剤として用いることができる。
Since the same cold insulation performance test as in Examples 1 and 4 was performed for Reference Examples 1 and 2, the results are shown in FIG. 3 and will be described.
In Reference Example 1, the temperature was 7 ° C. after 8 hours and 9 ° C. after 3 days. The melting of the cold insulating material was completed and the temperature rose.
In Reference Example 2, the temperature was 8 ° C. after 8 hours and 10 ° C. after 3 days, and the melting of the cold insulating material was completed and the temperature rose.
From the above results, it can be used as a cold-retaining agent that can be kept cold in the range of 7-9 ° C or 8-10 ° C.

本発明の実施の形態に係る保冷剤の保冷性能試験の結果を示すグラフである。It is a graph which shows the result of the cold storage performance test of the cold insulating agent which concerns on embodiment of this invention. 比較例の保冷性能試験の結果を示すグラフである。It is a graph which shows the result of the cold insulation performance test of a comparative example. 参考例の保冷性能試験の結果を示すグラフである。It is a graph which shows the result of the cold insulation performance test of a reference example.

Claims (11)

トリnブチルアルキルアンモニウム塩と水を含有してなることを特徴とする保冷剤。 A cryoprotectant comprising a tri-n-butylalkylammonium salt and water. 臭化トリnブチルnペンチルアンモニウムと水を含有してなることを特徴とする保冷剤。 A cryogen comprising tri-n-butyl-n-pentylammonium bromide and water. 臭化トリnブチルnペンチルアンモニウム水和物を主成分とすることを特徴とする保冷剤。 A cryogen characterized by comprising tri-n-butyl-n-pentylammonium bromide hydrate as a main component. 塩化トリnブチルnペンチルアンモニウムと水を含有してなることを特徴とする保冷剤。 A cryoprotectant comprising tri-n-butyl-n-pentylammonium chloride and water. 塩化トリnブチルnペンチルアンモニウム水和物を主成分とすることを特徴とする保冷剤。 A cryogen characterized by comprising tri-n-butyl-n-pentylammonium chloride hydrate as a main component. トリnブチルアルキルアンモニウム塩とテトラアルキルアンモニウム塩と水を含有してなることを特徴とする保冷剤。 A cryogen comprising a tri-n-butylalkylammonium salt, a tetraalkylammonium salt and water. 臭化トリnブチルnペンチルアンモニウムと臭化テトラnブチルアンモニウムと水を含有してなることを特徴とする保冷剤。 A cooling agent comprising tri-n-butyl-n-pentylammonium bromide, tetra-n-butylammonium bromide and water. 臭化トリnブチルnペンチルアンモニウム水和物と臭化テトラnブチルアンモニウム水和物を主成分とすることを特徴とする保冷剤。 A cryogen characterized by comprising tri-n-butyl-n-pentylammonium bromide hydrate and tetra-n-butylammonium bromide hydrate as main components. 塩化トリnブチルnペンチルアンモニウムと臭化テトラnブチルアンモニウムと水を含有してなることを特徴とする保冷剤。 A cooling agent comprising tri-n-butyl-n-pentylammonium chloride, tetra-n-butylammonium bromide and water. 塩化トリnブチルnペンチルアンモニウム水和物と臭化テトラnブチルアンモニウム水和物を主成分とすることを特徴とする保冷剤。 A cryogen characterized by comprising tri-n-butyl-n-pentylammonium chloride hydrate and tetra-n-butylammonium bromide hydrate as main components. 請求項1〜10のいずれかに記載の保冷剤を容器または袋体に充填してなることを特徴とする保冷材。 A cold insulating material comprising the container or a bag filled with the cold insulating agent according to any one of claims 1 to 10.
JP2005360514A 2005-12-14 2005-12-14 Coolant and cold insulation material Expired - Fee Related JP4736776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360514A JP4736776B2 (en) 2005-12-14 2005-12-14 Coolant and cold insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360514A JP4736776B2 (en) 2005-12-14 2005-12-14 Coolant and cold insulation material

Publications (2)

Publication Number Publication Date
JP2007161894A true JP2007161894A (en) 2007-06-28
JP4736776B2 JP4736776B2 (en) 2011-07-27

Family

ID=38245165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360514A Expired - Fee Related JP4736776B2 (en) 2005-12-14 2005-12-14 Coolant and cold insulation material

Country Status (1)

Country Link
JP (1) JP4736776B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079160A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
US7967999B2 (en) * 2005-06-08 2011-06-28 Jfe Engineering Corporation Heat storage substance, heat storage agent, heat reservoir, heat transport medium, cold insulation agent, cold insulator, melting point control agent for heat storage agent and supercooling preventive agent for heat storage agent
KR101123425B1 (en) 2007-09-26 2012-04-12 제이에프이 엔지니어링 가부시키가이샤 Aqueous solution for formation of clathrate hydrate, heat storage agent, method for producing clathrate hydrate or its slurry, heat accumulating and radiating method and method for preparing aqueous solution to produce latent heat storage agent or its major component
JP2017179299A (en) * 2016-03-31 2017-10-05 トッパン・フォームズ株式会社 Cool insulation tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839903B2 (en) * 2006-03-15 2011-12-21 Jfeエンジニアリング株式会社 Thermal storage agent and method for preparing thermal storage agent
JP4840075B2 (en) * 2006-10-19 2011-12-21 Jfeエンジニアリング株式会社 Coolant and cold insulation material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291272A (en) * 1996-04-25 1997-11-11 Mitsubishi Electric Corp Heat accumulating material
JP2000111289A (en) * 1998-10-05 2000-04-18 Nkk Corp Heat retaining structure and heat retaining device using the same
JP2001172617A (en) * 1999-12-20 2001-06-26 Nkk Corp TETRA-n-BUTYLAMMONIUM BROMIDE HYDRATE-BASED HEAT STORAGE MATERIAL
JP2005126728A (en) * 2004-12-20 2005-05-19 Jfe Engineering Kk Cold storage method, cold storage system, cold storage agent, and method for taking out cold
WO2005084801A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Catalyst for cyclic carbonate synthesis
WO2006132322A1 (en) * 2005-06-08 2006-12-14 Jfe Engineering Corporation Heat storable substance, heat storage agent, heat storage material, heat transfer medium, low temperature insulation agent, low temperature insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, and process for production of main ingred
JP2007161893A (en) * 2005-12-14 2007-06-28 Jfe Engineering Kk HEAT-STORAGE AGENT, HEAT-TRANSFER MEDIUM, MELTING POINT-CONTROLLING AGENT FOR HEAT-STORAGE AGENT, AGENT FOR PREVENTION OF OVERCOOLING FOR USE IN HEAT-STORAGE AGENT, METHOD FOR PRODUCING THE HEAT-STORAGE AGENT OR MAIN INGREDIENT OF THE HEAT-TRANSFER MEDIUM AND TRI-n-BUTYL-n-PENTYLAMMONIUM CHLORIDE HYDRATE
JP2007186667A (en) * 2005-06-08 2007-07-26 Jfe Engineering Kk Heat storable substance, heat storage agent, heat storage material, heat transfer medium, melting point controlling agent for heat storage agent, agent for prevention of supercooling for heat storage agent and method for producing main agent of heat storage agent or heat transfer medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291272A (en) * 1996-04-25 1997-11-11 Mitsubishi Electric Corp Heat accumulating material
JP2000111289A (en) * 1998-10-05 2000-04-18 Nkk Corp Heat retaining structure and heat retaining device using the same
JP2001172617A (en) * 1999-12-20 2001-06-26 Nkk Corp TETRA-n-BUTYLAMMONIUM BROMIDE HYDRATE-BASED HEAT STORAGE MATERIAL
WO2005084801A1 (en) * 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology Catalyst for cyclic carbonate synthesis
JP2005126728A (en) * 2004-12-20 2005-05-19 Jfe Engineering Kk Cold storage method, cold storage system, cold storage agent, and method for taking out cold
WO2006132322A1 (en) * 2005-06-08 2006-12-14 Jfe Engineering Corporation Heat storable substance, heat storage agent, heat storage material, heat transfer medium, low temperature insulation agent, low temperature insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, and process for production of main ingred
JP2007186667A (en) * 2005-06-08 2007-07-26 Jfe Engineering Kk Heat storable substance, heat storage agent, heat storage material, heat transfer medium, melting point controlling agent for heat storage agent, agent for prevention of supercooling for heat storage agent and method for producing main agent of heat storage agent or heat transfer medium
JP2007161893A (en) * 2005-12-14 2007-06-28 Jfe Engineering Kk HEAT-STORAGE AGENT, HEAT-TRANSFER MEDIUM, MELTING POINT-CONTROLLING AGENT FOR HEAT-STORAGE AGENT, AGENT FOR PREVENTION OF OVERCOOLING FOR USE IN HEAT-STORAGE AGENT, METHOD FOR PRODUCING THE HEAT-STORAGE AGENT OR MAIN INGREDIENT OF THE HEAT-TRANSFER MEDIUM AND TRI-n-BUTYL-n-PENTYLAMMONIUM CHLORIDE HYDRATE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967999B2 (en) * 2005-06-08 2011-06-28 Jfe Engineering Corporation Heat storage substance, heat storage agent, heat reservoir, heat transport medium, cold insulation agent, cold insulator, melting point control agent for heat storage agent and supercooling preventive agent for heat storage agent
JP2009079160A (en) * 2007-09-26 2009-04-16 Jfe Engineering Kk Aqueous solution for forming clathrate hydrate, heat storage agent, producing method of clathrate hydrate or its slurry, heat storing/radiating method, method for preparing aqueous solution for generating latent heat storage agent or its principal component
KR101123425B1 (en) 2007-09-26 2012-04-12 제이에프이 엔지니어링 가부시키가이샤 Aqueous solution for formation of clathrate hydrate, heat storage agent, method for producing clathrate hydrate or its slurry, heat accumulating and radiating method and method for preparing aqueous solution to produce latent heat storage agent or its major component
JP2017179299A (en) * 2016-03-31 2017-10-05 トッパン・フォームズ株式会社 Cool insulation tool

Also Published As

Publication number Publication date
JP4736776B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4736776B2 (en) Coolant and cold insulation material
WO2006132322A1 (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, low temperature insulation agent, low temperature insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, and process for production of main ingred
JP4497130B2 (en) Method for producing heat storage material, heat storage agent, heat storage material, heat transport medium, melting point adjusting agent for heat storage agent, supercooling inhibitor for heat storage agent and main agent of heat storage agent or heat transport medium
JP6999030B2 (en) Latent heat storage materials and their manufacturing methods, as well as cold storage tools, distribution packaging containers, human body cooling tools, refrigerators and food cold storage tools using them.
JPWO2016204284A1 (en) Cold storage material composition, cold storage material and transport container
JP2011051632A (en) Constant temperature storage container and transportation method
JP6598076B2 (en) Latent heat storage material
JP4840075B2 (en) Coolant and cold insulation material
CN111670239B (en) Latent heat storage material, and cooling tool and cooling method using same
JP6864742B2 (en) Cold storage material and cold storage pack
JP2007163045A (en) Cold-insulating container for fresh seafood having cold insulator, and method for increasing number of times that cold insulator can be repeatedly used
JP6723266B2 (en) Heat storage material, refrigerator and cold storage container using the same
US20190048242A1 (en) Thermal storage medium, and thermal storage pack, thermostatic vessel, and transport box using the medium
JP7388941B2 (en) Method for manufacturing cold storage material, cold storage material, and cooler box
JP6500152B1 (en) Latent heat storage material composition
JPWO2019235279A1 (en) How to transport cold storage equipment and packaging containers, and cold storage objects
JP5104160B2 (en) Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP6778840B1 (en) Latent heat storage material composition
JP7506890B2 (en) Refrigerants, refrigeration equipment, cargo, transport equipment, manufacturing method of refrigeration equipment, transport method and refrigeration method
JP2021109939A (en) Cold storage material
JP7399828B2 (en) Cold storage material
JP7481973B2 (en) Heat storage material, cooling device, logistics packaging container, and method for manufacturing heat storage material
JP2023045030A (en) Latent heat storage material composition
JPH0578651A (en) Cooling agent
JP2023013394A (en) Latent heat storage material and cold insulation tool using the same, tool and cold insulation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees