JP2007161891A - Fluorophor and method for producing the same - Google Patents

Fluorophor and method for producing the same Download PDF

Info

Publication number
JP2007161891A
JP2007161891A JP2005360444A JP2005360444A JP2007161891A JP 2007161891 A JP2007161891 A JP 2007161891A JP 2005360444 A JP2005360444 A JP 2005360444A JP 2005360444 A JP2005360444 A JP 2005360444A JP 2007161891 A JP2007161891 A JP 2007161891A
Authority
JP
Japan
Prior art keywords
phosphor
electron beam
rare earth
substance
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360444A
Other languages
Japanese (ja)
Other versions
JP4883998B2 (en
Inventor
Hideomi Koinuma
秀臣 鯉沼
Yuji Matsumoto
祐司 松本
Hiroyuki Sano
寛幸 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2005360444A priority Critical patent/JP4883998B2/en
Publication of JP2007161891A publication Critical patent/JP2007161891A/en
Application granted granted Critical
Publication of JP4883998B2 publication Critical patent/JP4883998B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorophor which is chemically stable, has a long life, and does not contain Cd. <P>SOLUTION: This fluorophor is represented by the general formula: (Sc<SB>1-x</SB>Tm<SB>x</SB>)Ca<SB>4</SB>O(BO<SB>3</SB>)<SB>3</SB>(0<x≤1). The method for producing the fluorophor comprises a process for weighing starting materials: Sc<SB>2</SB>O<SB>3</SB>, Tm<SB>2</SB>O<SB>3</SB>, CaCO<SB>3</SB>, B<SB>2</SB>O<SB>3</SB>, a process for mixing the starting materials to form mixed materials, a process for charging the mixed materials into a heat-resistant container and calcining the charged mixed materials in the atmosphere to obtain the calcination product. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は蛍光体とその製造方法に関し、特に電子線励起に適した蛍光体とその製造方法に関する。   The present invention relates to a phosphor and a manufacturing method thereof, and more particularly to a phosphor suitable for electron beam excitation and a manufacturing method thereof.

電子ビーム等の励起エネルギを吸収し、蛍光を発する蛍光体は、陰極線管(CRT),蛍光表示装置(vacuum fluorescent display,VFD)、電界放出型陰極を電子源に用いた表示装置(field emissiondisplay,FED)、フィールドエミッションランプ(FEL)等に利用されている。   A phosphor that absorbs excitation energy such as an electron beam and emits fluorescence includes a cathode ray tube (CRT), a fluorescent display (VFD), and a display using a field emission cathode as an electron source (field emission display, FED) and field emission lamps (FEL).

FEDは、電子線を蛍光体に当てて励起し、蛍光体の発する可視光を目視するディスプレイである。電子線の発生部と電子線により励起される蛍光体を塗布した面が1つの表示セルを構成し、多数の表示セルを平面上に配置して画面を構成できるので、薄型のディスプレイを実現可能となる。家庭用の壁掛けテレビや公共の場所における表示装置として期待されている。FELは、電子線を蛍光体に照射して発光させるランプであり、高効率が期待されている。   The FED is a display that is excited by applying an electron beam to a phosphor to visually observe visible light emitted from the phosphor. Since the surface where the electron beam generator and the phosphor excited by the electron beam are applied constitutes a single display cell, and a large number of display cells can be arranged on a flat surface, a thin display can be realized. It becomes. It is expected as a wall-mounted television for home use and a display device in public places. FEL is a lamp that emits light by irradiating a phosphor with an electron beam, and is expected to have high efficiency.

CRTやFEDに使用される蛍光体としては、例えば、青色発光にはZnS:Zn(Znで付活したZnS)、緑色発光にはZnO:Zn(Znで付活したZnO)、ZnS:Cu,Al(Cu,Alで付活したZnS)、(Zn、Cd)S:Ag(Agで付活した(Zn,Cd)S)、赤色発光には(Zn,Cd)S:Ag,Cl(Ag,Clで付活した(Zn,Cd)S)、YS:Eu(Euで付活したYS)等が用いられてきた。ZnO:Zn以外は硫化物蛍光体である。 Examples of phosphors used in CRT and FED include ZnS: Zn (Zn-activated ZnS) for blue light emission, ZnO: Zn (Zn-activated ZnO) for green light emission, ZnS: Cu, Al (ZnS activated by Cu, Al), (Zn, Cd) S: Ag (Ag-activated (Zn, Cd) S), (Zn, Cd) S: Ag, Cl (Ag for red light emission) , Cl-activated (Zn, Cd) S), Y 2 O 2 S: Eu (Eu-activated Y 2 O 2 S), and the like have been used. ZnO: A sulfide phosphor other than Zn.

硫化物蛍光体は、電子の衝突により、母体から分解、分離した硫黄成分が陰極表面に付着して特性劣化(輝度低下)を起こす、Cdを含む材料は環境問題を生じ得るなどの課題を有する(特許文献1)。   Sulfide phosphors have problems such as the sulfur component decomposed and separated from the base material due to collision of electrons and adhering to the cathode surface to cause characteristic deterioration (decrease in luminance), and materials containing Cd may cause environmental problems. (Patent Document 1).

特開2001−81459号公報JP 2001-81459 A

蛍光ランプに用いられる蛍光体として、青色発光のバリウムマグネシウムアルミネート蛍光体(BaMgAl1017:Eu)やストロンチウムクロルアパタイト蛍光体(Sr、Ca,Ba)10(POCl:Eu),緑色発光の燐酸ランタン蛍光体(LaPO:Ce,Tb)やセリウムマグネシウムアルミネート蛍光体(CeMgAl1119:Tb)、赤色発光のY:Eu等も知られている。これらの蛍光体は、温度が高くなると光量が低下したり、色が変わるなどの課題を有する(特許文献2)。
特開平10−77470号公報
As phosphors used in fluorescent lamps, blue-emitting barium magnesium aluminate phosphors (BaMgAl 10 O 17 : Eu) and strontium chloroapatite phosphors (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu) Also known are green-emitting lanthanum phosphate phosphors (LaPO 4 : Ce, Tb), cerium magnesium aluminate phosphors (CeMgAl 11 O 19 : Tb), red-emitting Y 2 O 3 : Eu, and the like. These phosphors have problems such that the amount of light decreases and the color changes when the temperature increases (Patent Document 2).
Japanese Patent Laid-Open No. 10-77470

蛍光体として、高輝度を有し、化学的に安定で、環境問題を生じないものが求められている。   There is a demand for phosphors that have high brightness, are chemically stable, and do not cause environmental problems.

ディスプレイとして3原色を形成する時、蛍光体の母体が大きく異なると、多くの場合焼成温度が異なり、3原色の蛍光体を夫々温度を変えて焼成する必要がある。
本発明者らは、先に酸化物を用いた蛍光体として、高輝度赤色発光を行う(Y1−xEu)CaO(BO(0<x<1)、高輝度緑色発光を行う(Y1−xTb)CaO(BO(0<x<1)を提案した。これらの蛍光体はRECaO(BO(REは希土類元素)系蛍光体であると言える(特許文献3、特許文献4)。
特開2005−68364号公報 特開2005−68365号公報
When the three primary colors are formed as a display, if the phosphor bases are greatly different, the firing temperatures are often different, and the three primary color phosphors need to be fired at different temperatures.
The present inventors, as a phosphor with previously oxides, performing high luminance red light emission (Y 1-x Eu x) Ca 4 O (BO 3) 3 (0 <x <1), high intensity green proposed a light emitting performing (Y 1-x Tb x) Ca 4 O (BO 3) 3 (0 <x <1). These phosphors can be said to be RECa 4 O (BO 3 ) 3 (RE is a rare earth element) -based phosphor (Patent Documents 3 and 4).
JP 2005-68364 A JP 2005-68365 A

この材料系では青色に関しては十分な発光が未だ得られていない。   In this material system, sufficient light emission has not yet been obtained for blue.

本発明の目的は、化学的に安定で、長寿命であり、Cdを含まない蛍光体を提供することである。
本発明の他の目的は、高輝度青色発光を行えるRECaO(BO(REは希土類元素)系蛍光体を提供することである。
An object of the present invention is to provide a phosphor that is chemically stable, has a long lifetime, and does not contain Cd.
Another object of the present invention is to provide a RECa 4 O (BO 3 ) 3 (RE is a rare earth element) -based phosphor capable of emitting high-luminance blue light.

本発明の更に他の目的は、化学的に安定で、長寿命であり、Cdを含まない、特性の揃った3原色蛍光体を有する発光装置を提供することである。   Still another object of the present invention is to provide a light emitting device having three primary color phosphors that are chemically stable, have a long life, do not contain Cd, and have uniform characteristics.

本発明の1観点によれば、
希土類カルシウムオキシボレートの希土類サイトをSc,Tmで置換した物質を含む蛍光体
が提供される。
According to one aspect of the present invention,
There is provided a phosphor containing a substance obtained by substituting the rare earth site of rare earth calcium oxyborate with Sc, Tm.

本発明の他の観点によれば、希土類カルシウムオキシボレートの希土類サイトをSc,Tmで置換した物質を含む青色発光蛍光体;
希土類カルシウムオキシボレートの希土類サイトをY,Tbで置換した物質を含む緑色発光蛍光体;
希土類カルシウムオキシボレートの希土類サイトをY,Euで置換した物質を含む赤色発光蛍光体;
電子線源;
を有する電子線励起発光装置
が提供される。
According to another aspect of the present invention, a blue-emitting phosphor containing a material obtained by substituting rare earth sites of rare earth calcium oxyborate with Sc, Tm;
A green-emitting phosphor containing a material obtained by substituting the rare earth sites of rare earth calcium oxyborate with Y, Tb;
A red light-emitting phosphor containing a substance obtained by substituting the rare earth sites of rare earth calcium oxyborate with Y, Eu;
Electron beam source;
An electron beam-excited light emitting device is provided.

本発明の更に他の観点によれば、
出発材料Sc,Tm,CaCO、Bを秤量する工程と、
前記出発材料を混合し、混合材料を形成する工程と、
前記混合材料を耐熱容器に充填し、大気雰囲気で焼成し、焼成物を得る工程と、
を含む蛍光体の製造方法
が提供される。
According to yet another aspect of the present invention,
Weighing starting materials Sc 2 O 3 , Tm 2 O 3 , CaCO 3 , B 2 O 3 ;
Mixing the starting materials to form a mixed material;
Filling the mixed material into a heat-resistant container and firing in an air atmosphere to obtain a fired product;
A method for producing a phosphor containing the above is provided.

吸湿性がなく、化学的に高安定で長寿命である。
同系統の母材で3原色の蛍光体を提供できる。
It has no hygroscopicity, is chemically stable and has a long life.
It is possible to provide phosphors of three primary colors using the same base material.

希土類カルシウムオキシボレート(RECaO(BO;REは希土類元素)は吸湿性が無く、高安定な物質であり、レーザによる損傷が少ないことから、非線形光学素子としてレーザ高調波装置への応用が図られている。 Rare earth calcium oxyborate (RECa 4 O (BO 3 ) 3 ; RE is a rare earth element) has no hygroscopicity, is a highly stable substance, and is less damaged by the laser. Applications are being made.

図1に希土類カルシウムオキシボレートの結晶構造を示す。ハッチを付した原子位置に周期表3族に属するSc,Y,ランタニド(原子番号57〜71)の計17元素のいずれかの希土類元素が入る。   FIG. 1 shows the crystal structure of rare earth calcium oxyborate. Any of the 17 rare earth elements of Sc, Y, and lanthanides (atomic numbers 57 to 71) belonging to Group 3 of the periodic table enters the hatched atomic positions.

本発明者らは、先にYCaO(BOを母体とし、Yの一部をEuで置換した、赤色発光を行う(Y1−xEu)CaO(BO(0<x<1)、およびYの一部をTbで置換した、緑色発光を行う(Y1−xTb)CaO(BO(0<x<1)を提案した。これらは、化学的に安定な高輝度蛍光体である。紫外線励起による蛍光を報告したが、電子線励起によって発光させることもできる。 The inventors of the present invention perform red light emission by using YCa 4 O (BO 3 ) 3 as a base material and substituting part of Y with Eu (Y 1-x Eu x ) Ca 4 O (BO 3 ) 3. (0 <x <1), and (Y 1−x Tb x ) Ca 4 O (BO 3 ) 3 (0 <x <1) that emits green light by substituting a part of Y with Tb. These are chemically stable high brightness phosphors. Although fluorescence by ultraviolet excitation has been reported, it is also possible to emit light by electron beam excitation.

図2Aに、(Y1−xEu)CaO(BO粉末に電子線を照射して発光を測定したカソードルミネッセンスのスペクトルを示す。波長620nm付近にピークを示す赤色発光が確認された。 FIG. 2A shows a cathodoluminescence spectrum in which (Y 1-x Eu x ) Ca 4 O (BO 3 ) 3 powder is irradiated with an electron beam to measure light emission. Red light emission having a peak in the vicinity of a wavelength of 620 nm was confirmed.

図2Bに、(Y1−xTb)CaO(BO粉末に電子線を照射して発光を測定したカソードルミネッセンスのスペクトルを示す。波長540nm付近にピークを示す緑色発光が確認された。 FIG. 2B shows a cathodoluminescence spectrum in which (Y 1-x Tb x ) Ca 4 O (BO 3 ) 3 powder is irradiated with an electron beam to measure light emission. Green light emission showing a peak in the vicinity of a wavelength of 540 nm was confirmed.

カラー表示を得ようとすると、青色蛍光体も必要である。母体を赤色蛍光体、緑色蛍光体と同じ希土類カルシウムオキシボレートとすれば、特性の揃った3原色蛍光体が得られる。   In order to obtain a color display, a blue phosphor is also necessary. If the base is made of the same rare earth calcium oxyborate as the red and green phosphors, three primary color phosphors with uniform characteristics can be obtained.

そこで、YCaO(BOを母体とし、Yの一部をTmで置換した(Y1−xTm)CaO(BOを作製した。しかし、十分な青色蛍光は得られなかった。Tm3+センタによる発光は、母体から電子1個が移動した電荷移動状態(CTS)を経由し、電子配置における結晶場の影響を強く受けることが考えられる。Y3+のイオン半径は0.900Aであり、Tm3+のイオン半径は0.880Aである。Y3+をTm3+に置換しても、結晶場の歪は小さいものであろう。結晶場の歪を大きくして蛍光特性を大きくすることを期待し、YCaO(BOの代わりに、希土類元素を1周期上のScとしたScCaO(BOを母体とし、ScをTmで置換することを考えた。Sc3+のイオン半径は0.745Aであり、Tm3+のイオン半径0.880Aと大きく異なる。 Therefore, the YCa 4 O (BO 3) 3 as a host, a part of Y was prepared was replaced with Tm (Y 1-x Tm x ) Ca 4 O (BO 3) 3. However, sufficient blue fluorescence was not obtained. It is conceivable that light emission by the Tm 3+ center is strongly influenced by the crystal field in the electron arrangement via a charge transfer state (CTS) in which one electron has moved from the base. The ionic radius of Y 3+ is 0.900A, and the ionic radius of Tm 3+ is 0.880A. Even if Y 3+ is replaced with Tm 3+ , the distortion of the crystal field will be small. By increasing the distortion of the crystal field is expected to increase the fluorescence properties, YCa 4 O (BO 3) in place of 3, ScCa 4 O (BO 3 ) 3 maternal that the Sc on one period of rare earth elements And replacing Sc with Tm was considered. The ion radius of Sc 3+ is 0.745A, which is very different from the ion radius 0.880A of Tm 3+ .

Sc、Tm、CaCO、Bの蛍光体原料を秤量し、乾式混合器で十分混合した。この1次混合物をアルミナ製の耐熱容器に堅く充填し、大気雰囲気型電気炉で大気雰囲気中、1000℃、10時間仮焼き焼成した。この仮焼き焼成物を粉砕し、再度乾式混合器で十分混合した。この2次混合物をアルミナ性の耐熱容器に堅く充填し、大気雰囲気型電気炉で、大気雰囲気中、1200℃、12時間本焼成した。この2次焼成物を粉砕し、篩い分けを行って(Sc1−xTm)CaO(BO組成の蛍光体を得た。 Sc 2 O 3 , Tm 2 O 3 , CaCO 3 , and B 2 O 3 phosphor raw materials were weighed and sufficiently mixed in a dry mixer. This primary mixture was tightly filled into a heat-resistant container made of alumina, and calcined and fired at 1000 ° C. for 10 hours in an air atmosphere type electric furnace. This calcined fired product was pulverized and sufficiently mixed again with a dry mixer. This secondary mixture was tightly filled into an alumina heat-resistant container and subjected to main firing in an air atmosphere type electric furnace at 1200 ° C. for 12 hours. The secondary fired product was pulverized and sieved to obtain a phosphor having a composition of (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 .

図3Aに、(Sc0.98Tm0.02)CaO(BO粉末のX線回折パターンを示す。希土類カルシウムオキシボレートに起因した回折ピークが現れ、異相も見られず、ほぼ完全な(Sc0.98Tm0.02)CaO(BOが形成されていると考えられる。 FIG. 3A shows an X-ray diffraction pattern of (Sc 0.98 Tm 0.02 ) Ca 4 O (BO 3 ) 3 powder. A diffraction peak due to the rare earth calcium oxyborate appears, no heterogeneous phase is seen, and it is considered that almost perfect (Sc 0.98 Tm 0.02 ) Ca 4 O (BO 3 ) 3 is formed.

図3Bに、(Sc0.98Tm0.02)CaO(BO粉末に電子線を照射して発光を測定したカソードルミネッセンスのスペクトルを示す。460nmと480nm付近に発光のピークが現れ、青色発光が観察された。 FIG. 3B shows a cathodoluminescence spectrum in which (Sc 0.98 Tm 0.02 ) Ca 4 O (BO 3 ) 3 powder is irradiated with an electron beam to measure light emission. Luminescence peaks appeared near 460 nm and 480 nm, and blue luminescence was observed.

希土類カルシウムオキシボレートの希土類サイトをSc,Tmで置換合成し、新規な蛍光体を得られたことが判る。新規な蛍光体は、ScCaO(BOとTmCaO(BOを合成した、一般式
(Sc1−xTm)CaO(BO(但し0<x≦1)で表わされる蛍光体である。
It can be seen that a novel phosphor was obtained by substitution synthesis of rare earth sites of rare earth calcium oxyborate with Sc and Tm. The new phosphor is composed of ScCa 4 O (BO 3 ) 3 and TmCa 4 O (BO 3 ) 3 and has the general formula (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 (where 0 <x A phosphor represented by ≦ 1).

また、コンビナトリアル法により、組成が徐々に変化する2元組成傾斜膜(Sc1−xTm)CaO(BOサンプルを作製した。図4にコンビナトリアル装置の模式図を示す。両端物質であるScCaO(BO、TmCaO(BOの焼成物ターゲット4を形成し、KrFエキシマレーザELを備えたパルスレーザデポジション装置を用い、2元組成傾斜蛍光体膜2を作製した。チャンバ6内の到達真空度は3×10−9torrとし、成膜時に酸素ボンベ5から酸素を供給して酸素分圧1×10−6torrとし、基板温度350℃〜700℃の石英ガラスの基板1上に蛍光体をレーザ蒸着した。2元組成傾斜蛍光体膜2の形成は、ターゲット4を交互にレーザに当て蒸着させると共に、可動マスク3を調整して行った。 Further, by combinatorial method, binary composition gradient layer whose composition changes gradually (Sc 1-x Tm x) Ca 4 O (BO 3) 3 was to prepare a sample. FIG. 4 shows a schematic diagram of a combinatorial apparatus. Using a pulsed laser deposition apparatus provided with a KrF excimer laser EL, a fired product target 4 of ScCa 4 O (BO 3 ) 3 and TmCa 4 O (BO 3 ) 3 as both end materials is formed. A body membrane 2 was produced. The ultimate vacuum in the chamber 6 is 3 × 10 −9 torr, oxygen is supplied from the oxygen cylinder 5 at the time of film formation, and the partial pressure of oxygen is 1 × 10 −6 torr. A phosphor was laser-deposited on the substrate 1. The binary composition gradient phosphor film 2 was formed by alternately depositing the target 4 on the laser and adjusting the movable mask 3.

基板温度700℃以下で得られた膜は、アモルファスの状態であったが、高輝度の蛍光特性が得られた。基板温度が700℃より高い場合には、多結晶の膜が得られたが、同様に蛍光特性が得られている。アモルファス相の蛍光体のほうが高輝度の蛍光を発した。蛍光体薄膜を形成する場合は、アモルファス相の膜を形成することがより望ましい。透明基板としてサファイアを用いた場合には、700℃未満でアモルファス相,700℃以上で多結晶の膜となった。   Although the film obtained at a substrate temperature of 700 ° C. or lower was in an amorphous state, high-luminance fluorescence characteristics were obtained. When the substrate temperature is higher than 700 ° C., a polycrystalline film is obtained, but the fluorescence characteristics are obtained similarly. The amorphous phase phosphor emitted higher brightness fluorescence. When forming a phosphor thin film, it is more desirable to form an amorphous phase film. When sapphire was used as the transparent substrate, an amorphous phase was obtained at less than 700 ° C., and a polycrystalline film was obtained at 700 ° C. or more.

2元組成傾斜膜(Sc1−xTm)CaO(BOに電子線を照射し、発光領域の発光特性を評価することで最適組成領域を調べることができた。
図5は、サンプルを概略的に示す斜視図である。石英ガラス基板1の上に(Sc1−xTm)CaO(BOの組成傾斜蛍光体膜2が形成されている。図6に示すように、組成は基板試料左端がTmCaO(BOで右に行くにつれてTm濃度が減少しSc濃度が徐々に増加していき、右端がScCaO(BO組成となるように構成される。
The optimum composition region could be examined by irradiating an electron beam to the binary composition gradient film (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 and evaluating the light emission characteristics of the light emission region.
FIG. 5 is a perspective view schematically showing a sample. A compositionally graded phosphor film 2 of (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 is formed on a quartz glass substrate 1. As shown in FIG. 6, the composition is such that the left end of the substrate sample is TmCa 4 O (BO 3 ) 3 and the Tm concentration decreases and the Sc concentration gradually increases as it goes to the right, and the right end is ScCa 4 O (BO 3 ). It is comprised so that it may become 3 compositions.

カソードルミネッセンスは、真空チャンバ内に、上記サンプルを設置し、上部から電子線を照射させることで発光の様子を目視により観察した。観察した発光部より青色蛍光体として好ましい(Sc1−xTm)CaO(BOの組成は、
0 < x ≦ 0.04
であった。特に、
0.001 < x ≦ 0.03
が最適組成範囲であった。
For cathodoluminescence, the above sample was placed in a vacuum chamber, and the state of light emission was observed visually by irradiating an electron beam from above. The composition of (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 that is more preferable as a blue phosphor than the observed light emitting part is:
0 <x ≦ 0.04
Met. In particular,
0.001 <x ≦ 0.03
Was the optimum composition range.

なお、(Sc1−xTm)CaO(BO蛍光体膜を形成する場合、ScCaO(BOとTmCaO(BOとの2つの焼結体ターゲットを用いる他、混晶組成の焼成物をターゲットとしてもよい。成膜はレーザMBEに限らず、EB蒸着、スパッタリング、イオンプレーティング、レーザアブレーション等で行ってもよい。1原子層レベルの厚さ制御で組成の異なる膜を積層することもできる。その他、粉末状蛍光体をペースト状として印刷するなど公知の方法も利用できる。 Incidentally, (Sc 1-x Tm x ) Ca 4 O (BO 3) 3 when forming the phosphor film, ScCa 4 O (BO 3) 3 and TmCa 4 O (BO 3) 3 and the two sintered bodies of In addition to using a target, a fired product having a mixed crystal composition may be used as a target. The film formation is not limited to laser MBE, but may be performed by EB vapor deposition, sputtering, ion plating, laser ablation, or the like. It is also possible to stack films having different compositions by controlling the thickness at the level of one atomic layer. In addition, a known method such as printing the powdery phosphor as a paste can be used.

図6は、電界放出ディスプレイの構成を概略的に示す断面図である。対向基板11,12は例えばガラス基板であり、その対向面上にはカソード電極CE,アノード電極AEが形成されている。アノード電極AEは、インジウムスズ酸化物(ITO)等の透明電極で形成される。カソード電極CE上には多数行、多数列状に導電性マイクロチップ15が、シリコン等で形成されている。マイクロチップ15の先端を取り囲むように、各マイクロチップに対するゲート電極GEが形成されている。ゲート電極GEに正極性の高電圧を印加すると、マイクロチップ15先端から電子ビームが放出される。電子ビームの進行方向に、アノード電極AE上に形成された蛍光体膜20が配置されている。蛍光体膜20は、赤(R),緑(G),青(B)がセットになって配置されている。電子ビームを受けた蛍光体は、夫々の発光を行い、カラー画像を表示する。発光時間を制御することで明るさを制御する。   FIG. 6 is a cross-sectional view schematically showing the configuration of the field emission display. The opposing substrates 11 and 12 are, for example, glass substrates, and a cathode electrode CE and an anode electrode AE are formed on the opposing surfaces. The anode electrode AE is formed of a transparent electrode such as indium tin oxide (ITO). On the cathode electrode CE, conductive microchips 15 are formed of silicon or the like in a number of rows and a number of columns. A gate electrode GE for each microchip is formed so as to surround the tip of the microchip 15. When a positive high voltage is applied to the gate electrode GE, an electron beam is emitted from the tip of the microchip 15. A phosphor film 20 formed on the anode electrode AE is disposed in the traveling direction of the electron beam. The phosphor film 20 is arranged as a set of red (R), green (G), and blue (B). The phosphors that have received the electron beam emit light and display a color image. The brightness is controlled by controlling the light emission time.

RGB蛍光体は、上述の赤色発光を行う(Y1−xEu)CaO(BO(0<x<1)、緑色発光を行う(Y1−xTb)CaO(BO(0<x<1)、青色発光を行う(Sc1−xTm)CaO(BO(0 < x ≦ 0.04)で形成される。3原色蛍光体の母体が全て希土類カルシウムオキシボレートなので、蛍光体膜形成後の焼成温度を揃えることができ、同時に焼成することができる。 RGB phosphors, performs red emission above (Y 1-x Eu x) Ca 4 O (BO 3) 3 (0 <x <1), performs the green light emission (Y 1-x Tb x) Ca 4 O (BO 3 ) 3 (0 <x <1), which emits blue light (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 (0 <x ≦ 0.04). Since the bases of the three primary color phosphors are all rare earth calcium oxyborate, the firing temperature after forming the phosphor film can be made uniform and fired simultaneously.

図7に、電子線照射蛍光体ランプの実施例を示す。例えば砲弾型の真空のガラス容器30内に電子源としてのカソード電極31例えばグラファイトの表面をプラズマエッチングして荒したものを挿入する。電子放出源とした陰極と本発明の蛍光体を陽極側(電極はITO等)表面にバインダーに混ぜ塗布したもの又は薄膜を堆積させたものを陽極として対向させる。両極間に電圧を例えば10kV印加させることで陰極から電子が放出され、陽極上の蛍光体に衝突することで発光しランプとなる。この陽極は予め蛍光体を塗布した後にAlを蒸着等でつける通称アルミパック方式でも良い。また、ガラス容器の形として細長い管や蒲鉾状の物などを用いても良い。   FIG. 7 shows an embodiment of an electron beam irradiation phosphor lamp. For example, a cathode electrode 31 serving as an electron source, for example, a surface roughened by plasma etching is inserted into a shell-type vacuum glass container 30. A cathode used as an electron emission source and the phosphor of the present invention mixed with a binder on the anode side (electrode is ITO or the like) surface or a thin film deposited is opposed to each other as an anode. When a voltage of, for example, 10 kV is applied between the two electrodes, electrons are emitted from the cathode, and light is emitted by colliding with the phosphor on the anode to form a lamp. This anode may be a so-called aluminum pack system in which a phosphor is applied in advance and then Al is deposited by vapor deposition or the like. Moreover, you may use an elongate pipe | tube, a bowl-shaped thing, etc. as a shape of a glass container.

その他の電子線照射蛍光体ランプの例として、平面光源ランプがある。ガラス製の対向基板の一方にITO等からなるアノード電極を形成し、他方にAl膜等からなるカソード電極を形成する。アノード電極上には、本願実施例の蛍光体膜が形成されている。カソード電極上にはカーボンナノチューブが含有したペーストが塗布されている。両電極間に例えば10kVの電圧を印加すると陰極側から電子が放出され、蛍光体膜に衝突することで発光しランプとなる。   Another example of the electron beam irradiation phosphor lamp is a flat light source lamp. An anode electrode made of ITO or the like is formed on one side of a glass counter substrate, and a cathode electrode made of an Al film or the like is formed on the other side. On the anode electrode, the phosphor film of the present embodiment is formed. A paste containing carbon nanotubes is applied on the cathode electrode. When a voltage of, for example, 10 kV is applied between the two electrodes, electrons are emitted from the cathode side, and light is emitted by colliding with the phosphor film to form a lamp.

以上実施例に沿って、本発明を説明したが、本発明はこれらに限られるものではない。例えば種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

種々の蛍光表示装置に利用することができる。   The present invention can be used for various fluorescent display devices.

希土類カルシウムオキシボレートの結晶構造を示す斜視図である。It is a perspective view which shows the crystal structure of rare earth calcium oxyborate. 図2Aは、(Y1−xEu)CaO(BO粉末の電子線励起によるカソードルミネッセンスのスペクトルを示すグラフであり、図2Bは、(Y1−xTb)CaO(BO粉末の電子線励起によるカソードルミネッセンスのスペクトルを示すグラフである。FIG. 2A is a graph showing a spectrum of cathodoluminescence by electron beam excitation of (Y 1-x Eu x ) Ca 4 O (BO 3 ) 3 powder, and FIG. 2B shows (Y 1-x Tb x ) Ca 4. O (BO 3) is a graph showing a spectrum of cathode luminescence caused by 3 powder electron beam excitation of. 図3Aは、作製した(Sc1−xTm)CaO(BO蛍光体粉末のX線回折パターンを示すグラフであり、図3Bは、電子線励起によるカソードルミネッセンスのスペクトルを示すグラフである。FIG. 3A is a graph showing an X-ray diffraction pattern of the prepared (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 phosphor powder, and FIG. 3B shows a spectrum of cathodoluminescence by electron beam excitation. It is a graph. コンビナトリアル装置の模式図である。It is a schematic diagram of a combinatorial apparatus. 組成傾斜サンプルを示す断面図、およびA cross-sectional view showing a composition gradient sample, and 電界放出ディスプレイの構成を示す断面図である。It is sectional drawing which shows the structure of a field emission display. 電子線照射蛍光体ランプの実施例である。It is an Example of an electron beam irradiation fluorescent substance lamp.

符号の説明Explanation of symbols

1 石英ガラス基板
2 組成傾斜蛍光体膜
3 可動マスク
4 ターゲット
5 酸素ボンベ
6 チャンバ
11、12 ガラス基板
EL エキシマレーザ
AE アノード電極
CE、31 カソード電極
GE ゲート電極
15 マイクロチップ
20、32 蛍光体膜
30 ガラス容器
DESCRIPTION OF SYMBOLS 1 Quartz glass substrate 2 Composition inclination fluorescent substance film 3 Movable mask 4 Target 5 Oxygen cylinder 6 Chamber 11, 12 Glass substrate EL Excimer laser AE Anode electrode CE, 31 Cathode electrode GE Gate electrode 15 Microchip 20, 32 Phosphor film 30 Glass container

Claims (11)

希土類カルシウムオキシボレートの希土類サイトをSc,Tmで置換した物質を含む蛍光体。   A phosphor containing a substance obtained by substituting rare earth sites of rare earth calcium oxyborate with Sc and Tm. 前記物質が一般式(Sc1―xTm)CaO(BO(0<x≦0.04)で表される請求項1記載の蛍光体。 The phosphor according to claim 1, wherein the substance is represented by a general formula (Sc 1−x Tm x ) Ca 4 O (BO 3 ) 3 (0 <x ≦ 0.04). 組成xが、0.001<x≦0.03である請求項2記載の蛍光体。   The phosphor according to claim 2, wherein the composition x is 0.001 <x ≦ 0.03. 希土類カルシウムオキシボレートの希土類サイトをSc,Tmで置換した物質を含む青色発光蛍光体;
希土類カルシウムオキシボレートの希土類サイトをY,Tbで置換した物質を含む緑色発光蛍光体;
希土類カルシウムオキシボレートの希土類サイトをY,Euで置換した物質を含む赤色発光蛍光体;
電子線源;
を有する電子線励起発光装置。
A blue-emitting phosphor containing a material obtained by substituting the rare earth sites of rare earth calcium oxyborate with Sc, Tm;
A green-emitting phosphor containing a material obtained by substituting the rare earth sites of rare earth calcium oxyborate with Y, Tb;
A red light-emitting phosphor containing a substance obtained by substituting the rare earth sites of rare earth calcium oxyborate with Y, Eu;
Electron beam source;
The electron beam excitation light-emitting device which has this.
前記電子線励起発光装置がディスプレイである請求項4記載の電子線励起発光装置。   The electron beam excitation light-emitting device according to claim 4, wherein the electron beam excitation light-emitting device is a display. 前記電子線励起発光装置が、ランプである請求項4記載の電子線励起発光装置。   The electron beam excited light emitting device according to claim 4, wherein the electron beam excited light emitting device is a lamp. 前記青色発光蛍光体が、一般式(Sc1―xTm)CaO(BO(0<x≦0.04)で表される物質を含み、
前記緑色発光蛍光体が、一般式(Y1−yTb)CaO(BO(0<y<1)で表される物質を含み、
前記赤色発光蛍光体が、一般式(Y1−zEu)CaO(BO(0<z<1)で表される物質を含む、
請求項4〜6のいずれか1項記載の電子線励起発光装置。
The blue light-emitting phosphor contains a substance represented by the general formula (Sc 1-x Tm x ) Ca 4 O (BO 3 ) 3 (0 <x ≦ 0.04),
The green-emitting phosphor comprises a substance represented by the general formula (Y 1-y Tb y) Ca 4 O (BO 3) 3 (0 <y <1),
The red light-emitting phosphor includes a substance represented by the general formula (Y 1-z Eu z ) Ca 4 O (BO 3 ) 3 (0 <z <1).
The electron beam excitation light-emitting device of any one of Claims 4-6.
前記xが、0.001<x≦0.03である請求項7記載の電子線励起発光装置。   The electron beam excitation light-emitting device according to claim 7, wherein x is 0.001 <x ≦ 0.03. 出発材料Sc,Tm,CaCO、Bを秤量する工程と、
前記出発材料を混合し、混合材料を形成する工程と、
前記混合材料を耐熱容器に充填し、大気雰囲気で焼成し、焼成物を得る工程と、
を含む蛍光体の製造方法。
Weighing starting materials Sc 2 O 3 , Tm 2 O 3 , CaCO 3 , B 2 O 3 ;
Mixing the starting materials to form a mixed material;
Filling the mixed material into a heat-resistant container, firing in an air atmosphere, and obtaining a fired product;
The manufacturing method of the fluorescent substance containing this.
さらに、
前記焼成物を粉砕する工程と、
前記粉砕した焼成物を混合し、2次混合材料を形成する工程と、
前記2次混合材料を耐熱容器に充填し、大気雰囲気で焼成し、2次焼成物を得る工程と、
を含む請求項9記載の蛍光体の製造方法。
further,
Crushing the fired product;
Mixing the pulverized fired product to form a secondary mixed material;
Filling the secondary mixed material into a heat-resistant container and firing in an air atmosphere to obtain a secondary fired product;
The manufacturing method of the fluorescent substance of Claim 9 containing this.
さらに、
前記2次焼成物を粉砕する工程と、
粉砕した前記2次焼成物を篩い分けする工程と、
を含む請求項10記載の蛍光体の製造方法。
further,
Crushing the secondary fired product,
Sieving the pulverized secondary fired product,
The manufacturing method of the fluorescent substance of Claim 10 containing this.
JP2005360444A 2005-12-14 2005-12-14 Phosphor and production method thereof Expired - Fee Related JP4883998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360444A JP4883998B2 (en) 2005-12-14 2005-12-14 Phosphor and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360444A JP4883998B2 (en) 2005-12-14 2005-12-14 Phosphor and production method thereof

Publications (2)

Publication Number Publication Date
JP2007161891A true JP2007161891A (en) 2007-06-28
JP4883998B2 JP4883998B2 (en) 2012-02-22

Family

ID=38245162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360444A Expired - Fee Related JP4883998B2 (en) 2005-12-14 2005-12-14 Phosphor and production method thereof

Country Status (1)

Country Link
JP (1) JP4883998B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285596A (en) * 2009-03-27 2010-12-24 Tohoku Univ Oxide crystal for neutron scintillator and neutron scintillator using the same
EP2913378A1 (en) * 2012-10-23 2015-09-02 Hamamatsu Photonics K.K. Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
CN109161381A (en) * 2018-09-21 2019-01-08 陕西科技大学 Three strontium yttrium borate base blue colour fluorescent powders of a kind of thulium doping and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100860A (en) * 1992-07-10 1994-04-12 Kasei Optonix Co Ltd Blue-emitting phosphor
WO2004083481A1 (en) * 2003-03-20 2004-09-30 Japan Science And Technology Agency Method of preparing quaternary compositional ratio gradient film, method of preparing binary compositional ratio/thickness gradient film employed therein and method of sampling compositional ratio of multiple composition substance
JP2005068364A (en) * 2003-08-27 2005-03-17 Hideomi Koinuma Phosphor and its manufacturing method
JP2005068365A (en) * 2003-08-27 2005-03-17 Hideomi Koinuma Phosphor and its manufacturing method
JP2005239826A (en) * 2004-02-25 2005-09-08 Stanley Electric Co Ltd Phosphor and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100860A (en) * 1992-07-10 1994-04-12 Kasei Optonix Co Ltd Blue-emitting phosphor
WO2004083481A1 (en) * 2003-03-20 2004-09-30 Japan Science And Technology Agency Method of preparing quaternary compositional ratio gradient film, method of preparing binary compositional ratio/thickness gradient film employed therein and method of sampling compositional ratio of multiple composition substance
JP2005068364A (en) * 2003-08-27 2005-03-17 Hideomi Koinuma Phosphor and its manufacturing method
JP2005068365A (en) * 2003-08-27 2005-03-17 Hideomi Koinuma Phosphor and its manufacturing method
JP2005239826A (en) * 2004-02-25 2005-09-08 Stanley Electric Co Ltd Phosphor and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285596A (en) * 2009-03-27 2010-12-24 Tohoku Univ Oxide crystal for neutron scintillator and neutron scintillator using the same
EP2913378A1 (en) * 2012-10-23 2015-09-02 Hamamatsu Photonics K.K. Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
EP2913378A4 (en) * 2012-10-23 2016-09-14 Hamamatsu Photonics Kk Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
CN109161381A (en) * 2018-09-21 2019-01-08 陕西科技大学 Three strontium yttrium borate base blue colour fluorescent powders of a kind of thulium doping and preparation method thereof

Also Published As

Publication number Publication date
JP4883998B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5065080B2 (en) Plasma display device
JP2006335832A (en) Phosphor and light emitting device
JP4415578B2 (en) Plasma display device
JP2003336061A (en) Plasma display device
JP2003082344A (en) Plasma display device
JP4244727B2 (en) Plasma display device
WO2007105370A1 (en) Phosphor for display and field emission display
JP2003082345A (en) Plasma display device
JP4244726B2 (en) Plasma display device
JP4883998B2 (en) Phosphor and production method thereof
JP4173057B2 (en) Fluorescent substance and fluorescent display device
JP2005100889A (en) Plasma display device
WO2004075237A1 (en) Plasma display device and method for preparing phosphor
JP4249572B2 (en) Fluorescent light emitting device and manufacturing method thereof
JP2004269870A (en) Plasma display panel and method for producing phosphor
JP5155746B2 (en) Fluorescent substance and fluorescent display device
JP4249571B2 (en) Fluorescent light emitting device and manufacturing method thereof
US20110008584A1 (en) Fluorescent material, fluorescent substance, display, and process for preparing fluorescent substance
JP2005340155A (en) Plasma display apparatus
JP4526904B2 (en) Phosphor and plasma display device
KR100712765B1 (en) Process for producing phosphor and plasma display panel unit
JP2005314464A (en) Plasma display device
JP2005100891A (en) Plasma display device
JP2004067885A (en) Plasma display panel
JP2004091623A (en) Plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees