JP2007161880A - Polyamic acid varnish composition and metal polyimide composite material - Google Patents

Polyamic acid varnish composition and metal polyimide composite material Download PDF

Info

Publication number
JP2007161880A
JP2007161880A JP2005360212A JP2005360212A JP2007161880A JP 2007161880 A JP2007161880 A JP 2007161880A JP 2005360212 A JP2005360212 A JP 2005360212A JP 2005360212 A JP2005360212 A JP 2005360212A JP 2007161880 A JP2007161880 A JP 2007161880A
Authority
JP
Japan
Prior art keywords
polyamic acid
metal
polyimide
acid varnish
varnish composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360212A
Other languages
Japanese (ja)
Other versions
JP4942338B2 (en
JP2007161880A5 (en
Inventor
Akihiro Kato
明宏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005360212A priority Critical patent/JP4942338B2/en
Publication of JP2007161880A publication Critical patent/JP2007161880A/en
Publication of JP2007161880A5 publication Critical patent/JP2007161880A5/ja
Application granted granted Critical
Publication of JP4942338B2 publication Critical patent/JP4942338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal polyimide composite material which has excellent adhesiveness to metals without intervening an adhesive layer and has the same polyimide linear thermal expansion coefficient as that of a metal, and to provide a polyamic acid varnish composition giving the same. <P>SOLUTION: This polyamic acid varnish composition is obtained by adding a vinyltriazine compound to a polyamic acid varnish comprising a solvent and a polyamic acid obtained by the addition polymerization of an aromatic tetracarboxylic acid dianhydride to an aromatic diamine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高接着のフレキシブルプリント基板用金属ポリイミド複合体、それに使用されるポリイミド樹脂、及びこのポリイミド樹脂を生成するためのポリアミド酸ワニス組成物に関する。   The present invention relates to a highly adhesive metal polyimide composite for flexible printed circuit boards, a polyimide resin used therefor, and a polyamic acid varnish composition for producing this polyimide resin.

近年、電子機器の小型化や携帯化に伴い、回路基板材料として部品、素子の高密度実装が可能なフレキシブルプリント基板の利用が増大している。さらなる高密度化に対応した配線の微細化や耐折性等の信頼性の観点から、金属と絶縁樹脂との線熱膨張率の整合ならびに、密着性の向上及び絶縁樹脂層を形成するポリイミド層の薄膜化が必要とされている。   In recent years, with the miniaturization and portability of electronic devices, the use of flexible printed boards capable of high-density mounting of components and elements as circuit board materials is increasing. From the viewpoint of reliability such as miniaturization of wiring corresponding to further higher density and folding resistance, matching of linear thermal expansion coefficient of metal and insulating resin, improvement of adhesion, and polyimide layer forming insulating resin layer It is necessary to reduce the film thickness.

フレキシブル基板用金属ポリイミド複合材料の製造法として、ポリアミド酸溶液を金属箔に直接塗布して成膜するキャスト法が知られているが、金属との線熱膨張率の整合と、高密着性を同時に付与することは困難であり、密着性を確保するためには、熱可塑性ポリイミド、ガラス転移温度の低い可溶性ポリイミドもしくは、イミド化後のガラス転移温度の低いポリアミド酸溶液による接着層が必要となり、それを実現するために多層塗りによる製法がとられている(特許文献1参照)。そのため、製造コストの上昇、フィルムの厚膜化による基板コストの上昇、耐折性の低下ならびに実装時の高温接合時において接着層が変形することによる配線不良等の信頼性低下をもたらしていた。接着層を別途設けずにイミダゾール化合物等の添加剤をワニス中に使用することにより密着性を向上させる検討もなされているが(特許文献2参照)、イミダゾール化合物がフィルム中で可塑剤として働いてしまうため、ガラス転移温度や線熱膨張率等耐熱性の低下をもたらすという不具合があった。
特許第2746555号公報 特開平4-85363号公報
As a method for producing a metal polyimide composite material for a flexible substrate, a casting method in which a polyamic acid solution is directly applied to a metal foil to form a film is known. However, it has good linear thermal expansion coefficient matching with metal and high adhesion. It is difficult to apply at the same time, and in order to ensure adhesion, a thermoplastic polyimide, a soluble polyimide with a low glass transition temperature, or an adhesive layer with a polyamic acid solution with a low glass transition temperature after imidation is required, In order to realize this, a manufacturing method using multi-layer coating has been adopted (see Patent Document 1). Therefore, an increase in manufacturing cost, an increase in substrate cost due to a thick film, a decrease in folding resistance, and a decrease in reliability such as a wiring failure due to deformation of the adhesive layer during high-temperature bonding during mounting have been brought about. Although studies have been made to improve adhesion by using an additive such as an imidazole compound in the varnish without separately providing an adhesive layer (see Patent Document 2), the imidazole compound works as a plasticizer in the film. Therefore, there is a problem that the heat resistance such as the glass transition temperature and the linear thermal expansion coefficient is reduced.
Japanese Patent No. 2746555 Japanese Unexamined Patent Publication No. 4-85363

本発明は、上記のような状況を鑑みてなされたもので、金属上のポリイミド絶縁層は、接着層を介することなく金属との密着性に優れ、かつ線熱膨張率が金属の線熱膨張率同等となる絶縁層を形成できるポリアミド酸ワニス組成物、及び、それを用いたフレキシブルプリント基板用金属ポリイミド複合体を提供することを目的とする。   The present invention has been made in view of the above situation, and the polyimide insulating layer on the metal has excellent adhesion to the metal without using an adhesive layer, and the linear thermal expansion coefficient of the metal is linear thermal expansion. It aims at providing the polyamic-acid varnish composition which can form the insulating layer used as an equivalent rate, and the metal polyimide composite for flexible printed circuit boards using the same.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、芳香族テトラカルボン酸ニ無水物と芳香族ジアミンとの付加重合により得られるポリアミド酸と、溶媒とからなるポリアミド酸ワニス中に、ビニルトリアジン化合物を添加して得られるポリアミド酸ワニス組成物を金属箔上に塗布乾燥し、イミド化させることにより、上述の目的を達成できることを見出し、本発明をなすに至った。
すなわち、本発明は、以下のとおりである。
(1)芳香族テトラカルボン酸ニ無水物と芳香族ジアミンとの付加重合により得られるポ
リアミド酸と溶媒とからなるポリアミド酸ワニスであって、ビニルトリアジン化合物を含むことを特徴とするポリアミド酸ワニス組成物。
(2)(1)のビニルトリアジン化合物が、ポリアミド酸100重量部に対して0.01〜10重量部であるポリアミド酸ワニス組成物。
(3)(1)のポリアミド酸ワニス組成物よりイミド化させた後の、50〜200℃における線熱膨張率が、8〜25ppm/℃であるポリイミド樹脂。
(4)金属上に上記(1)記載のポリアミド酸ワニス組成物をイミド化して得られたポリイミド層が成膜されてなる金属ポリイミド複合体。
(5)上記(4)記載の金属が銅であるポリイミド銅複合体。
As a result of intensive studies to solve the above problems, the present inventor has developed a polyamic acid varnish comprising a polyamic acid obtained by addition polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine, and a solvent. In addition, the present inventors have found that the above-mentioned object can be achieved by applying and drying a polyamic acid varnish composition obtained by adding a vinyltriazine compound onto a metal foil and imidizing it.
That is, the present invention is as follows.
(1) A polyamic acid varnish comprising a polyamic acid obtained by addition polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine, and a solvent, the polyamic acid varnish composition comprising a vinyltriazine compound object.
(2) The polyamic acid varnish composition wherein the vinyl triazine compound of (1) is 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyamic acid.
(3) The polyimide resin whose linear thermal expansion coefficient in 50-200 degreeC after making it imidate from the polyamic-acid varnish composition of (1) is 8-25 ppm / degrees C.
(4) A metal polyimide composite comprising a polyimide layer obtained by imidizing the polyamic acid varnish composition described in (1) above on a metal.
(5) A polyimide copper composite in which the metal according to (4) is copper.

本発明のポリアミド酸ワニス組成物は、例えば、該ポリアミド酸ワニス組成物を金属上に塗布乾燥加熱イミド化することにより金属ポリイミド複合体を作成できる。そうして得られた金属ポリイミド複合体は、金属との密着性に優れ、かつポリイミド樹脂の線熱膨張率が金属箔の線熱膨張率と同等であるため、高密度配線や高信頼性を必要とするフレキシブルプリント基板やICパッケージ基板等の配線基材に好適である。   The polyamic acid varnish composition of the present invention can be prepared, for example, by applying the polyamic acid varnish composition onto a metal, drying, and heating and imidizing. The metal polyimide composite thus obtained has excellent adhesion to the metal, and the linear thermal expansion coefficient of the polyimide resin is equivalent to the linear thermal expansion coefficient of the metal foil. It is suitable for wiring substrates such as required flexible printed boards and IC package boards.

以下、本発明について具体的に説明する。
ビニルトリアジン化合物とは、トリアジン骨格を有し、ビニル基由来の二重結合を有する官能基がトリアジン骨格に結合している化合物である。具体的には、(式1)〜(式4)に示すように、2,4−ジアミノ−6−ビニル−s−トリアジン(式1)、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン(式2)及びこれらに酸が付加した2,4−ジアミノ−6−ビニル−s−トリアジン イソシアヌル酸付加物(式3)、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジン イソシアヌル酸付加物(式4)等があげられる。耐熱性や価格面等から2,4−ジアミノ−6s−トリアジン、2,4−ジアミノ−6−メタクリロイルオキシエチル−s−トリアジンを利用することが好ましい。
Hereinafter, the present invention will be specifically described.
The vinyl triazine compound is a compound having a triazine skeleton and a functional group having a double bond derived from a vinyl group bonded to the triazine skeleton. Specifically, as shown in (Formula 1) to (Formula 4), 2,4-diamino-6-vinyl-s-triazine (Formula 1), 2,4-diamino-6-methacryloyloxyethyl-s -Triazine (formula 2) and 2,4-diamino-6-vinyl-s-triazine with an acid added thereto, isocyanuric acid adduct (formula 3), 2,4-diamino-6-methacryloyloxyethyl-s-triazine Isocyanuric acid adduct (formula 4) and the like. In view of heat resistance and price, 2,4-diamino-6s-triazine and 2,4-diamino-6-methacryloyloxyethyl-s-triazine are preferably used.

Figure 2007161880
Figure 2007161880

Figure 2007161880
Figure 2007161880

Figure 2007161880
Figure 2007161880

Figure 2007161880
Figure 2007161880

ビニルトリアジン化合物のポリアミド酸ワニス組成物中への配合量は、固形成分であるポリアミド酸100重量部に対し、密着性及び耐熱性の観点から、0.01〜10重量部が好ましく、より好ましくは0.1〜5重量部である。0.01重量部未満では、接着強度及び耐熱性に劣る傾向にあり10重量部を超えると耐熱性が低下する傾向にあるからである。   The blending amount of the vinyl triazine compound in the polyamic acid varnish composition is preferably 0.01 to 10 parts by weight, more preferably 100 parts by weight of the polyamic acid which is a solid component, from the viewpoint of adhesion and heat resistance. 0.1 to 5 parts by weight. This is because if the amount is less than 0.01 part by weight, the adhesive strength and the heat resistance tend to be inferior, and if it exceeds 10 parts by weight, the heat resistance tends to decrease.

本発明のポリアミド酸ワニスにおける芳香族テトラカルボン酸ニ無水物としては、従来公知のものを使用することができる。例えば、3,4,3',4'−ビフェニルテトラカルボン酸、1,3−ジヒドロ−1,3−ジオキソ−5−イソベンゾフランカルボン酸−1,4−フェニレンエステル、2,3,3',4'−ビフェニルテトラカルボン酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、オキシジフタル酸、ジフェニルスルホンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸等の二無水物があげられる。線熱膨張率やガラス転移温度等の耐熱性を向上する観点から、3,4,3',4'−ビフェニルテトラカルボン酸ニ無水物、1,3−ジヒドロ−1,3−ジオキソ−5−イソベンゾフランカルボン酸−1,4−フェニレンエステル二無水物、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物を使用することが好ましい。   A conventionally well-known thing can be used as aromatic tetracarboxylic dianhydride in the polyamic-acid varnish of this invention. For example, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, 1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic acid-1,4-phenylene ester, 2,3,3 ′, And dianhydrides such as 4′-biphenyltetracarboxylic acid, pyromellitic acid, benzophenonetetracarboxylic acid, oxydiphthalic acid, diphenylsulfonetetracarboxylic acid, and 2,3,6,7-naphthalenetetracarboxylic acid. From the viewpoint of improving heat resistance such as linear thermal expansion coefficient and glass transition temperature, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 1,3-dihydro-1,3-dioxo-5- Use of isobenzofurancarboxylic acid-1,4-phenylene ester dianhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride preferable.

また、各々の芳香族テトラカルボン酸ニ無水物を単独で用いても、併用して用いてもよい。また、非芳香族テトラカルボン酸二無水物、シクロブタンテトラカルボン酸、シクロヘキサンテトラカルボン酸等の二無水物を、本発明の効果を損なわない範囲で用いてもよい。   Moreover, each aromatic tetracarboxylic dianhydride may be used alone or in combination. Moreover, you may use dianhydrides, such as a non-aromatic tetracarboxylic dianhydride, cyclobutane tetracarboxylic acid, and cyclohexane tetracarboxylic acid, in the range which does not impair the effect of this invention.

本発明のポリアミド酸ワニスにおける芳香族ジアミンにおいても、従来公知のものを使用することができる。例えば、パラフェニレンジアミン、メタフェニレンジアミン、 4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4'−ジアミノベンズアニリド、2,2−ジメチル−4,4−ジアミノビフェニル、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、4,4‘−ビス(4−アミノフェノキシ)ビフェニル、4,4‘−ビス(3−アミノフェノキシ)ビフェニル、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホンがあげられる。線熱膨張率性能やガラス転移温度などの耐熱性を向上する観点から、パラフェニレンジアミン、メタフェニレンジアミン、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4‘−ビス(4−アミノフェノキシ)ビフェニルを使用することが好ましい。   A conventionally well-known thing can be used also in the aromatic diamine in the polyamic-acid varnish of this invention. For example, paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminobenzanilide, 2,2-dimethyl-4,4-diaminobiphenyl, 1, 3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4-aminophenoxyphenyl) propane, 4,4′-bis (4-aminophenoxy) Biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, and bis (4- (3-aminophenoxy) phenyl) sulfone are exemplified. From the viewpoint of improving heat resistance such as linear thermal expansion coefficient performance and glass transition temperature, paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-bis ( 4-aminophenoxy) biphenyl is preferably used.

本発明におけるポリアミド酸は、前記のテトラカルボン酸二無水物成分とジアミン成分を反応させて得られる。ポリアミド酸を構成する繰り返し単位の規則性は、ブロック構造が含有されていても、あるいはランダム構造であってもよい。   The polyamic acid in this invention is obtained by making the said tetracarboxylic dianhydride component and diamine component react. The regularity of the repeating unit constituting the polyamic acid may include a block structure or a random structure.

本発明のポリイミド樹脂は、本発明のポリアミド酸ワニス組成物をイミド化することにより得られる。通常、製造にあたったテトラカルボン酸ニ無水物とジアミン化合物の仕込み比を調節することによって、生成するポリイミド樹脂の分子量や末端構造を調節することができる。好ましい分子量を得るための全テトラカルボン酸二無水物と全ジアミンのモル比は、0.90〜1.10である。   The polyimide resin of the present invention can be obtained by imidizing the polyamic acid varnish composition of the present invention. Usually, the molecular weight and terminal structure of the polyimide resin to be produced can be adjusted by adjusting the charging ratio of the tetracarboxylic dianhydride and the diamine compound used in the production. The molar ratio of total tetracarboxylic dianhydride to total diamine for obtaining a preferred molecular weight is 0.90 to 1.10.

得られるポリイミドの末端構造は、製造時における全テトラカルボン酸二無水物と全ジアミンのモル仕込み比によって、アミンもしくは酸無水物構造となる。末端構造がアミンの場合は、カルボン酸無水物にて末端封止してもよい。これらの例としては、無水フタル酸、4-フェニルフタル酸無水物、4−フェノキシフタル酸無水物、4−フェニルカルボニルフタル酸無水物、4−フェニルスルホニルフタル酸無水物等があげられるが、これに限るものではない。これらのカルボン酸無水物を単独もしくは2種以上を混合して用いてもよい。   The terminal structure of the resulting polyimide becomes an amine or acid anhydride structure depending on the molar charge ratio of all tetracarboxylic dianhydrides and all diamines at the time of production. When the terminal structure is an amine, it may be end-capped with a carboxylic acid anhydride. Examples of these include phthalic anhydride, 4-phenylphthalic anhydride, 4-phenoxyphthalic anhydride, 4-phenylcarbonylphthalic anhydride, 4-phenylsulfonylphthalic anhydride, and the like. It is not limited to. You may use these carboxylic anhydrides individually or in mixture of 2 or more types.

また、末端構造が酸無水物の場合は、モノアミン類にて末端封止してもよい。具体的には、アニリン、トルイジン、アミノフェノール、アミノビフェニル、アミノベンゾフェノン、ナフチルアミン等があげられる。これらのモノアミンを単独もしくは2種以上を混合して用いてもよい。   In addition, when the terminal structure is an acid anhydride, the terminal structure may be capped with a monoamine. Specific examples include aniline, toluidine, aminophenol, aminobiphenyl, aminobenzophenone, naphthylamine and the like. You may use these monoamines individually or in mixture of 2 or more types.

本発明のポリイミド樹脂は、金属箔の線熱膨張率との整合性の観点から、50〜200℃における線熱膨張率が、8〜25ppm/℃であるポリイミドであることが好ましい。このような線熱膨張率の調整は、芳香族テトラカルボン酸二無水物と芳香族ジアミンの選択の調整によって行うことができる。   From the viewpoint of consistency with the linear thermal expansion coefficient of the metal foil, the polyimide resin of the present invention is preferably a polyimide having a linear thermal expansion coefficient at 50 to 200 ° C. of 8 to 25 ppm / ° C. Adjustment of such a linear thermal expansion coefficient can be performed by adjustment of selection of aromatic tetracarboxylic dianhydride and aromatic diamine.

本発明のポリアミド酸ワニス組成物における溶媒としては、前記のポリアミド酸と混合するものであればよく、例として、γ−ブチロラクトン、γ−バレロラクトン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジオキサン、1,4−ジオキサン、シクロペンタノン、シクロヘキサノン、ジエチレングリコールジメチルエーテル、テトラメチル尿素等が挙げられる。本発明に使用する好ましい溶媒は、γ−ブチロラクトン、N,N−ジメチルアセトアミドおよびN−メチル−2−ピロリドンである。これらは単独、または2種以上を混合して用いることができる。   As a solvent in the polyamic acid varnish composition of the present invention, any solvent can be used as long as it is mixed with the above polyamic acid. Examples thereof include γ-butyrolactone, γ-valerolactone, N-methyl-2-pyrrolidone, N, N- Examples include dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dioxane, 1,4-dioxane, cyclopentanone, cyclohexanone, diethylene glycol dimethyl ether, and tetramethylurea. Preferred solvents for use in the present invention are γ-butyrolactone, N, N-dimethylacetamide and N-methyl-2-pyrrolidone. These can be used alone or in admixture of two or more.

これらの溶媒の使用量には、特に制限はなく、ポリアミド酸ワニス組成物の粘度等に応じて利用することができる。   There is no restriction | limiting in particular in the usage-amount of these solvents, According to the viscosity etc. of a polyamic-acid varnish composition, it can utilize.

また、物性を損なわない範囲において、添加剤として、脱水剤、シリカ等のフィラー、及びシランカップリング剤やチタネートカップリング剤等の表面改質剤や、ポリイミドの硬化を促進するピリジン、イミダゾール、トリアゾール等のイミド化剤等を加えても良い。   In addition, as long as physical properties are not impaired, additives such as dehydrating agents, fillers such as silica, surface modifiers such as silane coupling agents and titanate coupling agents, and pyridine, imidazole, and triazole that promote curing of polyimide An imidizing agent, etc. may be added.

本発明のポリアミド酸ワニス組成物は、芳香族テトラカルボン酸ニ無水物と芳香族ジアミンとを溶媒中で付加重合させることによって得られるポリアミド酸ワニス中に、ビニルトリアジン化合物を添加し、混合溶解することにより得られる。   In the polyamic acid varnish composition of the present invention, a vinyl triazine compound is added to a polyamic acid varnish obtained by addition polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine in a solvent, and mixed and dissolved. Can be obtained.

溶媒中での固形分濃度に特に制限はない。固形分濃度とは、溶媒を含めた全芳香族テトラカルボン酸ニ無水物と芳香族ジアミンの総重量に対する全芳香族テトラカルボン酸ニ無水物と芳香族ジアミンの重量の百分率である。好ましい固形分濃度は、5〜35%であり。より好ましくは10〜25%である。   There is no restriction | limiting in particular in solid content concentration in a solvent. The solid content concentration is a percentage of the weight of the wholly aromatic tetracarboxylic dianhydride and the aromatic diamine to the total weight of the wholly aromatic tetracarboxylic dianhydride and the aromatic diamine including the solvent. A preferable solid content concentration is 5 to 35%. More preferably, it is 10 to 25%.

付加重合条件については、従来より行われているポリアミド酸の付加重合条件に準じて行うことができる。具体的には、まず、窒素、ヘリウム、アルゴンの不活性雰囲気下、大気圧中で芳香族ジアミン類を溶剤に0℃〜80℃にて溶解させ、40〜100℃にてテトラカルボン酸ニ無水物をすみやかに加えながら、4〜8時間付加重合させる。これによりポリアミド酸ワニス組成物が得られる。得られるポリアミド酸ワニスの粘度については、1poiseから250poiseとなるように、固形分濃度を調節することが好ましい。 About addition polymerization conditions, it can carry out according to the addition polymerization conditions of the polyamic acid currently performed conventionally. Specifically, first, an aromatic diamine is dissolved in a solvent at 0 ° C. to 80 ° C. in an inert atmosphere such as nitrogen, helium, or argon at atmospheric pressure, and the tetracarboxylic acid nitric acid is dissolved at 40 ° C. to 100 ° C. The addition polymerization is carried out for 4 to 8 hours while the anhydride is quickly added. Thereby, a polyamic acid varnish composition is obtained. About the viscosity of the polyamic acid varnish obtained, it is preferable to adjust the solid content concentration so as to be from 1 poise to 250 poise.

本発明のポリイミド樹脂は、本発明のポリアミド酸ワニス組成物を加熱下で脱溶媒、熱イミド化(脱水)することにより得ることができる。脱溶媒及び熱イミド化の条件に特に制限はないが、好ましくは窒素、ヘリウム、アルゴン等の不活性雰囲気下にて、イミド化反応が進行する温度となる200〜400℃にて行うことができる。反応時間についても特に制限はないが、イミド化の進行、生産性を考慮すると、好ましくは10分〜6時間である。金属と複合体にした際の信頼性の観点から、ポリイミド樹脂の50〜200℃における線熱膨張率は、8〜25ppm/℃であることが好ましい。   The polyimide resin of the present invention can be obtained by subjecting the polyamic acid varnish composition of the present invention to solvent removal and thermal imidization (dehydration) under heating. There are no particular restrictions on the conditions for solvent removal and thermal imidization, but it can be carried out at 200 to 400 ° C., which is the temperature at which the imidization reaction proceeds, preferably in an inert atmosphere such as nitrogen, helium, or argon. . Although there is no restriction | limiting in particular also about reaction time, When progress of imidation and productivity are considered, Preferably it is 10 minutes-6 hours. From the viewpoint of reliability when a composite is formed with a metal, the linear thermal expansion coefficient of the polyimide resin at 50 to 200 ° C. is preferably 8 to 25 ppm / ° C.

本発明の金属ポリイミド複合体とは、金属上にポリイミド樹脂絶縁層が設けられているものである。ポリイミド層の厚みは、特に限定されないが、好ましくは50μm以下、より好ましくは3〜25μmである。   The metal polyimide composite of the present invention is one in which a polyimide resin insulating layer is provided on a metal. Although the thickness of a polyimide layer is not specifically limited, Preferably it is 50 micrometers or less, More preferably, it is 3-25 micrometers.

金属としては、種々のものを使用することができるが、フレキシブルプリント基板用としては、アルミニウム箔、銅箔、ステンレス箔などの金属箔や、ステンレス板、アルミニウム板が好適に用いられる。これらの金属箔は、マット処理、メッキ処理、クロメート処理、アルミニウムアルコラート処理、アルミニウムキレート処理、シランカップリング剤処理等の表面処理を行ってもよい。   Various metals can be used, but metal foils such as aluminum foil, copper foil, and stainless steel foil, stainless steel plate, and aluminum plate are suitably used for flexible printed circuit boards. These metal foils may be subjected to surface treatment such as mat treatment, plating treatment, chromate treatment, aluminum alcoholate treatment, aluminum chelate treatment, silane coupling agent treatment, and the like.

金属の厚みは、特に限定されないが、好ましくは35μm以下、より好ましくは18μm以下である。   Although the thickness of a metal is not specifically limited, Preferably it is 35 micrometers or less, More preferably, it is 18 micrometers or less.

金属ポリイミド複合体は、以下の様にして製造することができる。まず、本発明のポリアミド酸組成物を金属上にブレードコーターや、リップコーター、グラビアコーター等を用い塗工を行い、その後乾燥させてポリイミド前駆体層としてのポリアミド酸層を形成する。塗工厚は、ポリアミド酸ワニス組成物の固形分濃度に影響される。ポリアミド酸層を、窒素、ヘリウム、アルゴン等の不活性雰囲気下にて、200〜400℃にて熱イミド化させることによりポリイミド樹脂絶縁層を形成することができる。   The metal polyimide composite can be produced as follows. First, the polyamic acid composition of the present invention is coated on a metal using a blade coater, a lip coater, a gravure coater or the like, and then dried to form a polyamic acid layer as a polyimide precursor layer. The coating thickness is affected by the solid content concentration of the polyamic acid varnish composition. A polyimide resin insulating layer can be formed by thermally imidizing the polyamic acid layer at 200 to 400 ° C. in an inert atmosphere such as nitrogen, helium, and argon.

このようにして得られる金属ポリイミド複合体は、金属、特に銅とポリイミド樹脂層との密着性が良好である。   The metal polyimide composite obtained in this way has good adhesion between metal, particularly copper and the polyimide resin layer.

以下実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

尚、以下の実施例において、ポリアミド酸ワニス組成物の特性や、イミド化後のポリイミド樹脂および、銅ポリイミド複合体の物性測定は、次のようにして行った。
(1)E型粘度
E型粘度計(東機産業株式会社製)を用い、23℃において回転数1rpm〜5rpmにてポリアミド酸ワニスの粘度測定を行った。
(2)ガラス転移温度(Tg)および線熱膨張率(CTE)
得られた銅ポリイミド複合体を長さ50mm、幅3mm、厚み25μmに切出し、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅層をエッチング処理し水洗を行った。得られたポリイミドフィルムを105℃にて熱風乾燥機にて乾燥させた後、熱分析装置(TMA-50、株式会社島津製作所製)を用いて引っ張りモード、5g荷重、試料長15mm、昇温速度10℃/min、N2雰囲気下にて測定を行い、接線の交点からTgを求め、また50℃〜200℃の線熱膨張率を算出した。
(3)接着強度
上記と同様にして銅ポリイミド複合体を長さ150mm、幅10mm、厚み25μmに切出し、幅10mmの中央部の幅3mmをビニールテープにてマスキングし、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅層をエッチング処理し水洗を行った。その後、ビニールテープを除去し、得られたフレキシブル基板を105℃にて熱風乾燥機にて乾燥させた後、幅3mmの銅箔をポリイミド層から剥離し、その応力を測定した。剥離角度を180度、剥離速度を50mm/minとした。
(4)ハンダ耐熱性
縦3cm×横6cmの銅ポリイミド複合体を切り出し、中央部の2.5cm×2.5cmをビニールテープにてマスキングし、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔層をエッチング処理し水洗を行った。その後、ビニールテープを除去し、得られた銅ポリイミド複合体を105℃にて熱風乾燥機にて乾燥させた後、300℃に設定したハンダ浴中に試料を銅箔光沢面側をハンダ浴に接触するように1min静置した際の外観変化による評価を行った。
(5)煮沸ハンダ耐熱性
上記と同様にして縦3cm×横6cmの銅ポリイミド複合体を切り出し、中央部の2.5cm×2.5cmをビニールテープにてマスキングし、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔層をエッチング処理し水洗を行った。その後、ビニールテープを除去し、得られた試料を煮沸水中にて2時間浸漬し、その後室温にて水中に浸漬し取出し、表面に付着する水をふき取り、すみやかに、280℃1min静置した際の外観変化による評価を行った。
(6)吸水率
得られた銅ポリイミド複合体を縦10cm×横10cm×厚さ25μmに切出し、塩化第2鉄水溶液(鶴見曹達製)に浸漬し、銅箔層をエッチング処理し水洗を行った。得られたポリイミドフィルムを105℃にて60分間加熱乾燥した後、質量を測定し、その後、室温中で水中に24時間浸漬させた後、フィルム表面の水滴をふき取り質量を測定した。吸水率は、以下の計算式にて計算した。
吸水率(%)=(浸漬後の質量−浸漬前の質量)/浸漬前の質量×100
In the following examples, the properties of the polyamic acid varnish composition and the physical properties of the polyimide resin after imidization and the copper polyimide composite were measured as follows.
(1) E-type viscosity Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.), the viscosity of the polyamic acid varnish was measured at 23 ° C. at a rotational speed of 1 rpm to 5 rpm.
(2) Glass transition temperature (Tg) and coefficient of linear thermal expansion (CTE)
The obtained copper polyimide composite was cut into a length of 50 mm, a width of 3 mm, and a thickness of 25 μm, immersed in a ferric chloride aqueous solution (manufactured by Tsurumi Soda), and the copper layer was etched and washed with water. After drying the obtained polyimide film at 105 ° C. with a hot air dryer, using a thermal analyzer (TMA-50, manufactured by Shimadzu Corporation), a tensile mode, a 5 g load, a sample length of 15 mm, and a heating rate. Measurement was performed at 10 ° C./min in an N 2 atmosphere, Tg was determined from the intersection of tangents, and the linear thermal expansion coefficient from 50 ° C. to 200 ° C. was calculated.
(3) Adhesive strength In the same manner as described above, a copper polyimide composite was cut into a length of 150 mm, a width of 10 mm, and a thickness of 25 μm, and a width of 3 mm at the center of the width of 10 mm was masked with a vinyl tape. The copper layer was etched and washed with water. Thereafter, the vinyl tape was removed, and the obtained flexible substrate was dried with a hot air dryer at 105 ° C., and then a copper foil having a width of 3 mm was peeled from the polyimide layer, and the stress was measured. The peeling angle was 180 degrees and the peeling speed was 50 mm / min.
(4) Solder heat resistance Cut out 3cm x 6cm copper polyimide composite, mask 2.5cm x 2.5cm at the center with vinyl tape, and immerse in ferric chloride aqueous solution (Tsurumi Soda). The copper foil layer was etched and washed with water. Thereafter, the vinyl tape was removed, and the obtained copper polyimide composite was dried with a hot air dryer at 105 ° C., and then the sample was placed in a solder bath set at 300 ° C. with the copper foil glossy side as a solder bath. Evaluation was performed based on changes in appearance when left to stand for 1 min.
(5) Boiling solder heat resistance In the same manner as described above, a copper polyimide composite having a length of 3 cm and a width of 6 cm was cut out, and a central portion of 2.5 cm × 2.5 cm was masked with vinyl tape, and a ferric chloride aqueous solution (Tsurumi The copper foil layer was etched and washed with water. Thereafter, the vinyl tape was removed, and the obtained sample was immersed in boiling water for 2 hours, then immersed in water at room temperature, taken out, wiped off water adhering to the surface, and immediately left at 280 ° C. for 1 min. Evaluation was made based on the appearance change.
(6) Water Absorption Rate The obtained copper polyimide composite was cut into a length of 10 cm × width of 10 cm × thickness of 25 μm and immersed in a ferric chloride aqueous solution (manufactured by Tsurumi Soda), and the copper foil layer was etched and washed with water. . The obtained polyimide film was heated and dried at 105 ° C. for 60 minutes, and then the mass was measured. Thereafter, the polyimide film was immersed in water at room temperature for 24 hours, and then water droplets on the film surface were wiped off and the mass was measured. The water absorption was calculated by the following formula.
Water absorption (%) = (mass after immersion−mass before immersion) / mass before immersion × 100

[実施例1]
ステンレススチール製の碇型撹拌器を取り付けた容量1000mlのガラス製のセパラブル3つ口フラスコに、パラフェニレンジアミン(精工化学株式会社製)23.7g(以下PPDと略す)、4,4’−ジアミノジフェニルエーテル(和歌山精化工業株式会社製)(以下ODAと略す)11gを窒素ガス雰囲気下で固形分濃度15wt%となるように、ジメチルアセトアミド(脱水)(和光純薬工業株式会社製)(以下DMAcと略す)694mlに50〜80℃にて溶解し、80℃に保持した。その後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(宇部興産製)(以下BPDAと略す)80.8gをフラスコに除々に加え、80〜100℃に保持しながら4時間撹拌した。
[Example 1]
To a 1000 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer, 23.7 g (hereinafter abbreviated as PPD) of paraphenylenediamine (Seiko Chemical Co., Ltd.), 4,4′-diamino Dimethyl ether (manufactured by Wakoyama Seika Kogyo Co., Ltd.) (hereinafter abbreviated as ODA) 11 g of dimethylacetamide (dehydrated) (manufactured by Wako Pure Chemical Industries, Ltd.) (hereinafter DMAc) so that the solid content concentration is 15 wt% in a nitrogen gas atmosphere. It was dissolved in 694 ml at 50-80 ° C. and kept at 80 ° C. Thereafter, 80.8 g of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (manufactured by Ube Industries) (hereinafter abbreviated as BPDA) was gradually added to the flask and kept at 80 to 100 ° C. for 4 hours. Stir.

反応終了後のポリアミド酸樹脂溶液の固形分濃度は15wt%であり、E型粘度は、65poiseであった。このポリアミド酸50gに、2,4−ジアミノ−6−ビニル−s−トリアジン(四国化成株式会社製 製品名VT)0.45g(固形分に対して6重量部相当)を添加して攪拌し、均一なポリアミド酸ワニスを得た。E型粘度は、75poiseであった。   The solid content concentration of the polyamic acid resin solution after completion of the reaction was 15 wt%, and the E-type viscosity was 65 poise. To 50 g of this polyamic acid, 0.45 g of 2,4-diamino-6-vinyl-s-triazine (product name VT manufactured by Shikoku Kasei Co., Ltd.) (corresponding to 6 parts by weight with respect to the solid content) was added and stirred. A uniform polyamic acid varnish was obtained. The E type viscosity was 75 poise.

このポリアミド酸ワニスを80℃に保温された銅箔F3−WS(厚み18μm、電解箔:古河サーキットホイル株式会社)上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して、厚み45μmのポリアミド酸層を形成した。空気循環式の乾燥炉にて窒素雰囲気下で150℃30分、200℃60分、400℃60分(昇温速度5℃/min)の熱処理(イミド化)を実施し、25〜26μmのポリイミド絶縁層を有する銅ポリイミド複合体を得た。   This polyamic acid varnish was coated on copper foil F3-WS (thickness 18 μm, electrolytic foil: Furukawa Circuit Foil Co., Ltd.) kept at 80 ° C. and allowed to stand for 30 minutes, and then 100 ° C. for 30 minutes in an air circulating drying oven. It dried and formed the 45-micrometer-thick polyamic acid layer. Heat treatment (imidization) at 150 ° C. for 30 minutes, 200 ° C. for 60 minutes, and 400 ° C. for 60 minutes (temperature increase rate: 5 ° C./min) in a nitrogen circulating oven in an air circulation type drying furnace, and a polyimide of 25 to 26 μm A copper polyimide composite having an insulating layer was obtained.

[実施例2]
実施例1で合成した、ポリアミド酸50gに、2,4−ジアミノ−6−ビニル−s−トリアジン(四国化成株式会社製 製品名VT)0.27g(固形分に対して3.6重量部相当)、2−エチル−2−エチル−4−メチル−イミダゾール(四国化成株式会社製 製品名2E4MZ)0.18g(固形分に対して2.4重量部相当)を添加し攪拌し,均一なポリアミド酸ワニスを得た。E型粘度は、75poiseであった。
[Example 2]
To 50 g of the polyamic acid synthesized in Example 1, 0.27 g of 2,4-diamino-6-vinyl-s-triazine (product name VT manufactured by Shikoku Kasei Co., Ltd.) (corresponding to 3.6 parts by weight relative to the solid content) ), 2-ethyl-2-ethyl-4-methyl-imidazole (product name 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) 0.18 g (equivalent to 2.4 parts by weight with respect to the solid content) was added and stirred to obtain a uniform polyamide. An acid varnish was obtained. The E type viscosity was 75 poise.

このポリアミド酸ワニスを80℃に保温された銅箔F3−WS(厚み18μm、電解箔:古河サーキットホイル株式会社)上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して、厚み45μmのポリアミド酸層を形成した。空気循環式の乾燥炉にて窒素雰囲気下で150℃30分、200℃60分、400℃60分(昇温速度5℃/min)の熱処理(イミド化)を実施し、25〜26μmのポリイミド絶縁層を有する銅ポリイミド複合体を得た。   This polyamic acid varnish was coated on copper foil F3-WS (thickness 18 μm, electrolytic foil: Furukawa Circuit Foil Co., Ltd.) kept at 80 ° C. and allowed to stand for 30 minutes, and then 100 ° C. for 30 minutes in an air circulating drying oven. It dried and formed the 45-micrometer-thick polyamic acid layer. Heat treatment (imidization) at 150 ° C. for 30 minutes, 200 ° C. for 60 minutes, and 400 ° C. for 60 minutes (temperature increase rate: 5 ° C./min) in a nitrogen circulating oven in an air circulation type drying furnace, and a polyimide of 25 to 26 μm A copper polyimide composite having an insulating layer was obtained.

[比較例1]
ステンレススチール製の碇型撹拌器を取り付けた容量1000mlのガラス製のセパラブル3つ口フラスコに、PPD(精工化学株式会社製)23.7g、ODA(和歌山精化工業株式会社製)11gを窒素ガス雰囲気下で固形分濃度15wt%となるように、DMAc(脱水)(和光純薬工業株式会社製)694mlに、50〜80℃にて溶解し、80℃に保持した。その後、BPDA(宇部興産製)80.8gをフラスコに除々に加え、80〜100℃に保持しながら4時間撹拌した。
[Comparative Example 1]
In a 1000 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer, 23.7 g of PPD (manufactured by Seiko Chemical Co., Ltd.) and 11 g of ODA (manufactured by Wakayama Seika Kogyo Co., Ltd.) are added with nitrogen gas. It melt | dissolved in 694 ml of DMAc (dehydration) (made by Wako Pure Chemical Industries Ltd.) at 50-80 degreeC so that it might become 15 wt% of solid content concentration under an atmosphere, and hold | maintained at 80 degreeC. Thereafter, 80.8 g of BPDA (manufactured by Ube Industries) was gradually added to the flask and stirred for 4 hours while maintaining at 80 to 100 ° C.

反応終了後のポリアミド酸樹脂溶液の固形分濃度は15wt%であり、E型粘度は、65poiseであった。ポリアミド酸50gに、2−エチル−4−メチル−イミダゾール(四国化成株式会社製 製品名2E4MZ)0.45g(固形分に対して6重量部相当)を添加して攪拌し、均一なポリアミド酸ワニスを得た。E型粘度は、75poiseであった。   The solid content concentration of the polyamic acid resin solution after completion of the reaction was 15 wt%, and the E-type viscosity was 65 poise. To 50 g of polyamic acid, 0.45 g of 2-ethyl-4-methyl-imidazole (product name 2E4MZ, manufactured by Shikoku Kasei Co., Ltd.) (equivalent to 6 parts by weight with respect to the solid content) was added and stirred to obtain a uniform polyamic acid varnish. Got. The E type viscosity was 75 poise.

このポリアミド酸ワニスを80℃に保温された銅箔F3−WS(厚み18μm、電解箔:古河サーキットホイル株式会社)上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して、厚み45μmのポリアミド酸層を形成した。空気循環式の乾燥炉にて窒素雰囲気下で150℃30分、200℃60分、400℃60分(昇温速度5℃/min)の熱処理(イミド化)を実施し、25〜26μmのポリイミド絶縁層を有する銅ポリイミド複合体を得た。   This polyamic acid varnish was coated on copper foil F3-WS (thickness 18 μm, electrolytic foil: Furukawa Circuit Foil Co., Ltd.) kept at 80 ° C. and allowed to stand for 30 minutes, and then 100 ° C. for 30 minutes in an air circulating drying oven. It dried and formed the 45-micrometer-thick polyamic acid layer. Heat treatment (imidization) at 150 ° C. for 30 minutes, 200 ° C. for 60 minutes, and 400 ° C. for 60 minutes (temperature increase rate: 5 ° C./min) in a nitrogen circulating oven in an air circulation type drying furnace, and a polyimide of 25 to 26 μm A copper polyimide composite having an insulating layer was obtained.

[比較例2]
ステンレススチール製の碇型撹拌器を取り付けた容量1000mlのガラス製のセパラブル3つ口フラスコに、PPD(精工化学株式会社製)23.7g、ODA(和歌山精化工業株式会社製)11gを窒素ガス雰囲気下で固形分濃度15wt%となるように、DMAc(脱水)(和光純薬工業株式会社製)694mlに、50〜80℃にて溶解し、80℃に保持した。その後、BPDA(宇部興産製)80.8gをフラスコに除々に加え、80〜100℃に保持しながら4時間撹拌した。
[Comparative Example 2]
In a 1000 ml glass separable three-necked flask equipped with a stainless steel vertical stirrer, 23.7 g of PPD (manufactured by Seiko Chemical Co., Ltd.) and 11 g of ODA (manufactured by Wakayama Seika Kogyo Co., Ltd.) are added with nitrogen gas. It melt | dissolved in 694 ml of DMAc (dehydration) (made by Wako Pure Chemical Industries Ltd.) at 50-80 degreeC so that it might become 15 wt% of solid content concentration under an atmosphere, and hold | maintained at 80 degreeC. Thereafter, 80.8 g of BPDA (manufactured by Ube Industries) was gradually added to the flask and stirred for 4 hours while maintaining at 80 to 100 ° C.

反応終了後のポリアミド酸樹脂溶液の固形分濃度は15wt%であり、E型粘度は、65poiseであった。ポリアミド酸50gに、ベンゾグアナミン(和光純薬工業株式会社製)0.45g(固形分に対して6重量部相当)を添加して攪拌し、均一なポリアミド酸ワニスを得た。E型粘度は、90poiseであった。   The solid content concentration of the polyamic acid resin solution after completion of the reaction was 15 wt%, and the E-type viscosity was 65 poise. 0.45 g of benzoguanamine (manufactured by Wako Pure Chemical Industries, Ltd.) (equivalent to 6 parts by weight with respect to the solid content) was added to 50 g of polyamic acid and stirred to obtain a uniform polyamic acid varnish. The E type viscosity was 90 poise.

このポリアミド酸ワニスを80℃に保温された銅箔F3−WS(厚み18μm、電解箔:古河サーキットホイル株式会社)上に塗布して30分放置後、空気循環式の乾燥炉で100℃30分乾燥して、厚み45μmのポリアミド酸層を形成した。空気循環式の乾燥炉にて窒素雰囲気下で150℃30分、200℃60分、400℃60分(昇温速度5℃/min)の熱処理(イミド化)を実施し、25〜26μmのポリイミド絶縁層を有する銅ポリイミド複合体を得た。   This polyamic acid varnish was coated on copper foil F3-WS (thickness 18 μm, electrolytic foil: Furukawa Circuit Foil Co., Ltd.) kept at 80 ° C. and allowed to stand for 30 minutes, and then 100 ° C. for 30 minutes in an air circulating drying oven. It dried and formed the 45-micrometer-thick polyamic acid layer. Heat treatment (imidization) at 150 ° C. for 30 minutes, 200 ° C. for 60 minutes, and 400 ° C. for 60 minutes (temperature increase rate: 5 ° C./min) in a nitrogen circulating oven in an air circulation type drying furnace, and a polyimide of 25 to 26 μm A copper polyimide composite having an insulating layer was obtained.

本発明のポリアミド酸ワニス組成物は、ポリイミド絶縁層が、接着剤を介することなく金属との密着性に優れ、かつ、ポリイミドの線熱膨張率が金属の線熱膨張率と同等となる絶縁層を形成できる。高密度配線、高信頼性のフレキシブルプリント基板やICパッケージ基板等の配線基材に好適である。   In the polyamic acid varnish composition of the present invention, the polyimide insulating layer has excellent adhesion to metal without using an adhesive, and the linear thermal expansion coefficient of polyimide is equivalent to the linear thermal expansion coefficient of metal. Can be formed. It is suitable for wiring base materials such as high-density wiring and highly reliable flexible printed circuit boards and IC package boards.

Figure 2007161880
Figure 2007161880

Figure 2007161880
Figure 2007161880

Claims (5)

芳香族テトラカルボン酸ニ無水物と芳香族ジアミンとの付加重合により得られるポリアミド酸と溶媒とからなるポリアミド酸ワニスであって、ビニルトリアジン化合物を含むことを特徴とするポリアミド酸ワニス組成物。   A polyamic acid varnish comprising a polyamic acid obtained by addition polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine, and a solvent, comprising a vinyltriazine compound. 請求項1記載のビニルトリアジン化合物が、ポリアミド酸100重量部に対して0.01〜10重量部であるポリアミド酸ワニス組成物。   A polyamic acid varnish composition, wherein the vinyl triazine compound according to claim 1 is 0.01 to 10 parts by weight with respect to 100 parts by weight of polyamic acid. 請求項1記載のポリアミド酸ワニス組成物をイミド化させた後の、50〜200℃における線熱膨張率が、8〜25ppm/℃であるポリイミド樹脂。   The polyimide resin whose linear thermal expansion coefficient in 50-200 degreeC after imidating the polyamic-acid varnish composition of Claim 1 is 8-25 ppm / degrees C. 金属上に、請求項1記載のポリアミド酸ワニス組成物をイミド化して得られたポリイミド層が成膜されてなる金属ポリイミド複合体。   A metal-polyimide composite comprising a polyimide layer obtained by imidizing the polyamic acid varnish composition according to claim 1 on a metal. 金属が銅である請求項4記載の金属ポリイミド複合体。   The metal-polyimide composite according to claim 4, wherein the metal is copper.
JP2005360212A 2005-12-14 2005-12-14 Polyamic acid varnish composition and metal polyimide composite Active JP4942338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360212A JP4942338B2 (en) 2005-12-14 2005-12-14 Polyamic acid varnish composition and metal polyimide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360212A JP4942338B2 (en) 2005-12-14 2005-12-14 Polyamic acid varnish composition and metal polyimide composite

Publications (3)

Publication Number Publication Date
JP2007161880A true JP2007161880A (en) 2007-06-28
JP2007161880A5 JP2007161880A5 (en) 2008-12-04
JP4942338B2 JP4942338B2 (en) 2012-05-30

Family

ID=38245152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360212A Active JP4942338B2 (en) 2005-12-14 2005-12-14 Polyamic acid varnish composition and metal polyimide composite

Country Status (1)

Country Link
JP (1) JP4942338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235216A (en) * 2008-03-27 2009-10-15 Hitachi Magnet Wire Corp Polyamideimide resin insulating varnish and insulated electric wire using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141779A (en) * 1984-10-15 1986-06-28 ナショナル スタ−チ アンド ケミカル コ−ポレイション Heat stable adhesive
JPS6253333A (en) * 1985-08-31 1987-03-09 Nitto Electric Ind Co Ltd Polyimide precursor
JPS62243673A (en) * 1986-04-14 1987-10-24 ナショナル スタ−チ アンド ケミカル コ−ポレイション Quick-setting and heat stable adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141779A (en) * 1984-10-15 1986-06-28 ナショナル スタ−チ アンド ケミカル コ−ポレイション Heat stable adhesive
JPS6253333A (en) * 1985-08-31 1987-03-09 Nitto Electric Ind Co Ltd Polyimide precursor
JPS62243673A (en) * 1986-04-14 1987-10-24 ナショナル スタ−チ アンド ケミカル コ−ポレイション Quick-setting and heat stable adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235216A (en) * 2008-03-27 2009-10-15 Hitachi Magnet Wire Corp Polyamideimide resin insulating varnish and insulated electric wire using the same

Also Published As

Publication number Publication date
JP4942338B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP6767759B2 (en) Polyimide, resin film and metal-clad laminate
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
JP5694891B2 (en) Polyimide film having high adhesiveness and method for producing the same
JP2008531334A (en) Metal laminate and manufacturing method thereof
JP2006336011A (en) Polyimide resin and method for producing the same
KR20190079944A (en) Polyimide Film for Preparing Flexible Copper Clad Laminate And Flexible Copper Clad Laminate Comprising the Same
KR101096967B1 (en) Adhesive sheet and copper-clad laminate
JP5362385B2 (en) Polyamic acid varnish composition and polyimide metal laminate using the same
KR102647086B1 (en) Metal-clad laminate and circuit board
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
KR101077405B1 (en) Laminate for wiring board
JP5129107B2 (en) Polyamic acid varnish composition, polyimide resin and metal-polyimide composite
JP5129108B2 (en) Polyamic acid varnish composition, polyimide resin, and metal-polyimide composite
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP4527687B2 (en) Soluble polyimide resin and method for producing the same
JP5368143B2 (en) Polyimide metal laminate and method for producing the same
JP5547874B2 (en) Polyimide resin
JP2007169392A (en) Polyamic acid varnish composition and metal polyimide composite
JP4942338B2 (en) Polyamic acid varnish composition and metal polyimide composite
JP2011195771A (en) Method for producing adhesive film, and flexible metal-clad laminate
TW202237705A (en) Polyimide, metal-clad laminate plate and circuit board
JP4976380B2 (en) Metal laminate
JP7120870B2 (en) Method for producing polyimide film and method for producing metal-clad laminate
KR100517233B1 (en) Polyimide resin and polyimide-metal clad laminate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350