JP2007161530A - Reformer - Google Patents

Reformer Download PDF

Info

Publication number
JP2007161530A
JP2007161530A JP2005360223A JP2005360223A JP2007161530A JP 2007161530 A JP2007161530 A JP 2007161530A JP 2005360223 A JP2005360223 A JP 2005360223A JP 2005360223 A JP2005360223 A JP 2005360223A JP 2007161530 A JP2007161530 A JP 2007161530A
Authority
JP
Japan
Prior art keywords
catalyst layer
reforming
reformer
reforming chamber
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005360223A
Other languages
Japanese (ja)
Other versions
JP4813169B2 (en
Inventor
Takeshi Kuwabara
武 桑原
Yasushi Yoshino
靖 吉野
Shiro Fujishima
史郎 藤島
Shigeki Kobayashi
茂樹 小林
Takuya Moroishi
拓也 諸石
Jun Ono
小野  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Rad Co Ltd
Original Assignee
T Rad Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Rad Co Ltd filed Critical T Rad Co Ltd
Priority to JP2005360223A priority Critical patent/JP4813169B2/en
Publication of JP2007161530A publication Critical patent/JP2007161530A/en
Application granted granted Critical
Publication of JP4813169B2 publication Critical patent/JP4813169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformer which can reduce the CO concentration and the unreacted gas concentration in a produced reformed gas. <P>SOLUTION: In the double-structured reformer 1 for producing a hydrogen-rich reformed gas by reforming a raw material gas with steam, which is provided with an outside spare reforming chamber 2 having a reforming catalyst layer 4, and an inside main reforming chamber 3 having a mixed catalyst layer 5 filled with a granular mixed catalyst formed by mixing a reforming catalyst and an oxidation catalyst, and a shift catalyst layer 6 filled with a granular shift catalyst; and in which a supply piping 14 for supplying an oxidation air is extended in the central part of the main reforming chamber 3; the average particle size of the mixed catalyst and shift catalyst is made to be 5 mm or smaller, and the distance between the outer surface of the supply piping 14 and the inner surface of the circumferential wall of the main reforming chamber 3 is made to be two times of the average particle size to 12 mm, preferably 2.5 times of the average particle size to 10 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する改質器に関し、特に、コンパクトで高い改質効率と低CO濃度の改質ガスを生成できる自己酸化内部加熱型の改質器に関する。   TECHNICAL FIELD The present invention relates to a reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas, and more particularly, a self-oxidation internal heating type capable of generating a reformed gas that is compact and has high reforming efficiency and low CO concentration. It relates to a reformer.

従来から、原料ガスと水蒸気の混合物(以下、原料一水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器が知られている。改質器で得られる水素リッチな改質ガスは、残留するCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCOへ変換し、特に低温で作動する固体高分子電解質型燃料電池用には、数ppmレベルまでCOを低減してから燃料として供給される。原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。このような改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH+2HO→CO+4Hで示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。 2. Description of the Related Art Conventionally, there is known a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst. The hydrogen-rich reformed gas obtained in the reformer is converted to CO 2 by reacting residual CO (carbon monoxide) with an oxygen-containing gas in the presence of a catalyst by means of CO reduction, and operates at a particularly low temperature. For solid polymer electrolyte fuel cells, CO is reduced to several ppm level before being supplied as fuel. As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In such a reformer, the reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and a preferable reforming reaction temperature is 650 to The range is 750 ° C.

改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。   There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the reformer. The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. Heating to a temperature is performed, and a steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.

部分酸化反応は、CH+1/2・O→CO+2Hで示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が例えば特許文献1、2に記載されている。特許文献1、2の改質器は外側の予備改質室と内側の主改質室を備えた二重構造になっており、予備改質室には原料一水蒸気混合物の供給部、改質触媒層および排出部が設けられ、主改質室には前記排出部からの排出物を受け入れる供給部、酸化空気の供給管、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層および改質ガスの排出部が設けられている。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferable partial oxidation reaction temperature is in the range of 250 ° C. or higher. For example, Patent Documents 1 and 2 describe a self-oxidation internal heating type reformer as an improvement of the internal heating type reformer. The reformers of Patent Documents 1 and 2 have a double structure including an outer preliminary reforming chamber and an inner main reforming chamber. The main reforming chamber is provided with a catalyst layer and a discharge unit, the main reforming chamber receives a discharge from the discharge unit, a supply pipe for oxidized air, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst are mixed, a shift catalyst layer, and A reformed gas discharge unit is provided.

図1(A)は自己酸化内部加熱型の改質器を模式的に示す縦断面図、図1(B)は(A)のB−B断面図である。改質器1は二重筒状に配置した外側の予備改質室2と内側の主改質室3を備えており、予備改質室2と主改質室3は金属製筒体からなり、それぞれ細長く断面が偏平な矩形状(図示の例では偏平な方形)に形成されると共に、それらの断面の長辺側が互いに平行に配置されている。予備改質室2は外筒2aと内筒3aの間に形成され、主改質室3は内筒3aの内側に形成される。予備改質室2に改質触媒層4が設けられ、主改質室3に改質触媒と酸化触媒を混合した混合触媒層5とシフト触媒層6が設けられ、混合触媒層5の外側には外筒2aとの境に断熱層3bが設けられ、シフト触媒層6との境は伝熱部を形成する。シフト触媒層6は高温シフト触媒層7と低温シフト触媒層8により構成される。なお、これら触媒層に充填される触媒は一般に球状または円柱状のものが用いられる。   FIG. 1A is a longitudinal sectional view schematically showing a self-oxidation internal heating type reformer, and FIG. 1B is a sectional view taken along line BB in FIG. The reformer 1 includes an outer preliminary reforming chamber 2 and an inner main reforming chamber 3 arranged in a double cylinder shape. The preliminary reforming chamber 2 and the main reforming chamber 3 are made of a metal cylinder. Each of them is formed in a rectangular shape having a long and flat cross section (in the illustrated example, a flat square shape), and the long sides of the cross sections are arranged in parallel to each other. The preliminary reforming chamber 2 is formed between the outer cylinder 2a and the inner cylinder 3a, and the main reforming chamber 3 is formed inside the inner cylinder 3a. A reforming catalyst layer 4 is provided in the preliminary reforming chamber 2, and a mixed catalyst layer 5 and a shift catalyst layer 6 in which the reforming catalyst and the oxidation catalyst are mixed are provided in the main reforming chamber 3. Is provided with a heat insulating layer 3b at the boundary with the outer cylinder 2a and forms a heat transfer section at the boundary with the shift catalyst layer 6. The shift catalyst layer 6 includes a high temperature shift catalyst layer 7 and a low temperature shift catalyst layer 8. In addition, the catalyst with which these catalyst layers are filled generally has a spherical or cylindrical shape.

改質触媒は原料ガスを水蒸気改質するものであり、例えばNiO−A1OあるいはNiO−SiO・A1などのNi系改質反応触媒やWO−SiO・A1やNiO−WO・SiO・A1などが使用される。混合触媒層5を構成する改質触媒は上記と同様なものが使用され、それに均一に分散される酸化触媒は原料一水蒸気混合物中の原料ガスを酸化発熱させて水蒸気改質反応に必要な温度を得るもので、例えば白金(PT)やロジウム(Rh)あるいはルテニウム(Ru)あるいはパラジウム(Pd)が使用される。なお改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜15%程度の範囲で選択され、例えば原料ガスとしてメタンを使用する場合は5%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。 The reforming catalyst is a steam reforming of the raw material gas. For example, a Ni-based reforming reaction catalyst such as NiO—A1 2 O or NiO—SiO 2 .A1 2 O 3 or WO 2 —SiO 2 .A1 2 O 3 NiO-WO 2 · SiO 2 · A1 2 O 3 or the like is used. The reforming catalyst constituting the mixed catalyst layer 5 is the same as described above, and the oxidation catalyst uniformly dispersed therein is the temperature required for the steam reforming reaction by oxidizing the raw material gas in the raw material-steam mixture. For example, platinum (PT), rhodium (Rh), ruthenium (Ru), or palladium (Pd) is used. The mixing ratio of the oxidation catalyst to the reforming catalyst is selected in the range of about 1 to 15% according to the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, it is about 5% ± 2%. In the case of methanol, the mixing ratio is about 2% ± 1%.

予備改質室2の下部に原料―水蒸気混合物の供給部9が設けられ、予備改質室2の上部に予備改質後の流出物が排出する排出部10が設けられる。主改質室3の上部には前記予備改質室2の排出部10に連通する供給部11が設けられ、主改質室3の中央部に酸化空気を供給する供給管14が延長され、その供給管14が混合触媒層5に延長する部分に多数のノズル孔からなる空気噴出部17が形成されている。さらに主改質室3の下部には改質ガスの排出部12が設けられる。なお供給管14の断面は偏平状(図示の例では偏平な方形であるが、断面の短辺側は半円状にでもよい。)に形成されると共に、前記予備改質室2と主改質室3の断面とは略相似形になっている。   A raw material-steam mixture supply unit 9 is provided at the lower part of the preliminary reforming chamber 2, and a discharge unit 10 for discharging the effluent after the preliminary reforming is provided at the upper part of the preliminary reforming chamber 2. A supply unit 11 communicating with the discharge unit 10 of the preliminary reforming chamber 2 is provided at the upper part of the main reforming chamber 3, and a supply pipe 14 for supplying oxidized air to the central portion of the main reforming chamber 3 is extended. An air ejection portion 17 having a large number of nozzle holes is formed in a portion where the supply pipe 14 extends to the mixed catalyst layer 5. Further, a reformed gas discharge section 12 is provided at the lower portion of the main reforming chamber 3. The supply pipe 14 has a flat cross section (in the example shown, a flat square shape, but the short side of the cross section may be semicircular), and the main reforming chamber 2 and the main reforming chamber 14 are modified. The cross section of the pawn chamber 3 is substantially similar.

主改質室3には上部から下部に順に混合触媒層5、高温シフト触媒層7および低温触媒層8が設けられるが、各触媒層の境界部および排出部12を含む低温シフト触媒層8の下側には触媒粒子を支持する支持板15が配置される。(なお予備改質室2にも同様な支持板15が配置される。)これら支持板15は気体流通性を有するが触媒粒子は通過させない孔径を有しており、通常、板状のパンチメタルやメッシュ等の多孔性の部材が使用される。   The main reforming chamber 3 is provided with a mixed catalyst layer 5, a high temperature shift catalyst layer 7, and a low temperature catalyst layer 8 in order from the top to the bottom, and the low temperature shift catalyst layer 8 including the boundary portion of each catalyst layer and the discharge portion 12 is provided. A support plate 15 that supports the catalyst particles is disposed on the lower side. (Similar support plates 15 are also disposed in the preliminary reforming chamber 2.) These support plates 15 have a gas flowability but have a hole diameter that does not allow the passage of catalyst particles, and are usually plate-like punch metal. Porous members such as mesh and mesh are used.

排出部12には支持板15の下方空間に設けたマニホールドと、そのマニホールドが改質器1の外側に延長する端部に連接した出口用タンクが存在する。そして排出部12に流出した改質ガスは支持板15を通過してマニホールドに入り、そこから出口タンクを通って外部に排出される。   The discharge unit 12 includes a manifold provided in a space below the support plate 15 and an outlet tank connected to an end portion of the manifold extending outside the reformer 1. Then, the reformed gas that has flowed out to the discharge unit 12 passes through the support plate 15 and enters the manifold, and is discharged from there through the outlet tank.

一方、主改質室3の上部には起動用のプレヒーター13が連接される。プレヒーター13はシステム起動時に混合触媒層5を迅速に酸化反応温度まで昇温するものであり、その内部に電気ヒーターが配置されると共に、白金(PT)やバラジウム(Pd)等の酸化触媒が充填される。そして起動時にプレヒーター13に吸引混合手段16から原料ガスとスタート空気が供給され、原料ガスが空気中の酸素により酸化反応し、その酸化熱により発生する高温ガスで混合触媒層5を酸化反応可能な温度まで加熱するようになっている。   On the other hand, a starting preheater 13 is connected to the upper portion of the main reforming chamber 3. The preheater 13 quickly raises the mixed catalyst layer 5 to the oxidation reaction temperature when the system is started up. An electric heater is disposed in the preheater 13 and an oxidation catalyst such as platinum (PT) or palladium (Pd) is provided. Filled. At the start-up, the preheater 13 is supplied with the raw material gas and the start air from the suction mixing means 16, and the raw material gas is oxidized by oxygen in the air, and the mixed catalyst layer 5 can be oxidized by the high temperature gas generated by the oxidation heat. Heats up to a certain temperature.

一方、エジェクタにより構成される吸引混合手段16の流体導入部には、図示しない水蒸気発生手段からの水蒸気と原料供給部からの原料ガスが導入される。また吸引混合手段16の排出部は予備改質室2の供給部9に連通される。   On the other hand, water vapor from a water vapor generating means (not shown) and raw material gas from a raw material supply part are introduced into the fluid introducing part of the suction mixing means 16 constituted by an ejector. Further, the discharge part of the suction mixing means 16 is communicated with the supply part 9 of the preliminary reforming chamber 2.

次に、図1の改質器1の作用を概略的に説明する。供給部9から供給される原料―水蒸気混合物は、予備改質室2の改質触媒の作用でその原料ガスの一部が改質されて水素リッチな改質ガスを生成し、生成した改質ガスと残りの原料―水蒸気混合物は排出部10から主改質室3の供給部11に流入する。   Next, the operation of the reformer 1 of FIG. 1 will be schematically described. The raw material-steam mixture supplied from the supply unit 9 is partly reformed by the action of the reforming catalyst in the preliminary reforming chamber 2 to generate a hydrogen-rich reformed gas, and the generated reformed gas The gas and the remaining raw material-water vapor mixture flow from the discharge unit 10 to the supply unit 11 of the main reforming chamber 3.

主改質室3に流入した原料―水蒸気混合物は、混合触媒層5に含まれる酸化触媒の作用で原料ガスの一部が空気中の酸素と反応(酸化反応)し、その酸化熱で原料ガスが水蒸気と反応(改質反応)して改質ガスを生成する。生成した改質ガスは高温シフト触媒層7で残存するCO(一酸化炭素)を水素に変換し、次いで低温シフト触媒層8でさらに残存するCOを水素に変換して排出部12から外部に排出される。   The raw material-steam mixture flowing into the main reforming chamber 3 reacts with the oxygen in the air (oxidation reaction) due to the action of the oxidation catalyst contained in the mixed catalyst layer 5, and the raw material gas is generated by the oxidation heat. Reacts with water vapor (reforming reaction) to generate a reformed gas. The generated reformed gas converts CO (carbon monoxide) remaining in the high temperature shift catalyst layer 7 into hydrogen, and then further converts the remaining CO into hydrogen in the low temperature shift catalyst layer 8 to be discharged from the discharge unit 12 to the outside. Is done.

特開2001−192201号公報JP 2001-192201 A 特開2005−149860号公報JP-A-2005-149860

前記のような構造の改質器1では、酸化反応による発熱、改質反応による吸熱およびシフト反応による発熱があり、それら発熱部からの熱放出と吸熱部による熱吸収により全体としての熱エネルギーの収支がバランスする。具体的には、混合触媒層では酸化反応による発熱と改質反応による吸熱の差に概略相当する熱エネルギーが生成した改質ガスに保有され、その改質ガスの保有する熱エネルギーは、改質ガスに同伴して下流側の図示しない伝熱層に流入する。伝熱層に流入した熱エネルギーの一部は内筒3aを通して予備改質室2の改質触媒層4に伝熱し、残りは改質ガスに同伴してさらに下流側のシフト触媒層6に流入する。なお混合触媒層5の熱エネルギーの一部は供給管14にも伝熱する。   In the reformer 1 having the structure as described above, there are heat generation due to oxidation reaction, heat absorption due to reforming reaction, and heat generation due to shift reaction, and the overall heat energy is released by heat release from the heat generation portion and heat absorption by the heat absorption portion. Balance of balance. Specifically, in the mixed catalyst layer, thermal energy roughly corresponding to the difference between the heat generated by the oxidation reaction and the endotherm by the reforming reaction is held in the generated reformed gas, and the thermal energy held by the reformed gas is Along with the gas, it flows into a heat transfer layer (not shown) on the downstream side. Part of the heat energy flowing into the heat transfer layer is transferred to the reforming catalyst layer 4 in the preliminary reforming chamber 2 through the inner cylinder 3a, and the rest flows into the shift catalyst layer 6 further downstream along with the reformed gas. To do. A part of the heat energy of the mixed catalyst layer 5 is also transferred to the supply pipe 14.

しかし実験によれば、係る構造の改質器1の運転中におおいて、混合触媒層5中に延長した酸化空気の供給管における空気噴出部付近の温度が比較的高くなり、それから離れた周辺部分の温度がそれより低くなる温度分布を生じ、その低温部から未反応の原料ガス(例えばメタンガス)の一部が下流側に流出する現象があることが分かった。このように未反応の原料ガスの一部が下流側に流出すると、それだけ改質効率が低下することになる。   However, according to experiments, during the operation of the reformer 1 having such a structure, the temperature in the vicinity of the air ejection portion in the supply pipe of the oxidized air extended into the mixed catalyst layer 5 becomes relatively high, and the surroundings away from it It has been found that there is a phenomenon in which a temperature distribution occurs in which the temperature of the portion becomes lower than that, and a part of the unreacted raw material gas (for example, methane gas) flows out from the low temperature portion to the downstream side. Thus, when a part of the unreacted source gas flows out downstream, the reforming efficiency is lowered accordingly.

また、シフト触媒層6の熱エネルギーが効率よく予備改質室2に伝熱されず、シフト触媒層6が設計範囲より高温になり、その高温の改質ガスが改質器1から外部に排出する現象があることも分かった。このようにシフト触媒層6が設計範囲より高温になるとシフト反応効率が低下し、結果として比較的高い濃度のCOを含む改質ガスが流出することになる。そこで本発明は、これら従来の改質器における問題を解決することを課題とし、そのための新しい構造の改質器を提供することを目的とする。   Further, the heat energy of the shift catalyst layer 6 is not efficiently transferred to the preliminary reforming chamber 2, the shift catalyst layer 6 becomes higher than the design range, and the high-temperature reformed gas is discharged from the reformer 1 to the outside. It was also found that there is a phenomenon that. As described above, when the shift catalyst layer 6 has a higher temperature than the design range, the shift reaction efficiency decreases, and as a result, the reformed gas containing a relatively high concentration of CO flows out. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve these problems in the conventional reformer, and to provide a reformer having a new structure therefor.

種々の実験の結果、上記問題は主として酸化空気の供給管の外面と主改質室の周壁の内面との間隔が適切でない場合に発生することが判明した。即ち、図2に示す如く、空気の供給管の外面と主改質室の内面との間隔が広すぎる場合(T:12mm)には、混合触媒層5における温度分布が、狭い場合(T:8mm)に比べて大きく(断面の短辺方向の温度が外側ほど低下する)なり、未反応原料ガスの流出が増大し、さらにシフト触媒層6における前記のシフト触媒層から予備改質室2への熱伝達率が低下して、シフト反応触媒層6の温度が上昇し、そこから流出する改質ガス中のCO濃度が上昇する。
逆に上記間隔が狭すぎる場合には、混合触媒層5における酸化反応による発熱と改質反応による吸熱のバランスが乱れやすくなり、その場合も未反応原料ガスが下流側に流出し易くなる。さらに上記間隔が狭すぎる場合は、混合触媒層5またはシフト触媒層6を形成するための触媒粒子の充填率が低下して粒子間空間が大きくなり、主改質室3の内容積をそれに応じて大きくする必要が生じる。
As a result of various experiments, it has been found that the above-mentioned problem occurs mainly when the distance between the outer surface of the supply pipe for oxidizing air and the inner surface of the peripheral wall of the main reforming chamber is not appropriate. That is, as shown in FIG. 2, when the distance between the outer surface of the air supply pipe and the inner surface of the main reforming chamber is too wide (T: 12 mm), the temperature distribution in the mixed catalyst layer 5 is narrow (T: 8mm) (the temperature in the short side direction of the cross section decreases as it goes outward), the outflow of unreacted raw material gas increases, and the shift catalyst layer 6 in the shift catalyst layer 6 moves from the shift catalyst layer to the preliminary reforming chamber 2. The heat transfer coefficient decreases, the temperature of the shift reaction catalyst layer 6 increases, and the CO concentration in the reformed gas flowing out therefrom increases.
On the other hand, when the interval is too narrow, the balance between the heat generated by the oxidation reaction in the mixed catalyst layer 5 and the heat absorption due to the reforming reaction tends to be disturbed, and in this case also, the unreacted raw material gas tends to flow downstream. Further, when the interval is too narrow, the filling rate of the catalyst particles for forming the mixed catalyst layer 5 or the shift catalyst layer 6 is reduced, the interparticle space is increased, and the internal volume of the main reforming chamber 3 is increased accordingly. Need to be large.

上記の知見から、前記課題を解決する本発明の改質器は、改質触媒層を有する外側の予備改質室と、改質触媒と酸化触媒を混合した粒子状の混合触媒を充填した混合触媒層および粒子状のシフト触媒を充填したシフト触媒層を有する内側の主改質室とを備え、主改質室の中央部に酸化空気を供給する供給管が延長され、原料ガスを水蒸気改質して水素リッチな改質ガスを生成する二重構造の改質器において、前記混合触媒およびシフト触媒の平均粒子径が5mm以下とされ、前記供給管の外面と主改質室の周壁の内面との間隔が前記平均粒子径の2倍〜12mmとされていることを特徴とする(請求項1)。   From the above knowledge, the reformer of the present invention that solves the above problems is a mixture filled with an outer preliminary reforming chamber having a reforming catalyst layer and a particulate mixed catalyst in which the reforming catalyst and the oxidation catalyst are mixed. An internal main reforming chamber having a shift catalyst layer filled with a catalyst layer and a particulate shift catalyst, and a supply pipe for supplying oxidized air to the center of the main reforming chamber is extended to convert the raw material gas into steam reforming. In the reformer having a double structure that generates a hydrogen-rich reformed gas, the average particle diameter of the mixed catalyst and the shift catalyst is 5 mm or less, and the outer surface of the supply pipe and the peripheral wall of the main reforming chamber The distance from the inner surface is set to be twice to 12 mm of the average particle diameter (Claim 1).

上記改質器において、前記外側の予備改質室、内側の主改質室および供給管の断面をそれぞれ偏平な矩形状であって且つ、それらの長辺側平面を互いに平行に配置し、前記供給管の空気噴出部をその長辺側平面に形成し、前記供給管の長辺側平面と主改質室の長辺側の内面との間隔を前記平均粒子径の2倍〜12mmとすることができる(請求項2)。   In the reformer, the outer preliminary reforming chamber, the inner main reforming chamber, and the supply pipe have cross-sections each having a flat rectangular shape, and their long side planes are arranged in parallel to each other, An air ejection portion of the supply pipe is formed on the long side plane, and the distance between the long side plane of the supply pipe and the inner surface on the long side of the main reforming chamber is set to 2 to 12 mm of the average particle diameter. (Claim 2).

上記いずれかの改質器において、前記間隔を前記平均粒子径の2.5倍〜10mmとすることができる(請求項3)。   In any one of the above reformers, the interval can be 2.5 times to 10 mm of the average particle diameter.

本発明の改質器は、混合触媒およびシフト触媒の平均粒子径を5mm以下とし、酸化空気の供給管の外面と主改質室の周壁の内面との間隔を前記平均粒子径の2倍〜12mmとしたことに特徴がある。このように酸化空気の供給管の外面と主改質室の周壁の内面との間隔を12mm以下とすることにより、混合触媒層においては、その各部で均一な温度分布を確保して改質反応を促進することができる。逆にいえば、その上限以上の寸法にすると酸化空気の供給管から離間するほど混合触媒層の温度が低下し、その低温部から未反応原料ガスが下流側へ流出する不都合が生じる。
また前記シフト触媒層においては、その熱伝達率の低下(間隔が広すぎるとその外側の改質触媒層への伝熱低下)によるシフト触媒層の温度上昇を抑制してシフト反応効率の低下を防止し、シフト触媒層から流出する改質ガス中のCO濃度の増加を抑制できる。
In the reformer of the present invention, the average particle diameter of the mixed catalyst and the shift catalyst is 5 mm or less, and the interval between the outer surface of the oxidizing air supply pipe and the inner surface of the peripheral wall of the main reforming chamber is twice the average particle diameter or more. It is characterized by being 12 mm. In this way, by setting the distance between the outer surface of the oxidizing air supply pipe and the inner surface of the peripheral wall of the main reforming chamber to be 12 mm or less, in the mixed catalyst layer, a uniform temperature distribution is ensured in each part of the reforming reaction. Can be promoted. In other words, if the dimension is larger than the upper limit, the temperature of the mixed catalyst layer decreases as the distance from the oxidizing air supply pipe decreases, and there arises a disadvantage that unreacted raw material gas flows out from the low temperature portion to the downstream side.
In the shift catalyst layer, the temperature increase of the shift catalyst layer due to a decrease in the heat transfer coefficient (decrease in heat transfer to the reforming catalyst layer on the outside if the interval is too wide) suppresses the shift reaction efficiency. It is possible to prevent the increase in the CO concentration in the reformed gas flowing out from the shift catalyst layer.

また、酸化空気の供給管の外面と主改質室の周壁の内面との間隔を前記平均粒子径の2倍以上とすることにより、混合触媒層における発熱と吸熱のバランス乱れを防止できると共に、混合触媒層およびシフト触媒層における触媒充填率の低下(間隔が狭すぎると触媒粒子間に空隙が生じ易い)を防止できる。   Further, by making the interval between the outer surface of the oxidizing air supply pipe and the inner surface of the peripheral wall of the main reforming chamber at least twice the average particle diameter, it is possible to prevent the balance of heat generation and endothermic balance in the mixed catalyst layer, and It is possible to prevent a decrease in the catalyst filling rate in the mixed catalyst layer and the shift catalyst layer (when the interval is too narrow, voids are easily generated between the catalyst particles).

上記改質器において、請求項2に記載のように、前記外側の予備改質室、内側の主改質室および供給管の断面をそれぞれ偏平な矩形状であって且つ互いにその長辺側平面を平行に配置し、前記供給管の空気噴出部をその長辺側平面に形成し、前記供給管の長辺側の外面と主改質室の長辺側の内面との間隔を前記平均粒子径の2倍〜12mmとすることができる。
このように構成すると、改質器を薄型に構成できると共に、酸化空気の供給管における空気噴出部を面積の大きい長辺側に分散させ酸化空気を混合触媒層の各部により均一に供給することができる。
In the reformer, as described in claim 2, the outer preliminary reforming chamber, the inner main reforming chamber, and the supply pipe have cross-sections each having a flat rectangular shape and their long side planes. Are arranged in parallel, and the air ejection portion of the supply pipe is formed on the long side plane, and the distance between the long side outer surface of the supply pipe and the long side inner surface of the main reforming chamber is the average particle. The diameter can be 2 to 12 mm.
With such a configuration, the reformer can be configured to be thin, and the air blowing portion in the oxidizing air supply pipe can be dispersed on the long side having a large area to uniformly supply the oxidizing air to each part of the mixed catalyst layer. it can.

また、混合触媒層における空気噴出部付近は温度上昇し易く混合触媒層における、断面の短辺方向の温度勾配も急激に低下し易いが、該部分の前記間隔を12mm以下にすることと前記空気噴出部を分散できることによる相乗効果で混合触媒層における各部の温度を均一化し、温度分布の増大をより効果的に防止できる。   In addition, the temperature in the vicinity of the air ejection portion in the mixed catalyst layer is likely to increase in temperature, and the temperature gradient in the short side direction of the cross section in the mixed catalyst layer is also likely to decrease rapidly. The synergistic effect of being able to disperse the jetting part makes the temperature of each part in the mixed catalyst layer uniform, and the increase in temperature distribution can be prevented more effectively.

上記いずれかの改質器において、請求項3に記載のように、前記間隔を前記平均粒子径の2.5倍〜10mmとすることができる。このように前記間隔を10mm以下とすることにより、前記混合触媒層からの未反応原料ガス流出増加を防止する効果、シフト触媒層から流出する改質ガス中のCO濃度増加防止効果等を一層高めることができる。
また前記間隔を前記平均粒子径の2.5倍以上とすることにより、混合触媒層における発熱と吸熱のバランス乱れの防止効果、混合触媒層およびシフト触媒層における触媒充填率の低下防止効果等が達成し易くなる。
In any one of the above reformers, as described in claim 3, the interval can be 2.5 times to 10 mm of the average particle diameter. Thus, by setting the interval to 10 mm or less, the effect of preventing an increase in unreacted raw material gas outflow from the mixed catalyst layer, the effect of preventing the increase in CO concentration in the reformed gas flowing out from the shift catalyst layer, and the like are further enhanced. be able to.
Further, by setting the interval to 2.5 times or more of the average particle diameter, the effect of preventing the balance between heat generation and endotherm in the mixed catalyst layer, the effect of preventing the catalyst filling rate from decreasing in the mixed catalyst layer and the shift catalyst layer, etc. Easier to achieve.

次に、図面を参照して本発明を実施するための最良の形態を説明する。本発明の改質器は前述した図1(A)(B)の改質器とその基本構造は同じである。従って既に記載した内容と重複する説明は出来るだけ省略する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. The reformer of the present invention has the same basic structure as the reformer of FIGS. 1A and 1B described above. Therefore, the description which overlaps with the already described content is omitted as much as possible.

本発明の改質器1は、図1(A)に示す改質器1の混合触媒層5を形成する混合触媒およびシフト触媒の平均粒子径を5mm以下とし、酸化空気の供給管14の外面と主改質室3の周壁の内面との間隔Tを前記平均粒子径の2倍〜12mm、好ましくは前記平均粒子径の2.5倍〜10mmとしたことに特徴がある。なお図1(B)に前記間隔Tが示されている。   The reformer 1 of the present invention has an average particle diameter of the mixed catalyst and shift catalyst forming the mixed catalyst layer 5 of the reformer 1 shown in FIG. And the inner surface of the peripheral wall of the main reforming chamber 3 is characterized in that the distance T is 2 to 12 mm of the average particle diameter, preferably 2.5 to 10 mm of the average particle diameter. FIG. 1B shows the interval T.

具体的に説明すると、二重構造を有する改質器1は、外側の予備改質室2、内側の主改質室3および供給管14の断面はそれぞれ偏平状(偏平な方形)であって且つ互いに略相似形に形成されている。そして供給管14の空気噴出部17がその断面の長辺側に形成され、供給管14の断面の長辺側の外面と主改質室3の周壁における長辺側の内面との間隔Tが前記平均粒子径の2倍〜12mm、好ましくは前記平均粒子径の2.5倍〜10mmになっている。
なお供給管14の断面の短辺側の外面と主改質室3の周壁における短辺側の内面との間隔は特に限定されないが、触媒の平均粒子径の2倍〜3倍程度に設定することが望ましい。
More specifically, in the reformer 1 having a double structure, the outer preliminary reforming chamber 2, the inner main reforming chamber 3, and the supply pipe 14 have flat cross sections (flat squares), respectively. Moreover, they are formed in a substantially similar shape. An air ejection portion 17 of the supply pipe 14 is formed on the long side of the cross section, and an interval T between the long side outer surface of the cross section of the supply pipe 14 and the long side inner surface of the peripheral wall of the main reforming chamber 3 is The average particle diameter is 2 to 12 mm, preferably 2.5 to 10 mm.
The distance between the outer surface on the short side of the cross section of the supply pipe 14 and the inner surface on the short side of the peripheral wall of the main reforming chamber 3 is not particularly limited, but is set to about 2 to 3 times the average particle diameter of the catalyst. It is desirable.

空気噴出部17は多数のノズル孔により構成される。図示の例ではノズル孔群が2列配列されており、各列に多数のノズル孔が所定間隔で均等に分散配置される。このように多数のノズル孔を均等に分散配置することにより、混合触媒層5に酸化空気を均一に分散して供給することができる。   The air ejection part 17 is comprised by many nozzle holes. In the illustrated example, the nozzle hole group is arranged in two rows, and a large number of nozzle holes are evenly distributed at predetermined intervals in each row. In this way, by arranging a large number of nozzle holes evenly distributed, the oxidized air can be uniformly distributed and supplied to the mixed catalyst layer 5.

次に、本発明の改質器1を用いて改質運転した実施例および比較例を説明する。改質器1は図1に示すものを用いた。標準的な改質器1の外筒2aの寸法は高さ700mm、水平長さ(長辺)145mm、幅(短辺)110mmであり、内筒3aの寸法は高さ520mm、水平長さ(断面の長辺)120mm、幅(断面の短辺)25mmであり、供給管14の寸法は水平長さ(断面の長辺)110mm、幅(断面の短辺)5mmである。   Next, examples and comparative examples in which reforming operation is performed using the reformer 1 of the present invention will be described. The reformer 1 shown in FIG. 1 was used. The dimensions of the outer cylinder 2a of the standard reformer 1 are 700mm in height, horizontal length (long side) 145mm, width (short side) 110mm, and the inner cylinder 3a has dimensions of 520mm in height and horizontal length ( The long side of the cross section is 120 mm, the width (short side of the cross section) is 25 mm, and the dimensions of the supply pipe 14 are a horizontal length (long side of the cross section) of 110 mm and a width (short side of the cross section) of 5 mm.

改質器1は内筒3aの幅(短辺)を複数変えることにより、供給管14の長辺側の外面と主改質室3の周壁における長辺側の内面との間隔Tを4mm(比較例)、6mm(平均粒子径の2倍)、7.5mm(平均粒子径の2.5倍)、10mm、12mm、14mm(比較例)に設定して実験した。そして、混合触媒とシフト触媒の平均粒子径はいずれも3mmとした。このとき、外筒2aの幅(短辺)は、図1(A)に示すように、その外筒2aの内面と内筒3aの外面との間隔Aが8mmとなるように、対応して設定した。   The reformer 1 changes the width (short side) of the inner cylinder 3a a plurality of times so that the distance T between the outer surface on the long side of the supply pipe 14 and the inner surface on the long side of the peripheral wall of the main reforming chamber 3 is 4 mm ( Comparative examples), 6 mm (twice the average particle diameter), 7.5 mm (2.5 times the average particle diameter), 10 mm, 12 mm, and 14 mm (comparative example) were set for experiments. The average particle size of the mixed catalyst and shift catalyst was 3 mm. At this time, as shown in FIG. 1A, the width (short side) of the outer cylinder 2a is set so that the distance A between the inner surface of the outer cylinder 2a and the outer surface of the inner cylinder 3a is 8 mm. Set.

改質器1の予備改質室2における改質触媒層4はNi系改質触媒を充填して形成し、主改質室3の混合触媒層5は貴金属系酸化触媒とNi系改質触媒とを混合した混合触媒を充填して形成し、シフト触媒層6(高温シフト触媒層7および低温触媒層8)はFe-Cr系およびCu-Zn系シフト触媒を充填して形成した。   The reforming catalyst layer 4 in the preliminary reforming chamber 2 of the reformer 1 is formed by filling a Ni-based reforming catalyst, and the mixed catalyst layer 5 in the main reforming chamber 3 is composed of a noble metal-based oxidation catalyst and a Ni-based reforming catalyst. The shift catalyst layer 6 (the high temperature shift catalyst layer 7 and the low temperature catalyst layer 8) was formed by filling Fe—Cr and Cu—Zn shift catalysts.

上記各間隔Tを有する改質器1について、改質器1の予備改質器2にメタンガス−水蒸気の割合が(1:3)の原料―水蒸気混合物を供給し、混合触媒層5の温度を700℃にして改質反応を行った。改質器1から流出する改質ガス中のCO濃度、混合触媒層からシフト触媒層に流出する未反応原料ガス濃度を測定した結果を図3、図4に示す。これらは、横軸に間隔Tをとり、縦軸に改質ガスに対するCO濃度、未反応原料ガス濃度を体積比として表す。これらの結果から本発明の範囲に設定した改質器1は改質ガス中のCO濃度が低く、未反応原料ガスの流出量も少ないことが確認された。
次に、間隔Tを図3、図4の中央値である8mmにし、外筒2aの内面と内筒3aの外面との間隔Aを変化させたときの、改質ガス中のCO濃度、未反応原料ガス濃度の変化を調べた。その結果、前記間隔Tの好ましい範囲と同様に、Aが6mm〜12mmの範囲で、それらの濃度が小さくなることがわかり、好ましいことが確認された。これは、Aを混合触媒およびシフト触媒の平均粒子径の2倍〜12mmとすることが好ましいことを意味する。
For the reformer 1 having the intervals T, the raw material-steam mixture having a methane gas-steam ratio of (1: 3) is supplied to the pre-reformer 2 of the reformer 1, and the temperature of the mixed catalyst layer 5 is adjusted. The reforming reaction was carried out at 700 ° C. 3 and 4 show the results of measuring the CO concentration in the reformed gas flowing out from the reformer 1 and the unreacted raw material gas concentration flowing out from the mixed catalyst layer to the shift catalyst layer. In these graphs, the horizontal axis represents the interval T, and the vertical axis represents the CO concentration relative to the reformed gas and the unreacted raw material gas concentration as a volume ratio. From these results, it was confirmed that the reformer 1 set in the range of the present invention has a low CO concentration in the reformed gas and a small outflow amount of unreacted raw material gas.
Next, the CO concentration in the reformed gas when the interval T is set to 8 mm, which is the median value in FIGS. 3 and 4, and the interval A between the inner surface of the outer cylinder 2a and the outer surface of the inner cylinder 3a is changed. Changes in the reaction raw material gas concentration were examined. As a result, similar to the preferable range of the interval T, it was found that when A was in the range of 6 mm to 12 mm, the concentration thereof was small, and it was confirmed that it was preferable. This means that A is preferably 2 to 12 mm of the average particle diameter of the mixed catalyst and the shift catalyst.

本発明の改質器は原料ガスを水蒸気改質して水素リッチな改質ガスを生成する改質器に利用できる。   The reformer of the present invention can be used for a reformer that generates a hydrogen-rich reformed gas by steam reforming a raw material gas.

本発明の改質器の縦断面図およびB−B横断面図。The longitudinal cross-sectional view and BB cross-sectional view of the reformer of this invention. 外筒から酸素供給管までの各距離に対する内部温度の分布を示す図。The figure which shows distribution of internal temperature with respect to each distance from an outer cylinder to an oxygen supply pipe | tube. 改質ガス中のCO濃度の変化を示す図The figure which shows the change of CO concentration in reformed gas 改質ガス中の未反応ガス濃度の変化を示す図。The figure which shows the change of the unreacted gas density | concentration in reformed gas.

符号の説明Explanation of symbols

1 改質器
2 予備改質室
2a 外筒
3 主改質室
3a 内筒
4 改質触媒層
5 混合触媒層
6 シフト触媒層
7 高温シフト触媒層
8 低温シフト触媒層
9 供給部
DESCRIPTION OF SYMBOLS 1 Reformer 2 Preliminary reforming chamber 2a Outer cylinder 3 Main reforming chamber 3a Inner cylinder 4 Reforming catalyst layer 5 Mixed catalyst layer 6 Shift catalyst layer 7 High temperature shift catalyst layer 8 Low temperature shift catalyst layer 9 Supply section

10 排出部
11 供給部
12 排出部
13 プレヒーター
14 供給管
15 支持板
16 吸引混合手段
17 空気噴出部
DESCRIPTION OF SYMBOLS 10 Discharge part 11 Supply part 12 Discharge part 13 Preheater 14 Supply pipe 15 Support plate 16 Suction mixing means 17 Air ejection part

Claims (3)

改質触媒層4を有する外側の予備改質室2と、改質触媒と酸化触媒を混合した粒子状の混合触媒を充填した混合触媒層5および粒子状のシフト触媒を充填したシフト触媒層6を有する内側の主改質室3とを備え、主改質室3の中央部に酸化空気を供給する供給管14が延長され、原料ガスを水蒸気改質して水素リッチな改質ガスを生成する二重構造の改質器1において、前記混合触媒およびシフト触媒の平均粒子径が5mm以下とされ、前記供給管14の外面と主改質室3の周壁の内面との間隔が前記平均粒子径の2倍〜12mmであることを特徴とする改質器。   An outer preliminary reforming chamber 2 having a reforming catalyst layer 4, a mixed catalyst layer 5 filled with a particulate mixed catalyst obtained by mixing a reforming catalyst and an oxidation catalyst, and a shift catalyst layer 6 filled with a particulate shift catalyst. And a supply pipe 14 for supplying oxidized air to the central portion of the main reforming chamber 3 is extended to produce a hydrogen-rich reformed gas by steam reforming the raw material gas. In the reformer 1 having a double structure, the average particle diameter of the mixed catalyst and the shift catalyst is 5 mm or less, and the distance between the outer surface of the supply pipe 14 and the inner surface of the peripheral wall of the main reforming chamber 3 is the average particle. A reformer having a diameter of 2 to 12 mm. 請求項1において、前記外側の予備改質室2、内側の主改質室3および供給管14の断面はそれぞれ偏平な矩形状であって且つ、それらの長辺側平面が互いに平行に配置され、前記供給管14の空気噴出部17がその長辺側平面に形成され、前記供給管14の長辺側平面と主改質室3の長辺側の内面との間隔が前記平均粒子径の2倍〜12mmであることを特徴とする改質器。   In Claim 1, the cross sections of the outer preliminary reforming chamber 2, the inner main reforming chamber 3 and the supply pipe 14 are flat rectangular shapes, and their long side planes are arranged in parallel to each other. The air blowing portion 17 of the supply pipe 14 is formed on the long side plane, and the distance between the long side plane of the supply pipe 14 and the long side side inner surface of the main reforming chamber 3 is the average particle diameter. A reformer characterized by being 2 to 12 mm. 請求項1または請求項2において、前記間隔が前記平均粒子径の2.5倍〜10mmであることを特徴とする改質器。   The reformer according to claim 1 or 2, wherein the interval is 2.5 times to 10 mm of the average particle diameter.
JP2005360223A 2005-12-14 2005-12-14 Reformer Expired - Fee Related JP4813169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360223A JP4813169B2 (en) 2005-12-14 2005-12-14 Reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360223A JP4813169B2 (en) 2005-12-14 2005-12-14 Reformer

Publications (2)

Publication Number Publication Date
JP2007161530A true JP2007161530A (en) 2007-06-28
JP4813169B2 JP4813169B2 (en) 2011-11-09

Family

ID=38244850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360223A Expired - Fee Related JP4813169B2 (en) 2005-12-14 2005-12-14 Reformer

Country Status (1)

Country Link
JP (1) JP4813169B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192201A (en) * 1999-10-20 2001-07-17 Nippon Chem Plant Consultant:Kk Auto-oxidizable internal heating reformer and reforming process
JP2002179406A (en) * 2000-10-05 2002-06-26 Sanyo Electric Co Ltd Fuel reforming apparatus
JP2002543032A (en) * 1999-05-03 2002-12-17 ヌーベラ ヒューエル セルズ Method for converting carbon monoxide and water in a reformate stream and apparatus therefor
JP2003236382A (en) * 2002-02-14 2003-08-26 Nippon Oil Corp Catalyst for water gas shift reaction
JP2004175581A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Internal heating steam reformer
JP2005149860A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Self-oxidation inside heating type steam reforming system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543032A (en) * 1999-05-03 2002-12-17 ヌーベラ ヒューエル セルズ Method for converting carbon monoxide and water in a reformate stream and apparatus therefor
JP2001192201A (en) * 1999-10-20 2001-07-17 Nippon Chem Plant Consultant:Kk Auto-oxidizable internal heating reformer and reforming process
JP2002179406A (en) * 2000-10-05 2002-06-26 Sanyo Electric Co Ltd Fuel reforming apparatus
JP2003236382A (en) * 2002-02-14 2003-08-26 Nippon Oil Corp Catalyst for water gas shift reaction
JP2004175581A (en) * 2002-11-22 2004-06-24 Toyo Radiator Co Ltd Internal heating steam reformer
JP2005149860A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Self-oxidation inside heating type steam reforming system

Also Published As

Publication number Publication date
JP4813169B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP5015638B2 (en) Permselective membrane reactor and hydrogen production method
JP5042853B2 (en) Oxidation autothermal reformer and oxidation autothermal reforming method using the same
CN107324281A (en) It is quick to start self-heating type preparing hydrogen by reforming methanol microreactor
KR101022189B1 (en) Steam reformer
JP2007112667A (en) Steam reformer
JP4804925B2 (en) Reformer
JPH10106606A (en) Hydrogen manufacturing device, and manufacture thereof
JP4813169B2 (en) Reformer
JP2007204343A (en) Reformer and its manufacturing method
JP5165407B2 (en) Cylindrical steam reformer
JP4486832B2 (en) Steam reforming system
JP4804900B2 (en) Oxygen supply pipe structure of reformer
JP4804883B2 (en) Reformer
JP2010076980A (en) Reformer
JP2005239525A (en) Steam reformer
JP5307322B2 (en) Fuel reforming system for solid oxide fuel cell
JP4281084B2 (en) Steam reformer
JP2003183003A (en) Multi-tube reactor
JP4500628B2 (en) Reactor for producing synthesis gas and method for producing synthesis gas
JP2007227237A (en) Solid oxide fuel battery module
JP4837384B2 (en) Syngas production reactor integrated with waste heat recovery unit
JP4827557B2 (en) Reactor using specially shaped refractory material
JP4281083B2 (en) Steam reformer
JP5133570B2 (en) Insulation method of reformer
JP2006225206A (en) Fuel reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees