JP2007160326A - Method of laser welding - Google Patents

Method of laser welding Download PDF

Info

Publication number
JP2007160326A
JP2007160326A JP2005357350A JP2005357350A JP2007160326A JP 2007160326 A JP2007160326 A JP 2007160326A JP 2005357350 A JP2005357350 A JP 2005357350A JP 2005357350 A JP2005357350 A JP 2005357350A JP 2007160326 A JP2007160326 A JP 2007160326A
Authority
JP
Japan
Prior art keywords
laser
metal member
welding
laser beam
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005357350A
Other languages
Japanese (ja)
Other versions
JP4936718B2 (en
Inventor
Hiroyuki Okuyama
寛之 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Technos Corp
Original Assignee
Miyachi Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Technos Corp filed Critical Miyachi Technos Corp
Priority to JP2005357350A priority Critical patent/JP4936718B2/en
Publication of JP2007160326A publication Critical patent/JP2007160326A/en
Application granted granted Critical
Publication of JP4936718B2 publication Critical patent/JP4936718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of laser welding, which method does not generate gas and splash from the coating film of welding material, and does not require complicated clearance control using a fixture, and can secure a stable welding quality having high repeatability. <P>SOLUTION: In a first process for removing a coating film, respective pealing zones H<SB>10</SB>determined at the portions corresponding to welding points W of a steel plate 12 are irradiated by converging a pulse laser beam LBa for removing the coating film, and galvanized coating films 10 within the pealing zones H<SB>10</SB>are sublimated and removed by the energy of the pulse laser beam LBa. In a second process for laser spot welding, the welding points W of the welding materials (12, 14) are irradiated by converging a pulse laser beam LBb for laser beam welding from the reverse side (above) of the stainless steel plate 14, and the stainless steel plate 14 and the steel plate 12 are welded by the energy of the pulse laser beam LBb. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レーザ溶接方法に係わり、より詳細にはメッキ、塗装等の皮膜が形成されている金属部材をレーザ溶接する方法に関する。   The present invention relates to a laser welding method, and more particularly to a method for laser welding a metal member on which a film such as plating or coating is formed.

図11および図12に、亜鉛メッキで表面処理されている金属部材を被溶接材とする従来のレーザ溶接における作用および問題点を示す。
図11において、上下に重ね合わせられた2枚の金属板のうち下層の金属板100はたとえばスチールを素材とし、その表面にたとえば亜鉛メッキの皮膜102が形成されている。上層の金属板104は、皮膜無しの素金属たとえばステンレス鋼からなる。
FIG. 11 and FIG. 12 show actions and problems in conventional laser welding in which a metal member surface-treated with galvanization is a material to be welded.
In FIG. 11, the lower metal plate 100 of two metal plates stacked one above the other is made of steel, for example, and a galvanized film 102 is formed on the surface thereof. The upper metal plate 104 is made of an uncoated metal such as stainless steel.

図11に示すように、通常は、皮膜無しの金属板104の背後(上方)から所望の溶接ポイントWに向けてレーザ光Lbを集光照射する。そうすると、図12に示すように、レーザ光Lbのエネルギーにより、溶接ポイントW付近で上層の金属板104が最初に溶け、次いで下層の金属板100も溶ける。この時、両金属板100,104の境界でメッキ皮膜102が昇華または気化して、レーザ溶融部106を内部から吹き飛ばす、いわゆる爆飛現象を起こす。このような爆飛によって、溶接品質(接合強度、平面度、外観等)が低下するだけでなく、溶接ポイントWの周囲でメッキ皮膜102が広範囲に欠除ないし損傷してメッキの防食機能が失われるという問題もある。   As shown in FIG. 11, the laser beam Lb is usually focused and irradiated from the back (upper side) of the metal plate 104 without a coating toward a desired welding point W. Then, as shown in FIG. 12, the upper metal plate 104 is melted first in the vicinity of the welding point W by the energy of the laser beam Lb, and then the lower metal plate 100 is also melted. At this time, the plating film 102 is sublimated or vaporized at the boundary between the two metal plates 100 and 104, and a so-called explosion phenomenon occurs in which the laser melting portion 106 is blown away from the inside. Such explosions not only deteriorate the welding quality (joining strength, flatness, appearance, etc.), but also the plating film 102 is missing or damaged extensively around the welding point W and the corrosion protection function of the plating is lost. There is also a problem of being

このようなメッキ皮膜102の気化による爆飛を防止するために、従来は、図13に示すように両金属板100,104の間にシム部材108を挟んで隙間Gを形成し、メッキ皮膜102から発生した昇華物(亜鉛ガス)Sを隙間Gの側方から抜く方法が行われている。   In order to prevent such explosion due to vaporization of the plating film 102, conventionally, as shown in FIG. 13, a gap G is formed by sandwiching a shim member 108 between the two metal plates 100 and 104, and the plating film 102. The method of extracting the sublimate (zinc gas) S generated from the side of the gap G is performed.

しかしながら、上記のようにシム部材108を用いる従来のレーザ溶接方法は、両金属板100,104の間にシム部材108を溶接前に挟んで溶接後に抜き取るという作業が非常に面倒であるうえ、その割には一定の隙間Gを作れる確実性や再現性が低い。しかも、メッキ皮膜102は通常数ミクロン以下の膜厚であるのに比して、シム部材108の厚みは極薄でも100μm程度までが限度であり、微小の隙間管理は著しく難しい。加えて、上層の金属板104を溶かしてこの隙間Gを埋めてから下層の金属板100まで溶かさなければならず、そのぶん大きなレーザエネルギーが必要となる。なお、過大エネルギーのレーザ照射によって溶接部付近が形状変形することがある。さらには、この方法でも、溶接ポイントWの周囲でメッキ皮膜102がレーザエネルギーにより必要以上の剥離や損傷を受けて耐食性が失われるという課題は依然として残っている。なお、上記の例は被溶接部材が亜鉛メッキの皮膜を有する場合であったが、他の金属メッキや塗装等の皮膜を有する場合にも同様の問題が発生している。   However, in the conventional laser welding method using the shim member 108 as described above, the work of sandwiching the shim member 108 between the two metal plates 100 and 104 before welding and extracting it after welding is very troublesome. For certain reasons, the certainty and reproducibility of creating a constant gap G are low. In addition, the thickness of the shim member 108 is limited to about 100 μm even if the thickness of the shim member 108 is extremely thin as compared with the thickness of the plating film 102 which is usually several microns or less, and management of a minute gap is extremely difficult. In addition, the upper layer metal plate 104 must be melted to fill the gap G and then the lower layer metal plate 100 must be melted, and that much laser energy is required. In addition, the vicinity of the weld may be deformed by excessive energy laser irradiation. Furthermore, even with this method, the problem remains that the plating film 102 is peeled or damaged more than necessary by the laser energy around the welding point W and the corrosion resistance is lost. In addition, although said example was a case where a to-be-welded member has a film | membrane of galvanization, the same problem has generate | occur | produced also when it has other film | membranes, such as metal plating and coating.

本発明は、上述のような事情に鑑みなされたもので、被溶接材の皮膜からのガスの発生や爆飛がなく、冶具を用いる面倒な隙間管理も不要であり、再現性の高い安定した溶接品質を保証できるレーザ溶接方法を提供することを目的とする。   The present invention has been made in view of the circumstances as described above, and does not generate gas or explode from the coating of the material to be welded, and does not require troublesome gap management using a jig, and is highly reproducible and stable. An object of the present invention is to provide a laser welding method capable of guaranteeing welding quality.

上記の目的を達成するために、本発明の第1のレーザ溶接方法は、表面に皮膜を有する第1の金属部材に第2の金属部材を所望の溶接ポイントにてレーザ溶接するレーザ溶接方法であって、前記第1の金属部材の前記溶第接ポイントおよびその近傍を含む剥離領域に1のレーザ光を照射して、前記剥離領域内の前記皮膜を前記第1のレーザ光のエネルギーによって除去する第1の工程と、前記第1の金属部材と前記第2の金属部材とを重ね合わせ、前記第1の金属部材もしくは前記第2の金属部材の背後から前記溶接ポイントに向けて第2のレーザ光を照射して、前記溶接ポイントにて前記第1の金属部材と前記第2の金属部材とを前記第2のレーザ光のエネルギーによって溶接する第2の工程とを有する。   In order to achieve the above object, a first laser welding method of the present invention is a laser welding method in which a second metal member is laser welded to a first metal member having a coating on the surface at a desired welding point. Then, the laser beam of 1 is irradiated to the peeling region including the welding point of the first metal member and the vicinity thereof, and the coating in the peeling region is removed by the energy of the first laser beam. A first step of superimposing the first metal member and the second metal member on the first metal member or the second metal member from behind the second metal member toward the welding point. A second step of irradiating a laser beam and welding the first metal member and the second metal member at the welding point by the energy of the second laser beam.

また、本発明の第2のレーザ溶接方法は、表面に第1の皮膜を有する第1の金属部材と表面に第2の皮膜を有する第2の金属部材とを所望の溶接ポイントにてレーザ溶接するレーザ溶接方法であって、前記第1の金属部材の前記溶接ポイントおよびその近傍を含む第1の剥離領域に第1のレーザ光を照射して、前記第1の剥離領域内の前記第1の皮膜を前記第1のレーザ光のエネルギーによって除去する第1の工程と、前記第2の金属部材の前記溶接ポイントおよびその近傍を含む第2の剥離領域に第2のレーザ光を照射して、前記第2の剥離領域内の前記第2の皮膜を前記第2のレーザ光のエネルギーによって除去する第2の工程と、前記第1の金属部材と前記第2の金属部材とを重ね合わせ、前記第1の金属部材もしくは前記第2の金属部材の背後から前記溶接ポイントに向けて第3のレーザ光を照射して、前記溶接ポイントにて前記第1の金属部材と前記第2の金属部材とを前記第3のレーザ光のエネルギーによって溶接する第3の工程とを有する。   Further, the second laser welding method of the present invention laser welds a first metal member having a first coating on the surface and a second metal member having a second coating on the surface at a desired welding point. A laser welding method for irradiating a first laser beam to a first peeling region including the welding point of the first metal member and the vicinity thereof, and the first in the first peeling region. Irradiating the second peeling region including the first step of removing the coating film by the energy of the first laser beam and the second peeling region including the welding point of the second metal member and the vicinity thereof. A second step of removing the second film in the second peeling region by the energy of the second laser beam, and the first metal member and the second metal member are overlapped, The first metal member or the second metal A third laser beam is irradiated from behind the material toward the welding point, and the first metal member and the second metal member are welded at the welding point by the energy of the third laser beam. And a third step.

本発明のレーザ溶接方法においては、第1および第2の金属部材の片方または双方に皮膜が形成されている場合は、皮膜付きの当該金属部材に溶接ポイントおよびその近傍を含む剥離領域を設定し、そこに所定のレーザ光を照射して当該剥離領域内の皮膜をレーザエネルギーによって除去する。これにより、両金属部材を重ね合わせると、剥離領域の箇所に両金属部材で挟まれた空洞スペースが形成される。ここに、第1の金属部材もしくは第2の金属部材の背後から溶接ポイントに向けてレーザスポット溶接用のレーザ光を照射すると、上層の金属部材が空洞スペース内で溶け落ちて下層の金属部材に届き、レーザ光のエネルギーが上層金属部材の溶融部分を通じて下層金属部材にも浸透し、下層金属部材も溶ける。そして、レーザ光の照射停止後に、両金属部材の溶融部が凝固して溶接ナゲットとなる。   In the laser welding method of the present invention, when a film is formed on one or both of the first and second metal members, a peeling point including a welding point and the vicinity thereof is set on the metal member with the film. Then, a predetermined laser beam is irradiated to the film to remove the film in the peeling region by laser energy. Thereby, when both metal members are overlapped, a cavity space sandwiched between the two metal members is formed at the location of the peeling region. Here, when the laser beam for laser spot welding is irradiated from the back of the first metal member or the second metal member toward the welding point, the upper metal member melts in the hollow space and becomes the lower metal member. The energy of the laser beam penetrates into the lower metal member through the melted portion of the upper metal member, and the lower metal member also melts. Then, after the laser beam irradiation is stopped, the molten portion of both metal members is solidified to form a weld nugget.

本発明の好適な一態様によれば、上記第1のレーザ溶接方法においては第1および第2のレーザ光のいずれもパルスレーザ光であり、上記第2のレーザ溶接方法においては第1、第2および第3のレーザ光のいずれもパルスレーザ光である。この場合、皮膜除去用のパルスレーザ光およびレーザスポット溶接用のパルスレーザを同一のパルスレーザ発振装置により生成することで、加工設備の低コスト化と加工時間の短縮化を実現できる。   According to a preferred aspect of the present invention, in the first laser welding method, both the first and second laser beams are pulse laser beams, and in the second laser welding method, the first and second laser beams are used. Both the second and third laser beams are pulsed laser beams. In this case, by generating the pulse laser beam for removing the film and the pulse laser for laser spot welding with the same pulse laser oscillation device, it is possible to reduce the cost of the processing equipment and shorten the processing time.

また、パルスレーザ光を使用する場合は各レーザ光のピークパワーをフィード
バック制御によってそれぞれ設定値に保持することで、再現性の高い安定した皮膜除去加工およびレーザスポット溶接加工を行うことができる。
When using pulsed laser light, the peak power of each laser light is fed.
By maintaining the set values by back control, stable film removal processing and laser spot welding processing with high reproducibility can be performed.

また、本発明における剥離領域のサイズは、後工程のレーザスポット溶接工程においてレーザ溶接用のパルスレーザ光が剥離領域を確実に(縁部に当たらずに)通過できる最小の大きさに選ばれるのが好ましく、たとえばパルスレーザ光の照射範囲または照射領域(たとえばビームスポット径)を変えることにより任意に可変調整できる。あるいは当該レーザ光のパルス幅を変えることによって剥離領域のサイズを調整することも可能である。   In addition, the size of the peeling region in the present invention is selected to be the smallest size in which the laser beam pulse laser beam can pass through the peeling region reliably (without hitting the edge) in the subsequent laser spot welding process. Preferably, for example, it can be arbitrarily variably adjusted by changing the irradiation range or irradiation region (for example, beam spot diameter) of the pulse laser beam. Alternatively, the size of the separation region can be adjusted by changing the pulse width of the laser light.

本発明は、任意の材質および膜厚の皮膜を有する金属部材のレーザ溶接に適用可能であり、特に表面処理、典型的にはメッキ処理や塗装処理によって形成された皮膜を有する金属板に好適に適用できる。   The present invention can be applied to laser welding of a metal member having a film of any material and film thickness, and is particularly suitable for a metal plate having a film formed by surface treatment, typically plating or painting. Applicable.

本発明のレーザ溶接方法によれば、上記のような構成および作用により、被溶接材の皮膜からのガスの発生や爆飛がなく、冶具を用いる面倒な隙間管理も不要であり、再現性の高い安定した溶接品質を保証することができる。   According to the laser welding method of the present invention, due to the configuration and operation as described above, there is no generation of gas or explosion from the coating of the material to be welded, no complicated gap management using a jig is necessary, and reproducibility is high. High stable welding quality can be guaranteed.

以下、図1〜図10を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to FIGS.

図1〜図7に、本発明の一実施形態におけるレーザ溶接方法を示す。一例として、被溶接材(ワーク)の一方が亜鉛メッキ10で表面処理されているスチール素地の平板12で、他方が皮膜無しの金属素材たとえばステンレス鋼の平板14とする。   1 to 7 show a laser welding method in one embodiment of the present invention. As an example, one of the workpieces (workpieces) is a steel base plate 12 that has been surface-treated with galvanizing 10 and the other is a metal material without a film, for example, a stainless steel plate 14.

通常は(ステンレス板14の板厚がスチール板12の板厚よりも著しく大きくない場合は)、図1に示すように、亜鉛メッキされたスチール板12の上に素地のステンレス板14を位置合わせして重ねる。そして、たとえば図2に示すように、両金属板12,14が重なり合った部分に一定ピッチで複数の溶接ポイントWを設定し、ステンレス板14の背後(上方)から後述するように各溶接ポイントWに所定のパルスレーザ光を照射して両金属板12,14をレーザスポット溶接で接合する。   Usually (when the thickness of the stainless steel plate 14 is not significantly larger than the thickness of the steel plate 12), the base stainless steel plate 14 is aligned on the galvanized steel plate 12, as shown in FIG. And repeat. For example, as shown in FIG. 2, a plurality of welding points W are set at a constant pitch at the portion where the metal plates 12, 14 overlap each other, and each welding point W is described from behind (above) the stainless steel plate 14 as described later. Are irradiated with a predetermined pulse laser beam, and both metal plates 12 and 14 are joined by laser spot welding.

この実施形態では、レーザスポット溶接の工程に先立ち、図3および図4に示すように、スチール板12の各溶接ポイントWと対応する部位に設定された各剥離領域H10に後述するパルスレーザ加工装置の出射ユニット16より皮膜除去用のパルスレーザ光LBaを所望のレーザ照射条件(ピークパワーP、パルス幅T、ビームスポット径)で集光照射し、剥離領域H10内の亜鉛メッキ皮膜10をパルスレーザ光LBaのレーザエネルギーにより昇華させて除去する。 In this embodiment, prior to the laser spot welding process, as shown in FIG. 3 and FIG. 4, pulse laser processing to be described later is performed on each separation region H 10 set in a portion corresponding to each welding point W of the steel plate 12. the pulsed laser beam LBa for film removal from the output unit 16 of the device desired laser irradiation conditions (peak power P, the pulse width T, the beam spot diameter) in irradiated condenser, a galvanized coating 10 of the release region H 10 Sublimation is performed by the laser energy of the pulse laser beam LBa to remove it.

ここで、剥離領域H10は、好ましくはレーザビームスポットと同形状(円形)で溶接ポイントWとその近傍を含むものである。すなわち、剥離領域H10のサイズは、後述する後工程のレーザスポット溶接工程においてレーザ溶接用のパルスレーザ光LBbが剥離領域H10を確実に(縁部に当たらずに)通過できる最小の大きさに選ばれるのが好ましく、たとえばパルスレーザ光LBaの照射範囲または照射領域を変えることにより任意に可変調整できる。 Here, the peeled area H 10 are preferably those containing the vicinity and the welding point W at the laser beam spot and the same shape (circular). That is, the size of the peeled area H 10 is (without striking the edges) securely pulsed laser beam LBb for laser welding a peeled area H 10 in the laser spot welding process steps after that will be described later minimum size that can pass of For example, it can be arbitrarily variably adjusted by changing the irradiation range or irradiation region of the pulse laser beam LBa.

パルスレーザ光LBaの照射範囲を調整するには、通常の一点照射の場合はパルスレーザ光LBaのビームスポット径を可変する方法が有効である。別の方法として、剥離領域H10内で照射位置をずらしながら複数ポイントに微小スポットのパルスレーザ光LBaを照射することも可能であり、その場合は照射ポイントの個数を変えることによって全体の照射範囲を可変することができる。あるいは、一点照射法または多点照射法のいずれの場合でも、パルスレーザ光LBaのパルス幅TないしレーザエネルギーE(図5)を変えることによってパルスレーザ光LBaの照射範囲を任意に調整することができる。パルスレーザ光LBaのピークパワーPは、素地金属12の変形を来たさずに当該皮膜(この例は亜鉛メッキ被膜)10を所定領域内に限定して確実に昇華させて除去するという観点から、皮膜10の材質、膜厚や素地金属12の材質等に応じて最適な値に設定される。 In order to adjust the irradiation range of the pulse laser beam LBa, a method of changing the beam spot diameter of the pulse laser beam LBa is effective in the case of normal one-point irradiation. Alternatively, the peeled area while shifting the irradiation position in H 10. It is also possible to irradiate the pulsed laser beam LBa the minute spot on a plurality of points, the overall irradiation range by changing the number of the cases the irradiation point Can be varied. Alternatively, in either case of the single point irradiation method or the multipoint irradiation method, the irradiation range of the pulse laser beam LBa can be arbitrarily adjusted by changing the pulse width T or the laser energy E (FIG. 5) of the pulse laser beam LBa. it can. The peak power P of the pulse laser beam LBa is determined from the viewpoint that the coating (in this example, galvanized coating) 10 is limited to a predetermined region and is sublimated and removed without causing deformation of the base metal 12. The optimum value is set in accordance with the material of the coating 10, the film thickness, the material of the base metal 12, and the like.

上記のようにして、亜鉛メッキされたスチール板12の全溶接ポイントWの部位に亜鉛メッキ皮膜10が局所的に除去された剥離領域H10を形成する。次いで、図6に示すように、スチール板12の上にステンレス板14を位置合わせして重ねる。そうすると、スチール板12の各剥離領域H10はその上面がステンレス板14で覆われ、そこに円盤状の空洞(閉)スペースが形成される。この空洞スペースは剥離領域H10と同じ直径(たとえば200〜300μm)を有し、亜鉛メッキ皮膜10の膜厚と等しい高さ(たとえば1〜5μm)を有する。 As described above, the peeling region H 10 where the galvanized film 10 is locally removed is formed at the site of all the welding points W of the galvanized steel plate 12. Next, as shown in FIG. 6, the stainless steel plate 14 is aligned and overlapped on the steel plate 12. Then, the peeled area H 10 of the steel plate 12 is the upper surface thereof is covered with a stainless steel plate 14, which disc-shaped cavity (closed) space is formed. This hollow space has the same diameter (for example, 200 to 300 μm) as the peeling region H 10, and has a height (for example, 1 to 5 μm) equal to the film thickness of the galvanized film 10.

次に、上記のようにして重ね合わせた被溶接材(12,14)の各溶接ポイントWに対して、図7に示すように、上層側の被溶接材つまりステンレス板14の背後(上方)に配置した上記出射ユニット16より今度はレーザ溶接用のパルスレーザ光LBbを所望のレーザ照射条件(ピークパワーP、パルス幅T、ビームスポット径)で集光照射し、各溶接ポイントWにてステンレス板14とスチール板12とをパルスレーザ光LBbのレーザエネルギーによって溶接する。この際、パルスレーザ光LBbの照射により、先ず上層側のステンレス板14が溶けて、剥離領域H10の空洞スペース内で崩れ落ちる。この空洞スペースの高さ(ギャップ)は数μm程度と非常に狭く、ステンレス板14の溶融した部分はその直下のスチール板12に直ぐに届く。すると、パルスレーザ光LBbのレーザエネルギーがステンレス板14の溶融部分を通じてスチール板12にも浸透しその上面を溶かす。こうして、各溶接ポイントWにてステンレス板14とスチール板12とが一体に溶融し、パルスレーザ光LBbの照射停止後に凝固して溶接ナゲットNとなる。 Next, with respect to the welding points W of the welded materials (12, 14) superimposed as described above, as shown in FIG. 7, the upper layer side of the welded material, that is, behind the stainless steel plate 14 (upward). Next, the laser beam LBb for laser welding is condensed and irradiated under the desired laser irradiation conditions (peak power P, pulse width T, beam spot diameter) from the above-described emission unit 16, and stainless steel is used at each welding point W. The plate 14 and the steel plate 12 are welded by the laser energy of the pulse laser beam LBb. At this time, the irradiation of the pulsed laser beam LBb, first stainless steel plate 14 of the upper layer melts, crumbling in the cavity space of the separation region H 10. The height (gap) of this hollow space is very narrow, about several μm, and the melted portion of the stainless steel plate 14 reaches the steel plate 12 immediately below it. Then, the laser energy of the pulse laser beam LBb permeates the steel plate 12 through the melted portion of the stainless plate 14 and melts the upper surface thereof. In this way, the stainless steel plate 14 and the steel plate 12 are integrally melted at each welding point W, and solidify after the irradiation of the pulsed laser beam LBb is stopped to form a weld nugget N.

このレーザスポット溶接法においては、上記のようにパルスレーザ光LBbのエネルギーが剥離領域H10の空洞スペースを通って下層のスチール板12に効率よく入熱されることに加えて、亜鉛メッキ皮膜10にはレーザエネルギーが殆ど及ばないことも重要である。このことにより、レーザ溶接時に、亜鉛メッキ皮膜10が昇華しないため、亜鉛ガスを発生させることはなく、爆飛現象は起こらない。しかも、溶接ポイントWの周囲で亜鉛メッキ皮膜10がレーザエネルギーによる損傷を受けることもないので、防食機能を安定して維持することができる。 In this laser spot welding method, the energy of the pulse laser beam LBb is efficiently input to the lower steel plate 12 through the cavity space of the peeling region H 10 as described above, It is also important that the laser energy hardly reaches. Thus, the zinc plating film 10 does not sublime at the time of laser welding, so that no zinc gas is generated and no explosion phenomenon occurs. Moreover, since the galvanized film 10 is not damaged by the laser energy around the welding point W, the anticorrosion function can be stably maintained.

被溶接材(12,14)の全ての溶接ポイントWについて上記のようなレーザスポット溶接を行うことにより、図2に示すような平板スポット溶接の加工品を完成させることができる。   By performing the laser spot welding as described above on all the welding points W of the workpieces (12, 14), it is possible to complete a plate spot welding processed product as shown in FIG.

この実施形態では、亜鉛メッキのスチール板12に対する皮膜除去工程(第1工程)と、両金属板12,14の溶接ポイントWに対するレーザスポット溶接工程(第2工程)とを1台のパルスレーザ加工装置で行うようにしている。   In this embodiment, the coating removal process (first process) for the galvanized steel plate 12 and the laser spot welding process (second process) for the welding points W of both metal plates 12 and 14 are performed by one pulse laser processing. I do it with a device.

図8に、上記実施形態におけるレーザ溶接方法の実施に使用して好適なパルスレーザ加工装置の構成を示す。このパルスレーザ加工装置は、上記出射ユニット16に加えて、パルスレーザ発振器18、レーザ電源20、制御部22、レーザ伝送系24、パワーフィードバック用受光素子26およびインデックス加工ステージ28を有している。   FIG. 8 shows a configuration of a pulse laser processing apparatus suitable for use in carrying out the laser welding method in the above embodiment. This pulse laser processing apparatus includes a pulse laser oscillator 18, a laser power source 20, a control unit 22, a laser transmission system 24, a power feedback light receiving element 26, and an index processing stage 28 in addition to the emission unit 16.

パルスレーザ発振器18は、たとえばYAGロッドからなるレーザ媒体、このレーザ媒体を励起するレーザ励起手段(たとえば励起光源)、レーザ光を共振増幅する共振器ミラー等を内蔵しており、レーザ加工用のパルスレーザ光LBを発振出力する。レーザ電源20は、制御部22の制御の下で所望のレーザパルス波形とレーザ出力特性を得るようにレーザ発振器18内のレーザ励起手段を電気的に駆動する。レーザ伝送系24は、たとえば光ファイバや折り返しミラー30を有し、レーザ発振器18からのパルスレーザ光LB(LBa,LBb)を出射ユニット16へ伝送する。出射ユニット16は、集光レンズ32等の光学系部品を内蔵しており、レーザ発振器18からのパルスレーザ光LBを被溶接材12,14の溶接ポイントWに向けて集光照射する。   The pulse laser oscillator 18 incorporates a laser medium made of, for example, a YAG rod, a laser excitation means (for example, an excitation light source) for exciting the laser medium, a resonator mirror for resonantly amplifying the laser light, and the like. The laser beam LB is oscillated and output. The laser power source 20 electrically drives laser excitation means in the laser oscillator 18 so as to obtain a desired laser pulse waveform and laser output characteristics under the control of the control unit 22. The laser transmission system 24 includes, for example, an optical fiber and a folding mirror 30, and transmits the pulse laser beam LB (LBa, LBb) from the laser oscillator 18 to the emission unit 16. The emission unit 16 has built-in optical system components such as a condenser lens 32, and irradiates and irradiates the pulse laser beam LB from the laser oscillator 18 toward the welding point W of the workpieces 12 and 14.

受光素子26は、たとえばレーザ伝送系24の折り返しミラー30で得られる漏れ光MLBを受光してパルスレーザ光LBの光強度またはレーザパワーを表す電気信号(レーザパワー検出信号)SLBをレーザ電源20にフィードバックする。レーザ電源20は、受光素子26からのレーザパワー検出信号SLBを設定値のピークパワーに一致するようにパルスレーザ発振器18に供給する励起電流または励起電力を制御する。 The light receiving element 26 receives, for example, the leakage light MLB obtained by the folding mirror 30 of the laser transmission system 24, and supplies an electric signal (laser power detection signal) SLB representing the light intensity or laser power of the pulsed laser light LB as a laser power source. Feedback to 20. The laser power source 20 controls the excitation current or the excitation power supplied to the pulse laser oscillator 18 so that the laser power detection signal S LB from the light receiving element 26 matches the peak power of the set value.

インデックス加工ステージ28は、制御部22の制御の下でステージ上の被溶接材12,14を出射ユニット16に対してX、Y、Zの3軸で位置決めするものであり、XY方向では溶接ポイントWをインデックス送りで移動できるようになっている。   The index processing stage 28 positions the workpieces 12 and 14 on the stage with respect to the emission unit 16 on the three axes X, Y, and Z under the control of the control unit 22, and in the XY directions, the welding point W can be moved by index feed.

制御部22は、マイクロプロセッサ(CPU)、入力装置または操作盤、出力装置、表示装置等からなるマン・マシン・インタフェースとして構成され、本レーザ加工装置の各部の制御を行う。この制御部22において、皮膜除去用のパルスレーザ光LBaとレーザスポット溶接用のパルスレーザ光LBbとを切り換えて選択的に出力できるようになっており、各パルスレーザ光LBa,LBbのピークパワーP、パルス幅T、レーザ照射サイズ等の諸条件を任意に設定できるようになっている。   The control unit 22 is configured as a man-machine interface including a microprocessor (CPU), an input device or operation panel, an output device, a display device, and the like, and controls each part of the laser processing apparatus. In this control unit 22, the pulse laser beam LBa for film removal and the pulse laser beam LBb for laser spot welding can be switched and selectively output, and the peak power P of each pulse laser beam LBa, LBb can be output. Various conditions such as pulse width T and laser irradiation size can be arbitrarily set.

上記した実施例のレーザスポット溶接工程(第2工程)では、亜鉛メッキされたスチール板12の上に素地のステンレス板14を重ね合わせてその上方(背後)からレーザ溶接用のパルスレーザ光LBbを集光照射するようにした。しかし、図9に示すように、上下反転させ、スチール板12の背後(上方)から各溶接ポイントWに向けてレーザ溶接用のパルスレーザ光LBbを集光照射することも可能である。この方法は、たとえば、ステンレス板14の板厚がスチール板12の板厚よりも著しく大きい場合に用いられてよい。   In the laser spot welding process (second process) of the above-described embodiment, the base stainless steel plate 14 is superposed on the galvanized steel plate 12, and the pulse laser beam LBb for laser welding is applied from above (behind). Condensed irradiation was performed. However, as shown in FIG. 9, it is also possible to invert and vertically irradiate pulsed laser light LBb for laser welding toward the welding points W from behind (above) the steel plate 12. This method may be used, for example, when the thickness of the stainless steel plate 14 is significantly larger than the thickness of the steel plate 12.

この方法においては、上層となったスチール板12の裏面側で各剥離領域Hの下面がステンレス板14で覆われ、そこに上記と同様の円盤状空洞スペースが形成される。ここに、パルスレーザ光LBbが照射されると、当該溶接ポイントW付近で、最初に上面のメッキ皮膜10が一瞬に昇華して除去されてから、スチール板12が溶けて剥離領域H10の空洞スペース内でステンレス板14の上に崩れ落ちる。そして、パルスレーザ光LBbのレーザエネルギーがスチール板12の溶融部分を通じてステンレス板14にも浸透しその上面を溶かす。こうして、各溶接ポイントWにてスチール板12とステンレス板14とが一体に溶融し、パルスレーザ光LBbの照射停止後に凝固して溶接ナゲットNとなる。 In this method, the lower surface of each peeling region H is covered with the stainless steel plate 14 on the back surface side of the steel plate 12 that is the upper layer, and a disk-like cavity space similar to the above is formed there. Here, when the pulse laser beam LBb is irradiated, the plating film 10 on the upper surface is first sublimated and removed in the vicinity of the welding point W, and then the steel plate 12 is melted and the cavity of the separation region H 10 is melted. It collapses onto the stainless steel plate 14 in the space. Then, the laser energy of the pulse laser beam LBb penetrates the stainless steel plate 14 through the melted portion of the steel plate 12 and melts the upper surface thereof. In this way, the steel plate 12 and the stainless steel plate 14 are integrally melted at each welding point W, and solidify after the irradiation of the pulse laser beam LBb is stopped to form a weld nugget N.

また、別の実施例として、図10に示すように、スチール板12のみならずステンレス板14にも皮膜(たとえばニッケルメッキ皮膜)34が形成されている場合でも本発明を適用できる。   As another embodiment, as shown in FIG. 10, the present invention can be applied even when a film (for example, nickel plating film) 34 is formed not only on the steel plate 12 but also on the stainless steel plate 14.

この場合は、レーザスポット溶接工程(第2工程)に先立ち、図3および図4に示したのと同様の皮膜除去加工をステンレス板14にも施す。すなわち、ステンレス板14の各溶接ポイントWと対応する部位に設定された各剥離領域H34にパルスレーザ加工装置(図8)の出射ユニット16より表面除去用のパルスレーザ光LBc(図示せず)を所望のレーザ照射条件(ピークパワーP、パルス幅T、ビームスポット径)で集光照射し、剥離領域H34内の皮膜34をパルスレーザ光LBcのレーザエネルギーにより昇華させて除去する。剥離領域H34のサイズは、やはり後工程のレーザスポット溶接加工においてレーザ溶接用のパルスレーザ光LBbが剥離領域H34を確実に(縁部に当たらずに)通過できる最小の大きさに選ばれるのが好ましい。また、パルスレーザ光LBcのピークパワーPは、素地金属14の変形を来たさずに当該皮膜34を剥離領域H34内に限定して確実に昇華させて除去するという観点から、皮膜34の材質、膜厚や素地金属14の材質等に応じて最適な値に設定されてよい。 In this case, prior to the laser spot welding process (second process), the same film removal processing as shown in FIGS. 3 and 4 is also applied to the stainless steel plate 14. That is, a pulse laser beam LBc (not shown) for removing the surface from the emission unit 16 of the pulse laser processing apparatus (FIG. 8) in each peeling region H 34 set at a site corresponding to each welding point W of the stainless steel plate 14. Is condensed and irradiated under desired laser irradiation conditions (peak power P, pulse width T, beam spot diameter), and the coating 34 in the peeling region H 34 is sublimated by the laser energy of the pulse laser beam LBc and removed. The size of the separation region H 34 is also selected to be the smallest size in which the laser beam pulsed laser beam LBb can reliably pass through the separation region H 34 (without hitting the edge) in the laser spot welding process in the subsequent process. Is preferred. In addition, the peak power P of the pulse laser beam LBc is determined from the viewpoint of the sublimation of the coating 34 by reliably sublimating the coating 34 within the peeling region H 34 without causing deformation of the base metal 14. The optimum value may be set according to the material, the film thickness, the material of the base metal 14, and the like.

そして、上記のような皮膜除去加工をそれぞれ施されたステンレス板14およびスチール板12を上下に位置合わせして重ねると、図10に示すように、スチール板12の剥離領域H10の上にステンレス板14の剥離領域H34がぴったり重なって、上面がステンレス板14で閉塞されるとともに下面がスチール板12で閉塞された1つの円盤状空洞スペースが形成される。レーザ溶接用のパルスレーザ光LBbが照射されると、当該溶接ポイントW付近で、最初にステンレス板14上面の皮膜34が一瞬に昇華して除去されてから、ステンレス板12が溶けて剥離領域H10,H34の空洞スペース内でスチール板12の上に崩れ落ちる。そして、パルスレーザ光LBbのレーザエネルギーがステンレス板14の溶融部分を通じてスチール板12にも浸透しその上面を溶かす。こうして、各溶接ポイントWにてステンレス板14とスチール板12とが一体に溶融し、パルスレーザ光LBbの照射停止後に凝固して溶接ナゲットNとなる。 When the overlapped by aligning the stainless steel plate 14 and steel plate 12 film removal processing has been performed, respectively, as described above in the vertical direction, as shown in FIG. 10, stainless steel on the release region H 10 steel plate 12 The peeling region H 34 of the plate 14 is exactly overlapped to form one disk-shaped hollow space whose upper surface is closed by the stainless steel plate 14 and whose lower surface is closed by the steel plate 12. When the pulse laser beam LBb for laser welding is irradiated, the coating 34 on the upper surface of the stainless steel plate 14 is first sublimated and removed in the vicinity of the welding point W, and then the stainless steel plate 12 is melted and the separation region H is melted. 10, crumble on steel plate 12 in the cavity space of H 34. Then, the laser energy of the pulse laser beam LBb permeates the steel plate 12 through the melted portion of the stainless plate 14 and melts the upper surface thereof. In this way, the stainless steel plate 14 and the steel plate 12 are integrally melted at each welding point W, and solidify after the irradiation of the pulsed laser beam LBb is stopped to form a weld nugget N.

上記した実施例における被溶接材(スチール板12,ステンレス板14)および皮膜(亜鉛メッキ皮膜10,ニッケルメッキ皮膜34)の組み合わせは一例にすぎない。本発明は、任意の材質の金属部材および任意の材質の皮膜または任意の表面処理皮膜に適用可能である。したがって、被溶接材(金属部材)の皮膜に関しては、メッキ処理以外にも、たとえば塗装処理、ほうろう処理、化成処理等によって形成された皮膜等も可能である。   The combination of the material to be welded (steel plate 12, stainless plate 14) and the coating (zinc plating coating 10, nickel plating coating 34) in the above-described embodiment is merely an example. The present invention is applicable to a metal member of any material and a film of any material or any surface treatment film. Therefore, regarding the film of the material to be welded (metal member), in addition to the plating process, a film formed by, for example, a coating process, an enamel process, a chemical conversion process, or the like is also possible.

また、上記した実施形態では、皮膜除去とレーザスポット溶接の2つの工程を1台のパルスレーザ加工装置によって実施するので、加工設備のコストダウンを図れる利点がある。しかし、皮膜除去工程とレーザスポット溶接工程とを個別のレーザ加工装置で実施することも可能である。その場合、たとえば皮膜除去工程にQスイッチ型のレーザ加工装置を用いることも可能である。   Moreover, in the above-described embodiment, since the two steps of film removal and laser spot welding are performed by one pulse laser processing apparatus, there is an advantage that the cost of processing equipment can be reduced. However, the film removal process and the laser spot welding process can also be performed by separate laser processing apparatuses. In that case, for example, it is also possible to use a Q-switch type laser processing apparatus for the film removal step.

本発明の一実施形態によるレーザ溶接方法の適用可能な被溶接材を示す分解断面図である。It is a disassembled sectional view which shows the to-be-welded material which can apply the laser welding method by one Embodiment of this invention. 実施形態における被溶接材の接合状態を示す斜視図である。It is a perspective view which shows the joining state of the to-be-welded material in embodiment. 実施形態における皮膜除去工程の作用を示す斜視図である。It is a perspective view which shows the effect | action of the film removal process in embodiment. 実施形態における皮膜除去工程の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the film removal process in embodiment. 実施形態のレーザ溶接方法で用いるパルスレーザ光のレーザ出力波形を示す図である。It is a figure which shows the laser output waveform of the pulse laser beam used with the laser welding method of embodiment. 実施形態におけるレーザスポット溶接工程前の被溶接材の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state of the to-be-welded material before the laser spot welding process in embodiment. 実施形態におけるレーザスポット溶接工程の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the laser spot welding process in embodiment. 実施形態におけるレーザ溶接方法を実施するためのパルスレーザ加工装置の構成を示すブロック図である。It is a block diagram which shows the structure of the pulse laser processing apparatus for enforcing the laser welding method in embodiment. 一変形例におけるレーザスポット溶接工程の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the laser spot welding process in one modification. 別の変形例によるレーザスポット溶接工程の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the laser spot welding process by another modification. 従来一般のレーザ溶接方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional general laser welding method. 従来一般のレーザ溶接方法の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the conventional general laser welding method. 治具(シム部材)を用いる従来のレーザ溶接方法の作用を示す縦断面図である。It is a longitudinal cross-sectional view which shows the effect | action of the conventional laser welding method using a jig | tool (shim member).

符号の説明Explanation of symbols

10 皮膜(亜鉛メッキ皮膜)
12 スチール板
14 ステンレス板
16 出射ユニット
18 パルスレーザ発振器
20 レーザ電源
22 制御部
28 インデックス加工ステージ
34 皮膜(ニッケルメッキ皮膜)
W 溶接ポイント
10,H34 剥離領域
10 Film (galvanized film)
12 Steel plate 14 Stainless steel plate 16 Output unit 18 Pulse laser oscillator 20 Laser power supply 22 Control unit 28 Index processing stage 34 Coating (nickel plating coating)
W welding points H 10, H 34 peeled area

Claims (17)

表面に皮膜を有する第1の金属部材に第2の金属部材を所望の溶接ポイントにてレーザ溶接するレーザ溶接方法であって、
前記第1の金属部材の前記溶接ポイントおよびその近傍を含む剥離領域に第1のレーザ光を照射して、前記剥離領域内の前記皮膜を前記第1のレーザ光のエネルギーによって除去する第1の工程と、
前記第1の金属部材と前記第2の金属部材とを重ね合わせ、前記第1の金属部材もしくは前記第2の金属部材の背後から前記溶接ポイントに向けて第2のレーザ光を照射して、前記溶接ポイントにて前記第1の金属部材と前記第2の金属部材とを前記第2のレーザ光のエネルギーによって溶接する第2の工程と
を有するレーザ溶接方法。
A laser welding method for laser welding a second metal member to a first metal member having a film on a surface at a desired welding point,
A first laser beam is irradiated to a peeling region including the welding point of the first metal member and the vicinity thereof, and the coating in the peeling region is removed by energy of the first laser beam. Process,
The first metal member and the second metal member are overlapped, and a second laser beam is irradiated from behind the first metal member or the second metal member toward the welding point, A laser welding method comprising: a second step of welding the first metal member and the second metal member with the energy of the second laser beam at the welding point.
前記第1および第2のレーザ光のいずれもパルスレーザ光である請求項1に記載のレーザ溶接方法。   The laser welding method according to claim 1, wherein both the first and second laser beams are pulsed laser beams. 前記第1および第2のレーザ光を同一のパルスレーザ発振装置により生成する請求項2に記載のレーザ溶接方法。   The laser welding method according to claim 2, wherein the first and second laser beams are generated by the same pulse laser oscillation device. 前記第1のレーザ光のピークパワーをフィードバック制御によって設定値に保持する請求項2または請求項3に記載のレーザ溶接方法。   The laser welding method according to claim 2 or 3, wherein the peak power of the first laser beam is held at a set value by feedback control. 前記剥離領域のサイズを前記第1のレーザ光の照射範囲によって調整する請求項2〜4のいずれか一項に記載のレーザ溶接方法。   The laser welding method according to any one of claims 2 to 4, wherein a size of the peeling region is adjusted according to an irradiation range of the first laser light. 前記剥離領域のサイズを前記第1のレーザ光のビームスポット径によって調整する請求項5に記載のレーザ溶接方法。   The laser welding method according to claim 5, wherein a size of the separation region is adjusted by a beam spot diameter of the first laser light. 前記剥離領域のサイズを前記第1のレーザ光のパルス幅によって調整する請求項2〜4のいずれか一項に記載のレーザ溶接方法。   The laser welding method according to any one of claims 2 to 4, wherein a size of the peeling region is adjusted by a pulse width of the first laser beam. 表面に第1の皮膜を有する第1の金属部材と表面に第2の皮膜を有する第2の金属部材とを所望の溶接ポイントにてレーザ溶接するレーザ溶接方法であって、
前記第1の金属部材の前記溶接ポイントおよびその近傍を含む第1の剥離領域に第1のレーザ光を照射して、前記第1の剥離領域内の前記第1の皮膜を前記第1のレーザ光のエネルギーによって除去する第1の工程と、
前記第2の金属部材の前記溶接ポイントおよびその近傍を含む第2の剥離領域に第2のレーザ光を照射して、前記第2の剥離領域内の前記第2の皮膜を前記第2のレーザ光のエネルギーによって除去する第2の工程と、
前記第1の金属部材と前記第2の金属部材とを重ね合わせ、前記第1の金属部材もしくは前記第2の金属部材の背後から前記溶接ポイントに向けて第3のレーザ光を照射して、前記溶接ポイントにて前記第1の金属部材と前記第2の金属部材とを前記第3のレーザ光のエネルギーによって溶接する第3の工程と
を有するレーザ溶接方法。
A laser welding method for laser welding a first metal member having a first film on a surface and a second metal member having a second film on a surface at a desired welding point,
A first laser beam is irradiated to a first peeling region including the welding point of the first metal member and the vicinity thereof, and the first film in the first peeling region is applied to the first laser. A first step of removing by light energy;
A second laser beam is irradiated to a second peeling region including the welding point of the second metal member and the vicinity thereof, and the second film in the second peeling region is applied to the second laser. A second step of removing by light energy;
The first metal member and the second metal member are overlapped, and a third laser beam is irradiated from behind the first metal member or the second metal member toward the welding point, And a third step of welding the first metal member and the second metal member by the energy of the third laser beam at the welding point.
前記第1、第2および第3のレーザ光のいずれもパルスレーザ光である請求項8に記載のレーザ溶接方法。   The laser welding method according to claim 8, wherein all of the first, second, and third laser beams are pulsed laser beams. 前記第1、第2および第3のレーザ光を同一のパルスレーザ発振装置により生成する請求項9に記載のレーザ溶接方法。   The laser welding method according to claim 9, wherein the first, second, and third laser beams are generated by the same pulse laser oscillation device. 前記第1および第2のレーザ光のピークパワーをフィードバック制御によってそれぞれ設定値に保持する請求項9または請求項10に記載のレーザ溶接方法。   The laser welding method according to claim 9 or 10, wherein the peak powers of the first and second laser beams are held at set values by feedback control. 前記剥離領域のサイズを前記第1のレーザ光の照射範囲によって調整する請求項9〜11のいずれか一項に記載のレーザ溶接方法。   The laser welding method according to any one of claims 9 to 11, wherein a size of the peeling region is adjusted by an irradiation range of the first laser light. 前記第1および第2の剥離領域のサイズをそれぞれ前記第1および第2のレーザ光のビームスポット径によって調整する請求項12に記載のレーザ溶接方法。   The laser welding method according to claim 12, wherein the sizes of the first and second peeling regions are adjusted by beam spot diameters of the first and second laser beams, respectively. 前記第1および第2の剥離領域のサイズをそれぞれ前記第1および第2のレーザ光のパルス幅によって調整する請求項9〜11のいずれか一項に記載のレーザ溶接方法。   The laser welding method according to any one of claims 9 to 11, wherein the sizes of the first and second peeling regions are adjusted by the pulse widths of the first and second laser beams, respectively. 前記皮膜が表面処理によって形成されたものである請求項1〜14のいずれか一項に記載のレーザ溶接方法。   The laser welding method according to claim 1, wherein the film is formed by a surface treatment. 前記皮膜がメッキ処理または塗装処理によって形成されたものである請求項15に記載のレーザ溶接方法。   The laser welding method according to claim 15, wherein the film is formed by plating or painting. 前記皮膜が亜鉛メッキ被膜である請求項16に記載のレーザ溶接方法。



The laser welding method according to claim 16, wherein the coating is a galvanized coating.



JP2005357350A 2005-12-12 2005-12-12 Laser welding method Active JP4936718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357350A JP4936718B2 (en) 2005-12-12 2005-12-12 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357350A JP4936718B2 (en) 2005-12-12 2005-12-12 Laser welding method

Publications (2)

Publication Number Publication Date
JP2007160326A true JP2007160326A (en) 2007-06-28
JP4936718B2 JP4936718B2 (en) 2012-05-23

Family

ID=38243817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357350A Active JP4936718B2 (en) 2005-12-12 2005-12-12 Laser welding method

Country Status (1)

Country Link
JP (1) JP4936718B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256869A (en) * 2007-04-03 2008-10-23 Nippon Hoso Kyokai <Nhk> Hologram information recording and reproducing method and apparatus, hologram information recording device, and hologram information reproducing apparatus
CN102630193A (en) * 2010-01-20 2012-08-08 三菱重工业株式会社 Method for repairing wall member with passage
CN105458503A (en) * 2015-12-11 2016-04-06 中国电子科技集团公司第四十八研究所 Laser seal welding technology of composite aluminum alloy shell
JP2017052006A (en) * 2015-09-10 2017-03-16 新日鐵住金株式会社 Lap joint coupler and method for manufacturing same
CN106937501A (en) * 2017-03-30 2017-07-07 东莞劲胜精密组件股份有限公司 A kind of use for electronic products combined housing and preparation method thereof
WO2017124216A1 (en) * 2016-01-18 2017-07-27 GM Global Technology Operations LLC Method of laser spot welding coated steels
CN107685188A (en) * 2016-08-05 2018-02-13 本田技研工业株式会社 For welding the method and joint of foreign material piece
CN110890509A (en) * 2018-09-05 2020-03-17 罗伯特·博世有限公司 Method for connecting individual film-shaped films of a stack of battery films
JP2020203315A (en) * 2015-02-09 2020-12-24 エスピーアイ レーザーズ ユーケー リミテッド Weld

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201668A1 (en) * 2016-05-24 2017-11-30 GM Global Technology Operations LLC Laser welding of coated steels assisted by the formation of at least one preliminary weld deposit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251684A (en) * 1991-01-24 1992-09-08 Toyota Motor Corp Laser welding method of galvanized steel sheet
JPH07283511A (en) * 1994-04-11 1995-10-27 Matsushita Electric Ind Co Ltd Laser trimming method of circuit element formed of copper foil of printed wiring board
JP2005095934A (en) * 2003-09-25 2005-04-14 Miyachi Technos Corp Laser welding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251684A (en) * 1991-01-24 1992-09-08 Toyota Motor Corp Laser welding method of galvanized steel sheet
JPH07283511A (en) * 1994-04-11 1995-10-27 Matsushita Electric Ind Co Ltd Laser trimming method of circuit element formed of copper foil of printed wiring board
JP2005095934A (en) * 2003-09-25 2005-04-14 Miyachi Technos Corp Laser welding machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256869A (en) * 2007-04-03 2008-10-23 Nippon Hoso Kyokai <Nhk> Hologram information recording and reproducing method and apparatus, hologram information recording device, and hologram information reproducing apparatus
CN102630193A (en) * 2010-01-20 2012-08-08 三菱重工业株式会社 Method for repairing wall member with passage
CN102630193B (en) * 2010-01-20 2015-02-04 三菱重工业株式会社 Method for repairing wall member with passage
US9199342B2 (en) 2010-01-20 2015-12-01 Mitsubishi Hitachi Power Systems, Ltd. Repairing method for wall member with flow passages
JP2020203315A (en) * 2015-02-09 2020-12-24 エスピーアイ レーザーズ ユーケー リミテッド Weld
JP7095039B2 (en) 2015-02-09 2022-07-04 トルンプ レーザー ユーケー リミティド welded part
JP2017052006A (en) * 2015-09-10 2017-03-16 新日鐵住金株式会社 Lap joint coupler and method for manufacturing same
CN105458503A (en) * 2015-12-11 2016-04-06 中国电子科技集团公司第四十八研究所 Laser seal welding technology of composite aluminum alloy shell
WO2017124216A1 (en) * 2016-01-18 2017-07-27 GM Global Technology Operations LLC Method of laser spot welding coated steels
CN107685188A (en) * 2016-08-05 2018-02-13 本田技研工业株式会社 For welding the method and joint of foreign material piece
CN106937501A (en) * 2017-03-30 2017-07-07 东莞劲胜精密组件股份有限公司 A kind of use for electronic products combined housing and preparation method thereof
CN110890509A (en) * 2018-09-05 2020-03-17 罗伯特·博世有限公司 Method for connecting individual film-shaped films of a stack of battery films

Also Published As

Publication number Publication date
JP4936718B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4936718B2 (en) Laser welding method
JP6911153B2 (en) Methods and systems for welding copper using a blue laser
Blondeau Metallurgy and mechanics of welding: processes and industrial applications
US6852946B2 (en) Laser-induced plasma micromachining
JP5276699B2 (en) Laser processing method and laser processing apparatus for piercing
JP2011041982A (en) System and method of dual laser beam welding of first and second filler metal
JP3115456B2 (en) Laser welding method for galvanized steel sheet
Schmidt et al. Advances in macro-scale laser processing
JP2014018804A (en) One side welding method
JP2002316282A (en) Laser beam machining method and device
JP2005246434A (en) Method and apparatus for preventing or repairing hole defect in laser spot welding
JPH04251684A (en) Laser welding method of galvanized steel sheet
Berend et al. High-frequency beam oscillating to increase the process stability during laser welding with high melt pool dynamics
KR20210106566A (en) Methods and systems for welding copper and other metals using blue lasers
JP3631936B2 (en) Welding method and welding apparatus
JP4873588B2 (en) Laser welding method
EP0757605A1 (en) Method for welding
JP2005199287A (en) Weld bead structure and welding method
JP2011156572A (en) Laser welding method
Balchev et al. Precision micromachining of metals by CuBr laser
Sadegh Amalnik An intelligent knowledge based system for CO2 laser beam machining for optimization of design and manufacturing
JP2006110565A (en) Laser welding method
JP2004195528A (en) Laser irradiation arc welding method of magnesium or magnesium alloy
JP2004209543A (en) Laser beam welding method
JPH0550278A (en) Welding method for plated materials by laser beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350