JP2007157990A - Light emitting diode lighting system - Google Patents

Light emitting diode lighting system Download PDF

Info

Publication number
JP2007157990A
JP2007157990A JP2005350642A JP2005350642A JP2007157990A JP 2007157990 A JP2007157990 A JP 2007157990A JP 2005350642 A JP2005350642 A JP 2005350642A JP 2005350642 A JP2005350642 A JP 2005350642A JP 2007157990 A JP2007157990 A JP 2007157990A
Authority
JP
Japan
Prior art keywords
emitting diode
light
light emitting
diode illuminating
fading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005350642A
Other languages
Japanese (ja)
Inventor
Iwatomo Moriyama
厳與 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2005350642A priority Critical patent/JP2007157990A/en
Publication of JP2007157990A publication Critical patent/JP2007157990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode lighting system capable of preventing color deterioration of a target of lighting such as a picture, and obtaining required color rendering properties. <P>SOLUTION: The light emitting diode lighting system includes a light emitting diode device having a light emitting diode, and a wavelength converter for converting light emission from the diode into required colored light for emitting white light from the required colored light and the light emitted from the diode; and has respective light emission wavelength regions including, at least, 400-500 nm, 500-600 nm and 600-700 nm. Where λl, λn and λh refer to the light emission wavelength regions respectively, radiant intensity is specified such that the radiant intensity of λl is 0-2 W/m<SP>2</SP>, the radiant intensity of λn is approximately twice that of λl, and the radiant intensity of λh is specified to acquire an average color rendering index of 70 or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は発光ダイオード照明装置に関する。   The present invention relates to a light emitting diode illumination device.

従来、博物館や美術館用の照明装置の一例としては、絵画等の退色を防止することを目的とした美術館・博物館用蛍光ランプ(以下、NU蛍光ランプという)が知られている。   Conventionally, as an example of a lighting device for a museum or an art museum, a fluorescent lamp for an art museum or a museum (hereinafter referred to as an NU fluorescent lamp) for the purpose of preventing fading of a picture or the like is known.

このNU蛍光ランプは、分光分布がハロゲン電球とほぼ同じであり、退色に大きな影響を与える紫外線をカットしている。   This NU fluorescent lamp has a spectral distribution substantially the same as that of a halogen bulb, and cuts ultraviolet rays that have a great influence on fading.

このNU蛍光ランプの退色抑止効果は、JIS・Z9110で示す照明手法を用い、約500lxで退色の程度を検出できるブルースケール1級および2級を照明した場合に、CIE(国際照明委員会)が提唱する年間暴露限界量15,000lx・hrにおいて、従来の蛍光ランプ(例えば白色、3波長型、D65)よりも退色の度合い(ΔE,CIE 1964表色系)を低減できることが明らかにされている(例えば非特許文献1参照)。
照明学会誌第74巻第4号(平成2年)P212〜216
The fading suppression effect of this NU fluorescent lamp is determined by the CIE (International Commission on Illumination) when the lighting method shown in JIS / Z9110 is used to illuminate the first and second blue scales that can detect the degree of fading at about 500 lx. At the proposed annual exposure limit of 15,000 lx · hr, it has been clarified that the degree of fading (ΔE, CIE 1964 color system) can be reduced more than conventional fluorescent lamps (for example, white, three-wavelength type, D65). (For example, refer nonpatent literature 1).
The Illuminating Engineering Journal Vol. 74, No. 4 (Heisei 2) P212-216

ところで、近年、美術館・博物館用照明装置では、蛍光ランプによるウォールウォッシャー照明装置に加えて、ハロゲン、ローボルト−ハロゲン等によるスポット照明を組み合わせた照明が主流である。例えば、ある限られた空間、例えばショーケース内等は、蛍光ランプとハロゲンランプとの組合せにより照明されている。   By the way, in recent years, illuminations for museums / museums are mainly used in combination with a wall washer illumination device using a fluorescent lamp, and a combination of spot illumination using halogen, low-voltage halogen, or the like. For example, a limited space such as a showcase is illuminated by a combination of a fluorescent lamp and a halogen lamp.

しかしながら、かかる組合せ照明装置では、500lxを容易に超えた照明になり、年間暴露量も必然的に高くなる。このために、むしろ退色を加速することになっていた。そこで、その対策としては、殆どのショーケース照明では、蛍光ランプを取り外して、ハロゲンランプだけで照明していることが多い。しかし、これでは、対象物のみをスポット光源で照明することしかできないため、蛍光ランプに代わる空間全体を照明するための照明装置が求められている。同時に、所要の演色性を持たせることも求められる。   However, such a combination lighting device can easily exceed 500 lx, and the annual exposure amount is inevitably high. For this reason, it was supposed to accelerate fading. Therefore, as a countermeasure, in most showcase lighting, a fluorescent lamp is removed and illumination is performed only with a halogen lamp. However, since this can only illuminate only the object with a spot light source, an illuminating device for illuminating the entire space in place of the fluorescent lamp is required. At the same time, the required color rendering properties are also required.

一方、白色発光ダイオード(LED)照明装置は、紫外および赤外放射を含まない光源であるので、美術館・博物館用照明としての条件を備えた照明装置である。特に、小電力、小型、軽量、光の制御のし易さや多彩な光色等の特性は、有機、無機の複合素材で構成される絵画、彫刻、工芸品等の文化財用照明としての利用が十分にあり、今後美術館用照明としての設置が考えられる。しかし、現在のところ白色発光ダイオード照明装置が美術館・博物館用照明装置としては未だ使用されていない。   On the other hand, a white light emitting diode (LED) illumination device is a light source that does not include ultraviolet and infrared radiation, and is therefore an illumination device that has conditions for illumination for museums and museums. In particular, low power, small size, light weight, easy controllability of light, and various light colors are used as lighting for cultural assets such as paintings, sculptures, and crafts made of organic and inorganic composite materials. There are enough, and it is possible to install it as lighting for museums in the future. However, at present, the white light emitting diode illumination device is not yet used as a museum illumination device.

本発明はこのような事情を考慮してなされたもので、その目的は、絵画等の照明対象の退色を抑止し、所要の演色性を得ることができる発光ダイオード照明装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light-emitting diode illuminating device that can suppress discoloration of an object to be illuminated such as a painting and obtain a required color rendering property. .

請求項1に係る発明は、発光ダイオードとこの発光ダイオードからの発光を所要色光に変換する波長変換体とを有し、この所要色光と発光ダイオードの発光から白色光を放射する発光ダイオード装置を具備し、少なくとも400〜500nm、500〜600nm、600〜700nmの発光波長域をそれぞれ有し、これら発光波長域をそれぞれλl,λn,λhとしたときに、λlの放射強度が0〜2W/m、λnの放射強度がλlのほぼ2倍、平均演色評価数が70以上になるようにλhの放射強度が設定されてなることを特徴とする発光ダイオード照明装置である。 The invention according to claim 1 includes a light emitting diode device that includes a light emitting diode and a wavelength converter that converts light emitted from the light emitting diode into required color light, and emits white light from the required color light and the light emitted from the light emitting diode. The emission intensity range of λl is 0 to 2 W / m 2 when the emission wavelength ranges are λ1, λn, and λh, respectively, at least 400 to 500 nm, 500 to 600 nm, and 600 to 700 nm. The light emitting diode illuminating device is characterized in that the radiation intensity of λh is set so that the radiation intensity of λn is almost twice that of λl and the average color rendering index is 70 or more.

なお、ここで、λnの放射強度がλlのほぼ2倍とは、2倍の放射強度の±10%の範囲を含む意味である。   Here, the fact that the radiant intensity of λn is approximately twice the λl means that it includes a range of ± 10% of the doubled radiant intensity.

請求項2に係る発類は、λhの放射強度がλnの放射強度以上であって、平均演色評価数が80以上になるように構成されていることを特徴とする請求項1記載の発光ダイオード照明装置である。   2. The light emitting diode according to claim 1, wherein the radiant intensity of λh is equal to or higher than the radiant intensity of λn, and the average color rendering index is 80 or higher. It is a lighting device.

請求項1に係る発明によれば、絵画等の照明対象の退色に影響を与える400〜500nmの発光波長域λnの放射強度が500〜600nmの発光波長域λnの放射強度のほぼ半分であるので、照明対象の退色抑止効果を奏することができる。   According to the first aspect of the present invention, the radiation intensity in the light emission wavelength region λn of 400 to 500 nm that affects the fading of an illumination object such as a painting is almost half of the radiation intensity in the light emission wavelength region λn of 500 to 600 nm. The fading suppression effect of the illumination target can be achieved.

また、演色性向上に影響を与える600〜700nmの発光波長域λhの放射強度が平均演色評価数70以上になるように設定されているので、平均演色評価数70以上を奏することができる。   In addition, since the radiation intensity in the emission wavelength region λh of 600 to 700 nm that affects the improvement in color rendering is set to an average color rendering index of 70 or more, an average color rendering index of 70 or more can be achieved.

また、請求項2に係る発明によれば、発光波長域λhの放射強度が平均演色評価数80以上になるように構成されているので、平均演色評価数80以上を奏することができる。   Further, according to the invention of claim 2, since the radiation intensity in the emission wavelength region λh is configured to be an average color rendering index of 80 or more, an average color rendering index of 80 or more can be achieved.

以下、本発明の実施形態を添付図面に基づいて説明する。なお、これら添付図面中、同一または相当部分には同一符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, the same or corresponding parts are denoted by the same reference numerals.

図1は例えば5種類の白色発光の発光ダイオード照明装置A〜Eの複数波長域毎の放射強度(W)を一覧表で示す図、図2はこれら発光ダイオード照明装置A〜Eの発光方式、電気出力特性、色温度(K)および平均演色評価数(Ra)を一覧表で示す図、図3(a)〜(e)はこれら発光ダイオード照明装置A〜Eの分光分布図である。   FIG. 1 is a table showing, for example, the emission intensity (W) for each of a plurality of wavelength ranges of five types of light emitting diode illuminating devices A to E that emit white light, and FIG. FIGS. 3A to 3E are diagrams showing electrical output characteristics, color temperature (K), and average color rendering index (Ra) in a list, and FIGS. 3A to 3E are spectral distribution diagrams of these light-emitting diode illuminators A to E. FIG.

これら図1〜図3中、発光ダイオード照明装置Dが本発明の一実施形態に係る発光ダイオード照明装置である。すなわち、発光ダイオード照明装置Dは、380〜780の可視光発光波長域のうち、少なくとも400〜500nm(λl)、500〜600nm(λn)、600〜700nm(λh)の発光波長域をそれぞれ有し、400〜500nmの発光波長域λlの放射強度は例えば0.44Wである。   1-3, the light-emitting diode illuminating device D is a light-emitting diode illuminating device according to an embodiment of the present invention. That is, the light-emitting diode illuminating device D has at least emission wavelength ranges of 400 to 500 nm (λl), 500 to 600 nm (λn), and 600 to 700 nm (λh), respectively, among the visible light emission wavelength ranges of 380 to 780. The emission intensity in the emission wavelength region λl of 400 to 500 nm is 0.44 W, for example.

また、500〜600nmの発光波長域λnの放射強度は0.91Wであり、発光波長域λlの放射強度のほぼ2倍である。すなわち、400〜500nm(λl)の放射強度0.44Wの2倍(0.88W)の±10%(±0.088W)の範囲(0.792〜0.968W)内に収まっている。   The emission intensity in the emission wavelength region λn of 500 to 600 nm is 0.91 W, which is almost twice the emission intensity in the emission wavelength region λl. That is, it is within the range (0.792 to 0.968 W) of ± 10% (± 0.088 W) which is twice (0.88 W) of the radiation intensity of 0.44 W of 400 to 500 nm (λl).

さらに、600〜700nmの発光波長域λhの放射強度は0.93Wである。このために、発光ダイオード照明装置Dの平均演色評価数(Ra)は図2に示すように75であり、70以上である。   Further, the radiation intensity in the emission wavelength region λh of 600 to 700 nm is 0.93 W. For this reason, the average color rendering index (Ra) of the light-emitting diode illuminating device D is 75 as shown in FIG.

この発光ダイオード照明装置Dは白色発光の発光ダイオード照明装置の美術館や博物館用照明としての有効性ないし適性を検証するための検証実験により退色抑止効果と演色性の点で優れていることが検証されたものである。以下、この検証実験について述べる。   This light-emitting diode illuminating device D has been verified to be superior in terms of fading suppression effect and color rendering by a verification experiment for verifying the effectiveness or suitability of white light-emitting light-emitting diode illuminating devices as illumination for museums and museums. It is a thing. Hereinafter, this verification experiment will be described.

(発光ダイオード照明装置)
この検証実験は5種類の白色発光の発光ダイオード照明装置A〜Eについて実施された。発光ダイオード照明装置A〜Eは、器具本体の光源配設面に、複数の発光ダイオード装置を例えば9列18行(9×18)のマトリクスに配列して設けられ、器具本体には、これら発光ダイオード装置に直流電力を供給して点灯させる点灯装置を設けている。
(Light-emitting diode lighting device)
This verification experiment was conducted on five types of light emitting diode illuminators A to E that emit white light. The light-emitting diode illuminating devices A to E are provided with a plurality of light-emitting diode devices arranged in a matrix of 9 columns and 18 rows (9 × 18), for example, on the light source arrangement surface of the fixture body. There is provided a lighting device for supplying a direct current to the diode device to light it.

これら発光ダイオード装置A〜Dは、青色発光の青色発光ダイオードとこれにより励起される黄色蛍光体の発光との組合せにより白色光を得ることができる。発光ダイオード照明装置Aが最も色温度(例えば7716K)が高く、発光ダイオード照明装置Dが最も色温度(例えば2869K)が低い。また、発光ダイオード照明装置Eは、紫外線を発光する紫外線発光ダイオードとこれにより励起された赤(R)、緑(G)、青(B)色蛍光体の発光との組合せにより白色光を得ることができる。これら白色発光ダイオード照明装置A〜Eの電気的特性等は図2で示す通りであり、消費電力が約40W、全光束が約700〜900lm、発光効率は約20lm/W、平均演色評価数Raは76〜87である。   These light emitting diode devices A to D can obtain white light by a combination of blue light emitting diodes emitting blue light and light emission of yellow phosphors excited thereby. The light emitting diode illumination device A has the highest color temperature (for example, 7716K), and the light emitting diode illumination device D has the lowest color temperature (for example, 2869K). The light-emitting diode illuminating device E obtains white light by combining an ultraviolet light-emitting diode that emits ultraviolet light and emission of red (R), green (G), and blue (B) phosphors excited thereby. Can do. The electrical characteristics and the like of these white light emitting diode illumination devices A to E are as shown in FIG. 2, and the power consumption is about 40 W, the total luminous flux is about 700 to 900 lm, the light emission efficiency is about 20 lm / W, and the average color rendering index Ra Is 76-87.

図3(a)〜(e)はこれら発光ダイオード照明装置A〜Eの分光分布図であり、これら発光ダイオード照明装置A〜Eの分光分布はそれぞれ相違している。その理由は、A〜Dの発光ダイオード照明装置については、青色発光ダイオードはみな同一のものを使用しているものの、黄色蛍光体の組成がそれぞれ相違するために、青色発光ダイオードからの青色光を吸収する黄色蛍光体の吸収量がそれぞれ相違するためである。このために、青色領域の強度(a.u)がそれぞれ相違している。   3A to 3E are spectral distribution diagrams of the light emitting diode illuminating devices A to E, and the spectral distributions of the light emitting diode illuminating devices A to E are different from each other. The reason for this is that for the light emitting diode illumination devices A to D, the same blue light emitting diodes are used, but the composition of the yellow phosphors is different. This is because the amount of absorption of the yellow phosphor to be absorbed is different. For this reason, the intensities (au) of the blue regions are different.

また、発光ダイオード照明装置Eは上述したように、紫外発光ダイオードと、赤(R)、緑(G)、青(B)色蛍光体の発光との組合せにより白色光を得る構成であり、上記発光ダイオード照明装置A〜Dの構成とは発光ダイオードの発光色が相違するので、分光分布もこれらとは大きく相違している。   Further, as described above, the light-emitting diode illuminating device E is configured to obtain white light by a combination of ultraviolet light-emitting diodes and light emission of red (R), green (G), and blue (B) phosphors. Since the light emission colors of the light emitting diodes are different from the configurations of the light emitting diode illumination devices A to D, the spectral distribution is also greatly different from these.

(検証実験)
これら発光ダイオード照明装置A〜Eの検証実験は、図4で示す暴露装置1を使用して行なった。
(Verification experiment)
The verification experiment of these light emitting diode illumination devices A to E was performed using the exposure device 1 shown in FIG.

この暴露装置1は前面開口の角筒形のケース本体2の前面開口端に、開閉ドア3を開閉可能に設けている。   This exposure apparatus 1 is provided with an openable / closable door 3 at the front opening end of a square cylindrical case body 2 having a front opening.

ケース本体2は、例えば内法寸法で幅50cm、奥行き51.5cm、高さ65cmの四角筒であり、素材は開閉ドア3と同様に反射が少ない黒色ポリプロピレン製である。   The case body 2 is, for example, a square cylinder having an internal size of 50 cm in width, 51.5 cm in depth, and 65 cm in height, and the material is made of black polypropylene with less reflection like the open / close door 3.

ケース本体2は、その天板2aの内面中央部のランプ取付部に、発光ダイオード照明装置A〜Eをそれぞれ順次取り付け、天板2aの図4中上面上には、これら発光ダイオード照明装置A〜Eを点灯させる点灯装置4を設けている。   The case body 2 has light emitting diode illuminating devices A to E sequentially attached to the lamp mounting portion at the center of the inner surface of the top plate 2a. The light emitting diode illuminating devices A to E are mounted on the top surface of the top plate 2a in FIG. A lighting device 4 for lighting E is provided.

ケース本体2の底板2bの内面中央部には、ガラス製の有蓋無底円筒状のチャンバーケース5を載置している。チャンバーケース5内には、所要大(例えば2cm×2.5cm)に切断した染色布等の試料を中性紙の台紙上に並べ、角を両面テープで固定したものを収容している。   At the center of the inner surface of the bottom plate 2 b of the case body 2, a glass-made, covered, bottomless cylindrical chamber case 5 is placed. The chamber case 5 accommodates a sample such as a dyed cloth cut to a required size (for example, 2 cm × 2.5 cm) on a sheet of neutral paper and with corners fixed with double-sided tape.

そして、この暴露装置1を温度20±5℃、湿度60±5%の恒温恒湿室内に設置し、実験中のチャンバーケース5内の温湿度を中に設置したデーターロガー(Trend Logger 2, ACR System Inc.)により記録した。照度測定にはデジタル照度計TOPCONIM−3を使用した。試料の照射面を500lxに合わせ、30時間(CIE基準の年間限界露光量15,000lx・hrに相当)の暴露を10回繰り返した。   Then, this exposure apparatus 1 is installed in a constant temperature and humidity room at a temperature of 20 ± 5 ° C. and a humidity of 60 ± 5%, and the temperature logger in the chamber case 5 under test is installed in the data logger (Trend Logger 2, ACR System Inc.). A digital illuminometer TOPCONIM-3 was used for illuminance measurement. The irradiation surface of the sample was adjusted to 500 lx, and exposure for 30 hours (corresponding to the annual limit exposure amount of 15,000 lx · hr based on the CIE standard) was repeated 10 times.

暴露前後の試験布の測色はMacbeth Color-Eye(登録商標)7000、Illuminant C、400-800nm(Macbeth、USA)で行なった。試験布は測色計の白色校正用の陶板の上に置き、布の重ね枚数1枚で3回測色した。暴露前と各回暴露後の色差ΔEはCIE 1976 Labformula(AATCC 1995)を用いて算出した。 Color measurement of the test cloth before and after exposure was performed with Macbeth Color-Eye (registered trademark) 7000, Illuminant C, 400-800 nm (Macbeth, USA). The test cloth was placed on a white plate for white calibration of the colorimeter, and the color was measured three times with one sheet of cloth. The color difference ΔE before and after each exposure was calculated using the CIE 1976 L * a * b * formula (AATCC 1995).

CIELABの色差式は、次式により求めることができる。

Figure 2007157990
The color difference formula of CIELAB can be obtained by the following formula.
Figure 2007157990

(実験結果)
ブルースケールの5種類の発光ダイオード照明装置A〜Eによる変退色については、ブルースケール3級以上のものは最終暴露後の150,000lx・hrにおいても色差はΔE=1.6を超えなかった。ブルースケールの退色は、同じ積算放射強度であっても退色に差があった。これは、光源の分光分布と用いられている染料の作用波長との関係が関与しているためである。ブルースケール1級の色差ΔE=1.6に最も短時間で到達したのはA,B,Eの発光ダイオード照明装置の90,000lx・hr、最も遅かったのはDの発光ダイオード照明装置の120,000lx・hrで、5種の発光ダイオード照明装置A〜Eの中ではDの発光ダイオード照明装置が最も退色抑止効果が高いことが判明した。NU蛍光ランプにおけるブルースケール1級の色差ΔE=1.6に到達するまでの時間は、一般白色蛍光ランプが75,000lx・hr、NU蛍光ランプが120,000lx・hrであった。全ての発光ダイオード照明装置A〜Eは一般白色蛍光ランプよりも退色抑止効果があり、特に、Dの発光ダイオード照明装置はNU蛍光ランプとほぼ同等であることが示された。
(Experimental result)
Regarding the discoloration caused by the five types of blue scale light-emitting diode illumination devices A to E, the color difference of the blue scale grade 3 or higher did not exceed ΔE = 1.6 even at 150,000 lx · hr after the final exposure. There was a difference in fading of the blue scale even when the accumulated radiation intensity was the same. This is because the relationship between the spectral distribution of the light source and the working wavelength of the dye used is involved. Blue scale class 1 color difference ΔE = 1.6 was reached in 90,000 lx · hr of light emitting diode illuminators of A, B, and E in the shortest time, and the latest was 120 light emitting diode illuminators of D. 000 lx · hr, among the five types of light-emitting diode illuminating devices A to E, it was found that the light-emitting diode illuminating device of D has the highest fading-inhibiting effect. The time required to reach the blue scale first class color difference ΔE = 1.6 in the NU fluorescent lamp was 75,000 lx · hr for the general white fluorescent lamp and 120,000 lx · hr for the NU fluorescent lamp. All the light-emitting diode illuminating devices A to E have a fading-inhibiting effect as compared with the general white fluorescent lamp, and in particular, the light-emitting diode illuminating device D is almost equivalent to the NU fluorescent lamp.

そして、日本の黄色系染料の染色布の退色については、ウコンとキハダが他の染料よりも著しく大きい。これらは例えば、15,000lx・hr暴露後でもウコンΔE=5〜9.2、キハダΔE=1.6〜3.4と大きい退色をしている。特にウコンとキハダ染料は浮世絵、小袖、経典や紙料に使われている汎用染料であり、美術館・博物館用照明としてはこれらの退色抑止効果が重要である。ウコンとキハダをランプの性能の指標としてみると、退色を生じさせた発光ダイオード照明装置の順序はA>E>B,C>Dである。   In terms of fading of Japanese yellow dyed fabrics, turmeric and yellowfin are significantly larger than other dyes. For example, even after exposure to 15,000 lx · hr, turmeric ΔE = 5 to 9.2 and yellowfin ΔE = 1.6 to 3.4 are fading. In particular, turmeric and yellowfin dyes are general-purpose dyes used in ukiyo-e, Kosode, scriptures, and paper, and their fading-inhibiting effect is important for museum and museum lighting. When turmeric and yellowfin are used as indicators of lamp performance, the order of the light emitting diode illuminating devices causing discoloration is A> E> B, C> D.

また、白色発光ダイオード照明装置A〜Eの15,000lx・hr暴露後の色差ΔE=1.6以上の染色布は黄色系染料で、赤系、紫系、青系染料とブルースケールでは視覚に感じられる退色は生じていないことが判明した。紫外放射のない発光ダイオード照明装置A〜Dにおいても黄色系染料が特に退色することが示された。   In addition, dyed fabrics with a color difference ΔE = 1.6 or more after exposure to 15,000 lx · hr of white light emitting diode lighting devices A to E are yellow dyes, and visually visible in red, purple, blue dyes and blue scales. It turned out that no fading was felt. It has been shown that yellow dyes are particularly fading even in light emitting diode illuminators A to D without ultraviolet radiation.

さらに、最も色温度の高い発光ダイオード照明装置Aを1とした場合の発光ダイオード照明装置B〜Eの最終暴露後の色差の相対値については、黄色系染料では、発光ダイオード照明装置Aに対して発光ダイオード照明装置Bが12%、発光ダイオード照明装置Cが15%、発光ダイオード照明装置Dが32%の退色抑止効果があるが、発光ダイオード照明装置Eはほぼ同一であった。染料全体では、発光ダイオード照明装置Aに対して発光ダイオード照明装置Bがほぼ同一、発光ダイオード照明装置Cが10%、発光ダイオード照明装置Dが20%の退色抑止効果があったが、発光ダイオード照明装置Eは逆に10%退色が大きく、染料全体としての白色発光ダイオード照明装置A〜Eの退色抑止効果はD>C>B>A>Eの順で大きいが、退色し易い黄色系染料は、Dの発光ダイオード照明装置を用いることによって大きい退色抑止効果が得られることが判明した。   Furthermore, regarding the relative value of the color difference after the final exposure of the light-emitting diode illuminating devices B to E when the light-emitting diode illuminating device A having the highest color temperature is set to 1, with respect to the light-emitting diode illuminating device A for yellow dyes The light-emitting diode illuminating device B has 12%, the light-emitting diode illuminating device C has 15%, and the light-emitting diode illuminating device D has a 32% fading suppression effect, but the light-emitting diode illuminating device E is almost the same. In the whole dye, the light-emitting diode illuminating device B was almost the same as the light-emitting diode illuminating device A, the light-emitting diode illuminating device C was 10%, and the light-emitting diode illuminating device D was 20%. On the contrary, the device E has a large 10% fading, and the white light emitting diode illuminating devices A to E as a whole dye have a fading inhibiting effect in the order of D> C> B> A> E. It was found that a large fading-inhibiting effect can be obtained by using the light emitting diode illuminating device D.

図1はこれら発光ダイオード照明装置A〜Eの波長域毎の放射強度(W)をそれぞれ示している。これら放射強度(W)は次の計算方法により算出した。   FIG. 1 shows radiation intensity (W) for each wavelength region of the light-emitting diode illuminators A to E, respectively. These radiant intensities (W) were calculated by the following calculation method.

(1)測定項目
(1−1)分光分布測定
まず、図5に示すように各発光ダイオード照明装置A〜Eの可視光域(380nm〜780nm)の各波長域において、Δλ=5nmの間隔で、相対放射強度Φを測定する。

Figure 2007157990
(1) Measurement Items (1-1) Spectral Distribution Measurement First, as shown in FIG. 5, in each wavelength region of the visible light region (380 nm to 780 nm) of each of the light emitting diode illuminators A to E, at intervals of Δλ = 5 nm. Then, the relative radiation intensity Φ is measured.
Figure 2007157990

(1−2)全光束測定
また、CIE128,JEL311に基づいて、各発光ダイオード照明装置A〜Eの全光束(lm)を求める。
(1-2) Total luminous flux measurement Also, based on CIE128 and JEL311, the total luminous flux (lm) of each of the light emitting diode illuminating devices A to E is obtained.

(2)放射束の計算方法
全光束と放射束との関係を次の式(1)に示す。

Figure 2007157990
Figure 2007157990
Figure 2007157990
Figure 2007157990
(2) Calculation method of radiant flux The relationship between the total luminous flux and the radiant flux is shown in the following equation (1).
Figure 2007157990
Figure 2007157990
Figure 2007157990
Figure 2007157990

したがって、この検証実験によれば、これら白色発光ダイオード照明装置A〜Eでは積算放射照度が同一の場合、染色布およびブルースケールの退色は光源の色温度と高い相関関係を持つことが判明した。また、紫外放射を含む発光ダイオード照明装置Eよりも紫外放射を含まない発光ダイオード照明装置A〜Dの方が退色を生じさせないが、その中では黄色系染料は赤系、紫系、青系染料よりも退色が大きい。染色布全体における発光ダイオード照明装置Cと発光ダイオード照明装置Dの退色抑止効果には大きな差はなかったが、黄色系染料およびブルースケール1級の色差値から判断すると、5種の白色発光ダイオード照明装置A〜Eの中では発光ダイオード照明装置Dの退色抑止効果が最も高いことが判明した。   Therefore, according to this verification experiment, when the integrated irradiance is the same in these white light emitting diode illumination devices A to E, it has been found that the fading of the dyed cloth and the blue scale has a high correlation with the color temperature of the light source. Further, the light emitting diode illumination devices A to D that do not contain ultraviolet radiation do not cause fading than the light emitting diode illumination device E that contains ultraviolet radiation. Among them, yellow dyes are red, purple, and blue dyes. More fading than. Although there was no significant difference in the fading suppression effect between the light emitting diode illuminating device C and the light emitting diode illuminating device D in the entire dyed cloth, judging from the yellow dye and the color difference value of the first class of blue scale, five types of white light emitting diode illumination It has been found that among the devices A to E, the light-emitting diode illuminating device D has the highest fading suppression effect.

本発明の実施形態に係る白色発光ダイオード照明装置A〜Eにおける複数波長域毎の放射強度の一覧表を示す図。The figure which shows the list of the radiation intensity | strength for every several wavelength range in the white light emitting diode illuminating device AE which concerns on embodiment of this invention. 図1で示す白色発光ダイオード照明装置A〜Eの電気特性等の一覧表を示す図。The figure which shows the table | surfaces, such as the electrical property of the white light emitting diode illuminating device AE shown in FIG. (a)〜(e)は図1,2で示す発光ダイオード照明装置A〜Eの各分光分布図。(A)-(e) is each spectral distribution figure of light emitting diode illuminating device AE shown in FIG. 図1等で示す発光ダイオード照明装置A〜Eの退色抑止効果等の検証実験に使用された暴露装置の一部切欠正面図。The partially cutaway front view of the exposure apparatus used for verification experiments, such as the discoloration suppression effect of light emitting diode illuminating device AE shown in FIG. 図1等で示す発光ダイオード照明装置A〜Eの複数波長域の放射強度を求める計算式を説明するための分光放射強度を示す図。The figure which shows the spectral radiation intensity for demonstrating the calculation formula which calculates | requires the radiation intensity of the several wavelength range of light emitting diode illuminating device AE shown in FIG. 図3の(a)〜(e)で示す発光ダイオード照明装置A〜Eの分光分布をそれぞれ重ね合せて示す分光分布図。FIG. 4 is a spectral distribution diagram in which spectral distributions of the light-emitting diode illuminators A to E shown in FIGS.

符号の説明Explanation of symbols

A,B,C,D,E 発光ダイオード照明装置、1 暴露装置、2 ケース本体、4 点灯装置、5 チャンバーケース。 A, B, C, D, E Light-emitting diode illumination device, 1 exposure device, 2 case body, 4 lighting device, 5 chamber case.

Claims (2)

発光ダイオードとこの発光ダイオードからの発光を所要色光に変換する波長変換体とを有し、この所要色光と発光ダイオードの発光とから白色光を放射する発光ダイオード装置を具備し、
少なくとも400〜500nm、500〜600nm、600〜700nmの発光波長域をそれぞれ有し、これら発光波長域をそれぞれλl,λn,λhとしたときに、λlの放射強度が0〜2W/m、λnの放射強度がλlのほぼ2倍、平均演色評価数が70以上になるようにλhの放射強度が設定されてなることを特徴とする発光ダイオード照明装置。
A light emitting diode and a wavelength converter that converts light emitted from the light emitting diode into required color light, and a light emitting diode device that emits white light from the required color light and light emitted from the light emitting diode.
It has emission wavelength ranges of at least 400 to 500 nm, 500 to 600 nm, and 600 to 700 nm, and when these emission wavelength ranges are λ1, λn, and λh, respectively, the emission intensity of λ1 is 0 to 2 W / m 2 , λn. A light emitting diode illuminating device, wherein the radiation intensity of λh is set so that the radiation intensity of λ is approximately twice as large as λl and the average color rendering index is 70 or more.
λhの放射強度がλnの放射強度以上であって、平均演色評価数が80以上になるように構成されていることを特徴とする請求項1記載の発光ダイオード照明装置。 2. The light-emitting diode illuminating apparatus according to claim 1, wherein the radiant intensity of λh is equal to or higher than the radiant intensity of λn, and the average color rendering index is 80 or higher.
JP2005350642A 2005-12-05 2005-12-05 Light emitting diode lighting system Pending JP2007157990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350642A JP2007157990A (en) 2005-12-05 2005-12-05 Light emitting diode lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350642A JP2007157990A (en) 2005-12-05 2005-12-05 Light emitting diode lighting system

Publications (1)

Publication Number Publication Date
JP2007157990A true JP2007157990A (en) 2007-06-21

Family

ID=38241963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350642A Pending JP2007157990A (en) 2005-12-05 2005-12-05 Light emitting diode lighting system

Country Status (1)

Country Link
JP (1) JP2007157990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017059A (en) * 2015-06-26 2017-01-19 パナソニックIpマネジメント株式会社 Light source for illumination and luminaire
JP2019515232A (en) * 2016-04-28 2019-06-06 ホボイ, ローレン, ピー.HOBOY, Loren, P. High-intensity luminescent light for destruction or interruption of the eye and visual incapacitation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017059A (en) * 2015-06-26 2017-01-19 パナソニックIpマネジメント株式会社 Light source for illumination and luminaire
JP2019515232A (en) * 2016-04-28 2019-06-06 ホボイ, ローレン, ピー.HOBOY, Loren, P. High-intensity luminescent light for destruction or interruption of the eye and visual incapacitation

Similar Documents

Publication Publication Date Title
JP6396609B2 (en) Lighting assembly that emits part of UV light
RU2621718C2 (en) Directly visible lighting device based on led (light emitting diode) with homogeneous external lightning
RU2662240C2 (en) Light-emitting arrangement with adapted output spectrum
US20120008318A1 (en) Lighting apparatus
US10334686B2 (en) Light emitting module, a lamp, a luminaire and a method of illuminating an object
JP2001359109A5 (en)
US20030007346A1 (en) Pen-size led inspection lamp for detection of fluorescent material
US8064057B2 (en) Colour assessment apparatus and method
WO2016116533A1 (en) Light unit for counting sea lice
CA2598140A1 (en) Color-adaptive lighting system
JP2013239272A (en) Lighting device
DE502006009026D1 (en) DEVICE FOR LIGHTING WITH BLUE, GREEN, YELLOW OR RED LED LUMINAIRE
RU2016102326A (en) LUMINOUS PRISMATIC EMBLEM FOR VEHICLE
GB2471836A (en) Light emitting diode apparatus having a predetermined spectrum of wavelengths
US10274164B2 (en) Lighting device comprising a plurality of different light sources with similar off-state appearance
JP2014049676A (en) Led light-emitting device
US20110116259A1 (en) Creating and modifying a colored shadow
WO2009083853A1 (en) Lighting system
JP2007157990A (en) Light emitting diode lighting system
JP5479246B2 (en) LIGHTING DEVICE, LIGHTING SYSTEM, AND LIGHTING METHOD
JP2009176661A (en) Led illumination apparatus
JP6036183B2 (en) Color stand
KR101350047B1 (en) Surface emitting lamp for buddhist using LED
KR101005815B1 (en) LED lighting lamp using light panel
Thorseth et al. Museum lighting for golden artifacts with low correlated color temperature, high color uniformity, and high color rendering index, using diffusing color mixing of red, cyan, and white-light-emitting diodes