JP2007154887A - Method for reducing axial compressor blade tipflow and turbine machine - Google Patents

Method for reducing axial compressor blade tipflow and turbine machine Download PDF

Info

Publication number
JP2007154887A
JP2007154887A JP2006323501A JP2006323501A JP2007154887A JP 2007154887 A JP2007154887 A JP 2007154887A JP 2006323501 A JP2006323501 A JP 2006323501A JP 2006323501 A JP2006323501 A JP 2006323501A JP 2007154887 A JP2007154887 A JP 2007154887A
Authority
JP
Japan
Prior art keywords
tip
channel
blade
air
airfoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006323501A
Other languages
Japanese (ja)
Inventor
Zhifeng Dong
チフェン・ドン
John Joseph Rahaim
ジョン・ジョセフ・ラーイム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2007154887A publication Critical patent/JP2007154887A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for reducing an axial compressor blade tipflow. <P>SOLUTION: In this turbine machine T1 of such type that has a high pressure compressor arranged in a casing, a plurality of rotary compressor blades 10 to 14 having at least one air channel 10C to 14C formed in the blades 10 to 14 to communicate air flow from a basic part to a tip part are provided, and at least one air channel 10C to 14C lets the air out of an inside region adjacent to a disc 20, pressurizes the air, and carries the removed and pressurized air into a region between the tip part of the blade and the casing C1 to shut off air flow crossing the tip part of the blade 10 to 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ブレード及びベーンのような翼形部における軸流圧縮機先端流を減少させるための方法及びタービン機械に関する。   The present invention relates to a method and turbine machine for reducing axial compressor tip flow in airfoils such as blades and vanes.

タービンエンジンの圧縮機区域におけるブレード先端流は、圧縮機効率及び失速マージンの低下を引き起こす。加えて、シール空洞内におけるベーンとブレードとの間の内部流路に沿った流れの再循環もまた、圧縮機性能を低下させる。先端流を減少させるための1つの従来技術の方法は、ブレード先端間隙を小さくすることである。それは、機械的及び/又は熱的方法を使用してケーシングとベーンとのインタフェースを制御することを含む様々な方法で行われる。これらの方法は、先端部摩擦、過剰摩耗及びエンジン効率の低下を引き起こすおそれがある。
米国特許第6,877,953号公報 米国特許第6,574,965号公報 米国特許第5,358,378号公報
Blade tip flow in the compressor area of a turbine engine causes a reduction in compressor efficiency and stall margin. In addition, flow recirculation along the internal flow path between the vanes and blades within the seal cavity also reduces compressor performance. One prior art method for reducing tip flow is to reduce the blade tip clearance. It can be done in a variety of ways, including controlling the casing-vane interface using mechanical and / or thermal methods. These methods can cause tip friction, excessive wear and reduced engine efficiency.
US Pat. No. 6,877,953 US Pat. No. 6,574,965 US Pat. No. 5,358,378

本発明の1つの態様によると、間隔を置いて近接配置したケーシング内で回転するタービン翼形部の先端部と該ケーシングとの間の空気流を減少させる方法を提供し、本方法は、翼形部の基部に隣接する入口開口と翼形部先端部上の出口開口とを有する半径方向に延びるチャネルを翼形部内に設ける段階を含む。空気は、翼形部の基部に隣接した領域から抜取られかつ加圧され、チャネル内に導入され、チャネルを通して翼形部先端部まで運ばれる。空気は、翼形部の正圧側から負圧側への軸方向空気流に抗するのに十分な圧力の下で、翼形部先端部内の出口開口を通ってチャネルから翼形部の先端部とケーシングとの間の区域内に流出する。   According to one aspect of the present invention, there is provided a method for reducing air flow between a tip of a turbine airfoil that rotates within a closely spaced casing and the casing, the method comprising: Providing in the airfoil a radially extending channel having an inlet opening adjacent to the base of the airfoil and an outlet opening on the airfoil tip. Air is drawn from the area adjacent to the base of the airfoil and pressurized, introduced into the channel, and carried through the channel to the airfoil tip. The air passes from the channel through the outlet opening in the airfoil tip and from the channel to the airfoil tip under sufficient pressure to resist axial airflow from the pressure side to the suction side of the airfoil. It flows into the area between the casing.

本発明の別の態様は、間隔を置いて近接配置したケーシング内で回転するタービン翼形部の先端部と該ケーシングとの間の空気流を減少させる方法を提供し、本方法は、翼形部の前縁側で該翼形部の基部に隣接する入口開口と翼形部先端部上の出口開口とを有する第1の半径方向に延びるチャネルを設ける段階と、翼形部の後縁側で該翼形部の基部に隣接する入口開口と翼形部先端部上の出口開口とを有する第2の半径方向に延びるチャネルを設ける段階とを含む。空気は、翼形部の基部に隣接する領域からチャネル内に抜取られかつチャネルを通して翼形部先端部まで圧送される。空気は、翼形部の正圧側から負圧側への軸方向空気流に抗するのに十分な圧力の下で、翼形部先端部内の出口開口を通ってチャネルから翼形部の先端部とケーシングとの間の区域内に流出する。   Another aspect of the present invention provides a method for reducing air flow between a tip of a turbine airfoil rotating within a closely spaced casing and the casing, the method comprising: Providing a first radially extending channel having an inlet opening adjacent to the base of the airfoil on the leading edge side of the airfoil and an outlet opening on the airfoil tip; and on the trailing edge side of the airfoil Providing a second radially extending channel having an inlet opening adjacent to the base of the airfoil and an outlet opening on the airfoil tip. Air is drawn into the channel from the region adjacent to the base of the airfoil and is pumped through the channel to the airfoil tip. The air passes from the channel through the outlet opening in the airfoil tip and from the channel to the airfoil tip under sufficient pressure to resist axial airflow from the pressure side to the suction side of the airfoil. It flows into the area between the casing.

本発明のさらに別の態様では、タービン機械用圧縮機翼形部を提供し、本圧縮機翼形部は、翼形部基部と、翼形部先端部と、翼形部基部に隣接する翼形部内の空気入口開口から翼形部先端部内の出口開口まで半径方向に延びる空気流チャネルとを含み、空気流チャネルは、翼形部の正圧側から該翼形部の負圧側への軸方向空気流に対して空気遮断を行い、それによって圧縮機翼形部先端流を減少させるようにする。   In yet another aspect of the present invention, a compressor airfoil for a turbine machine is provided, the compressor airfoil including an airfoil base, an airfoil tip, and an airfoil adjacent to the airfoil base. An airflow channel extending radially from an air inlet opening in the airfoil to an outlet opening in the airfoil tip, wherein the airflow channel is axial from the pressure side of the airfoil to the suction side of the airfoil Air blocking is applied to the air flow, thereby reducing compressor airfoil tip flow.

添付の図面に関連させて、以下に本発明を説明する。   The present invention is described below with reference to the accompanying drawings.

次に具体的に図面を参照すると、図1には、タービンエンジンT1の軸流圧縮機セクションの部分断面を示しており、この図により、本発明による軸流圧縮機ブレード先端流を制御するための方法及び装置を説明する。タービンエンジン「T1」は、ケーシングC1内に圧縮機ブレード10〜14と中間配置ステータベーン15〜19とを含む。圧縮機ブレード10〜14は、それぞれの前縁10A〜14Aを含む。   Referring now specifically to the drawings, FIG. 1 shows a partial cross section of an axial compressor section of a turbine engine T1 for controlling the axial compressor blade tip flow according to the present invention. The method and apparatus will be described. The turbine engine “T1” includes compressor blades 10 to 14 and intermediately arranged stator vanes 15 to 19 in a casing C1. The compressor blades 10-14 include respective leading edges 10A-14A.

図2に示すように、ブレード10は、明瞭にするために拡大詳細図として示しており、またブレード11〜14を代表するものである。空気は、ブレード10の前縁10A側の区域からディスク20内の孔10Bを通して抜取られかつ加圧される。孔10Bは、チャネル10Cと連通しており、チャネル10Cは、ブレード10を貫通して先端部まで半径方向外向きに延び、先端部においてチャネル10Cは、孔10Dを通って出る。チャネル10Cは、ブレード10の先端部を出る前に分岐させることができることに留意されたい。チャネル10Cの寸法並びに分岐の位置及び数は、ブレードの寸法、形状及びボリュームと、エンジンの性能、定格、先端部間隙及び類似要因とに基づいて実験的に決定される。図面では、図面の縮尺に関連して先端部間隙の実物表示を示すことができないほどに先端部間隙が非常に小さいことに留意されたい。   As shown in FIG. 2, the blade 10 is shown as an enlarged detail for clarity and is representative of the blades 11-14. Air is extracted from the area on the leading edge 10A side of the blade 10 through the hole 10B in the disk 20 and pressurized. The hole 10B communicates with the channel 10C, which extends radially outwardly through the blade 10 to the tip, where the channel 10C exits through the hole 10D. Note that channel 10C may be branched before exiting the tip of blade 10. The size of channel 10C and the location and number of branches are determined empirically based on the size, shape and volume of the blades, engine performance, rating, tip clearance and similar factors. Note that in the drawing, the tip gap is so small that no real representation of the tip gap can be shown in relation to the scale of the drawing.

図3を参照すると、タービンエンジン「T2」は、ケーシングC2内に圧縮機ブレード30〜34と中間配置ステータベーン35〜39とを含む。圧縮機ブレード30〜34は、それぞれの後縁30A〜34Aを含む。   Referring to FIG. 3, turbine engine “T2” includes compressor blades 30-34 and intermediately disposed stator vanes 35-39 in casing C2. The compressor blades 30-34 include respective trailing edges 30A-34A.

図4では、ブレード31は、明瞭にするために拡大詳細図として示しており、またブレード30及び32〜34を代表するものである。空気は、ブレード31の後縁31A側の区域からディスクリム40内の孔31Bを通して抜取られる。孔31Bは、チャネル31Cと連通しており、チャネル31Cは、ブレード31を貫通して先端部まで半径方向外向きに延び、先端部において孔31Dを通って出る前に、チャネル31Cは分岐させるのが好ましい。   In FIG. 4, the blade 31 is shown as an enlarged detail for clarity and is representative of blades 30 and 32-34. Air is extracted from the area on the rear edge 31A side of the blade 31 through the hole 31B in the disc rim 40. The hole 31B communicates with the channel 31C, the channel 31C extends radially outward through the blade 31 to the tip, and the channel 31C is branched before exiting through the hole 31D at the tip. Is preferred.

次に図5を参照すると、タービンエンジン「T3」は、ケーシングC3内に圧縮機ブレード50〜54と中間配置ステータベーン55〜59とを含む。圧縮機ブレード50〜54は、それぞれの前縁50A〜54Aとそれぞれの後縁50B〜54Bとを含む。   Referring now to FIG. 5, turbine engine “T3” includes compressor blades 50-54 and intermediately disposed stator vanes 55-59 within casing C3. The compressor blades 50-54 include respective leading edges 50A-54A and respective trailing edges 50B-54B.

図6は、明瞭にするために拡大詳細図として示しかつブレード51及び52〜54を代表するものであるブレード52を示す。空気は、ブレード52の前縁側52A及び後縁側52Bの区域の両方からディスクリム60内の孔52C及び52Dを通して抜取られる。孔52C及び52Dは、それぞれチャネル52E及び52Fと連通しており、チャネル52E及び52Fは、ブレード52を貫通して先端部まで半径方向外向きに延び、先端部において孔52Gを通って出る前に、それらのチャネルは分岐させるのが好ましい。   FIG. 6 shows a blade 52 which is shown as an enlarged detail for clarity and is representative of blades 51 and 52-54. Air is drawn from both the leading edge side 52A and trailing edge side 52B areas of the blade 52 through holes 52C and 52D in the disc rim 60. The holes 52C and 52D communicate with channels 52E and 52F, respectively, which extend radially outward through the blade 52 to the tip and before exiting through the hole 52G at the tip. The channels are preferably branched.

上述の実施形態の各々では、ブレード先端部で吐出される空気は、ブレード先端部とケーシングとの間の先端部間隙の領域における空気流を空気力学的に遮断することによってブレード先端流を減少させるか又は阻止する。内部流路からの空気は、上述のように先端部間隙に持ち込まれて、空気遮断を形成する。抜取った空気の圧力は、圧縮機ロータのポンプ(圧送)作用によって増大して、先端部においてブレードから流出する時には、正圧側から負圧側にブレード先端部を横切る空気流に抗する。   In each of the above embodiments, the air discharged at the blade tip reduces the blade tip flow by aerodynamically blocking the air flow in the region of the tip gap between the blade tip and the casing. Or block. Air from the internal channel is brought into the tip gap as described above to form an air block. The pressure of the extracted air is increased by the pump (pumping) action of the compressor rotor, and resists the air flow across the blade tip from the positive pressure side to the negative pressure side when it flows out of the blade at the tip.

上述の方法は、低圧圧縮機(ブースタ)及び高圧圧縮機の両方に適用することができる。これらの方法を使用する場合に、負担となる流量損失は存在しない。さらに、ブレード先端部とケーシングとの間の狭い運転間隙によるのではなく空気力学的空気遮断により空気流を減少させることによって、ブレード先端部とケーシングとの間でのより大きな組立間隙を設定しかつ維持することが可能になる。従って、ベーンとブレードとの間の内部流路における再循環であるので、ブレード先端部摩擦が減少する。抜取った空気は、内部流路からブレード先端部に連続的に圧送され、従ってエンジンの運転時には常にブレード先端部に対して連続的な空気遮断を行う。   The method described above can be applied to both low pressure compressors (boosters) and high pressure compressors. There is no flow loss that is a burden when using these methods. Furthermore, by setting the larger assembly gap between the blade tip and the casing by reducing the air flow by aerodynamic air blockage rather than by a narrow operating gap between the blade tip and the casing, and It becomes possible to maintain. Accordingly, the blade tip friction is reduced due to recirculation in the internal flow path between the vane and the blade. The extracted air is continuously pumped from the internal flow path to the blade tip, and therefore, continuously shuts off the air from the blade tip during engine operation.

本出願において説明したこの方法はまた、ブリスク(ブレード一体形ディスク)、傾斜ダブテール結合形ブレード又は円周方向ダブテール結合形ブレードにも適用できる。   This method described in this application can also be applied to blisks (blade integrated discs), inclined dovetail coupled blades or circumferential dovetail coupled blades.

以上、軸流圧縮機ブレード先端流を制御するための方法及び装置を説明している。本発明の様々な細部は、本発明の技術的範囲から逸脱せずに変更することができる。さらに、本発明の好ましい実施形態及び本発明を実施するための最良の形態についての上述の説明は、例示の目的のためだけに示しているものであって、本発明を限定するためのものではなく、本発明は、特許請求の範囲によって定まる。   Thus, a method and apparatus for controlling axial compressor blade tip flow has been described. Various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing descriptions of the preferred embodiments of the present invention and the best mode for carrying out the present invention are presented for purposes of illustration only and are not intended to limit the present invention. Instead, the invention is defined by the claims.

本発明の1つの実施形態を示すタービンエンジンの軸流圧縮機セクションの部分断面図。1 is a partial cross-sectional view of an axial flow compressor section of a turbine engine illustrating one embodiment of the present invention. 図1に示す圧縮機の一部分の拡大部分断面図。FIG. 2 is an enlarged partial cross-sectional view of a part of the compressor shown in FIG. 1. 本発明の別の実施形態を示すタービンエンジンの圧縮機セクションの部分断面図。FIG. 4 is a partial cross-sectional view of a compressor section of a turbine engine illustrating another embodiment of the present invention. 図3に示す圧縮機の一部分の拡大部分断面図。FIG. 4 is an enlarged partial cross-sectional view of a part of the compressor shown in FIG. 3. 本発明のさらに別の実施形態を示すタービンエンジンの圧縮機セクションの部分断面図。FIG. 6 is a partial cross-sectional view of a compressor section of a turbine engine showing yet another embodiment of the present invention. 図5に示す圧縮機の一部分の拡大部分断面図。FIG. 6 is an enlarged partial cross-sectional view of a part of the compressor shown in FIG. 5.

符号の説明Explanation of symbols

T1 タービン機械
T2 タービン機械
T3 タービン機械
C1 ケーシング
C3 ケーシング
10 ブレード
10A 前縁
10B 入口開口
10C チャネル
10D 出口開口
11 ブレード
11C チャネル
12 ブレード
12C チャネル
13 ブレード
13C チャネル
14 ブレード
14C チャネル
15 固定ベーン
16 固定ベーン
17 固定ベーン
18 固定ベーン
19 固定ベーン
20 ディスク
31 ブレード
31A 後縁
31B 入口開口
31C チャネル
31D 出口開口
50 ブレード
50A 前縁
50B 後縁
50C 入口開口
50D 入口開口
50F チャネル
52 ブレード
52A 前縁
52B 後縁
52C 入口開口
52D 入口開口
52E 第1のチャネル
52F 第2のチャネル
52G 出口孔
T1 turbine machine T2 turbine machine T3 turbine machine C1 casing C3 casing 10 blade 10A leading edge 10B inlet opening 10C channel 10D outlet opening 11 blade 11C channel 12 blade 12C channel 13 blade 13C channel 14 blade 14C channel 15 fixed vane 16 fixed vane 16 fixed vane 16 fixed vane 16 Vane 18 Fixed vane 19 Fixed vane 20 Disk 31 Blade 31A Rear edge 31B Inlet opening 31C Channel 31D Outlet opening 50 Blade 50A Front edge 50B Rear edge 50C Inlet opening 50D Inlet opening 50F Channel 52 Blade 52A Front edge 52B Rear edge 52C Inlet opening 52 Inlet opening 52E First channel 52F Second channel 52G Outlet hole

Claims (10)

ケーシング(C1)内に配置された高圧圧縮機と、それぞれのブレード先端部と中心ディスク(20)に固定されたそれぞれのブレード基部とを有する複数の回転圧縮機ブレード(10〜14)と、前記ブレード(10〜14)のそれぞれのブレード間に配置された複数の固定ベーン(15〜19)とを有するタイプのタービン機械(T1)であって、
前記基部から前記先端部まで空気流れ連通させるように前記ブレード(10〜14)のそれぞれのブレード内に形成された少なくとも1つの空気チャネル(10C、11C、12C、13C、14C)を含み、
前記少なくとも1つの空気チャネル(10C、11C、12C、13C、14C)が、前記ディスク(20)に隣接する内部区域から空気を抜取りかつ該空気を加圧し、前記抜取りかつ加圧した空気を該チャネル(10C、11C、12C、13C、14C)を通して前記ブレード先端部と前記ケーシング(C1)との間の区域内に運んで、前記ブレード(10〜14)の先端部からの空気流を遮断するようにする、
タービン機械(T1)。
A plurality of rotary compressor blades (10-14) having a high-pressure compressor disposed in the casing (C1), a respective blade tip and a respective blade base fixed to the central disk (20); A turbine machine (T1) of the type having a plurality of stationary vanes (15-19) disposed between each of the blades (10-14),
Including at least one air channel (10C, 11C, 12C, 13C, 14C) formed in each blade of the blades (10-14) to provide air flow communication from the base to the tip;
The at least one air channel (10C, 11C, 12C, 13C, 14C) draws air from an internal area adjacent to the disk (20) and pressurizes the air, and draws the drawn and pressurized air into the channel (10C, 11C, 12C, 13C, 14C) is carried into the area between the blade tip and the casing (C1) to block air flow from the blade (10-14) tip. To
Turbine machine (T1).
前記チャネル(10C)が、それぞれの複数の出口孔(10D)を通して前記ブレード先端部を出る、請求項1記載のタービン機械(T1)。   The turbine machine (T1) of claim 1, wherein the channel (10C) exits the blade tip through a respective plurality of outlet holes (10D). 前記チャネル(10C)が、前記ブレード(10)の前縁(10A)上に空気入口開口(10B)を含む、請求項1記載のタービン機械(T1)。   The turbine machine (T1) according to claim 1, wherein the channel (10C) includes an air inlet opening (10B) on a leading edge (10A) of the blade (10). 前記チャネル(31C)が、前記ブレード(31)の後縁(31A)側に空気入口開口(31B)を含む、請求項1記載のタービン機械(T2)。   The turbine machine (T2) of claim 1, wherein the channel (31C) includes an air inlet opening (31B) on a trailing edge (31A) side of the blade (31). 前記チャネル(50F)が、前記ブレード(50)の前縁(50A)側の空気入口開口(50C)と後縁(50B)側の空気入口開口(50D)とを含む、請求項1記載のタービン機械(T3)。   The turbine of claim 1, wherein the channel (50F) includes an air inlet opening (50C) on a leading edge (50A) side and an air inlet opening (50D) on a trailing edge (50B) side of the blade (50). Machine (T3). 前記ブレード(52)の前縁(52A)側に空気入口開口(52C)を有する第1のチャネル(52E)と、
前記ブレード(52)の後縁(52B)側に空気入口開口(52D)を有する第2のチャネル(52F)と、
を含む、請求項1記載のタービン機械(T3)。
A first channel (52E) having an air inlet opening (52C) on the leading edge (52A) side of the blade (52);
A second channel (52F) having an air inlet opening (52D) on the trailing edge (52B) side of the blade (52);
The turbine machine (T3) according to claim 1, comprising:
前記チャネル(50F)が、前記ブレード先端部内に複数の出口孔(52G)を含む、請求項3記載のタービン機械(T1)。   The turbine machine (T1) according to claim 3, wherein the channel (50F) includes a plurality of outlet holes (52G) in the blade tip. 間隔を置いて近接配置したケーシング(C1)内で回転するタービン翼形部(10)の先端部と該ケーシングとの間の空気流を減少させる方法であって、
(a)前記翼形部(10)の基部に隣接する入口開口(10B)と前記翼形部先端部上の出口開口(10D)とを有する半径方向に延びるチャネル(10C)を該翼形部(10)内に設ける段階と、
(b)前記翼形部(10)の基部に隣接した領域から前記チャネル(10C)内に空気を抜取りかつ該空気を加圧する段階と、
(c)前記チャネル(10C)を通して前記翼形部先端部まで空気を運ぶ段階と、
(d)前記翼形部(10)の先端部を横切る軸方向空気流に抗するのに十分な圧力の下で、前記翼形部先端部内の出口開口(10D)を通して前記翼形部の先端部と前記ケーシング(C1)との間の区域内に空気を吐出する段階と、
含む方法。
A method of reducing air flow between a tip of a turbine airfoil (10) rotating in a closely spaced casing (C1) and the casing;
(A) a radially extending channel (10C) having an inlet opening (10B) adjacent to the base of the airfoil (10) and an outlet opening (10D) on the tip of the airfoil; (10) providing in the stage;
(B) extracting air into the channel (10C) from a region adjacent to the base of the airfoil (10) and pressurizing the air;
(C) carrying air through the channel (10C) to the airfoil tip;
(D) the tip of the airfoil through an outlet opening (10D) in the tip of the airfoil under pressure sufficient to resist axial airflow across the tip of the airfoil (10). Discharging air into the area between the part and the casing (C1);
Including methods.
前記翼形部(10)の基部に隣接する入口開口(10B)と前記翼形部先端部上の出口開口(10D)とを有する半径方向に延びるチャネル(10C)を設ける段階が、前記翼形部(10)の前縁(10A)側に前記入口開口(10B)を形成する段階を含む、請求項8記載の方法。   Providing a radially extending channel (10C) having an inlet opening (10B) adjacent to a base of the airfoil (10) and an outlet opening (10D) on the airfoil tip; The method according to claim 8, comprising the step of forming the inlet opening (10B) on the leading edge (10A) side of the part (10). 前記翼形部(31)の基部に隣接する入口開口(31B)と前記翼形部先端部上の出口開口(31D)とを有する半径方向に延びるチャネル(31C)を設ける段階が、前記翼形部(31)の後縁(31A)側に前記入口開口(31B)を形成する段階を含む、請求項8記載の方法。   Providing a radially extending channel (31C) having an inlet opening (31B) adjacent to the base of the airfoil (31) and an outlet opening (31D) on the airfoil tip; The method according to claim 8, comprising the step of forming the inlet opening (31B) on the rear edge (31A) side of the part (31).
JP2006323501A 2005-11-30 2006-11-30 Method for reducing axial compressor blade tipflow and turbine machine Pending JP2007154887A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/164,636 US20070122280A1 (en) 2005-11-30 2005-11-30 Method and apparatus for reducing axial compressor blade tip flow

Publications (1)

Publication Number Publication Date
JP2007154887A true JP2007154887A (en) 2007-06-21

Family

ID=37685846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006323501A Pending JP2007154887A (en) 2005-11-30 2006-11-30 Method for reducing axial compressor blade tipflow and turbine machine

Country Status (5)

Country Link
US (1) US20070122280A1 (en)
EP (1) EP1793089A3 (en)
JP (1) JP2007154887A (en)
CN (1) CN101008402A (en)
CA (1) CA2569177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925244A (en) * 2014-04-02 2014-07-16 清华大学 Large-flow high-load axial compressor for 300MW F-class heavy-duty gas turbine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452297B (en) * 2007-08-30 2010-01-06 Rolls Royce Plc A compressor
DE102008011746A1 (en) * 2008-02-28 2009-09-03 Mtu Aero Engines Gmbh Device and method for diverting a leakage current
US20100275574A1 (en) * 2009-04-30 2010-11-04 General Electric Company Borescope plug with bristles
CN102628452B (en) * 2012-03-21 2014-07-16 朱晓义 Air compressor and automobile engine
DE102012215895A1 (en) * 2012-09-07 2014-03-13 Robert Bosch Gmbh Paddle wheel for a turbomachine and method for producing a turbine wheel for a turbomachine
JP6468532B2 (en) * 2015-04-27 2019-02-13 三菱日立パワーシステムズ株式会社 Compressor rotor, compressor, and gas turbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825103U (en) * 1971-08-06 1973-03-24
JPS5713201A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Air cooled gas turbine blade
JPS6081204U (en) * 1983-11-10 1985-06-05 三菱重工業株式会社 Cooling structure of turbine rotor blades and stationary blades
EP0278434A2 (en) * 1987-02-06 1988-08-17 Wolfgang P. Weinhold A blade, especially a rotor blade
US5688107A (en) * 1992-12-28 1997-11-18 United Technologies Corp. Turbine blade passive clearance control
JPH09296704A (en) * 1988-08-24 1997-11-18 United Technol Corp <Utc> Axial flow turbine for gas turbine engine
JPH1113403A (en) * 1997-06-26 1999-01-19 Mitsubishi Heavy Ind Ltd Tip shroud for gas turbine moving blade
US6574965B1 (en) * 1998-12-23 2003-06-10 United Technologies Corporation Rotor tip bleed in gas turbine engines

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH582305A5 (en) * 1974-09-05 1976-11-30 Bbc Sulzer Turbomaschinen
GB1514613A (en) * 1976-04-08 1978-06-14 Rolls Royce Blade or vane for a gas turbine engine
GB2165315B (en) * 1984-10-04 1987-12-31 Rolls Royce Improvements in or relating to hollow fluid cooled turbine blades
US4761116A (en) * 1987-05-11 1988-08-02 General Electric Company Turbine blade with tip vent
US5358378A (en) * 1992-11-17 1994-10-25 Holscher Donald J Multistage centrifugal compressor without seals and with axial thrust balance
US5403158A (en) * 1993-12-23 1995-04-04 United Technologies Corporation Aerodynamic tip sealing for rotor blades
US5387085A (en) * 1994-01-07 1995-02-07 General Electric Company Turbine blade composite cooling circuit
WO1998055735A1 (en) * 1997-06-06 1998-12-10 Mitsubishi Heavy Industries, Ltd. Gas turbine blade
US6206638B1 (en) * 1999-02-12 2001-03-27 General Electric Company Low cost airfoil cooling circuit with sidewall impingement cooling chambers
DE19921644B4 (en) * 1999-05-10 2012-01-05 Alstom Coolable blade for a gas turbine
US6382914B1 (en) * 2001-02-23 2002-05-07 General Electric Company Cooling medium transfer passageways in radial cooled turbine blades
EP1247939A1 (en) * 2001-04-06 2002-10-09 Siemens Aktiengesellschaft Turbine blade and process of manufacturing such a blade
US6494678B1 (en) * 2001-05-31 2002-12-17 General Electric Company Film cooled blade tip
DE10205363A1 (en) * 2002-02-08 2003-08-21 Rolls Royce Deutschland gas turbine
GB2409247A (en) * 2003-12-20 2005-06-22 Rolls Royce Plc A seal arrangement
US7137782B2 (en) * 2004-04-27 2006-11-21 General Electric Company Turbulator on the underside of a turbine blade tip turn and related method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825103U (en) * 1971-08-06 1973-03-24
JPS5713201A (en) * 1980-06-30 1982-01-23 Hitachi Ltd Air cooled gas turbine blade
JPS6081204U (en) * 1983-11-10 1985-06-05 三菱重工業株式会社 Cooling structure of turbine rotor blades and stationary blades
EP0278434A2 (en) * 1987-02-06 1988-08-17 Wolfgang P. Weinhold A blade, especially a rotor blade
JPH09296704A (en) * 1988-08-24 1997-11-18 United Technol Corp <Utc> Axial flow turbine for gas turbine engine
US5688107A (en) * 1992-12-28 1997-11-18 United Technologies Corp. Turbine blade passive clearance control
JPH1113403A (en) * 1997-06-26 1999-01-19 Mitsubishi Heavy Ind Ltd Tip shroud for gas turbine moving blade
US6574965B1 (en) * 1998-12-23 2003-06-10 United Technologies Corporation Rotor tip bleed in gas turbine engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925244A (en) * 2014-04-02 2014-07-16 清华大学 Large-flow high-load axial compressor for 300MW F-class heavy-duty gas turbine

Also Published As

Publication number Publication date
US20070122280A1 (en) 2007-05-31
CA2569177A1 (en) 2007-05-30
EP1793089A3 (en) 2007-10-24
CN101008402A (en) 2007-08-01
EP1793089A2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
CN100572756C (en) Be used to reduce the method for temperature and the device in zone, turbine blade pinnacle
US7677048B1 (en) Turbine last stage blade with forced vortex driven cooling air
JP2007154887A (en) Method for reducing axial compressor blade tipflow and turbine machine
JP5235327B2 (en) Fan blade and turbofan engine assembly
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
US20060153673A1 (en) Turbomachine exerting dynamic influence on the flow
JP2017530299A (en) Boundary layer control of the diffuser passage of a centrifugal compressor
CN107109949A (en) Turbo blade with axial leaf top cooling circuit
JP2006283755A (en) Fixed turbine blade profile part
JP2011522158A (en) Turbine airfoil with metering cooling cavity
JP2005054798A (en) Blade profile part of counter stagger type compressor
JP2008051098A (en) Reverse tip baffle type blade profile part
CA2949699A1 (en) Venturi effect endwall treatment
JP2008121671A (en) Interstage cooled turbine engine
EP1712738A3 (en) Low solidity turbofan
JP2008138677A (en) Advanced booster stator vane
JP2007536459A (en) Extraction of shock wave induced boundary layer of transonic gas turbine
JP2009156122A (en) Impeller for centrifugal compressor
CN103635699A (en) Centrifugal fluid machine
JPH11343867A (en) Cooling air taking out device in suction side of diffuser blade of radial flow compressor stage of gas turbine
CN106801623A (en) Turbo blade
JP2011236899A (en) Airfoil trailing edge and method of manufacturing the same
JP2016118165A (en) Axial flow machine and jet engine
JP2019094902A (en) Centrifugal compressor
JP2004324646A (en) Method and device for supporting tip of airfoil structurally

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918