JP2007154319A - Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same - Google Patents

Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same Download PDF

Info

Publication number
JP2007154319A
JP2007154319A JP2005346286A JP2005346286A JP2007154319A JP 2007154319 A JP2007154319 A JP 2007154319A JP 2005346286 A JP2005346286 A JP 2005346286A JP 2005346286 A JP2005346286 A JP 2005346286A JP 2007154319 A JP2007154319 A JP 2007154319A
Authority
JP
Japan
Prior art keywords
fiber
artificial leather
woven
knitted fabric
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005346286A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakatsuka
均 中塚
Takeshi Yamazaki
豪 山崎
Masao Kawamoto
正夫 河本
Yoshihiro Tanba
善博 丹波
Koji Hirai
広治 平井
Kazuhiko Tanaka
和彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005346286A priority Critical patent/JP2007154319A/en
Publication of JP2007154319A publication Critical patent/JP2007154319A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a woven or knitted fabric for providing artificial leather having a natural leather-like feeling, excellent mechanical performance represented by strength and elongation and an excellent feeling and aesthetic property. <P>SOLUTION: The woven or knitted fabric for artificial leather comprises an extra fine fiber-forming fiber which is composed of a water-soluble thermoplastic polyvinyl alcohol-based polymer (Fa) and a crystalline thermoplastic polymer (Fb) having ≥160°C melting point, has a single fiber fineness of extra fine fiber after the formation of extra fine fiber of 0.0003-0.9 decitex and satisfies K represented by formula K=α×√(D/1.10) (α is number of twists (T/M); D is a fiber fineness (dtex) composed of an extra fine fiber-forming fiber) of 43-8,660 and an interyarn void area Sj(μm<SP>2</SP>) of 50-45,000. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は人工皮革用織編物に関し、さらに詳しくは高強力、高密度および耐引裂強力に優れた人工皮革用織編物に関するものである。 The present invention relates to a woven or knitted fabric for artificial leather, and more particularly to a woven or knitted fabric for artificial leather having excellent high strength, high density and tear resistance.

従来から人工皮革は、天然皮革に類似した柔軟性と機械的性能を得るために、極細繊維と高分子弾性体から主として構成されており、その具体的製造法についても種々の方法が提案されてきている。しかしながら、天然皮革のような風合と優れた機械的性能の両者を満足させるものはいまだ実現されていないのが現状である。   Conventionally, artificial leather has been mainly composed of ultrafine fibers and polymer elastic bodies in order to obtain flexibility and mechanical performance similar to natural leather, and various methods have been proposed for its specific production method. ing. However, the present situation is that a material that satisfies both a texture like natural leather and excellent mechanical performance has not yet been realized.

従来の一般的な人工皮革の製造方法は、概略次の通りである。すなわち、例えば柔軟な人工皮革を得る基本手法として、溶解性を異にする2種の重合体からなる極細繊維発生型繊維をステープル化し、カード、クロスラッパー、ランダムウェバー等を用いてウェブ化し、ニードルパンチ等により繊維を互いに絡ませて不織布化した後、ポリウレタン等の高分子弾性体を付与し、そして該極細繊維発生型繊維中の一成分を除去することにより繊維を極細化させて柔軟な人工皮革を得る方法があるが、この方法により得られる人工皮革は、引張強力や摩耗強力などの機械的性能が劣るという欠点を有している。   A conventional method for producing a general artificial leather is roughly as follows. That is, for example, as a basic method for obtaining a flexible artificial leather, staples are formed from ultrafine fiber-generating fibers made of two types of polymers having different solubility, and are formed into a web using a card, a cross wrapper, a random weber, etc. After the fibers are entangled with each other by a punch or the like to form a non-woven fabric, an elastic polymer such as polyurethane is provided, and one component in the ultrafine fiber generating fiber is removed to make the fibers ultrafine and flexible artificial leather However, the artificial leather obtained by this method has a disadvantage that mechanical properties such as tensile strength and wear strength are inferior.

一方、長さが10mm以下の海島構造繊維よりなるシートの間に織編物類をはさみ、それに高速流体処理を施して人工皮革を製造する方法(例えば、特許文献1参照。)もある。しかしながら、この方法は、高密度で短ナップのスエードを得るためにはそれなりの効果があるが、使用されている繊維の繊維長が短いため、単繊維が抜けやすく摩耗強力が低下する場合がある。
また、不織ウェブの間あるいは片面に織編物を重ねニードルパンチする方法も公知であるが、従来の公知技術では、織編物を用いた場合、ニードル針のバーブに織編物の糸がひっかかり、織編物を構成する糸の損傷が大きいため、補強効果が小さく、十分な期待効果が得られない。製品の充実感、外観(特に立毛形成の場合)および品位などを向上させるためには、繊維絡合度を高める必要があるが、絡合度を高めるためにニードルパンチ数を高めると織編物を構成する糸の損傷がそれだけ大きくなり、織編物の強度低下をきたし、補強効果が低下することとなる。さらに織編物の損傷により生じた織編物からの切断繊維の端が不織布表面に露出した場合は、極細繊維の間に太い織編物構成繊維が存在することとなるため、外観の著しい低下を来たすという欠点があった。
On the other hand, there is also a method for producing artificial leather by sandwiching a woven or knitted fabric between sheets made of sea-island structure fibers having a length of 10 mm or less, and applying high-speed fluid treatment thereto (for example, see Patent Document 1). However, this method has a certain effect for obtaining a high-density and short nap suede, but since the fiber length of the used fiber is short, the single fiber is easily pulled out and the wear strength may be reduced. .
In addition, a method of needle punching by overlapping a woven or knitted fabric between nonwoven webs or on one side is also known. However, in the conventional known technique, when a woven or knitted fabric is used, the yarn of the woven or knitted yarn is caught on the needle needle barb. Since the yarn constituting the knitted fabric is greatly damaged, the reinforcing effect is small and a sufficient expected effect cannot be obtained. In order to improve the product's fullness, appearance (especially in the case of napped formation) and quality, it is necessary to increase the degree of fiber entanglement. As a result, the damage of the constituent yarns is increased accordingly, the strength of the woven or knitted fabric is lowered, and the reinforcing effect is lowered. Furthermore, if the ends of the cut fibers from the woven or knitted fabric caused by damage to the woven or knitted fabric are exposed on the nonwoven fabric surface, thick knitted or knitted fabric fibers are present between the ultrafine fibers, which causes a significant deterioration in the appearance. There were drawbacks.

特公昭60−29775号公報Japanese Patent Publication No. 60-29775

本発明は、上記問題を解決し、天然皮革調の風合いを有し、耐引裂性で代表される機械的性能に優れ、更に柔軟特性及び審美性に優れ、更に天然皮革に類似した緻密感・充実感を有する人工皮革に好適な織編物を提供することにある。   The present invention solves the above problems, has a natural leather-like texture, is excellent in mechanical performance represented by tear resistance, is further excellent in softness and aesthetics, and further has a dense feeling similar to natural leather. The object is to provide a woven or knitted fabric suitable for artificial leather having a sense of fulfillment.

上記課題を達成すべく本発明者等は鋭意研究を重ねた結果、本発明に至った。
すなわち、本発明は、水溶性熱可塑性ポリビニルアルコール系重合体(Fa)と融点が160℃以上の結晶性熱可塑性ポリマー(Fb)とからなり、極細化後の極細繊維の単繊度が0.0003〜0.9デシテックスとなる極細繊維発生型繊維から構成され、かつ下式で表されるKが43〜8660を満足する糸から構成され、該糸間の空隙面積Sj(μm)が50〜45000であることを特徴とする人工皮革用織編物。
K=α×√(D/1.10)
(但し、α;撚数(T/M) D;極細繊維発生型繊維からなる糸繊度(dtex))
As a result of intensive studies conducted by the present inventors to achieve the above-mentioned problems, the present invention has been achieved.
That is, the present invention comprises a water-soluble thermoplastic polyvinyl alcohol polymer (Fa) and a crystalline thermoplastic polymer (Fb) having a melting point of 160 ° C. or higher, and the fineness of the ultrafine fiber after ultrafinening is 0.0003. It is comprised from the thread | yarn which is comprised from the ultrafine fiber generation | occurence | production fiber used as -0.9 dtex, and K represented by the following Formula is 43-8660, and the space | gap area Sj (micrometer < 2 >) between this thread | yarn is 50- A woven or knitted fabric for artificial leather, characterized by being 45000.
K = α × √ (D / 1.10)
(However, α: Twist number (T / M) D: Yarn fineness (dtex) made of ultra fine fiber generating fiber)

また、前記人工皮革用織編物と繊維ウェブを積層し絡合一体化後、高分子弾性体を付与する前または後で極細繊維化処理を行う人工皮革の製造方法である。   Further, the present invention is a method for producing artificial leather, in which the woven or knitted fabric for artificial leather and a fiber web are laminated and intertwined and integrated, and then subjected to ultrafine fiber treatment before or after applying the polymer elastic body.

本発明の織編物は、優れた機械的物性と天然皮革様の風合を兼ね備えた人工皮革に好適なものある。 The woven or knitted fabric of the present invention is suitable for artificial leather having excellent mechanical properties and natural leather-like texture.

本発明の織編物用の繊維としては、熱水溶解時の収縮特性(応力、率)に優れたポリマー、すなわち水溶性熱可塑性ポリビニルアルコール系重合体(Fa)と、融点が160℃以上の結晶性熱可塑性ポリマー(Fb)との極細繊維発生型繊維である必要がある。
次に本発明の織編物に好適に用いられる水溶性熱可塑性ポリビニルアルコール系重合体(Fa)(以下PVAと略することもある。)について詳述する。本発明の織編物を構成する繊維に用いられるPVAとしては、粘度平均重合度(以下、単に重合度と略記する)が200〜500のものが好ましく、中でも230〜470の範囲が好ましく、250〜450が特に好ましい。重合度が200未満の場合には溶融粘度が低すぎて、安定な複合化が得られにくい。重合度が500を越えると溶融粘度が高すぎて、紡糸ノズルからポリマーを吐出することが困難となる。重合度500以下のいわゆる低重合度PVAを用いることにより、熱水で溶解するときに溶解速度が速くなるという利点が有る。
The fibers for the woven or knitted fabric of the present invention include a polymer excellent in shrinkage characteristics (stress, rate) when dissolved in hot water, that is, a water-soluble thermoplastic polyvinyl alcohol polymer (Fa), and a crystal having a melting point of 160 ° C. or higher. It is necessary to be an ultrafine fiber-generating fiber with a heat-resistant thermoplastic polymer (Fb).
Next, the water-soluble thermoplastic polyvinyl alcohol polymer (Fa) (hereinafter sometimes abbreviated as PVA) that is preferably used in the woven or knitted fabric of the present invention will be described in detail. As PVA used for the fibers constituting the woven or knitted fabric of the present invention, those having a viscosity average degree of polymerization (hereinafter simply referred to as polymerization degree) of 200 to 500 are preferable, and a range of 230 to 470 is preferable, and 250 to 450 is particularly preferred. When the degree of polymerization is less than 200, the melt viscosity is too low and it is difficult to obtain a stable composite. When the degree of polymerization exceeds 500, the melt viscosity is too high, and it becomes difficult to discharge the polymer from the spinning nozzle. By using so-called low polymerization degree PVA having a polymerization degree of 500 or less, there is an advantage that the dissolution rate is increased when dissolving with hot water.

ここで言うPVAの重合度(P)は、JIS−K6726に準じて測定される。すなわち、PVAを再鹸化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求められるものである。
P=([η]10/8.29)(1/0.62)
重合度が上記範囲にある時、本発明の目的がより好適に達せられる。
The polymerization degree (P) of PVA here is measured according to JIS-K6726. That is, after re-saponifying and purifying PVA, it is obtained by the following equation from the intrinsic viscosity [η] measured in water at 30 ° C.
P = ([η] 10 3 /8.29) (1 / 0.62)
When the degree of polymerization is in the above range, the object of the present invention can be achieved more suitably.

本発明のPVAの鹸化度は90〜99.99モル%である。93〜99.98モル%が好ましく、94〜99.97モル%がより好ましく、96〜99.96モル%が特に好ましい。鹸化度が90モル%未満の場合には、PVAの熱安定性が悪く熱分解やゲル化によって満足な溶融紡糸を行うことができないのみならず、生分解性が低下し、更に後述する共重合モノマーの種類によってはPVAの水溶性が低下し、本発明の極細繊維発生型繊維を得ることができない場合がある。一方、鹸化度が99.99モル%よりも大きいPVAは安定に製造することができにくい。   The saponification degree of the PVA of the present invention is 90 to 99.99 mol%. 93-99.98 mol% is preferable, 94-99.97 mol% is more preferable, 96-99.96 mol% is especially preferable. If the degree of saponification is less than 90 mol%, the thermal stability of PVA is poor, and not only satisfactory melt spinning cannot be carried out by thermal decomposition or gelation, but also biodegradability is reduced, and the copolymerization described later Depending on the type of monomer, the water-solubility of PVA is lowered, and the ultrafine fiber-generating fiber of the present invention may not be obtained. On the other hand, PVA having a saponification degree larger than 99.99 mol% cannot be produced stably.

本発明で使用されるPVAは生分解性を有しており、活性汚泥処理あるいは土壌に埋めておくと分解されて水と二酸化炭素になる。PVAを溶解した後のPVA含有廃液の処理には活性汚泥法が好ましい。該PVA水溶液を活性汚泥で連続処理すると2日間から1ヶ月の間で分解される。また、本発明に用いるPVAは燃焼熱が低く、焼却炉に対する負荷が小さいので、PVAを溶解した排水を乾燥させてPVAを焼却処理してもよい。   The PVA used in the present invention has biodegradability, and is decomposed into water and carbon dioxide when treated with activated sludge or buried in soil. The activated sludge method is preferable for the treatment of the PVA-containing waste liquid after dissolving the PVA. When the PVA aqueous solution is continuously treated with activated sludge, it is decomposed in 2 days to 1 month. Moreover, since PVA used for this invention has low combustion heat and the load with respect to an incinerator is small, you may incinerate PVA by drying the waste_water | drain which melt | dissolved PVA.

本発明に用いられるPVAの融点(Tm)は160〜230℃が好ましく、170〜227℃がより好ましく、175〜224℃が特に好ましく、180〜220℃がとりわけ好ましい。融点が160℃未満の場合にはPVAの結晶性が低下し繊維強度が低くなると同時に、PVAの熱安定性が悪くなり、繊維化できない場合がある。一方、融点が230℃を越えると溶融紡糸温度が高くなり紡糸温度とPVAの分解温度が近づくためにPVA繊維を安定に製造することができない。   160-230 degreeC is preferable, as for melting | fusing point (Tm) of PVA used for this invention, 170-227 degreeC is more preferable, 175-224 degreeC is especially preferable, and 180-220 degreeC is especially preferable. When the melting point is less than 160 ° C., the crystallinity of PVA is lowered and the fiber strength is lowered. On the other hand, when the melting point exceeds 230 ° C., the melt spinning temperature becomes high, and the spinning temperature and the decomposition temperature of PVA are close to each other, so that PVA fibers cannot be produced stably.

PVAの融点は、DSCを用いて、窒素中、昇温速度10℃/分で250℃まで昇温後、室温まで冷却し、再度昇温速度10℃/分で250℃まで昇温した場合のPVAの融点を示す吸熱ピークのピークトップの温度を意味する。   The melting point of PVA is that when DSC is used, the temperature is raised to 250 ° C. in nitrogen at a heating rate of 10 ° C./min, cooled to room temperature, and then heated again to 250 ° C. at a heating rate of 10 ° C./min. It means the temperature at the peak top of the endothermic peak indicating the melting point of PVA.

PVAは、ビニルエステル単位を主体として有するポリマーを鹸化することにより得られる。ビニルエステル単位を形成するためのビニル化合物単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、これらの中でもPVAを容易に得る点からは酢酸ビニルが好ましい。   PVA can be obtained by saponifying a polymer mainly composed of vinyl ester units. Vinyl compound monomers for forming vinyl ester units include vinyl formate, vinyl acetate, vinyl propionate, vinyl valenate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and Examples include vinyl versatate, and among these, vinyl acetate is preferable from the viewpoint of easily obtaining PVA.

本発明で使用されるPVAは、ホモポリマーであっても共重合単位を導入した変性PVAであってもよいが、溶融紡糸性、水溶性、繊維物性の観点からは、共重合単位を導入した変性PVAを用いることが好ましい。共重合単量体の種類としては、共重合性、溶融紡糸性および繊維の水溶性の観点からエチレン、プロピレン、1−ブテン、イソブテンの炭素数4以下のα−オレフィン類、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、i−プロピルビニルエーテル、n−ブチルビニルエーテル等のビニルエーテル類が好ましい。炭素数4以下のα−オレフィン類および/またはビニルエーテル類に由来する単位は、PVA中に1〜20モル%存在していることが好ましく、さらに4〜15モル%が好ましく、6〜13モル%が特に好ましい。さらに、α−オレフィンがエチレンである場合には、繊維物性が高くなることから、特にエチレン単位が4〜15モル%、より好ましくは6〜13モル%導入された変性PVAを使用する場合である。   The PVA used in the present invention may be a homopolymer or a modified PVA into which copolymer units are introduced. However, from the viewpoint of melt spinnability, water solubility, and fiber properties, copolymer units are introduced. It is preferable to use modified PVA. The types of comonomer include ethylene, propylene, 1-butene, and isobutene having 4 or less α-olefins, methyl vinyl ether, and ethyl vinyl ether from the viewpoints of copolymerizability, melt spinnability, and water solubility of the fiber. , Vinyl ethers such as n-propyl vinyl ether, i-propyl vinyl ether and n-butyl vinyl ether are preferred. The unit derived from α-olefins having 4 or less carbon atoms and / or vinyl ethers is preferably present in PVA in an amount of 1 to 20 mol%, more preferably 4 to 15 mol%, and 6 to 13 mol%. Is particularly preferred. Further, when the α-olefin is ethylene, the fiber physical properties are high, and therefore, this is a case where a modified PVA into which ethylene units are introduced in an amount of 4 to 15 mol%, more preferably 6 to 13 mol% is used. .

本発明で使用されるPVAは、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その中でも、無溶媒あるいはアルコールなどの溶媒中で重合する塊状重合法や溶液重合法が通常採用される。溶液重合時に溶媒として使用されるアルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコールなどの低級アルコールが挙げられる。共重合に使用される開始剤としては、a、a`−アゾビスイソブチロニトリル、2,2`ーアゾビス(2,4−ジメチル−バレロニトリル)、過酸化ベンゾイル、nープロピルパーオキシカーボネートなどのアゾ系開始剤または過酸化物系開始剤などの公知の開始剤が挙げられる。重合温度については特に制限はないが、0℃〜150℃の範囲が適当である。   Examples of the PVA used in the present invention include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Among them, a bulk polymerization method or a solution polymerization method in which polymerization is performed without solvent or in a solvent such as alcohol is usually employed. Examples of alcohol used as a solvent during solution polymerization include lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol. Examples of the initiator used for copolymerization include a, a`-azobisisobutyronitrile, 2,2`-azobis (2,4-dimethyl-valeronitrile), benzoyl peroxide, n-propyl peroxycarbonate, and the like. And known initiators such as azo initiators and peroxide initiators. Although there is no restriction | limiting in particular about superposition | polymerization temperature, The range of 0 to 150 degreeC is suitable.

本発明の融点が160℃以上の結晶性熱可塑性ポリマー(Fb)を構成する重合体としては特に限定されないが、ポリエチレンテレフタレート(以下、PETと略する場合がある。)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート(以下、PBTと略する場合がある。)、ポリエステルエラストマー等のポリエステル系、ナイロン6、ナイロン66、ナイロン610、芳香族ポリアミド、ポリアミドエラストマー等のポリアミド系、ポリウレタン系、ポリオレフィン系、アクリロニトリル系などの繊維形成能を有する重合体が好適である。この中でもPET、PBT、ナイロン6、ナイロン66等は加工した製品の風合及び実用性能の点から特に望ましい。そして、これら重合体は融点が160℃以上であることが重要であり、160℃未満の場合には、形態安定性が劣り、実用性の点から問題がある。
なお、融点は、DSCを用いて、窒素中、昇温速度10℃/分で250℃まで昇温後、室温まで冷却し、再度昇温速度10℃/分で250℃まで昇温した場合の重合体の融点を示す吸熱ピークのピークトップの温度を意味する。
The polymer constituting the crystalline thermoplastic polymer (Fb) having a melting point of 160 ° C. or higher of the present invention is not particularly limited, but polyethylene terephthalate (hereinafter sometimes abbreviated as PET), polytrimethylene terephthalate, poly Butylene terephthalate (hereinafter sometimes abbreviated as PBT), polyesters such as polyester elastomer, nylons 6, nylon 66, nylon 610, polyamides such as aromatic polyamide, polyamide elastomer, polyurethanes, polyolefins, acrylonitriles A polymer having a fiber-forming ability such as is suitable. Among these, PET, PBT, nylon 6, nylon 66 and the like are particularly desirable from the viewpoint of the texture and practical performance of the processed product. And it is important that these polymers have a melting point of 160 ° C. or higher. When the temperature is lower than 160 ° C., the form stability is inferior, and there is a problem in terms of practicality.
The melting point is the value when DSC is used and the temperature is raised to 250 ° C. in nitrogen at a heating rate of 10 ° C./min, cooled to room temperature, and then heated again to 250 ° C. at a heating rate of 10 ° C./min. It means the temperature at the peak top of the endothermic peak indicating the melting point of the polymer.

本発明の織編物を構成する極細繊維発生型繊維の(Fa)を公知の方法にて抽出除去し、極細繊維化後の融点が160℃以上の結晶性熱可塑性ポリマー(Fb)からなる極細繊維の単繊度は、人工皮革としての性能、すなわち柔軟性、触感、外観品位、強力特性などを高めるために0.0003〜0.9デシテックスが採用される。好ましくは0.003〜0.5デシテックス、更に好ましくは0.007〜0.3デシテックスの範囲である。   (Fa) of the ultrafine fiber generating fiber constituting the woven or knitted fabric of the present invention is extracted and removed by a known method, and an ultrafine fiber comprising a crystalline thermoplastic polymer (Fb) having a melting point of 160 ° C. or higher after ultrafine fiber formation. As for the single fineness, 0.0003 to 0.9 dtex is adopted in order to enhance the performance as an artificial leather, that is, flexibility, touch feeling, appearance quality, strength characteristics and the like. Preferably it is 0.003-0.5 dtex, More preferably, it is the range of 0.007-0.3 dtex.

また、下式で表されるKが43〜8660を満足する糸から構成されることが必要である。 K=α×√(D/1.10)
(但し、α;撚数(T/M) D;極細繊維発生型繊維からなる糸繊度(dtex)
Kが8660を超える場合、撚数増加に伴って繊維の収縮力が小さくなり人工皮革としての緻密感が得られないことと、ニードルパンチによる不織布との一体化が不足し品位が劣るものになる。Kが43未満の場合、製織工程通過性が悪化することと、ニードルパンチの際の針により糸が切断あるいは損傷し、布帛構造物の強力低下が著しくなる。下限は、100以上が好ましく、200以上がより好ましい。また上限は、8000以下が好ましく、7500以下がより好ましい。
Kを上記範囲にする為には、撚数や極細繊維発生型繊維からなる糸繊度を適宜調整すれば良く特に限定はしない。
Moreover, it is necessary to be comprised from the thread | yarn satisfy | filling K represented by the following Formula 43-8660. K = α × √ (D / 1.10)
(However, α: Twist number (T / M) D: Yarn fineness (dtex) made of ultra fine fiber generating fiber
When K exceeds 8660, the shrinkage force of the fiber decreases as the number of twists increases, and a dense feeling as an artificial leather cannot be obtained, and the integration with the nonwoven fabric by needle punch is insufficient, resulting in poor quality. . When K is less than 43, the passing through the weaving process is deteriorated, and the yarn is cut or damaged by the needle at the time of needle punching, so that the strength of the fabric structure is significantly reduced. The lower limit is preferably 100 or more, and more preferably 200 or more. The upper limit is preferably 8000 or less, and more preferably 7500 or less.
In order to make K within the above range, there is no particular limitation as long as the number of twists and the fineness of the fine fiber-generating fiber are appropriately adjusted.

さらに、上記織編物の糸間の空隙面積は50〜45000(μm2)の範囲であることが重要である。空隙が50μm2未満では、ニードルパンチの際、針のバーブに糸または単糸(単繊維)が引っかかり、糸が切断あるいは損傷する。さらに織編物の組織が破壊され、パンチ数増加と共に織編物の強力が著しく低下し、全体として布帛構造物の低下が著しくなる。また、空隙が45000μm2より大きい場合は風合い、バギング性が不足する。下限は、100μm2以上が好ましく、200μm2以上がより好ましく、3000μm2以上が特に好ましい。また上限は、40000μm2以下が好ましく、20000μm2以下がより好ましく、10000μm2以下が特に好ましい。
糸間の空隙面積とは、織編物を上から見た状態で、走査型電子顕微鏡を用いて糸で囲まれた空隙部分(例えば、平織物の場合には、経糸と緯糸で囲まれた部分)の任意の10点を選び、それらの面積を測定し、平均した値をいう。
Furthermore, it is important that the void area between the yarns of the woven or knitted fabric is in the range of 50 to 45000 (μm 2 ). When the gap is less than 50 μm 2 , when needle punching, a thread or single thread (single fiber) is caught on the barb of the needle, and the thread is cut or damaged. Furthermore, the structure of the woven or knitted fabric is destroyed, and the strength of the woven or knitted fabric is remarkably lowered with an increase in the number of punches, and the overall fabric structure is significantly lowered. On the other hand, when the gap is larger than 45000 μm 2, the texture and bagging properties are insufficient. The lower limit is preferably 100 [mu] m 2 or more, more preferably 200 [mu] m 2 or more, 3000 .mu.m 2 or more are particularly preferred. The upper limit is preferably 40000Myuemu 2 or less, more preferably 20000Myuemu 2 or less, 10000 2 below are particularly preferred.
The gap area between the yarns is the gap part surrounded by the yarn using a scanning electron microscope when the woven or knitted fabric is viewed from above (for example, in the case of a plain fabric, the part surrounded by warp and weft yarns) ) Is selected, and the area is measured and averaged.

このような極細繊維発生型繊維の断面形状としては、PVAを海成分とし、結晶性熱可塑性ポリマーを島成分とする海島型、PVAと結晶性熱可塑性ポリマーとが多層積層状態で貼り合わされたような多層積層型等が挙げられる。PVAとの複合によりなぜ高密度布帛が得られるのかについては現時点で明確ではないが、PVAの溶解に至る際に生じる強い収縮応力により高密度に至ると推定される。この高密度化は繊維中のPVA成分の比率が高いほど強く発現される傾向にある。PVA溶解除去前の織編物中に占めるPVAの質量比率としては5〜70質量%が好ましい。より好ましくは10〜60質量%、特に好ましくは15〜50質量%である。   The cross-sectional shape of such an ultrafine fiber-generating fiber is a sea-island type in which PVA is a sea component and a crystalline thermoplastic polymer is an island component, and PVA and a crystalline thermoplastic polymer are bonded together in a multi-layered state. And a multi-layered type. The reason why a high-density fabric is obtained by combining with PVA is not clear at the present time, but it is presumed that the high density fabric is reached due to the strong shrinkage stress generated when the PVA is dissolved. This densification tends to be expressed more strongly as the ratio of the PVA component in the fiber is higher. As a mass ratio of PVA in the woven or knitted fabric before PVA dissolution and removal, 5 to 70 mass% is preferable. More preferably, it is 10-60 mass%, Most preferably, it is 15-50 mass%.

織編物の糸を構成する繊維としては、前記したように極細繊維発生型繊維であるが、極細繊維発生型繊維の単繊度としては、1〜5デシテックスの範囲が好ましい。また、このような繊維はフィラメント(長繊維)の形態を有しているのが繊維化工程性の点で好ましく、したがって織編物を構成している糸としてはマルチフィラメント糸が好ましいこととなる。マルチフィラメント糸の太さとしては50〜150デシテックスの範囲が好ましい。   As described above, the fiber constituting the yarn of the woven or knitted fabric is an ultrafine fiber generating fiber, but the single fineness of the ultrafine fiber generating fiber is preferably in the range of 1 to 5 dtex. Moreover, it is preferable from the point of fiberization process property that such a fiber has a form of a filament (long fiber), and therefore, a multifilament yarn is preferable as a yarn constituting the woven or knitted fabric. The thickness of the multifilament yarn is preferably in the range of 50 to 150 dtex.

織編物の目付は、目的に応じて適宜設定可能であるが、極細処理後において20〜200g/m の範囲であることが望ましく、最も好適には30〜150g/m の範囲である。目付が20g/m 未満になると織編物としての形態が極めてルーズになり、目ずれ等布帛の安定性に欠ける。また、目付が200g/mを越えると織編物組織が密になり、不織布繊維の貫通が不充分で不織布の高絡合化が進まず不離一体化した構造物を作るのが困難になる。織編物の種類については、経編、トリコット編で代表される緯編、レース編及びそれらの編み方を基本とした各種の編物、あるいは平織、綾織、朱子織及びそれらの織り方を基本とした各種の織物などが挙げられるが、人工皮革の表面平坦性の点からは比較的プレーンな織組織、例えば、平織組織、2/2緯畝組織(タテ2本並び緯畝組織)、綾織組織などが好ましく、特にコスト面をも考慮すると平織組織が最も好ましい。 The basis weight of the woven or knitted fabric can be appropriately set according to the purpose, but is desirably in the range of 20 to 200 g / m 2 after the ultrafine treatment, and most preferably in the range of 30 to 150 g / m 2 . When the basis weight is less than 20 g / m 2 , the form as a woven or knitted fabric becomes very loose, and the fabric lacks stability such as misalignment. On the other hand, when the basis weight exceeds 200 g / m 2 , the knitted and knitted fabric structure becomes dense, the penetration of the nonwoven fabric fibers is insufficient, and the nonwoven fabric does not progress in high entanglement, making it difficult to make a structure that is inseparably integrated. As for the types of woven and knitted fabrics, weft knitting represented by warp knitting and tricot knitting, lace knitting and various knittings based on these knitting methods, or plain weaving, twill weaving, satin weaving and weaving them Various kinds of woven fabrics can be mentioned. From the viewpoint of surface flatness of artificial leather, a relatively plain woven structure, for example, a plain woven structure, a 2/2 weft weave structure (vertical two weft weft structure), a twill weave structure, etc. In particular, a plain weave structure is most preferable in consideration of cost.

また経糸および/または緯糸の配列は、Z/Z配列(Z撚加工糸のみの配列)、S/S配列(S撚加工糸のみの配列)、S/Z交互配列(S撚加工糸とZ撚加工糸を1本交互または2本交互、さらには3本以上の多数本の交互配列でもよい)の何れであってもよいが、S/Zの1本交互配列が、生地のトルクを減少させ結果として平坦で生地カールのない織物となるのでより好ましい。織物の製織機としては、エアージェットルームやウォータージェットルーム等に代表されるような流体噴射織機を初め、レピアルームやグリッパールーム、フライシャットルルームなどを使用できるが、緯方向のストレッチ性を最大限に発揮させ、かつ織物の幅方向でのストレッチ率のバラツキを抑制する点から、低張力緯入れが可能で緯糸に優しいエアージェットルームやウォータージェットルーム等の流体噴射織機が好ましく、特にエアージェットルームが好ましい。   The warp and / or weft arrangements are Z / Z arrangement (arrangement of only Z-twisted yarn), S / S arrangement (arrangement of only S-twisted yarn), S / Z alternate arrangement (S-twisted yarn and Z The twisted yarns may be either one or two alternates, or even three or more alternates), but one alternate S / Z arrangement reduces the fabric torque. As a result, the woven fabric is flat and free of fabric curl, which is more preferable. Weaving looms include fluid jet looms such as air jet looms and water jet looms, as well as rapier rooms, gripper rooms, fly shuttle looms, etc. A fluid jet loom such as an air jet loom or a water jet loom, which is capable of low tension weft insertion and is gentle to the weft, is preferable, and it is particularly preferable to use an air jet loom. preferable.

上記して得られた人工皮革用織編物と繊維ウェブを積層し、絡合一体化後、高分子弾性体を付与する前または後で極細繊維化処理を行うことによって人工皮革を製造するが、それら個々の製造方法は、特に限定することはなく公知の方法にて製造ずることができる。
例えば、繊維ウェブは、人工皮革を製造する上で公知の方法で得ることが可能であるが、人工皮革用織編物と同じ水溶性熱可塑性ポリビニルアルコール系重合体(Fa)と融点が160℃以上の結晶性熱可塑性ポリマー(Fb)と同じ成分の極細繊維発生型繊維を用いることが得られる人工皮革の一体感のある風合や安定な機械物性が得られる点で好ましく用いられる。そして、繊維ウェブと人工皮革用織編物の積層、絡合一体化に関しても特に公知の方法が用いられ、ニードルパンチによる絡合処理が好ましい。そして、乾熱処理を行い絡合処理後の繊維絡合体を面積換算で30%以上収縮させることが、高密度化および表面の平滑化の点で好ましい。次に、得られた繊維絡合体に高分子弾性体を付与するが、用いる高分子弾性体は、人工皮革に用いられる公知のものが用いられ、特にポリウレタンが風合と機械物性を両立する点で好ましく用いられる。高分子弾性体を付与する前または後で極細繊維発生型繊維を極細繊維化する必要があるが、極細繊維化に関しても公知の方法を用いることが可能であり、前述の通り繊維ウェブと人工皮革用織編物を構成する繊維の構成成分が同じ物であれば、極細繊維化処理を一度で完了することが可能な点で好ましい。
Artificial leather is produced by laminating a woven and knitted fabric for artificial leather and a fiber web obtained as described above, entangled and integrated, and then performing ultrafine fiberization treatment before or after applying the polymer elastic body, These individual production methods are not particularly limited and can be produced by known methods.
For example, the fiber web can be obtained by a known method for producing artificial leather, but has the same water-soluble thermoplastic polyvinyl alcohol polymer (Fa) as the woven or knitted fabric for artificial leather and a melting point of 160 ° C. or higher. The crystalline thermoplastic polymer (Fb) is preferably used from the standpoint that an artificial leather with a sense of unity and stable mechanical properties can be obtained by using an ultrafine fiber-generating fiber having the same component as the crystalline thermoplastic polymer (Fb). A known method is also particularly used for the lamination and entanglement integration of the fiber web and the woven or knitted fabric for artificial leather, and the entanglement treatment by needle punch is preferable. And it is preferable in terms of densification and smoothing of the surface to shrink the fiber entangled body after the entanglement treatment by dry heat treatment by 30% or more in terms of area. Next, a polymer elastic body is imparted to the obtained fiber entangled body, and the polymer elastic body used is a known one used for artificial leather, and particularly polyurethane has both a feeling and mechanical properties. Are preferably used. Before or after applying the polymer elastic body, it is necessary to make the ultrafine fiber generating fiber into ultrafine fibers. However, it is possible to use a known method for making ultrafine fibers, and as described above, the fiber web and artificial leather If the constituent components of the fibers constituting the woven or knitted fabric are the same, it is preferable in that the ultrafine fiber treatment can be completed at once.

以下、本発明を実施例で具体的に説明するが、本発明は実施例のみに限定されるものではない。尚、実施例および比較例における評価は以下の方法により測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to an Example. In addition, evaluation in an Example and a comparative example was measured with the following method.

[繊維化工程性評価]
100kgの繊維を紡糸する際に何回断糸するかによって、次のように評価した。
○:3回以内/100kg
△:4回〜7回/100kg
×:8回以上/100kg
[人工皮革の風合・外観品位(審美性)]
人工皮革の開発にかかわる者10人が下記評価方法にて評価した結果、最も多い評価を占めた結果を示す。
◎:非常に柔らかい天然皮革並の風合いで外観品位が非常に優れる
○:柔らかい天然皮革並の風合いで外観品位が優れる
△:やや硬い風合いで外観品位が劣る
×:硬くゴム感の有る風合い外観品位が非常に劣る
[人工皮革の強力]
引張強伸度:JIS-L1079の5,12,1に準じて測定実施。
[Evaluation of fiber processability]
Depending on how many times the fiber was cut when spinning 100 kg of fiber, the evaluation was as follows.
○: Within 3 times / 100kg
Δ: 4-7 times / 100 kg
×: 8 times / 100kg
[Texture and appearance quality of artificial leather (aesthetics)]
As a result of the evaluation by the following evaluation methods by 10 persons involved in the development of artificial leather, the results of occupying the most evaluations are shown.
◎: Appearance is very good with a texture similar to that of very soft natural leather. ○: Appearance is excellent with a texture similar to that of soft natural leather. Is very inferior [Strength of artificial leather]
Tensile strength and elongation: Measured according to JIS-L1079 5, 12, 1.

[水溶性熱可塑生ポリビニルアルコールの製造]
攪拌機、窒素導入口、エチレン導入口および開始剤添加口を備えた100L加圧反応槽に酢酸ビニル29.0kgおよびメタノール31.0kgを仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。次いで反応槽圧力が5.9kg/cmとなるようにエチレンを導入仕込みした。開始剤として2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)(AMV)をメタノールに溶解した濃度2.8g/L溶液を調整し、窒素ガスによるバブリングを行って窒素置換した。上記の重合槽内温を60℃に調整した後、上記の開始剤溶液170mlを注入し重合を開始した。重合中はエチレンを導入して反応槽圧力を5.9kg/cmに、重合温度を60℃に維持し、上記の開始剤溶液を用いて610ml/hrでAMVを連続添加して重合を実施した。10時間後に重合率が70%となったところで冷却して重合を停止した。反応槽を開放して脱エチレンした後、窒素ガスをバブリングして脱エチレンを完全に行った。次いで減圧下に未反応酢酸ビニルモノマーを除去しポリ酢酸ビニルのメタノール溶液とした。得られた該ポリ酢酸ビニル溶液にメタノールを加えて濃度が50%となるように調整したポリ酢酸ビニルのメタノール溶液200g(溶液中のポリ酢酸ビニル100g)に、46.5g(ポリ酢酸ビニルの酢酸ビニルユニットに対してモル比(MR)0.10)のアルカリ溶液(NaOHの10%メタノール溶液)を添加して鹸化を行った。アルカリ添加後約2分で系がゲル化したものを粉砕器にて粉砕し、60℃で1時間放置して鹸化を進行させた後、酢酸メチル1000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体のPVAにメタノール1000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られたPVAを乾燥機中70℃で2日間放置して乾燥PVAを得た。
[Production of water-soluble thermoplastic raw polyvinyl alcohol]
A 100-liter pressurized reactor equipped with a stirrer, nitrogen inlet, ethylene inlet and initiator addition port was charged with 29.0 kg of vinyl acetate and 31.0 kg of methanol, heated to 60 ° C., and then bubbled for 30 minutes with nitrogen bubbling. Was replaced with nitrogen. Next, ethylene was introduced and charged so that the reactor pressure was 5.9 kg / cm 2 . Prepare a 2.8 g / L solution of 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) (AMV) dissolved in methanol as an initiator, and perform nitrogen replacement by bubbling with nitrogen gas. did. After adjusting the temperature inside the polymerization tank to 60 ° C., 170 ml of the initiator solution was injected to start polymerization. During the polymerization, ethylene was introduced to maintain the reactor pressure at 5.9 kg / cm, the polymerization temperature at 60 ° C., and AMV was continuously added at 610 ml / hr using the above initiator solution. . After 10 hours, when the polymerization rate reached 70%, the polymerization was stopped by cooling. After the reaction vessel was opened to remove ethylene, nitrogen gas was bubbled to completely remove ethylene. Next, unreacted vinyl acetate monomer was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate. 46.5 g (polyvinyl acetate in acetic acid of polyvinyl acetate) was added to 200 g of polyvinyl acetate in methanol (100 g of polyvinyl acetate in the solution) adjusted to a concentration of 50% by adding methanol to the obtained polyvinyl acetate solution. Saponification was carried out by adding an alkaline solution (NaOH in 10% methanol) having a molar ratio (MR) of 0.10 to the vinyl unit. About 2 minutes after the addition of the alkali, the gelled system was pulverized with a pulverizer and allowed to stand at 60 ° C. for 1 hour to allow saponification to proceed, and then 1000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the end of neutralization using a phenolphthalein indicator, 1000 g of methanol was added to the white solid PVA obtained by filtration, and the mixture was left to wash at room temperature for 3 hours. After repeating the above washing operation three times, the PVA obtained by centrifugal drainage was left in a dryer at 70 ° C. for 2 days to obtain dry PVA.

得られたエチレン変性PVAの鹸化度は98.4モル%であった。また該変性PVAを灰化させた後、酸に溶解したものを用いて原子吸光光度計により測定したナトリウムの含有量は、変性PVA100質量部に対して0.03質量部であった。また、重合後未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液をn−ヘキサンに沈殿、アセトンで溶解する再沈精製を3回行った後、80℃で3日間減圧乾燥を行って精製ポリ酢酸ビニルを得た。該ポリ酢酸ビニルをd6−DMSOに溶解し、500MHzプロトンNMR(JEOL GX−500)を用いて80℃で測定したところ、エチレンの含有量は10モル%であった。上記のポリ酢酸ビニルのメタノール溶液をアルカリモル比0.5で鹸化した後、粉砕したものを60℃で5時間放置して鹸化を進行させた後、メタノールソックスレーを3日間実施し、次いで80℃で3日間減圧乾燥を行って精製されたエチレン変性PVAを得た。該PVAの平均重合度を常法のJIS K6726に準じて測定したところ330であった。該精製PVAの1,2−グリコール結合量および水酸基3連鎖の水酸基の含有量を5000MHzプロトンNMR(JEOL GX−500)装置による測定から前述のとおり求めたところ、それぞれ1.50モル%および83%であった。さらに該精製された変性PVAの5%水溶液を調整し厚み10ミクロンのキャスト製フィルムを作成した。該フィルムを80℃で1日間減圧乾燥を行った後に、DSC(メトラー社、TA3000)を用いて、前述の方法によりPVAの融点を測定したところ206℃であった。
また上記のPVA製造方法において、共重合成分およびその共重合割合、重合度、ケン化度等を変更して各種PVAを製造した。それらの結果を表1に示す。
The saponification degree of the obtained ethylene-modified PVA was 98.4 mol%. Further, after the modified PVA was incinerated, the content of sodium measured by an atomic absorption photometer using a material dissolved in an acid was 0.03 parts by mass with respect to 100 parts by mass of the modified PVA. In addition, after removing the unreacted vinyl acetate monomer after the polymerization, a methanol solution of polyvinyl acetate obtained by precipitation in n-hexane and reprecipitation purification by dissolving with acetone was performed three times, followed by drying at 80 ° C. under reduced pressure for 3 days. To obtain purified polyvinyl acetate. When the polyvinyl acetate was dissolved in d6-DMSO and measured at 80 ° C. using 500 MHz proton NMR (JEOL GX-500), the ethylene content was 10 mol%. After saponifying the above methanol solution of polyvinyl acetate at an alkali molar ratio of 0.5, the pulverized product was allowed to stand at 60 ° C. for 5 hours to allow saponification to proceed, followed by methanol soxhlet for 3 days, and then at 80 ° C. And purified under reduced pressure for 3 days to obtain purified ethylene-modified PVA. It was 330 when the average degree of polymerization of this PVA was measured according to JIS K6726 of the usual method. The amount of 1,2-glycol bonds and the content of hydroxyl groups in the 3-linked hydroxyl group of the purified PVA were determined as described above from measurement with a 5000 MHz proton NMR (JEOL GX-500) apparatus, and found to be 1.50 mol% and 83%, respectively. Met. Further, a cast film having a thickness of 10 microns was prepared by preparing a 5% aqueous solution of the purified modified PVA. After the film was dried under reduced pressure at 80 ° C. for 1 day, the melting point of PVA was measured by the above-mentioned method using DSC (Mettler, TA3000), and found to be 206 ° C.
Further, in the above PVA production method, various PVAs were produced by changing the copolymerization component, the copolymerization ratio, the polymerization degree, the saponification degree, and the like. The results are shown in Table 1.

Figure 2007154319
Figure 2007154319

[織編物の製造]
上記PVAを海成分に用い、固有粘度0.65(フェノ−ル/テトラクロロエタンの等重量混合溶液にて30℃で測定)のイソフタル酸10モル%含有したポリエチレンテレフタレ−ト(以下、IPA変性PETということもある。)(融点234℃)チップを島成分とし、島成分が36島となるような溶融複合紡糸用口金(0.25φ、24ホール)を用い、250℃で口金より吐出し紡糸した(海島比=4:6(質量比))。該紡糸繊維をローラープレート方式で通常の条件により延伸し、糸繊度84デシテックス−24フィラメントの海島型複合マルチフィラメント繊維を得た。紡糸性、連続ランニング性、延伸性は良好で全く問題がなかった。この海島型極細繊維発生型繊維を撚り数500T/Mにし、平織物を作製した。(表2に示す数値になるよう密度を設計)
[Manufacture of woven and knitted fabric]
Polyethylene terephthalate (hereinafter referred to as IPA modified) containing 10 mol% of isophthalic acid having an intrinsic viscosity of 0.65 (measured at 30 ° C. in an equal weight mixed solution of phenol / tetrachloroethane) using the PVA as a sea component. (May be called PET.) (Melting point: 234 ° C.) Using a die for melt compound spinning (0.25φ, 24 holes) in which the tip is an island component and the island component is 36 islands, and discharged from the die at 250 ° C. Spinning was performed (sea-island ratio = 4: 6 (mass ratio)). The spun fiber was drawn by a roller plate method under normal conditions to obtain a sea-island type composite multifilament fiber having a yarn fineness of 84 dtex-24 filaments. The spinning property, continuous running property, and stretchability were good, and there were no problems. This sea-island type ultrafine fiber generating fiber was twisted to 500 T / M to produce a plain fabric. (Density is designed to be the values shown in Table 2)

[繊維ウェブの製造]
上記PVAを海成分に用い、固有粘度0.65(フェノ−ル/テトラクロロエタンの等質量混合溶液にて30℃で測定)のイソフタル酸10モル%含有したポリエチレンテレフタレ−ト(融点234℃)チップを島成分とし、島成分が37島となるような溶融複合紡糸用口金(0.25φ、550ホール)を用い、250℃で口金より吐出し紡糸した。該紡糸繊維をローラープレート方式で通常の条件により延伸した。紡糸性、連続ランニング性、延伸性は良好で全く問題がなかった。この海島型の極細繊維発生型繊維を、捲縮機で捲縮を付与し51mmにカットしてステープル化した。このステープルからクロスラップ法で目付500g/mの繊維ウェブを作製した。
[Manufacture of fiber web]
Polyethylene terephthalate containing 10 mol% isophthalic acid (melting point: 234 ° C.) having an intrinsic viscosity of 0.65 (measured at 30 ° C. in an equimolar mixed solution of phenol / tetrachloroethane) using the PVA as a sea component A melt compound spinning die (0.25φ, 550 holes) in which the chip component is an island component and the island component is 37 islands was discharged from the die at a temperature of 250 ° C. for spinning. The spun fiber was drawn by a roller plate method under normal conditions. The spinning property, continuous running property, and stretchability were good, and there were no problems. This sea-island type ultrafine fiber generating fiber was crimped with a crimping machine and cut into 51 mm to be stapled. A fiber web having a basis weight of 500 g / m 2 was produced from this staple by a cross wrap method.

上記繊維ウェブと平織物を積層し、次いで1500パンチ/cmの条件でニードルパンチングして、150℃の乾熱処理を行い繊維絡合体を面積換算で30%収縮させ(したがって収縮処理後の面積は収縮処理前面積比で70%)、表面の平滑な繊維絡合体を得た。この繊維絡合体に、ポリエーテル系ポリウレタンの13%ジメチルホルムアルデヒド溶液を含浸し、ジメチルホルムアルデヒド/水混合液の中に浸して、浸式凝固した後に、熱水(90℃)中で海成分及び鞘成分のPVAポリマーを溶出除去し、人工皮革を得た。なお、PVAポリマーの抽出除去時にシートは収縮を生じ、面積割合で抽出処理前の80%に減少した。人工皮革における弾性重合体の質量割合は21%で、人工皮革の厚みは0.8mmであった。得られた人工皮革の不織布側表面をサンドペーパーでバフィングすることにより表面に微細な立毛を有するスエード調の人工皮革とした。さらに得られた人工皮革の物性等を表3に示す。 The fiber web and plain woven fabric are laminated, then needle punched under the condition of 1500 punch / cm 2 , and subjected to a dry heat treatment at 150 ° C. to shrink the fiber entangled body by 30% in terms of area (therefore, the area after the shrink treatment is The area ratio before shrinkage treatment was 70%), and a fiber entangled body having a smooth surface was obtained. The fiber entangled body was impregnated with a 13% dimethylformaldehyde solution of polyether polyurethane, immersed in a dimethylformaldehyde / water mixture, and solidified by immersion, followed by sea components and sheaths in hot water (90 ° C.). The component PVA polymer was eluted and removed to obtain artificial leather. When the PVA polymer was extracted and removed, the sheet contracted, and the area ratio decreased to 80% before the extraction process. The mass ratio of the elastic polymer in the artificial leather was 21%, and the thickness of the artificial leather was 0.8 mm. By buffing the nonwoven fabric side surface of the obtained artificial leather with sandpaper, a suede-like artificial leather having fine napping on the surface was obtained. Furthermore, physical properties of the obtained artificial leather are shown in Table 3.

[実施例2〜3]
織編物用マルチフィラメント糸の製造において、海島型の極細繊維発生型繊維の島数を600島、あるいは糸繊度を167dtexに変更して海成分除去後の繊維の太さを変更した以外は実施例1と同様の方法で実施した。
[Examples 2-3]
Example of production of multifilament yarn for woven and knitted fabric, except that the number of islands of sea-island type ultrafine fiber generating fiber was changed to 600 islands, or the yarn fineness was changed to 167 dtex to change the fiber thickness after removing sea components. 1 was carried out in the same manner.

[実施例4〜5]
織編物の製造において、マルチフィラメント糸の撚数を表2に示すような撚数とした以外は実施例1と同様の方法で実施した。
[Examples 4 to 5]
In the production of the woven or knitted fabric, the same procedure as in Example 1 was performed except that the number of twists of the multifilament yarn was changed to the number of twists shown in Table 2.

[実施例6〜7]
織編物の製造において、マルチフィラメント糸の撚数を表2に示すような空隙面積となるよう密度を調節した以外は実施例1と同様の方法で実施した。
[Examples 6 to 7]
In the production of the woven or knitted fabric, the same procedure as in Example 1 was performed, except that the density was adjusted so that the number of twists of the multifilament yarn was a void area as shown in Table 2.

[実施例8〜9]
織編物の製造において、表2に示すごとく、海島型の極細繊維発生型繊維の島成分をNy6、PLLAに変更し、更に繊維ウェブの製造において、島成分をNy6(ナイロン6)、PLLA(ポリ乳酸)に変更した以外は実施例1と同様の方法で実施した。
[Examples 8 to 9]
In the production of woven and knitted fabrics, as shown in Table 2, the island component of the sea-island type ultrafine fiber generating fiber was changed to Ny6 and PLLA, and in the production of the fiber web, the island component was changed to Ny6 (nylon 6), PLLA (poly The same method as in Example 1 was performed except that the lactic acid was changed.

[実施例10〜11]
織編物用マルチフィラメント糸の製造において、海島型の極細繊維発生型繊維の海成分を表2に示すごとく変更した以外は実施例1と同様の方法で実施した。
[Examples 10 to 11]
In the production of the multifilament yarn for woven and knitted fabric, the same procedure as in Example 1 was performed except that the sea components of the sea-island type ultrafine fiber generating fiber were changed as shown in Table 2.

[比較例1]
織編物用マルチフィラメント糸の製造において、海島型の極細繊維発生型繊維の島数を2島に変更して海成分除去後の繊維の太さを変更した以外は実施例1と同様の方法で実施した。
[Comparative Example 1]
In the production of the multifilament yarn for woven and knitted fabric, the same method as in Example 1 was used except that the number of islands of the sea-island type ultrafine fiber generating fiber was changed to 2 and the thickness of the fiber after removal of the sea component was changed. Carried out.

[比較例2〜3]
織編物の製造において、マルチフィラメント糸の撚数を表2に示すような撚数とした以外は実施例1と同様の方法で実施した。
[Comparative Examples 2-3]
In the production of the woven or knitted fabric, the same procedure as in Example 1 was performed except that the number of twists of the multifilament yarn was changed to the number of twists shown in Table 2.

[比較例4〜5]
織編物の製造において、マルチフィラメント糸の撚数を表2に示すような空隙面積となるよう密度を調節した以外は実施例1と同様の方法で実施した。
[Comparative Examples 4 to 5]
In the production of the woven or knitted fabric, the same procedure as in Example 1 was performed, except that the density was adjusted so that the number of twists of the multifilament yarn was a void area as shown in Table 2.

Figure 2007154319
Figure 2007154319

Claims (2)

水溶性熱可塑性ポリビニルアルコール系重合体(Fa)と融点が160℃以上の結晶性熱可塑性ポリマー(Fb)とからなり、極細化後の極細繊維の単繊度が0.0003〜0.9デシテックスとなる極細繊維発生型繊維から構成され、かつ下式で表されるKが43〜8660を満足する糸から構成され、該糸間の空隙面積Sj(μm)が50〜45000であることを特徴とする人工皮革用織編物。
K=α×√(D/1.10)
(但し、α;撚数(T/M) D;極細繊維発生型繊維からなる糸繊度(dtex))
It consists of a water-soluble thermoplastic polyvinyl alcohol polymer (Fa) and a crystalline thermoplastic polymer (Fb) having a melting point of 160 ° C. or higher, and the fineness of the ultrafine fiber after ultrafinening is 0.0003 to 0.9 dtex It is comprised from the thread | yarn which is comprised from the ultrafine fiber generation type | formula which becomes, and K represented by the following Formula satisfies 43-8660, and the space | gap area Sj (micrometer < 2 >) between this thread | yarn is 50-45000, It is characterized by the above-mentioned. Weaving and knitting for artificial leather.
K = α × √ (D / 1.10)
(However, α: Twist number (T / M) D: Yarn fineness (dtex) made of ultra fine fiber generating fiber)
請求項1の人工皮革用織編物と繊維ウェブを積層し、絡合一体化後、高分子弾性体を付与する前または後で極細繊維化処理を行う人工皮革の製造方法。
A method for producing artificial leather, comprising: laminating the woven or knitted fabric for artificial leather and a fiber web according to claim 1, performing entanglement integration, and performing ultrafine fiber treatment before or after applying a polymer elastic body.
JP2005346286A 2005-11-30 2005-11-30 Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same Pending JP2007154319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346286A JP2007154319A (en) 2005-11-30 2005-11-30 Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346286A JP2007154319A (en) 2005-11-30 2005-11-30 Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same

Publications (1)

Publication Number Publication Date
JP2007154319A true JP2007154319A (en) 2007-06-21

Family

ID=38239047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346286A Pending JP2007154319A (en) 2005-11-30 2005-11-30 Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same

Country Status (1)

Country Link
JP (1) JP2007154319A (en)

Similar Documents

Publication Publication Date Title
JP4869242B2 (en) Leather-like sheet and method for producing the same
US20050118394A1 (en) Artificial leather sheet substrate and production method thereof
JPWO2007081003A1 (en) Substrate for artificial leather and method for producing the same
JP4869228B2 (en) Substrate for artificial leather and method for producing the same
JP2011074541A (en) Napped artificial leather having excellent pilling resistance
KR101190402B1 (en) Process for producing intertwined ultrafine filament sheet
JP2008025041A (en) Dyed biodegradable leathery sheet and method for producing the same
KR20180122336A (en) Sheet product and method for manufacturing the same
WO2006134965A1 (en) Piled sheet and process for producing the same
JP4514977B2 (en) Composite fiber, hollow fiber, and method for producing hollow fiber using the composite fiber
JP2007002350A (en) Leather-like sheet
JP4602001B2 (en) Method for producing ultra-thin fiber entangled sheet
JP4549886B2 (en) Method for producing dense entangled nonwoven fabric
JP2006187976A (en) Manufacturing method of sheetlike article
JP2007154319A (en) Woven or knitted fabric suitable for artificial leather and method for producing artificial leather using the same
JP4602002B2 (en) Leather-like sheet manufacturing method
JP2006002286A (en) Method for producing fibrous sheet-like product
JP2005330595A (en) Method for producing sheet-like material
JP4647295B2 (en) Method for producing flame-retardant sheet
JP2005154925A (en) Leather-like sheet substrate and method for producing the same
JP4302281B2 (en) Thermoplastic polyvinyl alcohol fiber
JPWO2019058924A1 (en) Standing artificial leather
JP4236775B2 (en) Special polyester-based structurally processed yarn with high void development performance
JP3875805B2 (en) Leather-like sheet manufacturing method
JP2008121128A (en) Artificial leather and method for producing the same