JP2007154175A - Polishing liquid for polishing organic film and method for polishing organic film - Google Patents

Polishing liquid for polishing organic film and method for polishing organic film Download PDF

Info

Publication number
JP2007154175A
JP2007154175A JP2006305215A JP2006305215A JP2007154175A JP 2007154175 A JP2007154175 A JP 2007154175A JP 2006305215 A JP2006305215 A JP 2006305215A JP 2006305215 A JP2006305215 A JP 2006305215A JP 2007154175 A JP2007154175 A JP 2007154175A
Authority
JP
Japan
Prior art keywords
polishing
organic film
liquid
polishing liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006305215A
Other languages
Japanese (ja)
Inventor
Yutaka Ono
裕 小野
Yasuo Kamigata
康雄 上方
Shunsuke Ueda
俊輔 上田
Toranosuke Ashizawa
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006305215A priority Critical patent/JP2007154175A/en
Publication of JP2007154175A publication Critical patent/JP2007154175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing liquid for polishing an organic film suitable for polishing the organic film, etc., for liquid crystal displays at a high polishing speed and affording uniform film thickness in the plane of the film to be polished. <P>SOLUTION: The polishing liquid for polishing the organic film comprises abrasive grains, a nonionic water-soluble polymer, an anionic water-soluble polymer and water. A method for polishing the organic film is carried out as follows. A substrate having the organic film to be polished formed thereon is pressed against a polishing cloth of a polishing platen and pressurized. The substrate and the polishing platen are relatively moved while feeding the polishing liquid for polishing the organic film described in any of claims 1 to 8 between the organic film and the polishing cloth. Thereby, the organic film is polished. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機材料表面の研磨に用いられる有機膜研磨用研磨液及びこれを用いた研磨方法に関するものであり、特に液晶ディスプレイ用カラーフィルター等の有機材料の膜表面の平坦化に適した有機膜研磨用研磨液及びこれを用いた有機膜の研磨方法に関する。   The present invention relates to a polishing liquid for polishing an organic film used for polishing the surface of an organic material and a polishing method using the same, and particularly an organic material suitable for planarizing the film surface of an organic material such as a color filter for a liquid crystal display. The present invention relates to a polishing liquid for film polishing and an organic film polishing method using the same.

テレビ画面やデスクトップ用ディスプレイの大型化に伴い液晶ディスプレイの普及が顕著である。現在の液晶ディスプレイの主流がカラーTFT−LCDであり、その構造は2枚のガラス基板の間に、液晶ディスプレイパネルをカラー化させるR(赤)G(緑)B(青)の各画素からなるカラーフィルターが形成されている。このカラーフィルターの形成は、液状のカラーレジストを使用する方法が一般的であり、各色ごとにカラーレジスト塗布、パターニングを繰り返して膜状のRGBのカラーフィルターを形成する。これらカラーフィルターの材質は、主にアクリル樹脂等の有機材料と、顔料等の着色剤からなる。   With the increase in size of television screens and desktop displays, the spread of liquid crystal displays is remarkable. The mainstream of the current liquid crystal display is a color TFT-LCD, and its structure is composed of R (red), G (green), and B (blue) pixels that colorize the liquid crystal display panel between two glass substrates. A color filter is formed. This color filter is generally formed by using a liquid color resist. The color resist coating and patterning are repeated for each color to form a film-like RGB color filter. The materials of these color filters are mainly composed of an organic material such as an acrylic resin and a colorant such as a pigment.

このカラーフィルター形成時に、二色目又は三色目のカラーレジストは平滑な基板ではなく、すでに他の色のカラーフィルターが形成されている基板に塗布、パターニングを行うことになり、最終的に形成されるRGBカラーフィルターには隣接するRGB画素間の膜厚差(画素間段差または色間段差ともいう。)が生じることが避けられない。この色間段差は、液状のカラーレジスト使用時に顕著であるが、フィルム状のカラーレジスト使用時にも見られる。   When forming this color filter, the second or third color resist is not a smooth substrate, but is applied and patterned on a substrate on which a color filter of another color has already been formed, and finally formed. In RGB color filters, it is inevitable that a difference in film thickness between adjacent RGB pixels (also referred to as a step between pixels or a step between colors) occurs. This step between colors is noticeable when using a liquid color resist, but is also seen when using a film-like color resist.

また、色間段差以外にもRGBの各画素間に遮光を目的として形成されるブラックマトリックスが、従来のクロムから樹脂に置き換わることにより膜厚が増し、画素とブラックマトリックスが重なる部分のカラーフィルターが局部的に盛り上がることにより、画素内でも段差が発生する。   In addition to the step between colors, the black matrix formed for the purpose of shading between RGB pixels is replaced with resin from conventional chrome, the film thickness increases, and the color filter in the area where the pixel and black matrix overlap Due to the local swell, a step occurs in the pixel.

さらに、これらカラーフィルターの段差によりこの上部に形成されるオーバーコート膜にも凹凸が生じることがある。これらの段差は液晶ディスプレイを構成する2枚のガラス基板の隙間であるセルギャップの不均一による液晶密度のばらつきや色むら、さらにはギャップそのものの寸法に制限を与え、パネル性能に悪影響を及ぼすことがある。
そこで、このような段差を平坦化するため、種々の研磨液を用いて研磨することが提案されている。例えば特許文献1には特定の粒子径及び屈折率を有するシリカ粒子を使用した研磨液が提案されている。
Furthermore, unevenness may occur in the overcoat film formed on the upper portion due to the steps of the color filters. These steps may adversely affect panel performance by limiting the variation in liquid crystal density and color unevenness due to the non-uniformity of the cell gap, which is the gap between the two glass substrates that make up the liquid crystal display, as well as the size of the gap itself. There is.
Therefore, in order to flatten such a step, it has been proposed to polish using various polishing liquids. For example, Patent Document 1 proposes a polishing liquid using silica particles having a specific particle diameter and refractive index.

特開2000−208451号公報JP 2000-208451 A

しかしながら、従来の研磨液を使用した場合、面内の局所的な段差解消性は優れており、部分的には被研磨膜の膜厚も適正な値に収まるが、液晶パネル面内での研磨速度差が大きく、膜厚分布(膜厚むら)が大きい問題があった。   However, when the conventional polishing liquid is used, the in-plane local level difference elimination is excellent, and the film thickness of the film to be polished is partly within an appropriate value. There was a problem that the speed difference was large and the film thickness distribution (film thickness unevenness) was large.

また、液晶パネルの大きさも従来は40cm四方程度であったが、近年では1m四方を超えるものも作成されており、より面内膜厚分布の増大が問題となっていた。
また、研磨速度を抑えることで膜厚むらを低減することは可能であるが、スループットが低下するという問題があった。
そこで、研磨速度が速く、さらに膜厚の面内均一性が良好な研磨液が望まれていた。
Further, the size of the liquid crystal panel is conventionally about 40 cm square, but recently, a liquid crystal panel having a size exceeding 1 m square has been prepared, and an increase in the in-plane film thickness distribution has been a problem.
Further, although it is possible to reduce the film thickness unevenness by suppressing the polishing rate, there is a problem that the throughput is lowered.
Accordingly, there has been a demand for a polishing liquid having a high polishing rate and excellent in-plane uniformity of film thickness.

本発明は、高研磨速度かつ、被研磨膜の面内での膜厚が均一な、液晶ディスプレイ用有機膜等の研磨に好適な有機膜研磨用研磨液及びそれを用いた有機膜の製造方法を提供するものである。   The present invention relates to a polishing liquid for polishing an organic film suitable for polishing an organic film for a liquid crystal display and the like, and a method for producing an organic film using the same, with a high polishing rate and a uniform film thickness in the plane of the film to be polished Is to provide.

本発明は、(1)砥粒、非イオン性水溶性ポリマー、陰イオン性水溶性ポリマー及び水を含有してなる有機膜研磨用研磨液に関する。
また、本発明は、(2)前記砥粒が、酸化セリウム、アルミナ、シリカ、チタニア、ジルコニアから選ばれる少なくとも1種である前記(1)の有機膜研磨用研磨液に関する。
また、本発明は、(3)前記非イオン性水溶性ポリマーが、ポリビニルピロリドン、ポリジメチルアクリルアミド、ポリエチレングリコールから選ばれる少なくとも1種である前記(1)または(2)の有機膜研磨用研磨液に関する。
The present invention relates to (1) a polishing liquid for polishing an organic film comprising abrasive grains, a nonionic water-soluble polymer, an anionic water-soluble polymer, and water.
The present invention also relates to (2) the polishing slurry for polishing an organic film according to (1), wherein the abrasive grains are at least one selected from cerium oxide, alumina, silica, titania, and zirconia.
The present invention also provides (3) the polishing liquid for polishing an organic film according to (1) or (2), wherein the nonionic water-soluble polymer is at least one selected from polyvinylpyrrolidone, polydimethylacrylamide, and polyethylene glycol. About.

また、本発明は、(4)前記陰イオン性水溶性ポリマーが、ポリアクリル酸アンモニウム塩、共重合成分としてアクリル酸アンモニウム塩を含むポリマー、ポリスルホン酸から選ばれる少なくとも1種である前記(1)〜(3)いずれかの有機膜研磨用研磨液に関する。
また、本発明は、(5)研磨液のpHが、3〜12である前記(1)〜(4)いずれかの有機膜研磨用研磨液に関する。
また、本発明は、(6)研磨液中の砥粒のゼータ電位が負である前記(1)〜(5)いずれかの有機膜研磨用研磨液に関する。
また、本発明は、(7)砥粒の研磨液中におけるゼータ電位が、−30mV〜−100mVの範囲である前記(6)の有機膜研磨用研磨液に関する。
また、本発明は、(8)有機膜が、液晶パネル用カラーフィルター、液晶パネル用透明樹脂及び液晶パネル用ブラックマトリクスの少なくともいずれかである前記(1)〜(7)いずれかの有機膜研磨用研磨液に関する。
In the present invention, (4) the anionic water-soluble polymer is at least one selected from polyacrylic acid ammonium salt, a polymer containing ammonium acrylate salt as a copolymerization component, and polysulfonic acid. To (3) a polishing liquid for polishing an organic film
The present invention also relates to (5) the polishing liquid for polishing an organic film according to any one of (1) to (4), wherein the polishing liquid has a pH of 3 to 12.
The present invention also relates to (6) the polishing liquid for polishing an organic film according to any one of (1) to (5), wherein the zeta potential of the abrasive grains in the polishing liquid is negative.
The present invention also relates to (7) the polishing liquid for polishing an organic film according to (6), wherein the zeta potential of the abrasive grains in the polishing liquid is in the range of −30 mV to −100 mV.
In the present invention, (8) the organic film polishing according to any one of (1) to (7), wherein the organic film is at least one of a color filter for liquid crystal panel, a transparent resin for liquid crystal panel, and a black matrix for liquid crystal panel. The present invention relates to a polishing liquid.

さらに、本発明は、(9)研磨する有機膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、前記(1)〜(8)いずれかの有機膜研磨用研磨液を有機膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に動かして有機膜を研磨する有機膜の研磨方法に関する。   In the present invention, (9) the substrate on which the organic film to be polished is formed is pressed against the polishing cloth of the polishing platen and pressed, and the polishing liquid for polishing an organic film according to any one of (1) to (8) is used as the organic film. The present invention relates to a method for polishing an organic film in which an organic film is polished by relatively moving a substrate and a polishing platen while being supplied between a polishing cloth and a polishing cloth.

本発明によれば、研磨により液晶パネル等に用いられる有機膜を高速かつ、被研磨膜の面内での膜厚むらが少ない状態で段差を解消することができる。このため、例えば液晶パネル製造の高スループット化、高品質化に寄与することができる。   According to the present invention, an organic film used for a liquid crystal panel or the like by polishing can be eliminated at a high speed and with little film thickness unevenness in the surface of the film to be polished. For this reason, for example, it can contribute to the high throughput and quality improvement of liquid crystal panel manufacture.

以下、発明を実施するための最良の形態について詳細に説明する。
本発明における砥粒としてはアルミナ、シリカ、酸化セリウム、ジルコニア、チタニア、酸化鉄、酸化マンガンなどのケイ素及び金属元素の酸化物からなる粒子を用いることができる。酸化セリウム、アルミナ、シリカ、チタニア、ジルコニアから選ばれる少なくとも1種が好ましい。
Hereinafter, the best mode for carrying out the invention will be described in detail.
As the abrasive grains in the present invention, particles made of oxides of silicon and metal elements such as alumina, silica, cerium oxide, zirconia, titania, iron oxide and manganese oxide can be used. At least one selected from cerium oxide, alumina, silica, titania and zirconia is preferred.

また、砥粒を水中に分散させる方法としては、通常の撹拌機による分散処理の他にホモジナイザー、超音波分散機、湿式ボールミルなども使用でき、特に限定されない。   The method for dispersing the abrasive grains in water is not particularly limited, and a homogenizer, an ultrasonic disperser, a wet ball mill or the like can be used in addition to the dispersion treatment with a normal stirrer.

このようにして作製される本発明の研磨液中に含有される砥粒の平均粒径は、0.01μm〜20μmの範囲であることが好ましく、より好ましくは0.02μm〜10μmの範囲であることがより好ましく、0.05μm〜10μmの範囲であることがさらに好ましい。砥粒の平均粒径が0.01μm未満であると研磨速度が低くなりすぎ、20μmを超えると研磨する膜に傷がつきやすくなるからである。なお、本発明において平均粒径とはレーザ回折式粒度分布計で測定した累積中央値を示す。
また、本発明の研磨液中に含有される砥粒の濃度は、特に制限はないが、通常、0.1〜10質量%の範囲が好ましい。
The average particle size of the abrasive grains contained in the polishing liquid of the present invention thus produced is preferably in the range of 0.01 μm to 20 μm, more preferably in the range of 0.02 μm to 10 μm. It is more preferable that the thickness is in the range of 0.05 to 10 μm. This is because if the average particle size of the abrasive grains is less than 0.01 μm, the polishing rate becomes too low, and if it exceeds 20 μm, the film to be polished is easily damaged. In addition, in this invention, an average particle diameter shows the cumulative median value measured with the laser diffraction type particle size distribution meter.
Moreover, the density | concentration of the abrasive grain contained in the polishing liquid of this invention does not have a restriction | limiting in particular, However, Usually, the range of 0.1-10 mass% is preferable.

砥粒を効率的に分散させるための分散剤として、陰イオン性水溶性ポリマーが、用いられる。非イオン性水溶性ポリマーでは電荷に乏しく、砥粒を安定性良く分散させにくい。
また、陽イオン性水溶性ポリマーでは砥粒のゼータ電位が正となり、被研磨膜への砥粒の残留が問題となる。陰イオン性水溶性ポリマーを用いた場合、砥粒は安定性良く分散し、被研磨膜への残留も比較的少ない。
An anionic water-soluble polymer is used as a dispersant for efficiently dispersing the abrasive grains. Nonionic water-soluble polymers have poor charge, and it is difficult to disperse abrasive grains with good stability.
In addition, in the case of a cationic water-soluble polymer, the zeta potential of the abrasive grains becomes positive, and there is a problem that the abrasive grains remain in the film to be polished. When an anionic water-soluble polymer is used, the abrasive grains are dispersed with good stability, and the residue on the film to be polished is relatively small.

本発明の研磨液は、例えば、砥粒、分散剤(陰イオン性水溶性ポリマー)及び水を含有する分散液と、後述する非イオン性水溶性ポリマー及び水を含有する添加液とを分けた二液式研磨液として保存しても、また予め分散液と添加液とを混合した一液式研磨液として保存してもよい。
二液式研磨液として保存する場合、これら二液の配合を任意に変えられることにより、グローバル平坦化特性及び研磨速度の調整が可能となる。
二液式研磨液で研磨する場合、例えば、分散液と添加液とを別々の配管で送液し、これらの配管を合流させて供給配管出口の直前で混合して研磨定盤上に供給する方法や、研磨直前に混合する方法、定盤上で同時滴下する方法等がとられる。更に、混合する場合に、必要に応じて脱イオン水を混合して、研磨特性を調整することもできる。
In the polishing liquid of the present invention, for example, a dispersion liquid containing abrasive grains, a dispersing agent (an anionic water-soluble polymer) and water and an additive liquid containing a nonionic water-soluble polymer and water described later are separated. It may be stored as a two-part polishing liquid, or may be stored as a one-part polishing liquid in which a dispersion liquid and an additive liquid are mixed in advance.
In the case of storing as a two-component polishing liquid, the global planarization characteristics and polishing rate can be adjusted by arbitrarily changing the composition of these two liquids.
When polishing with a two-component polishing liquid, for example, the dispersion liquid and the additive liquid are sent through separate pipes, and these pipes are merged, mixed immediately before the supply pipe outlet, and supplied onto the polishing platen. A method, a method of mixing immediately before polishing, a method of dropping simultaneously on a surface plate, or the like is employed. Further, when mixing, if necessary, deionized water can be mixed to adjust the polishing characteristics.

陰イオン性水溶性ポリマーとしては、ポリアクリル酸アンモニウム塩、共重合成分としてアクリル酸アンモニウム塩を含むポリマー、ポリスルホン酸等が好ましい。
また、他の水溶性陰イオン性分散剤としては、例えば、ラウリル硫酸トリエタノールアミン、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ナフタレンスルホン酸ホルマリン縮合物等のアルキルスルホン酸ホルマリン縮合物等及びこれらの塩が挙げられる。これら陰イオン性水溶性ポリマーは二種以上を併用しても良い。
As the anionic water-soluble polymer, polyacrylic acid ammonium salt, a polymer containing ammonium acrylate salt as a copolymerization component, polysulfonic acid, and the like are preferable.
Other water-soluble anionic dispersants include, for example, lauryl sulfate triethanolamine, ammonium lauryl sulfate, polyoxyethylene alkyl ether triethanolamine, polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid. , Polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrene carboxylic acid), polyacrylic acid, polystyrene sulfonic acid, polyvinyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, naphthalene sulfonic acid Examples thereof include alkylsulfonic acid formalin condensates such as formalin condensate and salts thereof. Two or more of these anionic water-soluble polymers may be used in combination.

これらの陰イオン性水溶性ポリマーの添加量は、分散液(又は研磨液)中や研磨液中の粒子の分散性及び沈降防止との関係から、砥粒100質量部に対して、0.01質量部〜2.0質量部の範囲が好ましい。分散剤(陰イオン性水溶性ポリマー)の分子量は、100〜50,000が好ましく、1,000〜10,000がより好ましい。分散剤の分子量が100未満の場合は、有機膜を研磨するときに、十分な研磨速度が得られなくなる傾向があり、分散剤の分子量が50,000を超えた場合は、粘度が高くなり、研磨液の保存安定性が低下する傾向がある。   The amount of these anionic water-soluble polymers added is 0.01% with respect to 100 parts by mass of the abrasive grains in view of the dispersion in the dispersion (or polishing liquid) and the dispersibility of particles in the polishing liquid and the prevention of sedimentation. The range of parts by mass to 2.0 parts by mass is preferable. The molecular weight of the dispersant (anionic water-soluble polymer) is preferably from 100 to 50,000, and more preferably from 1,000 to 10,000. When the molecular weight of the dispersant is less than 100, there is a tendency that a sufficient polishing rate cannot be obtained when polishing the organic film, and when the molecular weight of the dispersant exceeds 50,000, the viscosity becomes high, There exists a tendency for the storage stability of polishing liquid to fall.

さらに、研磨液に非イオン性水溶性ポリマーを添加することで、研磨後の被研磨膜の膜厚むらを改善することができる。
本発明における被研磨膜である有機膜は一般的にアクリル樹脂のような有機材料で構成されており、その表面は疎水性になっていることが多い。この状態で研磨を行うと、砥粒の分散媒として水を用いる研磨液を使用した場合、被研磨膜中心部には研磨液が進入しづらく、被研磨膜中心部での研磨速度の低下を招く。
Furthermore, by adding a nonionic water-soluble polymer to the polishing liquid, it is possible to improve the film thickness unevenness of the polished film after polishing.
The organic film that is the film to be polished in the present invention is generally composed of an organic material such as an acrylic resin, and the surface thereof is often hydrophobic. When polishing is performed in this state, when a polishing liquid using water is used as a dispersion medium for abrasive grains, it is difficult for the polishing liquid to enter the center of the film to be polished, and the polishing rate at the center of the film to be polished is reduced. Invite.

この研磨速度の低下は、被研磨膜表面の水に対する濡れ性を向上させることで改善される。濡れ性の向上には水溶性ポリマーが適しているが、特に非イオン性水溶性ポリマーが適している。
被研磨膜は研磨液中では広いpH領域でゼータ電位が負であるため、陰イオン性水溶性ポリマーでは電気的反発により効率的に表面に吸着せず、濡れ性の改善が小さい。
図1に、アクリル樹脂をベースとしたカラーフィルターのゼータ電位のpH依存性を示す。図1は、ガラス基板に形成された緑色単色のカラーフィルターをカッターで0.1g削り取り、50mlの純水中に超音波分散により分散させた後、硝酸もしくは水酸化カリウム水溶液を用いて所望のpHにし、25℃、8000min−1で30分間遠心分離し、その上澄み液をマルバーン社製ゼータサイザー3000HSでゼータ電位を測定したグラフである。
This reduction in the polishing rate is improved by improving the wettability of the surface of the film to be polished with respect to water. A water-soluble polymer is suitable for improving the wettability, but a nonionic water-soluble polymer is particularly suitable.
Since the film to be polished has a negative zeta potential in a wide pH range in the polishing liquid, an anionic water-soluble polymer does not adsorb efficiently on the surface due to electrical repulsion, and the improvement in wettability is small.
FIG. 1 shows the pH dependence of the zeta potential of a color filter based on an acrylic resin. FIG. 1 shows that a green monochromatic color filter formed on a glass substrate is scraped by 0.1 g with a cutter, dispersed in 50 ml of pure water by ultrasonic dispersion, and then a desired pH using nitric acid or aqueous potassium hydroxide solution. FIG. 2 is a graph in which centrifuge is performed at 25 ° C. and 8000 min −1 for 30 minutes, and the supernatant is measured with a Zetasizer 3000HS manufactured by Malvern.

さらに陰イオン性水溶性ポリマーは研磨速度を大きく低下させる場合がある。また、陽イオン性水溶性ポリマーでは研磨砥粒のゼータ電位が負だった場合、粒子の凝集を招く恐れがあり、被研磨膜との吸着が強すぎるために、研磨後の残留が問題となる。
そこで、非イオン性水溶性ポリマーを研磨液中に添加することで、膜厚むらの少ない良好な研磨液とすることができる。
Furthermore, an anionic water-soluble polymer may greatly reduce the polishing rate. In addition, in the case of a cationic water-soluble polymer, if the zeta potential of the abrasive grains is negative, there is a risk of causing the particles to agglomerate, and the adhesion with the film to be polished is too strong. .
Therefore, by adding a nonionic water-soluble polymer to the polishing liquid, a good polishing liquid with little film thickness unevenness can be obtained.

添加する非イオン性水溶性ポリマーとしては、ポリビニルピロリドン、ポリジメチルアクリルアミド、ポリエチレングリコール等が好ましい。非イオン性水溶性ポリマーを二種以上併用しても良い。
非イオン性水溶性ポリマーとしては、他にポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート、ポリオキシエチレンアルキルアミン、ポリオキシエチレン硬化ヒマシ油、アルキルアルカノールアミド等が挙げられる。
As the nonionic water-soluble polymer to be added, polyvinylpyrrolidone, polydimethylacrylamide, polyethylene glycol and the like are preferable. Two or more nonionic water-soluble polymers may be used in combination.
Other nonionic water-soluble polymers include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene higher alcohol ether, polyoxyethylene octylphenyl ether, Oxyethylene nonylphenyl ether, polyoxyalkylene alkyl ether, polyoxyethylene derivative, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan tristearate, poly Oxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, tetraoleic acid polio Shi sorbit, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene alkyl amines, polyoxyethylene hardened castor oil, and alkyl alkanolamides.

これらの非イオン性水溶性ポリマーの添加量は、研磨速度の面内均一性向上との関係から、研磨液100質量部に対して、0.01質量部〜2.0質量部の範囲が好ましい。非イオン性水溶性ポリマーの分子量は、100〜50,000が好ましく、1,000〜10,000がより好ましい。ポリマーの分子量が100未満の場合は、有機膜を研磨するときに、十分な面内均一性が得られなくなる傾向があり、非イオン性水溶性ポリマーの分子量が50,000を超えた場合は、粘度が高くなり、研磨液の保存安定性が低下する傾向がある。   The addition amount of these nonionic water-soluble polymers is preferably in the range of 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the polishing liquid, in view of improving the in-plane uniformity of the polishing rate. . The molecular weight of the nonionic water-soluble polymer is preferably 100 to 50,000, more preferably 1,000 to 10,000. When the molecular weight of the polymer is less than 100, there is a tendency that sufficient in-plane uniformity cannot be obtained when polishing the organic film, and when the molecular weight of the nonionic water-soluble polymer exceeds 50,000, The viscosity tends to increase and the storage stability of the polishing liquid tends to decrease.

研磨液のpHは3〜12の範囲が好ましく、3.5〜11の範囲がより好ましい。図1に示されるように、被研磨膜のゼータ電位はpHが3以上の領域で負となっており、このpH領域で研磨砥粒との斥力が発生する。よってpHが低すぎると研磨砥粒と被研磨膜間で引力が発生し、砥粒のカラーフィルターへの残留を招く傾向があり、pHが高すぎると研磨膜の膨潤が生じる傾向がある。
研磨液中での砥粒のゼータ電位は負であるのが好ましく、−20mV〜−100mVの範囲であることがより好ましく、−30mV〜−90mVの範囲がさらに好ましい。
なお、本発明において、研磨液中での砥粒のゼータ電位とは、研磨液を遠心分離した上澄み液を電気泳動法により測定したゼータ電位を指す。具体的には研磨液を遠沈管に25g量り取った後、25℃、8000min−1で30分間遠心分離し、その上澄み液をマルバーン社製ゼータサイザー3000HSでゼータ電位を測定する。
The pH of the polishing liquid is preferably in the range of 3 to 12, and more preferably in the range of 3.5 to 11. As shown in FIG. 1, the zeta potential of the film to be polished is negative in the region where the pH is 3 or more, and repulsive force with the abrasive grains is generated in this pH region. Therefore, if the pH is too low, an attractive force is generated between the abrasive grains and the film to be polished, and the abrasive grains tend to remain on the color filter. If the pH is too high, the polishing film tends to swell.
The zeta potential of the abrasive grains in the polishing liquid is preferably negative, more preferably in the range of −20 mV to −100 mV, and further preferably in the range of −30 mV to −90 mV.
In the present invention, the zeta potential of the abrasive grains in the polishing liquid refers to the zeta potential measured by electrophoresis of the supernatant obtained by centrifuging the polishing liquid. Specifically, 25 g of the polishing liquid is weighed into a centrifuge tube, and then centrifuged at 25 ° C. and 8000 min −1 for 30 minutes, and the supernatant is measured with a Zetasizer 3000HS manufactured by Malvern.

本発明の有機膜の研磨方法は、有機膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、上記本発明の研磨液を有機膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に動かして有機膜を研磨する。本発明の研磨方法において、使用できる研磨装置としては、有機膜を有する基板を保持するホルダーと、研磨布(パッド)を貼り付けた定盤(回転数が変更可能なモータ等を取り付けてある)とを有する一般的な研磨装置でよく、特に制限はない。   In the organic film polishing method of the present invention, the substrate on which the organic film is formed is pressed against the polishing cloth of the polishing platen and pressurized, and the substrate is supplied with the polishing liquid of the present invention between the organic film and the polishing cloth. And move the polishing platen relatively to polish the organic film. In the polishing method of the present invention, as a polishing apparatus that can be used, a holder for holding a substrate having an organic film and a surface plate on which a polishing cloth (pad) is attached (a motor that can change the number of rotations is attached) There is no particular limitation on the polishing apparatus.

また、研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等、特に限定されないが、研磨布に研磨液がたまるような溝加工を施すことが好ましい。
さらに、研磨条件に制限はないが、定盤の回転速度は基板が飛び出さないように200min−1以下の低回転が好ましく、また、基板にかける圧力は研磨後に、基板の研磨表面に傷が発生しないように9.8×10Pa以下(1kgf/cm以下)にすることが好ましい。
Further, the polishing cloth is not particularly limited, such as a general nonwoven fabric, foamed polyurethane, porous fluororesin, etc., but it is preferable to perform a groove process so that the polishing liquid accumulates on the polishing cloth.
Further, although there is no limitation on the polishing conditions, the rotation speed of the surface plate is preferably a low rotation of 200 min −1 or less so that the substrate does not pop out, and the pressure applied to the substrate is scratched on the polishing surface of the substrate after polishing. It is preferable to make it 9.8 × 10 4 Pa or less (1 kgf / cm 2 or less) so as not to occur.

本発明の研磨液を研磨装置に供給する方法は、研磨している間、研磨布に研磨液をポンプ等で連続的に供給できれば特に制限はない。
さらに、この供給量に制限はないが、研磨布の表面が常に研磨液で覆われていることが好ましい。
研磨終了後の基板は、流水中で良く洗浄後、スピンドライヤなどを用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。
The method for supplying the polishing liquid of the present invention to the polishing apparatus is not particularly limited as long as the polishing liquid can be continuously supplied to the polishing cloth with a pump or the like during polishing.
Furthermore, although there is no restriction | limiting in this supply amount, it is preferable that the surface of polishing cloth is always covered with polishing liquid.
The substrate after polishing is preferably washed in running water, and then dried after removing water droplets adhering to the substrate using a spin dryer or the like.

本発明の研磨液は液晶パネル用カラーフィルターの他、液晶パネル用透明樹脂、液晶パネル用ブラックマトリクス等の有機材料の膜の研磨に使用できる。
液晶パネル用透明樹脂とは、主にアクリル系の樹脂で、オーバーコート材も含まれる。オーバーコート以外の用途としては、カラーフィルターの透過部やカラーフィルター上に形成される透明な樹脂によるパターンで、液晶の配向方向を制御すること等に用いられる。
液晶パネル用ブラックマトリクスとしては、アクリル系樹脂、スチレン-マレイン酸系樹脂等が使用される。
The polishing liquid of the present invention can be used for polishing a film of an organic material such as a transparent resin for a liquid crystal panel and a black matrix for a liquid crystal panel, in addition to a color filter for a liquid crystal panel.
The transparent resin for liquid crystal panel is mainly an acrylic resin and includes an overcoat material. As an application other than the overcoat, it is used to control the alignment direction of the liquid crystal by a transparent resin pattern formed on the transmission part of the color filter or the color filter.
As the black matrix for the liquid crystal panel, acrylic resin, styrene-maleic acid resin or the like is used.

本発明の研磨液および有機膜の研磨方法に適用できる有機材料としては、フェノール、エポキシ、不飽和ポリエステル、ポリエステル、ポリイミド、ポリアミドイミドなどの熱硬化性樹脂、ポリアミド、ポリウレタン、ポリエチレン、エチレン酢酸ビニル共重合体、ポリプロピレン、ポリスチレン、ABS樹脂、AS樹脂、ポリメチルメタクリレート、ポリ塩化ビニル、ポリビニルホルマリン、ポリ四フッ化エチレン、ポリ三フッ化塩化エチレンなどの熱可塑性樹脂などが挙げられる。これらの中で、ポリ四フッ化エチレン、ポリ三フッ化塩化エチレンなどのフッ素樹脂を用いると膜の低誘電率化に有効であり、ポリアミドイミド樹脂、ポリイミド樹脂などを用いると膜の耐熱性に有効であるが、特に制限は無い。   Examples of organic materials applicable to the polishing liquid and organic film polishing method of the present invention include thermosetting resins such as phenol, epoxy, unsaturated polyester, polyester, polyimide, and polyamideimide, polyamide, polyurethane, polyethylene, and ethylene vinyl acetate. Polymers, polypropylene, polystyrene, ABS resin, AS resin, polymethyl methacrylate, polyvinyl chloride, polyvinyl formalin, polytetrafluoroethylene, polytetrafluoroethylene, and other thermoplastic resins. Of these, the use of fluororesins such as polytetrafluoroethylene and polytrifluoroethylene chloride is effective in reducing the dielectric constant of the film, and the use of polyamideimide resin, polyimide resin, etc. improves the heat resistance of the film. Although effective, there is no particular limitation.

以下、本発明の実施例及び比較例をあげてさらに詳しく説明する。本発明はこれらの実施例により制限するものではない。
(サンプル基板の作製)
カラーフィルター上に適用するオーバーコート膜の研磨を想定し、透明樹脂の厚みは面内均一性の差が明確となるように厚さ50μm程度として、ガラス基板上に以下のように透明樹脂を塗布したサンプル基板を作製した。
すなわち、研磨清浄な15cm角のガラス基板表面にアクリル樹脂の液状透明レジストを塗布し、ベーク処理を行って、アクリル樹脂をマトリックスとした透明樹脂厚み45000nmのサンプル基板を得た。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. The present invention is not limited by these examples.
(Production of sample substrate)
Assuming polishing of the overcoat film applied on the color filter, the thickness of the transparent resin is set to about 50 μm so that the difference in in-plane uniformity is clear, and the transparent resin is applied on the glass substrate as follows. A sample substrate was prepared.
That is, an acrylic resin liquid transparent resist was applied to a polished and clean 15 cm square glass substrate surface and baked to obtain a sample substrate having a transparent resin thickness of 45000 nm using the acrylic resin as a matrix.

また、膜厚の測定は、透明樹脂をカッターでガラス面まで削り取り、触針式段差計により測定した。膜厚の測定箇所はサンプル基板の対角線上の角から1cmの部分の二箇所と、その二箇所の内側を等間隔に三箇所とした。また、研磨量は五箇所の膜厚測定結果による平均の研磨量とし、面内膜厚差は五箇所のうち最大の膜厚と最小の膜厚の差とした。   The film thickness was measured by scraping the transparent resin to the glass surface with a cutter and using a stylus type step gauge. The film thickness was measured at two locations 1 cm from the diagonal corner of the sample substrate and three locations at equal intervals inside the two locations. The polishing amount was the average polishing amount based on the film thickness measurement results at five locations, and the in-plane film thickness difference was the difference between the maximum film thickness and the minimum film thickness among the five locations.

実施例1
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を1kg得た。X線回折法でこの粉末の相同定を行ったところ酸化セリウムであることを確認した。
また、焼成粉末粒子径は30〜100μmであった。
さらに、焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察され、粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値は190nm及び最大値は500nmであった。
Example 1
(Production of cerium oxide particles)
2 kg of cerium carbonate hydrate was put in a platinum container and calcined in the air at 800 ° C. for 2 hours to obtain 1 kg of yellowish white powder. When the phase of this powder was identified by X-ray diffraction, it was confirmed to be cerium oxide.
Moreover, the baked powder particle diameter was 30-100 micrometers.
Furthermore, when the surface of the fired powder particles was observed with a scanning electron microscope, the grain boundary of cerium oxide was observed, and when the diameter of the cerium oxide crystallite surrounded by the grain boundary was measured, the median volume distribution was 190 nm and the maximum The value was 500 nm.

次に、この酸化セリウム粉末1kgを、ジェットミルを用いて乾式粉砕し、粉砕粒子について走査型電子顕微鏡で観察した。結晶子径と同等サイズの微粒子の他に、1〜3μmの大きな多結晶粒子と0.5〜1μmの多結晶粒子が混在していた。   Next, 1 kg of this cerium oxide powder was dry pulverized using a jet mill, and the pulverized particles were observed with a scanning electron microscope. In addition to fine particles having the same size as the crystallite diameter, large polycrystalline particles of 1 to 3 μm and polycrystalline particles of 0.5 to 1 μm were mixed.

(酸化セリウム研磨液の作製)
上記で作製した酸化セリウム粒子1kg、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液にポリビニルピロリドン200gを溶解させた後、1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%酸化セリウム研磨液を得た。
この酸化セリウム研磨剤のpHは8.0であった。
また、酸化セリウム研磨剤中のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が240nmであった。
(Preparation of cerium oxide polishing liquid)
1 kg of the cerium oxide particles prepared above, 10 g of polyacrylic acid and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. After 200 g of polyvinylpyrrolidone was dissolved in the obtained polishing liquid, it was filtered through a 1 micron filter, and deionized water was further added to obtain a 1% by mass cerium oxide polishing liquid.
The pH of this cerium oxide abrasive was 8.0.
In addition, in order to measure the average particle size of the cerium particles in the cerium oxide abrasive with a laser diffraction particle size distribution meter, the median particle size was 240 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)…下記に示す条件で研磨を行った。
研磨装置:定盤寸法は直径380mm、ロータリータイプ
研磨パッド:独立気泡を持つ発泡ポリウレタン樹脂
研磨圧力:140g/cm
基板と研磨定盤との相対速度:36m/min
研磨液流量:20ml/min
研磨時間:5分
研磨後の評価結果を表1に示す。表1に示すように、平均研磨量は3593nm及び面内膜厚差は1854nmであり、高研磨速度かつ良好な面内膜厚均一性を示した。
(Polishing of sample substrate) Polishing was performed under the following conditions.
Polishing apparatus: Surface plate size is 380 mm in diameter, rotary type Polishing pad: Polyurethane resin with closed cells Polishing pressure: 140 g / cm 2
Relative speed between substrate and polishing surface plate: 36 m / min
Polishing fluid flow rate: 20 ml / min
Polishing time: 5 minutes Table 1 shows the evaluation results after polishing. As shown in Table 1, the average polishing amount was 3593 nm and the in-plane film thickness difference was 1854 nm, indicating a high polishing rate and good in-plane film thickness uniformity.

実施例2
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を1kg得た。X線回折法でこの粉末の相同定を行ったところ酸化セリウムであることを確認した。
また、焼成粉末粒子径は30〜100μmであった。
さらに、焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察され、粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値は190nm及び最大値は500nmであった。
Example 2
(Production of cerium oxide particles)
2 kg of cerium carbonate hydrate was put in a platinum container and calcined in the air at 800 ° C. for 2 hours to obtain 1 kg of yellowish white powder. When the phase of this powder was identified by X-ray diffraction, it was confirmed to be cerium oxide.
Moreover, the baked powder particle diameter was 30-100 micrometers.
Furthermore, when the surface of the fired powder particles was observed with a scanning electron microscope, the grain boundary of cerium oxide was observed, and when the diameter of the cerium oxide crystallite surrounded by the grain boundary was measured, the median volume distribution was 190 nm and the maximum The value was 500 nm.

次に、この酸化セリウム粉末1kgを、ジェットミルを用いて乾式粉砕し、粉砕粒子について走査型電子顕微鏡で観察した。結晶子径と同等サイズの微粒子の他に、1〜3μmの大きな多結晶粒子と0.5〜1μmの多結晶粒子が混在していた。   Next, 1 kg of this cerium oxide powder was dry pulverized using a jet mill, and the pulverized particles were observed with a scanning electron microscope. In addition to fine particles having the same size as the crystallite diameter, large polycrystalline particles of 1 to 3 μm and polycrystalline particles of 0.5 to 1 μm were mixed.

(酸化セリウム研磨液の作製)
上記で作製した酸化セリウム粒子1kg、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液にポリビニルピロリドン400gを溶解させた後、1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%酸化セリウム研磨液を得た。
(Preparation of cerium oxide polishing liquid)
1 kg of the cerium oxide particles prepared above, 10 g of polyacrylic acid and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. Polyvinylpyrrolidone (400 g) was dissolved in the obtained polishing liquid, filtered through a 1 micron filter, and deionized water was further added to obtain a 1% by mass cerium oxide polishing liquid.

この酸化セリウム研磨剤のpHは7.8であった。
また、酸化セリウム研磨剤中のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が240nmであった。
The pH of this cerium oxide abrasive was 7.8.
In addition, in order to measure the average particle size of the cerium particles in the cerium oxide abrasive with a laser diffraction particle size distribution meter, the median particle size was 240 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様方法で研磨を行い、評価を行った。
評価の結果、表1に示すように、平均研磨量は2783nm及び面内膜厚差は1250nmであり、高研磨速度かつ良好な面内膜厚均一性を示した。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed.
As a result of the evaluation, as shown in Table 1, the average polishing amount was 2783 nm and the in-plane film thickness difference was 1250 nm, which showed a high polishing rate and good in-plane film thickness uniformity.

実施例3
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を1kg得た。X線回折法でこの粉末の相同定を行ったところ酸化セリウムであることを確認した。
また、焼成粉末粒子径は30〜100μmであった。
さらに、焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察され、粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値が190nm及び最大値が500nmであった。
Example 3
(Production of cerium oxide particles)
2 kg of cerium carbonate hydrate was put in a platinum container and calcined in the air at 800 ° C. for 2 hours to obtain 1 kg of yellowish white powder. When the phase of this powder was identified by X-ray diffraction, it was confirmed to be cerium oxide.
Moreover, the baked powder particle diameter was 30-100 micrometers.
Furthermore, when the surface of the fired powder particles was observed with a scanning electron microscope, the grain boundary of cerium oxide was observed, and when the diameter of the cerium oxide crystallite surrounded by the grain boundary was measured, the median volume distribution was 190 nm and the maximum The value was 500 nm.

次に、この酸化セリウム粉末1kgを、ジェットミルを用いて乾式粉砕し、粉砕粒子について走査型電子顕微鏡で観察した。結晶子径と同等サイズの微粒子の他に、1〜3μmの大きな多結晶粒子と0.5〜1μmの多結晶粒子が混在していた。   Next, 1 kg of this cerium oxide powder was dry pulverized using a jet mill, and the pulverized particles were observed with a scanning electron microscope. In addition to fine particles having the same size as the crystallite diameter, large polycrystalline particles of 1 to 3 μm and polycrystalline particles of 0.5 to 1 μm were mixed.

(酸化セリウム研磨液の作製)
上記で作製した酸化セリウム粒子1kg、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液にポリジメチルアクリルアミド200gを溶解させた後、1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%酸化セリウム研磨液を得た。
(Preparation of cerium oxide polishing liquid)
1 kg of the cerium oxide particles prepared above, 10 g of polyacrylic acid and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. After 200 g of polydimethylacrylamide was dissolved in the obtained polishing liquid, it was filtered through a 1 micron filter, and deionized water was further added to obtain a 1% by mass cerium oxide polishing liquid.

この酸化セリウム研磨剤のpHは8.0であった。
また、酸化セリウム研磨剤中のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が240nmであった。
The pH of this cerium oxide abrasive was 8.0.
In addition, in order to measure the average particle size of the cerium particles in the cerium oxide abrasive with a laser diffraction particle size distribution meter, the median particle size was 240 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様の方法で研磨を行い、評価を行った。評価の結果、表1に示すように、平均研磨量は3471nm及び面内膜厚差は1645nmであり、高研磨速度かつ良好な面内膜厚均一性を示した。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed. As a result of the evaluation, as shown in Table 1, the average polishing amount was 3471 nm and the in-plane film thickness difference was 1645 nm, which showed a high polishing rate and good in-plane film thickness uniformity.

実施例4
(ヒュームドシリカ研磨液の作製)
ヒュームドシリカ(日本アエロジル株式会社製商品名アエロジル200)1000g、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液にポリビニルピロリドン200gを溶解させた後、1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%ヒュームドシリカ研磨液を得た。
Example 4
(Preparation of fumed silica polishing liquid)
1000 g of fumed silica (trade name Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.), 10 g of polyacrylic acid, and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. After 200 g of polyvinylpyrrolidone was dissolved in the obtained polishing liquid, it was filtered through a 1 micron filter, and deionized water was further added to obtain a 1% by mass fumed silica polishing liquid.

このヒュームドシリカ研磨液のpHは5.0であった。
また、ヒュームドシリカ研磨液のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が160nmであった。
The fumed silica polishing liquid had a pH of 5.0.
Moreover, in order to measure the average particle diameter of the cerium particles of the fumed silica polishing liquid with a laser diffraction particle size distribution meter, the median particle diameter was 160 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様の方法で研磨を行い、評価を行った。評価の結果、表1に示すように、平均研磨量は1785nm及び面内膜厚差は1198nmであり、高研磨速度かつ良好な面内膜厚均一性を示した。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed. As a result of the evaluation, as shown in Table 1, the average polishing amount was 1785 nm, and the in-plane film thickness difference was 1198 nm, indicating a high polishing rate and good in-plane film thickness uniformity.

実施例5
(ヒュームドシリカ研磨液の作製)
ヒュームドシリカ(日本アエロジル株式会社製商品名アエロジル200)1000g、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液にポリジメチルアクリルアミド200gを溶解させた後、1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%ヒュームドシリカ研磨液を得た。
Example 5
(Preparation of fumed silica polishing liquid)
1000 g of fumed silica (trade name Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.), 10 g of polyacrylic acid, and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. After 200 g of polydimethylacrylamide was dissolved in the obtained polishing liquid, it was filtered through a 1 micron filter, and further deionized water was added to obtain a 1 mass% fumed silica polishing liquid.

このヒュームドシリカ研磨液のpHは5.0であった。
また、ヒュームドシリカ研磨液のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が160nmであった。
The fumed silica polishing liquid had a pH of 5.0.
Moreover, in order to measure the average particle diameter of the cerium particles of the fumed silica polishing liquid with a laser diffraction particle size distribution meter, the median particle diameter was 160 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様の方法で研磨を行い、評価を行った。評価の結果、表1に示すように、平均研磨量は1966nm及び面内膜厚差は1455nmであり、高研磨速度かつ良好な面内膜厚均一性を示した。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed. As a result of the evaluation, as shown in Table 1, the average polishing amount was 1966 nm and the in-plane film thickness difference was 1455 nm, indicating a high polishing rate and good in-plane film thickness uniformity.

比較例1
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を1kg得た。X線回折法でこの粉末の相同定を行ったところ酸化セリウムであることを確認した。
また、焼成粉末粒子径は30〜100μmであった。
さらに、焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察され、粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値は190nm及び最大値は500nmであった。
Comparative Example 1
(Production of cerium oxide particles)
2 kg of cerium carbonate hydrate was put in a platinum container and calcined in the air at 800 ° C. for 2 hours to obtain 1 kg of yellowish white powder. When the phase of this powder was identified by X-ray diffraction, it was confirmed to be cerium oxide.
Moreover, the baked powder particle diameter was 30-100 micrometers.
Furthermore, when the surface of the fired powder particles was observed with a scanning electron microscope, the grain boundary of cerium oxide was observed, and when the diameter of the cerium oxide crystallite surrounded by the grain boundary was measured, the median volume distribution was 190 nm and the maximum The value was 500 nm.

次に、この酸化セリウム粉末1kgを、ジェットミルを用いて乾式粉砕し、粉砕粒子について走査型電子顕微鏡で観察した。結晶子径と同等サイズの微粒子の他に、1〜3μmの大きな多結晶粒子と0.5〜1μmの多結晶粒子が混在していた。   Next, 1 kg of this cerium oxide powder was dry pulverized using a jet mill, and the pulverized particles were observed with a scanning electron microscope. In addition to fine particles having the same size as the crystallite diameter, large polycrystalline particles of 1 to 3 μm and polycrystalline particles of 0.5 to 1 μm were mixed.

(酸化セリウム研磨液の作製)
上記で作製した酸化セリウム粒子1kg、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液を1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%酸化セリウム研磨液を得た。
(Preparation of cerium oxide polishing liquid)
1 kg of the cerium oxide particles prepared above, 10 g of polyacrylic acid and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained polishing liquid was filtered with a 1 micron filter, and deionized water was further added to obtain a 1% by mass cerium oxide polishing liquid.

この酸化セリウム研磨剤のpHは8.3であった。
また、酸化セリウム研磨剤中のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値は240nmであった。
The pH of this cerium oxide abrasive was 8.3.
Further, in order to measure the average particle size of the cerium particles in the cerium oxide abrasive with a laser diffraction particle size distribution meter, the median particle size was 240 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様の方法で研磨を行い、評価を行った。評価の結果、表1に示すように、平均研磨量は2479nm及び面内膜厚差は3111nmであり、高研磨速度であったが、面内での膜厚差が実施例に比べて大きく、不良であった。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed. As a result of the evaluation, as shown in Table 1, the average polishing amount was 2479 nm and the in-plane film thickness difference was 3111 nm, which was a high polishing rate, but the in-plane film thickness difference was larger than in the examples, It was bad.

比較例2
(酸化セリウム粒子の作製)
炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより黄白色の粉末を1kg得た。X線回折法でこの粉末の相同定を行ったところ酸化セリウムであることを確認した。
また、焼成粉末粒子径は30〜100μmであった。
さらに、焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察され、粒界に囲まれた酸化セリウム結晶子径を測定したところ、体積分布の中央値は190nm及び最大値は500nmであった。
Comparative Example 2
(Production of cerium oxide particles)
2 kg of cerium carbonate hydrate was put in a platinum container and calcined in the air at 800 ° C. for 2 hours to obtain 1 kg of yellowish white powder. When the phase of this powder was identified by X-ray diffraction, it was confirmed to be cerium oxide.
Moreover, the baked powder particle diameter was 30-100 micrometers.
Furthermore, when the surface of the fired powder particles was observed with a scanning electron microscope, the grain boundary of cerium oxide was observed, and when the diameter of the cerium oxide crystallite surrounded by the grain boundary was measured, the median volume distribution was 190 nm and the maximum The value was 500 nm.

次に、この酸化セリウム粉末1kgを、ジェットミルを用いて乾式粉砕し、粉砕粒子について走査型電子顕微鏡で観察した。結晶子径と同等サイズの微粒子の他に、1〜3μmの大きな多結晶粒子と0.5〜1μmの多結晶粒子が混在していた。   Next, 1 kg of this cerium oxide powder was dry pulverized using a jet mill, and the pulverized particles were observed with a scanning electron microscope. In addition to fine particles having the same size as the crystallite diameter, large polycrystalline particles of 1 to 3 μm and polycrystalline particles of 0.5 to 1 μm were mixed.

(酸化セリウム研磨液の作製)
上記で作製した酸化セリウム粒子1kg、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液にポリアクリル酸200gを溶解させた後、1ミクロンフィルターでろ過し、さらに脱イオン水を加えることにより1質量%酸化セリウム研磨液を得た。
(Preparation of cerium oxide polishing liquid)
1 kg of the cerium oxide particles prepared above, 10 g of polyacrylic acid and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. After 200 g of polyacrylic acid was dissolved in the obtained polishing liquid, it was filtered through a 1 micron filter, and deionized water was further added to obtain a 1% by mass cerium oxide polishing liquid.

この酸化セリウム研磨剤のpHは4.0であった。
また、酸化セリウム研磨剤中のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が240nmであった。
The pH of this cerium oxide abrasive was 4.0.
In addition, in order to measure the average particle size of the cerium particles in the cerium oxide abrasive with a laser diffraction particle size distribution meter, the median particle size was 240 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様の方法で研磨を行い、評価を行った。評価の結果、表1に示すように、平均研磨量は240nm及び面内膜厚差は400nmであり、面内膜厚差は十分小さかったが、研磨速度が実施例に比べて大幅に小さく、実用的でなかった。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed. As a result of the evaluation, as shown in Table 1, the average polishing amount was 240 nm and the in-plane film thickness difference was 400 nm, and the in-plane film thickness difference was sufficiently small, but the polishing rate was significantly smaller than the examples, It was not practical.

比較例3
(ヒュームドシリカ研磨液の作製)
ヒュームドシリカ(日本アエロジル株式会社製商品名アエロジル200)1000g、ポリアクリル酸10g及び脱イオン水8990gを混合し、攪拌しながら超音波分散を10分間施した。得られた研磨液を1ミクロンフィルターでろ過をし、さらに脱イオン水を加えることにより1質量%ヒュームドシリカ研磨液を得た。
Comparative Example 3
(Preparation of fumed silica polishing liquid)
1000 g of fumed silica (trade name Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.), 10 g of polyacrylic acid, and 8990 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained polishing liquid was filtered through a 1 micron filter, and deionized water was further added to obtain a 1% by mass fumed silica polishing liquid.

このヒュームドシリカ研磨液のpHは5.1であった。
また、ヒュームドシリカ研磨液のセリウム粒子の平均粒子径をレーザ回折式粒度分布計で測定するために、適当な濃度に希釈して測定した結果、粒子径の中央値が160nmであった。
The fumed silica polishing liquid had a pH of 5.1.
Moreover, in order to measure the average particle diameter of the cerium particles of the fumed silica polishing liquid with a laser diffraction particle size distribution meter, the median particle diameter was 160 nm as a result of measurement after dilution to an appropriate concentration.

(サンプル基板の研磨)
上記研磨液を使用して実施例1と同様の方法で研磨を行い、評価を行った。評価の結果、表1に示すように、平均研磨量は1645nm及び面内膜厚差は2180nmであり、高研磨速度であったが、面内での膜厚差が実施例に比べて大きく、不良であった。
(Polishing the sample substrate)
Polishing was performed in the same manner as in Example 1 using the above polishing liquid, and evaluation was performed. As a result of the evaluation, as shown in Table 1, the average polishing amount was 1645 nm and the in-plane film thickness difference was 2180 nm, which was a high polishing rate, but the in-plane film thickness difference was larger than in the examples, It was bad.

Figure 2007154175
Figure 2007154175

pHとカラーフィルターのゼータ電位との関係を示すグラフである。It is a graph which shows the relationship between pH and the zeta potential of a color filter.

Claims (9)

砥粒、非イオン性水溶性ポリマー、陰イオン性水溶性ポリマー及び水を含有してなる有機膜研磨用研磨液。   A polishing liquid for polishing an organic film comprising abrasive grains, a nonionic water-soluble polymer, an anionic water-soluble polymer, and water. 前記砥粒が、酸化セリウム、アルミナ、シリカ、チタニア、ジルコニアから選ばれる少なくとも1種である請求項1記載の有機膜研磨用研磨液。   The polishing slurry for organic film polishing according to claim 1, wherein the abrasive grains are at least one selected from cerium oxide, alumina, silica, titania, and zirconia. 前記非イオン性水溶性ポリマーが、ポリビニルピロリドン、ポリジメチルアクリルアミド、ポリエチレングリコールから選ばれる少なくとも1種である請求項1又は2記載の有機膜研磨用研磨液。   The polishing liquid for polishing an organic film according to claim 1 or 2, wherein the nonionic water-soluble polymer is at least one selected from polyvinylpyrrolidone, polydimethylacrylamide, and polyethylene glycol. 前記陰イオン性水溶性ポリマーが、ポリアクリル酸アンモニウム塩、共重合成分としてアクリル酸アンモニウム塩を含むポリマー、ポリスルホン酸から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の有機膜研磨用研磨液。   The organic film according to claim 1, wherein the anionic water-soluble polymer is at least one selected from polyacrylic acid ammonium salt, a polymer containing an ammonium acrylate salt as a copolymerization component, and polysulfonic acid. Polishing liquid for polishing. 研磨液のpHが、3〜12である請求項1〜4のいずれかに記載の有機膜研磨用研磨液。   The polishing liquid for polishing an organic film according to any one of claims 1 to 4, wherein the pH of the polishing liquid is 3 to 12. 研磨液中の砥粒のゼータ電位が負である請求項1〜5のいずれかに記載の有機膜研磨用研磨液。   The polishing liquid for polishing an organic film according to claim 1, wherein the abrasive grains in the polishing liquid have a negative zeta potential. 砥粒の研磨液中におけるゼータ電位が、−30mV〜−100mVの範囲である請求項6記載の有機膜研磨用研磨液。   The polishing liquid for polishing an organic film according to claim 6, wherein the zeta potential of the abrasive grains in the polishing liquid is in the range of -30 mV to -100 mV. 有機膜が、液晶パネル用カラーフィルター、液晶パネル用透明樹脂及び液晶パネル用ブラックマトリクスの少なくともいずれかである請求項1〜7のいずれかに記載の有機膜研磨用研磨液。   The polishing liquid for polishing an organic film according to any one of claims 1 to 7, wherein the organic film is at least one of a color filter for a liquid crystal panel, a transparent resin for a liquid crystal panel, and a black matrix for a liquid crystal panel. 研磨する有機膜を形成した基板を研磨定盤の研磨布に押しあて加圧し、請求項1〜8のいずれか記載の有機膜研磨用研磨液を有機膜と研磨布との間に供給しながら、基板と研磨定盤を相対的に動かして有機膜を研磨する有機膜の研磨方法。   The substrate on which the organic film to be polished is pressed against the polishing cloth of the polishing platen and pressed, and the organic film polishing polishing liquid according to claim 1 is supplied between the organic film and the polishing cloth. An organic film polishing method for polishing an organic film by relatively moving a substrate and a polishing surface plate.
JP2006305215A 2005-11-11 2006-11-10 Polishing liquid for polishing organic film and method for polishing organic film Pending JP2007154175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305215A JP2007154175A (en) 2005-11-11 2006-11-10 Polishing liquid for polishing organic film and method for polishing organic film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005327419 2005-11-11
JP2006305215A JP2007154175A (en) 2005-11-11 2006-11-10 Polishing liquid for polishing organic film and method for polishing organic film

Publications (1)

Publication Number Publication Date
JP2007154175A true JP2007154175A (en) 2007-06-21

Family

ID=38238935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305215A Pending JP2007154175A (en) 2005-11-11 2006-11-10 Polishing liquid for polishing organic film and method for polishing organic film

Country Status (1)

Country Link
JP (1) JP2007154175A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218288A (en) * 2008-03-07 2009-09-24 Fujifilm Corp Polishing solution and chemical mechanical polishing method using the same
JP2013043893A (en) * 2011-08-22 2013-03-04 Jsr Corp Aqueous dispersion for chemical and mechanical polishing and chemical and mechanical polishing method using the same
WO2014039580A1 (en) * 2012-09-07 2014-03-13 Cabot Microelectronics Corporation Polyp yrrol1done polishing compost-ion and method
JP2015209523A (en) * 2014-04-30 2015-11-24 株式会社フジミインコーポレーテッド Composition for polishing organic film and polishing method
KR101758437B1 (en) 2014-11-19 2017-07-17 삼성에스디아이 주식회사 Cmp slurry composition for organic film and polishing method using the same
US10723916B2 (en) 2013-04-17 2020-07-28 Samsung Sdi Co., Ltd. Organic film CMP slurry composition and polishing method using same
KR20210152827A (en) * 2020-06-09 2021-12-16 주식회사 케이씨텍 Slurry composition for chemical mechanical polishing of organic film
KR20210153225A (en) * 2020-06-10 2021-12-17 주식회사 케이씨텍 Slurry composition for organic film
CN114502324A (en) * 2019-08-21 2022-05-13 应用材料公司 Additive manufacturing of polishing pads
US11965103B2 (en) 2020-08-18 2024-04-23 Applied Materials, Inc. Additive manufacturing of polishing pads

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218288A (en) * 2008-03-07 2009-09-24 Fujifilm Corp Polishing solution and chemical mechanical polishing method using the same
JP2013043893A (en) * 2011-08-22 2013-03-04 Jsr Corp Aqueous dispersion for chemical and mechanical polishing and chemical and mechanical polishing method using the same
WO2014039580A1 (en) * 2012-09-07 2014-03-13 Cabot Microelectronics Corporation Polyp yrrol1done polishing compost-ion and method
US10723916B2 (en) 2013-04-17 2020-07-28 Samsung Sdi Co., Ltd. Organic film CMP slurry composition and polishing method using same
JP2015209523A (en) * 2014-04-30 2015-11-24 株式会社フジミインコーポレーテッド Composition for polishing organic film and polishing method
KR101758437B1 (en) 2014-11-19 2017-07-17 삼성에스디아이 주식회사 Cmp slurry composition for organic film and polishing method using the same
CN114502324A (en) * 2019-08-21 2022-05-13 应用材料公司 Additive manufacturing of polishing pads
KR20210152827A (en) * 2020-06-09 2021-12-16 주식회사 케이씨텍 Slurry composition for chemical mechanical polishing of organic film
KR102465741B1 (en) 2020-06-09 2022-11-14 주식회사 케이씨텍 Slurry composition for chemical mechanical polishing of organic film
KR20210153225A (en) * 2020-06-10 2021-12-17 주식회사 케이씨텍 Slurry composition for organic film
KR102465745B1 (en) 2020-06-10 2022-11-14 주식회사 케이씨텍 Slurry composition for organic film
US11965103B2 (en) 2020-08-18 2024-04-23 Applied Materials, Inc. Additive manufacturing of polishing pads

Similar Documents

Publication Publication Date Title
JP2007154175A (en) Polishing liquid for polishing organic film and method for polishing organic film
JP5287174B2 (en) Abrasive and polishing method
JP5862720B2 (en) Slurry, polishing liquid set, polishing liquid, and substrate polishing method using these
KR100475976B1 (en) CMP Abrasive, Liquid Additive for CMP Abrasive and Method for Polishing Substrate
JP5418590B2 (en) Abrasive, abrasive set and substrate polishing method
TWI298666B (en)
WO2012102187A1 (en) Cmp polishing fluid, method for manufacturing same, method for manufacturing composite particle, and method for polishing base material
TWI283008B (en) Slurry for CMP and method of producing the same
KR101809762B1 (en) A chemical mechanical polishing (cmp) composition comprising inorganic particles and polymer particles
US20060289826A1 (en) Hazardous substance decomposer and process for producing the same
WO2015098197A1 (en) Abrasive, abrasive set, and method for polishing substrate
JP2004297035A (en) Abrasive agent, polishing method, and manufacturing method of electronic component
JP6965998B2 (en) Slurry, polishing liquid manufacturing method, and polishing method
JP2010028086A (en) Cmp abrasive, and polishing method using the same
JP4187206B2 (en) Polishing liquid composition
JP2007138133A (en) Polishing liquid for polishing organic film and method of polishing organic film using the same
TWI488952B (en) Cmp polishing liquid and polishing method using the same and fabricating method of semiconductor substrate
JP2007144613A (en) Polishing fluid for polishing organic film, and method for polishing organic film using the same
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
JP2009260236A (en) Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
JP6888744B2 (en) Slurry and polishing method
JP2007144612A (en) Polishing fluid for polishing organic film, and method for polishing organic film using the same
JP2015035522A (en) Polishing liquid for cmp
WO2014057932A1 (en) Process for manufacturing polishing composition, and polishing composition
JP2006175552A (en) Cmp polishing agent for organic material and polishing method for organic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110203