JP2007153951A - Method for producing liquefied starchy material and method for producing lactic acid - Google Patents

Method for producing liquefied starchy material and method for producing lactic acid Download PDF

Info

Publication number
JP2007153951A
JP2007153951A JP2005347761A JP2005347761A JP2007153951A JP 2007153951 A JP2007153951 A JP 2007153951A JP 2005347761 A JP2005347761 A JP 2005347761A JP 2005347761 A JP2005347761 A JP 2005347761A JP 2007153951 A JP2007153951 A JP 2007153951A
Authority
JP
Japan
Prior art keywords
lactic acid
producing
stirring
starchy material
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347761A
Other languages
Japanese (ja)
Inventor
Masanori Toto
雅典 東都
Jiro Ishiguro
次郎 石黒
Koji Takahashi
幸司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ccy Kk
Original Assignee
Ccy Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ccy Kk filed Critical Ccy Kk
Priority to JP2005347761A priority Critical patent/JP2007153951A/en
Publication of JP2007153951A publication Critical patent/JP2007153951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a liquefied starchy material through a liquefying treatment of a starchy material by an acid addition process, characterized in reducing agitating mechanical power energy in the reaction and raising starchy material concentration in the liquefying step and also enabling energy cut for cooling in the later-step treatment, and to provide a method for producing lactic acid. <P>SOLUTION: The method for producing the liquefied starchy material by hydrolyzing a starchy material-containing feedstock with lactic acid to effect liquefying the starchy material is provided. In this method, water containing part of the feedstock and the lactic acid is agitated to effect liquefying the starchy material followed by adding the rest of the feedstock to effect the whole starchy material, wherein 0.5 wt.% or more of the lactic acid based on the total weight of the water and the feedstock is used and the liquefaction is carried out until the concentration of the final starchy material comes to 15 wt.% or higher. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、米その他の澱粉質を含む原料を乳酸で加水分解して液状化させる液状化澱粉質の製造方法およびその液状化澱粉質を用いた乳酸の製造方法に関する。   The present invention relates to a method for producing liquefied starch by hydrolyzing a raw material containing rice and other starchy substances with lactic acid, and a method for producing lactic acid using the liquefied starch.

ポリ乳酸は、生分解性の面から環境に良いプラスチック素材として注目を集め、現在普及しつつあり、その普及には、製造工程の簡易化と製造コストの低減が欠かせない課題となっている。そこで、その原料である乳酸を安価に大量に製造するためには、ことに加熱エネルギーを多く使う発酵の前処理工程を改良して、そのエネルギーロスをなくす省エネルギー対策が欠かせない技術となる。   Polylactic acid is attracting attention as an environmentally-friendly plastic material from the viewpoint of biodegradability, and it is now becoming popular, and simplification of the manufacturing process and reduction of manufacturing costs are indispensable for its diffusion. . Therefore, in order to produce lactic acid as a raw material in large quantities at a low cost, it becomes an indispensable technology for energy saving measures to improve the pretreatment process of fermentation that uses a large amount of heating energy, and to eliminate the energy loss.

ポリ乳酸を製造する材料となる乳酸を大量に製造する目的で乳酸発酵を行なうためには、その原料である米その他の澱粉質を含む農産物を加熱、煮熟して、低分子化つまり液状化させてから糖化を行なうといった前処理工程が必要である。この液状化処理においては、主に酵素添加法と酸添加法の2通りがあり、ともに実用化されている。   In order to carry out lactic acid fermentation for the purpose of producing a large amount of lactic acid, which is a material for producing polylactic acid, the agricultural products containing rice and other starches as raw materials are heated and boiled to reduce the molecular weight, that is, liquefaction. A pretreatment step of saccharification is required. In this liquefaction treatment, there are mainly two methods, an enzyme addition method and an acid addition method, both of which have been put into practical use.

従来からの方法は、酵素添加法ではα-アミラーゼを用いて、90℃にて約6時間加熱し、液状化が行われる。または酸添加法(乳酸法)では、乳酸を原料溶液の約1%加えて、溶液のpHを3以下にし、130℃にて約30分間加熱して液状化を行なってきた(特許文献1参照)。   In the conventional method, liquefaction is performed by heating at 90 ° C. for about 6 hours using α-amylase in the enzyme addition method. Alternatively, in the acid addition method (lactic acid method), about 1% of the raw material solution is added to reduce the pH of the solution to 3 or less, and the solution is liquefied by heating at 130 ° C. for about 30 minutes (see Patent Document 1). ).

特開平8−112097号公報JP-A-8-112097

ところが、従来の技術では、液状化処理における処理装置のコスト、加熱エネルギーやその装置の運転コストが高価であるために、ポリ乳酸の材料となる乳酸の製造コストが高くなり、ポリ乳酸自体の利用拡大がなかなか進まないという問題がある。   However, in the conventional technology, the cost of the processing apparatus in the liquefaction process, the heating energy and the operating cost of the apparatus are expensive, so the production cost of lactic acid as a material for polylactic acid increases, and the use of polylactic acid itself is increased. There is a problem that expansion does not progress easily.

そこで、本発明者らは、液状化処理工程における撹拌動力によって消費している電気エネルギーの削減や、撹拌動力モーターの小型化、運転コストを低減するための制御方法、さらに液状化後の液温の低下調整の省エネルギー化までを鋭意検討してきた。   Therefore, the present inventors have reduced the electric energy consumed by the stirring power in the liquefaction process, reduced the size of the stirring power motor, a control method for reducing operating costs, and the liquid temperature after liquefaction. We have been eagerly studying how to reduce energy consumption.

本発明において本発明者らがまず注目したのは、澱粉質の糊化における撹拌稼働動力の急激な上昇であった。この澱粉質の糊化現象は、結晶状態のβ-澱粉が水和結合とともに膨張してゲル状態のα-澱粉に形状を変化させて、いわゆる澱粉のりになるという現象である。特に米原料の澱粉質には、分岐型のアミロペクチンが比較的多く存在しており、糊状になりやすいといえる。   In the present invention, the inventors first noticed a rapid increase in the stirring operation power in the gelatinization of starch. This gelatinization phenomenon of starch is a phenomenon in which β-starch in a crystalline state swells together with a hydration bond to change the shape to α-starch in a gel state and becomes a so-called starch paste. In particular, the starchy raw material of rice contains a relatively large amount of branched amylopectin and can be said to be easily pasty.

液状化処理とは、この糊状態の澱粉を低分子の澱粉またはオリゴ糖類にまで分解して、物理的な取扱い、例えばポンプ輸送や、生化学的な取扱い、例えば糖化・発酵工程の混合撹拌の効率向上などを図る目的で行なわれる処理である。そこで、この糊状態から以降は液化が進むことによって、乳酸の酸としての加水分解作用のおかげで澱粉質の低分子化が進み、撹拌稼働必要動力は徐々に低下していく。   Liquefaction treatment is the process of breaking down this starchy starch into low-molecular-weight starch or oligosaccharides, and physical handling such as pumping or biochemical handling such as mixing and stirring in saccharification and fermentation processes. This process is performed for the purpose of improving efficiency. Therefore, as the liquefaction progresses from this pasty state, the starch becomes low molecular weight thanks to the hydrolysis action of lactic acid as an acid, and the power required for stirring operation gradually decreases.

ところが従来は、この澱粉質糊化の際に必要とされる最大の撹拌動力に合わせた撹拌モーターの選定を行い、これを動力設計の基本としてきた。そのために低分子化が進んだ時点では、過大といえるモーター選定が行なわれ、またこれを稼働してきたことになる。
そこで、従来よりも小さな動力の撹拌機器を使用できるようにすることが、本発明の最初の課題である。
Conventionally, however, a stirrer motor is selected in accordance with the maximum stirrer power required for the starchy gelatinization, and this has been the basis of power design. For this reason, when the molecular weight has been reduced, an oversized motor has been selected and has been in operation.
Therefore, it is the first object of the present invention to make it possible to use a stirrer having a smaller power than conventional ones.

また、従来の方法では、目標の原料濃度においてその混合と液化を標準的な処理として行なってきた。上述の澱粉質の糊化のために撹拌混合操作が難しくなることから、酸添加法においては米原料で10%程度の基質濃度が上限となっていた。この10%の基質濃度は、糖化や発酵にはそのままの濃度で用いるには適切であるが、液化や糖化において、90℃、あるいは130℃といった加熱を基質以外の90%分の水に対しても行なうことが経済的な処理であるとはいえない。ましては、液化工程で90℃の溶液を糖化工程では60℃に、また発酵工程では60℃から37℃にまで冷却することが必要になるので、水分の保有熱として用いる熱エネルギーの浪費ともいえる。そこで、本発明者らは原料濃度を20%にして、冷却には常温の水を加えることで液温を低下調整することを発明した。
そのために、この原料濃度20%以上を達成するための省エネルギー的な手法を提供することが第2の課題である。
In the conventional method, mixing and liquefaction have been performed as standard processes at a target raw material concentration. Since the above-mentioned starchy gelatinization makes the stirring and mixing operation difficult, in the acid addition method, the upper limit is about 10% of the substrate concentration of the rice raw material. This substrate concentration of 10% is suitable for use as it is for saccharification and fermentation, but in liquefaction and saccharification, heating at 90 ° C or 130 ° C is applied to 90% of water other than the substrate. However, this is not an economical process. In addition, it is necessary to cool the 90 ° C solution in the liquefaction process to 60 ° C in the saccharification process and from 60 ° C to 37 ° C in the fermentation process. . Therefore, the present inventors invented that the raw material concentration is 20% and that the liquid temperature is lowered by adding water at room temperature for cooling.
Therefore, the second problem is to provide an energy-saving technique for achieving this raw material concentration of 20% or more.

従来の方法では、10%の原料濃度において上述の澱粉質の糊化にともなう液粘度上昇のために撹拌混合操作が難しくなるので、それ以上の濃度での液化処理は実施してきていない。そこで、本発明者らは、先ず15%濃度の澱粉質溶液を得るために、撹拌の動力状況を検出しつつその変化を観察しながら原料を2分割して添加をすることおよび、20%濃度の澱粉質溶液を得るためには3分割して添加することを発明するに至り、その条件や方法を検討してきた。   In the conventional method, the stirring and mixing operation becomes difficult due to the increase in liquid viscosity accompanying the gelatinization of the above-mentioned starch at a raw material concentration of 10%, and thus liquefaction treatment at a higher concentration has not been performed. Therefore, in order to obtain a starchy solution having a concentration of 15%, the present inventors first added the raw material in two parts while observing the change while detecting the stirring power situation, and a 20% concentration. In order to obtain this starchy solution, it has been invented that it is added in three portions, and the conditions and methods have been studied.

また、15%以上の濃度の澱粉質溶液の撹拌混合における稼働動力をさらに低減するために、その稼働動力をトルク計にて検出して、その測定値を撹拌混合の運転操作時にフィードバックしつつ動力制御する方式をも検討した。   In addition, in order to further reduce the operating power in stirring and mixing of starch solutions having a concentration of 15% or more, the operating power is detected by a torque meter, and the measured value is fed back during the stirring and mixing operation. A control method was also studied.

すなわち、本発明は、澱粉質の酸添加法による液状化処理において、反応時における撹拌の動力エネルギーを削減し、かつ液状化工程における澱粉質濃度を上げ、さらには後段処理の冷却のためのエネルギーの削減をも可能にする液状化澱粉質の製造方法および乳酸の製造方法を提供することを目的とする。   That is, the present invention reduces the kinetic energy of stirring during the reaction in the liquefaction treatment by the acid addition method of starch, increases the starch concentration in the liquefaction step, and further, energy for cooling in the subsequent treatment. It is an object of the present invention to provide a method for producing a liquefied starch and a method for producing lactic acid that can reduce the amount of lactic acid.

第1の課題を解決するためには、澱粉質糊化の際の撹拌のために必要な動力を低減するような条件を得ることが必要である。そこで本発明者らは、澱粉質濃度の低下や乳酸添加濃度による動力への影響を鋭意検討してきた。その結果、乳酸添加濃度を一定にして、初期に添加する澱粉量を減量しておき、その減量分を澱粉質糊化時の負荷最大値から低下したところでさらに添加することによって、撹拌の最大必要動力と全体稼働動力が大きく削減され、かつ撹拌エネルギー総量も削減できることを観察した。   In order to solve the first problem, it is necessary to obtain conditions that reduce the power required for stirring during starch gelatinization. Therefore, the present inventors have intensively studied the influence on the power due to the decrease in starch concentration and the concentration of lactic acid added. As a result, the lactic acid addition concentration is kept constant, the amount of starch added at the initial stage is reduced, and when the reduced amount is further reduced from the maximum load during starch gelatinization, the maximum amount of stirring is required. It was observed that the power and overall operating power were greatly reduced, and the total amount of stirring energy could be reduced.

そこで、より具体的な方法を確立するために従来は実用的でないとされた15%の澱粉濃度を最終濃度に定めて、2分割して添加することを試行した。これが良好な結果であったので、次に20%の澱粉質濃度を最終濃度に定めて、3分割して添加することとした。
その結果、撹拌器に必要な最大必要動力は3分の1以下にもなることが判明し、第1の課題に対する手法が確立した。
Therefore, in order to establish a more specific method, an attempt was made to determine a starch concentration of 15%, which was conventionally impractical, as the final concentration, and add it in two portions. Since this was a good result, the starch concentration of 20% was determined as the final concentration and added in three portions.
As a result, it was found that the maximum required power required for the stirrer was 1/3 or less, and a method for the first problem was established.

第2の課題については、第1の課題の解決方法において記述したように最終濃度が高くても、澱粉質の添加量を分割しておき、糊化後の液状化が進んだところで、追添加する手法が確立したことで、目標としていた20%の澱粉質濃度が得られた。
つまり、液状化の工程においては、澱粉質基質を10倍に希釈するのに対し、5倍に希釈することで水添加の大きな減量につながり、その分の液状化に要していた熱エネルギーの削減になった。
As for the second problem, as described in the solution of the first problem, even if the final concentration is high, the amount of starch added is divided, and when liquefaction after gelatinization has progressed, additional addition As a result, the target starch concentration of 20% was obtained.
In other words, in the liquefaction process, the starchy substrate is diluted 10 times, but by diluting it 5 times, it leads to a large reduction in water addition, and the heat energy required for liquefaction of that amount is reduced. Reduced.

また、従来までの液状化処理における撹拌の動力のかけ方は、最大必要動力に合わせた運転を維持することが通常であったために、液状化が進行しても撹拌動力における電気供給における運転コストは低減することがなかった。そこで、本発明者らは本発明において動力を計測してきたトルク計からの出力信号に従って、撹拌動力に対するフィードバック制御をかける方式を発明するにいたった。その結果、これまで不必要に撹拌動力をかけてきた分の動力エネルギー、つまり電気供給を低減することが可能になった。   In addition, since the conventional method of applying the stirring power in the liquefaction treatment was to maintain the operation in accordance with the maximum required power, the operating cost of supplying electricity with the stirring power even if liquefaction progresses. Did not decrease. Therefore, the present inventors have invented a method of applying feedback control to the stirring power according to the output signal from the torque meter that has measured the power in the present invention. As a result, it has become possible to reduce the power energy, that is, the electricity supply, which has been unnecessarily applied with stirring power until now.

従来までの方法では、乳酸発酵前に冷却熱交換器を経て冷却水を用いて、糖化処理後の60℃の液温度を低下させて37℃にする調整工程がある。この工程のために冷却水の供給設備や熱交換器を設ける必要があるばかりか、そのための冷却調整槽を設けることがある。そこで、本発明者らは常温の水を加えるだけでの液温度の低下調整を考慮して、この調整工程の前段処理である液化・糖化工程にて澱粉質濃度を20%にしておき、処理後に発酵に適した濃度の10%にするために水を加える方式を発明するにいたった。   In the conventional method, there is an adjustment step of reducing the liquid temperature at 60 ° C. after saccharification treatment to 37 ° C. using cooling water through a cooling heat exchanger before lactic acid fermentation. Not only is it necessary to provide a cooling water supply facility and a heat exchanger for this process, but a cooling adjustment tank may be provided for this purpose. Therefore, the present inventors consider the adjustment of the decrease in the liquid temperature by simply adding water at room temperature, and the starch concentration is set to 20% in the liquefaction / saccharification process which is the pre-treatment of this adjustment process. Later, he invented a method of adding water to make the concentration 10% suitable for fermentation.

例えば、20%基質100リットルで60℃の液があれば、10%基質に希釈するにはそこに100リットルの水を加える処置になり、仮に加えた水が20℃であれば、放熱がないものとして40℃の液が200リットル出来上がることになる。   For example, if there is a solution at 60 ° C with 100 liters of 20% substrate, it is a treatment to add 100 liters of water to dilute to 10% substrate, and if the added water is 20 ° C, there is no heat dissipation As a result, 200 liters of 40 ℃ liquid will be completed.

生分解性の面から環境に良いプラスチック素材として注目を集めているポリ乳酸の普及のために、製造工程の簡易化と製造コストの低減を目指し、乳酸を安価に大量に製造する目的で、ことに加熱エネルギーを多く使う発酵の前処理工程の改良によって製造コストを低減することついて、本発明者らは鋭意研究を重ねてきた。   With the aim of simplifying the manufacturing process and reducing manufacturing costs, in order to manufacture polylactic acid, which is attracting attention as an environmentally-friendly plastic material from the standpoint of biodegradability, the purpose is to manufacture lactic acid in large quantities at low cost. The inventors of the present invention have intensively studied about reducing the production cost by improving the pretreatment process of fermentation that uses a large amount of heating energy.

すなわち、本発明に係る液状化澱粉質の製造方法は、澱粉質を含む原料を乳酸で加水分解して液状化させる液状化澱粉質の製造方法であって、原料および乳酸を含む水を撹拌して液状化させた後、原料を追加して撹拌し液状化させることを特徴とする。
澱粉質を含む原料としては、米、小麦、とうもろこし、その他の農産物が好ましい。
本発明に係る液状化澱粉質の製造方法は、原料および水の総重量に対し0.5重量%以上の乳酸を用い、15%以上の澱粉質濃度となるまで液状化を行うことが好ましい。乳酸の添加量は、原料および水の総重量に対し1.0重量%以上であることが特に好ましい。また、液状化は、20%以上の澱粉質濃度となるまで行うことが特に好ましい。
That is, the method for producing a liquefied starch according to the present invention is a method for producing a liquefied starch by hydrolyzing a raw material containing starch with lactic acid, and stirring the raw material and water containing lactic acid. After liquefying, the raw material is added and stirred to liquefy.
As the raw material containing starch, rice, wheat, corn and other agricultural products are preferable.
In the method for producing a liquefied starch according to the present invention, it is preferable to use 0.5% by weight or more of lactic acid with respect to the total weight of the raw material and water and perform liquefaction until the starch concentration is 15% or more. The amount of lactic acid added is particularly preferably 1.0% by weight or more based on the total weight of the raw material and water. The liquefaction is particularly preferably performed until the starch concentration is 20% or more.

また、本発明に係る液状化澱粉質の製造方法は、撹拌装置を用いて前記原料および乳酸を含む水を撹拌し、撹拌の際に前記撹拌装置に掛かる負荷の大きさを検出し、前記負荷の大きさに応じて前記撹拌装置の動力のフィードバック制御を行うことが好ましい。
本発明に係る液状化澱粉質の製造方法は、撹拌装置を用いて前記原料および乳酸を含む水を撹拌し、撹拌の際に前記撹拌装置に掛かる負荷の大きさを検出し、前記負荷の大きさに応じて原料を追加して撹拌するものであってもよい。原料の追加は、原料の定量供給装置により自動化することができる。
負荷の大きさには、撹拌装置の撹拌羽根のモーターにトルク計を接続し、トルク計の検出した回転トルクの値を用いることが好ましい。
Further, the method for producing a liquefied starch according to the present invention comprises stirring the water containing the raw material and lactic acid using a stirrer, detecting the magnitude of the load applied to the stirrer during stirring, It is preferable to perform feedback control of the power of the stirring device in accordance with the size of the agitator.
In the method for producing a liquefied starch according to the present invention, the water containing the raw material and lactic acid is stirred using a stirrer, the magnitude of the load applied to the stirrer during the stirring is detected, and the magnitude of the load Depending on the situation, the raw material may be added and stirred. The addition of the raw material can be automated by a raw material quantitative supply device.
For the magnitude of the load, it is preferable to connect a torque meter to the motor of the stirring blade of the stirring device and use the value of the rotational torque detected by the torque meter.

本発明に係る乳酸の製造方法は、前述の液状化澱粉質の製造方法により製造された液状化澱粉質から乳酸発酵により乳酸を製造することを特徴とする。
本発明に係る乳酸の製造方法では、前記液状化澱粉質の乳酸発酵の前に前記液状化澱粉質に常温の水を加えて液温を低下させることが好ましい。
The method for producing lactic acid according to the present invention is characterized in that lactic acid is produced from liquefied starch produced by the above-described method for producing liquefied starch by lactic acid fermentation.
In the method for producing lactic acid according to the present invention, it is preferable to lower the liquid temperature by adding water at room temperature to the liquefied starch before the lactic acid fermentation of the liquefied starch.

本発明では、第1の課題である撹拌機選定のための最大必要動力を低くする条件を得て、第2の課題である澱粉質濃度を上げることによる加熱エネルギーの削減に対応し、さらに、冷却のエネルギーの削減にも対応し、かつ撹拌動力エネルギーの削減につながる運転制御の方法までをも提供することができる。本発明により、液状化処理工程における撹拌動力によって消費している電気エネルギーの削減や、撹拌動力モーターの小型化、運転コストを低減するための制御方法、さらに液状化後の液温の低下調整の省エネルギー化まで可能となる。これにより、電気エネルギー、熱エネルギーの浪費を抑えて乳酸の製造コストを低減することができ、環境に良い生分解性プラスチックであるポリ乳酸の普及に大いに貢献できる。   In the present invention, to obtain a condition to reduce the maximum required power for the stirrer selection which is the first problem, corresponding to the reduction of the heating energy by raising the starch concentration, which is the second problem, It is possible to provide a method of operation control that can cope with reduction of cooling energy and leads to reduction of stirring power energy. According to the present invention, it is possible to reduce electric energy consumed by stirring power in the liquefaction processing step, to reduce the size of the stirring power motor, to control the operation cost, and to adjust the lowering of the liquid temperature after liquefaction. Energy saving is possible. As a result, waste of electric energy and heat energy can be suppressed and the production cost of lactic acid can be reduced, which can greatly contribute to the spread of polylactic acid, which is a biodegradable plastic that is good for the environment.

本発明によれば、従来法における過大な撹拌装置によって消費していた電気エネルギー、撹拌する対象物に必要とされていなかったエネルギーの削減、多量に加えていた水を加温していた熱エネルギー、さらに糖化液冷却のために使っていた冷熱エネルギーなどを低減するために有効な手段を提供できる。その結果、現在普及しつつある生分解性プラスチックであるポリ乳酸の原料となる乳酸の製造コストを低減して、環境に良い生分解性プラスチック素材の利用拡大に貢献することができる。   According to the present invention, the electric energy consumed by the excessive stirring device in the conventional method, the reduction of energy that was not required for the object to be stirred, the heat energy that was heating the water that was added in large quantities In addition, it is possible to provide an effective means for reducing the cooling energy used for cooling the saccharified solution. As a result, it is possible to reduce the manufacturing cost of lactic acid, which is a raw material for polylactic acid, which is a biodegradable plastic that is currently in widespread use, and to contribute to expanding the use of biodegradable plastic materials that are good for the environment.

以下に実施例によって、本発明をさらに具体的に説明する。
但し、本発明は以下の実施例によってその技術的な範囲を限定されるものではない。
(試験装置の説明)
図1に示すように、試験装置は、500mlのセパラブルフラスコ1の側面に4枚の邪魔板2を設け、小型のマックスブレンド翼3(住重機器システム(株)製)を撹拌機として設置して成っている。この試験装置により、マックスブレンド翼3をモーター4で回転させ、180rpmで撹拌を行なった。モーター4には、回転制御装置5が設けられている。回転制御装置5は、モーター4の回転数を上げたり下げたりすることができる。
Hereinafter, the present invention will be described more specifically with reference to examples.
However, the technical scope of the present invention is not limited by the following examples.
(Explanation of test equipment)
As shown in FIG. 1, the test apparatus is provided with four baffle plates 2 on the side of a 500 ml separable flask 1 and a small Max Blend blade 3 (manufactured by Sumijuki Equipment System Co., Ltd.) as a stirrer. It is made up of. With this test apparatus, the Max Blend blade 3 was rotated by the motor 4 and stirred at 180 rpm. The motor 4 is provided with a rotation control device 5. The rotation control device 5 can increase or decrease the number of rotations of the motor 4.

また、90℃に昇温するために、フラスコ1を、食用油を満たした油浴槽6に浸漬した。湯浴槽6の内部の食用油の温度は、温度計7で測定した。さらに、撹拌動力を測定するために、トルクメーター8(1200RTE,型、ヘイドン社製)を撹拌機のモーター4に接続しておき、試験中は連続して回転トルクを検出・記録した。また粘度測定には回転式粘度計(ビスコテック株式会社製「Visco Basic」)を用いた。   Moreover, in order to raise the temperature to 90 ° C., the flask 1 was immersed in an oil bath 6 filled with cooking oil. The temperature of the cooking oil inside the hot tub 6 was measured with a thermometer 7. Further, in order to measure the stirring power, a torque meter 8 (1200 RTE, model, manufactured by Haydon Co., Ltd.) was connected to the motor 4 of the stirrer, and the rotational torque was continuously detected and recorded during the test. In addition, a rotational viscometer (“Visco Basic” manufactured by Viscotech Co., Ltd.) was used for viscosity measurement.

本実施例では、澱粉質原料として平成16年福島県産の低グルテリン米「春陽」を白米に精米した後に1mm以下に粉砕、乾燥したものを用いた。この原料に所定量の水を加え、さらに原料および水の総重量に対し1重量%の乳酸を加えた。   In this example, low-glutelin rice “Chunyo” produced in Fukushima Prefecture in 2004 was milled into white rice and then ground and dried to 1 mm or less as a starch raw material. A predetermined amount of water was added to the raw material, and 1% by weight of lactic acid was added to the total weight of the raw material and water.

実施条件としては、(1)90℃にて3時間の撹拌を行なう中で、15%の澱粉質濃度を目標に、初期濃度を10%分としてトルク計の測定値が安定したところで追添加する、その追添加する濃度を5%分にしたもの。(2)次に、初期濃度を7.5%分としてトルク計の測定値が安定したところで追添加する、その追添加する濃度を7.5%分にしたもの。
さらに、(3)20%の澱粉質濃度を目標に、初期濃度を10%分としてトルク計の測定値が安定したところで追添加する、その追添加する濃度を10%分にしたもの。(4)次に、初期濃度を7.5%分としてトルク計の測定値が安定したところで追添加する、その追添加する濃度を7.5%分にし、さらにトルク計の測定値が安定したところでまた追添加する、その濃度を5%分にしたもの。
Implementation conditions are as follows: (1) While stirring at 90 ° C for 3 hours, with a target of 15% starch concentration, the initial concentration is 10%. , The concentration to be added is 5%. (2) Next, the initial concentration is 7.5%, and when the measured value of the torque meter is stabilized, additional addition is performed, and the concentration to be added is 7.5%.
(3) Targeting a starch concentration of 20%, the initial concentration is 10%, and when the measured value of the torque meter is stabilized, additional addition is performed, and the concentration to be added is 10%. (4) Next, when the initial concentration is 7.5%, additional addition is made when the measured value of the torque meter is stable. The additional concentration is made 7.5%, and when the measured value of the torque meter is stabilized, additional addition is made. The concentration is 5%.

また、(5)比較対照用に15%の澱粉質濃度にて90℃にて3時間の撹拌を行なったもの。および、(6)20%の澱粉質濃度にて90℃にて3時間の撹拌を行なったもの。
以上の6条件での試験を実施した。
(5) For comparison control, the mixture was stirred at 90 ° C for 3 hours at a starch concentration of 15%. And (6) Stirring at 90 ° C. for 3 hours at a starchy concentration of 20%.
The test was conducted under the above six conditions.

実施例の試験結果を表1に、また撹拌動力の変動については図2(最終濃度15%)、および図3(最終濃度20%)に示す。

Figure 2007153951
The test results of the examples are shown in Table 1, and the fluctuation of the stirring power is shown in FIG. 2 (final concentration 15%) and FIG. 3 (final concentration 20%).
Figure 2007153951

表1の結果をみて、最終濃度15%、20%ともに分割して澱粉質を添加したほうが、最終粘度も、撹拌消費エネルギーの総和についても小さくなり、撹拌エネルギーが小さくすむことがわかった。まず、最終粘度15%に注目すると2等分して7.5%を2度加えるよりは10%、5%と加える方が最終粘度は小さい。しかし、逆に撹拌消費エネルギーは2等分の方が小さい。これは10%添加時に、7.5%のときよりも大きな撹拌エネルギーが必要になりその際の消費分が加算した際に大きく効いてくるためと推測できる。
次に、最終粘度20%に注目すると、1度で添加すれば、粘度測定器の計測上限値を上回るほどの粘度であるが、2等分して10%を2度加えるだけで最終粘度は下がり、撹拌消費エネルギーは4分の1にもなる。7.5%を2回に5%を加える方法では、さらに最終粘度は下がるが、消費エネルギーは2等分と大差がない。
このように、原料を分割した添加法は、撹拌エネルギーの面では大きな省力効果があることがわかった。
From the results shown in Table 1, it was found that when the starch concentrations were divided and added to both final concentrations of 15% and 20%, the final viscosity and the total energy consumed for stirring were reduced, and the stirring energy was reduced. First, when paying attention to the final viscosity of 15%, the final viscosity is smaller by adding 10% and 5% than by dividing into 2 equal parts and adding 7.5% twice. However, the energy consumption for stirring is smaller in two. This can be presumed to be because, when 10% is added, a larger stirring energy is required than when 7.5%, and when the amount consumed is added, the effect is greatly increased.
Next, paying attention to the final viscosity of 20%, if it is added at 1 degree, it is a viscosity that exceeds the measurement upper limit of the viscometer, but the final viscosity can be obtained by dividing into 2 equal parts and adding 10% twice. As a result, the energy consumed for stirring is reduced to a quarter. In the method of adding 7.5% to 2% in 5 times, the final viscosity is further lowered, but the energy consumption is not much different from 2 parts.
Thus, it was found that the addition method in which the raw material was divided had a great labor saving effect in terms of stirring energy.

図2のグラフ(最終濃度15%)を参照すると、1度に加えた際の撹拌必要動力がいかに大きなものであるかが明確にわかる。この最大値に余裕をみた動力の撹拌機を設計時に選定することになる。   Referring to the graph of FIG. 2 (final concentration 15%), it can be clearly seen how large the power required for stirring when applied at one time is. A power agitator with sufficient margin for this maximum value is selected at the time of design.

つまり、15%を1度の場合であれば0.8kw/m3、10%+5%であれば0.2kw/m3、7.5%+7.5%であれば0.1kw/mとなる。仮にこの能力での撹拌機が常時稼働すれば、このkw数相当の消費エネルギーの差が生じることになる。また、撹拌動力の消費が安定していれば、それだけ動力に比較して撹拌の効果も高くなり、容易な混合状態が作られることになる。 That is, in the case of one degree of 15% 0.8kw / m 3, if 10% + a 5% 0.2kw / m 3, a 0.1 kw / m 3 if 7.5% + 7.5%. If a stirrer with this capacity is always in operation, a difference in energy consumption corresponding to the number of kw will occur. In addition, if the consumption of stirring power is stable, the effect of stirring is higher than that of power, and an easy mixed state is created.

図3のグラフ(最終濃度20%)を参照すると、上記のように撹拌機選定を考えてみると、20%を1度であれば1.6kw/m3、10%+10%であれば0.25kw/m3、7.5%+7.5+5%であれば0.2kw/mとなる。最終の澱粉濃度が同じであっても、撹拌機動力の大きさが8倍も異なることは、消費エネルギーコストばかりか、装置コストの面からみても大変な相違であるといえる。 Referring to the graph of FIG. 3 (final concentration 20%), considering the selection of the stirrer as described above, 20% is 1.6 kw / m 3 if 1 degree and 0.25 if 10% + 10%. If kw / m 3 , 7.5% + 7.5 + 5%, 0.2 kw / m 3 is obtained. Even if the final starch concentration is the same, it can be said that the magnitude of the agitator power is different by a factor of 8 is a great difference not only from the viewpoint of the energy consumption cost but also from the viewpoint of the apparatus cost.

試験装置において、トルク計8の検出値を回転制御装置5にフィードバックし、検出値に応じて撹拌装置のモーター4をフィードバック制御することができる。このような自動化により、撹拌エネルギーの省力化を図ることができる。   In the test device, the detected value of the torque meter 8 can be fed back to the rotation control device 5, and the motor 4 of the stirring device can be feedback controlled in accordance with the detected value. Such automation can save labor for stirring energy.

本発明の実施例で用いた試験装置を示す概略説明図である。It is a schematic explanatory drawing which shows the test apparatus used in the Example of this invention. 本発明の実施例で用いた試験装置の最終濃度15%の場合の撹拌動力の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the stirring power in the case of 15% of final concentration of the test apparatus used in the Example of this invention. 本発明の実施例で用いた試験装置の最終濃度20%の場合の撹拌動力の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the stirring power in the case of 20% of final concentration of the test apparatus used in the Example of this invention.

符号の説明Explanation of symbols

1 セパラブルフラスコ
2 邪魔板
3 マックスブレンド翼
4 モーター
5 回転制御装置
6 油浴槽
7 温度計
8 トルクメーター


1 separable flask 2 baffle plate 3 max blend wing 4 motor 5 rotation control device 6 oil bath 7 thermometer 8 torque meter


Claims (6)

澱粉質を含む原料を乳酸で加水分解して液状化させる液状化澱粉質の製造方法であって、原料および乳酸を含む水を撹拌して液状化させた後、原料を追加して撹拌し液状化させることを特徴とする液状化澱粉質の製造方法。   A method for producing a liquefied starch that hydrolyzes a raw material containing starch with lactic acid, and liquefies the raw material and water containing lactic acid. A process for producing a liquefied starch, characterized in that 原料および水の総重量に対し0.5重量%以上の乳酸を用い、15%以上の澱粉質濃度となるまで液状化を行うことを特徴とする請求項1記載の液状化澱粉質の製造方法。   The method for producing a liquefied starch according to claim 1, wherein 0.5% by weight or more of lactic acid is used with respect to the total weight of the raw material and water, and liquefaction is carried out until the starch concentration is 15% or more. 撹拌装置を用いて前記原料および乳酸を含む水を撹拌し、撹拌の際に前記撹拌装置に掛かる負荷の大きさを検出し、前記負荷の大きさに応じて前記撹拌装置の動力のフィードバック制御を行うことを特徴とする請求項1または2記載の液状化澱粉質の製造方法。   Stirring the raw material and water containing lactic acid using a stirrer, detecting the magnitude of the load applied to the stirrer during stirring, and performing feedback control of the power of the stirrer according to the magnitude of the load The method for producing a liquefied starch according to claim 1 or 2, wherein the method is carried out. 撹拌装置を用いて前記原料および乳酸を含む水を撹拌し、撹拌の際に前記撹拌装置に掛かる負荷の大きさを検出し、前記負荷の大きさに応じて原料を追加して撹拌することを特徴とする請求項1,2または3記載の液状化澱粉質の製造方法。   Stirring the raw material and water containing lactic acid using a stirrer, detecting the magnitude of the load applied to the stirrer during stirring, and adding the raw material according to the magnitude of the load and stirring The method for producing a liquefied starch according to claim 1, 2, or 3. 請求項1乃至4のいずれか1項に記載の液状化澱粉質の製造方法により製造された液状化澱粉質から乳酸発酵により乳酸を製造することを特徴とする乳酸の製造方法。   A method for producing lactic acid, comprising producing lactic acid by lactic acid fermentation from a liquefied starch produced by the method for producing a liquefied starch according to any one of claims 1 to 4. 前記液状化澱粉質の乳酸発酵の前に前記液状化澱粉質に常温の水を加えて液温を低下させることを特徴とする請求項5記載の乳酸の製造方法。
6. The method for producing lactic acid according to claim 5, wherein water temperature at normal temperature is added to the liquefied starch before the lactic acid fermentation of the liquefied starch.
JP2005347761A 2005-12-01 2005-12-01 Method for producing liquefied starchy material and method for producing lactic acid Pending JP2007153951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347761A JP2007153951A (en) 2005-12-01 2005-12-01 Method for producing liquefied starchy material and method for producing lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347761A JP2007153951A (en) 2005-12-01 2005-12-01 Method for producing liquefied starchy material and method for producing lactic acid

Publications (1)

Publication Number Publication Date
JP2007153951A true JP2007153951A (en) 2007-06-21

Family

ID=38238727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347761A Pending JP2007153951A (en) 2005-12-01 2005-12-01 Method for producing liquefied starchy material and method for producing lactic acid

Country Status (1)

Country Link
JP (1) JP2007153951A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287101A (en) * 1988-05-13 1989-11-17 Nippon Shokuhin Kako Co Ltd Production of processed starch
JPH07118393A (en) * 1993-10-19 1995-05-09 Nobuo Shiraishi Liquefied lignocellulose-starch solution and its production
JPH08112097A (en) * 1994-10-17 1996-05-07 Agency Of Ind Science & Technol Method for liquefying starchy substance and production of lactic acid utilizing the same
JPH11279563A (en) * 1998-03-30 1999-10-12 Hisaka Works Ltd Liquefaction process
WO2004063382A2 (en) * 2003-01-13 2004-07-29 Purac Biochem B.V. Preparation of lactic acid from a pentose-containing substrate
JP2005154290A (en) * 2003-11-20 2005-06-16 Ccy:Kk Method for producing ethyl lactate
JP2005525120A (en) * 2002-05-14 2005-08-25 ピュラック バイオケム ビー. ブイ. Process for the production of lactic acid or a salt thereof by simultaneous saccharification and fermentation of starch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287101A (en) * 1988-05-13 1989-11-17 Nippon Shokuhin Kako Co Ltd Production of processed starch
JPH07118393A (en) * 1993-10-19 1995-05-09 Nobuo Shiraishi Liquefied lignocellulose-starch solution and its production
JPH08112097A (en) * 1994-10-17 1996-05-07 Agency Of Ind Science & Technol Method for liquefying starchy substance and production of lactic acid utilizing the same
JPH11279563A (en) * 1998-03-30 1999-10-12 Hisaka Works Ltd Liquefaction process
JP2005525120A (en) * 2002-05-14 2005-08-25 ピュラック バイオケム ビー. ブイ. Process for the production of lactic acid or a salt thereof by simultaneous saccharification and fermentation of starch
WO2004063382A2 (en) * 2003-01-13 2004-07-29 Purac Biochem B.V. Preparation of lactic acid from a pentose-containing substrate
JP2005154290A (en) * 2003-11-20 2005-06-16 Ccy:Kk Method for producing ethyl lactate

Similar Documents

Publication Publication Date Title
CN202105611U (en) Heating and mixing paddle of polymerization reactor
CN101096694B (en) Maize flour low-temperature synchronous saccharification technique by double enzymatical process and its application
CN1911966B (en) Pretreatment method of starch
CN105154475A (en) Method and device for rapidly starting anaerobic fermentation of kitchen waste to generate biogas
CN102399841A (en) Method for synthesizing starch acetate
CN204193821U (en) A kind of constant speed constant temperature stirred tank
JP6140725B2 (en) Process for producing an optimized liquefied lignocellulose substrate
JP2007153951A (en) Method for producing liquefied starchy material and method for producing lactic acid
CN206014738U (en) A kind of processing meanss for effectively improving corn starch pasting efficiency
CN110004195B (en) Method for preparing octenyl succinic acid starch ester by enzymatic auxiliary extrusion
CN205199386U (en) A dispersator for adding lustre to membrane production
CN205088239U (en) Quick starting drive of marsh gas is produced to kitchen garbage anaerobic fermentation
CN208194250U (en) A kind of waste heat recycling temperature control automatic system
CN204569948U (en) A kind of Electromagnetic Heating saccharifying tank
CN201848246U (en) Compounding reaction kettle capable of adjusting temperature of liquid cements
CN111729525A (en) Method for establishing liquid-liquid mixing stirring process reduced model
CN204097490U (en) A kind of double-jacket ferment at constant temperature tank
CN110551225A (en) preparation method of dextrin with thermal viscosity stability
CN101463366A (en) Preparation of alcohol fermentation liquid
CN105753996A (en) Gelatinization method for modified starch
CN206599560U (en) A kind of fermentation tank for stirring Combinatorial Optimization
JP4829827B2 (en) Method for producing rice saccharified solution
CN104293863A (en) Pre-treatment method for promoting high concentration starch to liquefy
CN204634638U (en) A kind of for the pre-incubated expansion culture device of chicken manure fermenting bedding and padding
CN204034691U (en) With the enamel reaction still of preheating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214