JP2007153645A - Laminate for nanotechnology formed by using flaky powder and method for manufacturing the same - Google Patents

Laminate for nanotechnology formed by using flaky powder and method for manufacturing the same Download PDF

Info

Publication number
JP2007153645A
JP2007153645A JP2005348390A JP2005348390A JP2007153645A JP 2007153645 A JP2007153645 A JP 2007153645A JP 2005348390 A JP2005348390 A JP 2005348390A JP 2005348390 A JP2005348390 A JP 2005348390A JP 2007153645 A JP2007153645 A JP 2007153645A
Authority
JP
Japan
Prior art keywords
laminate
producing
binder
flaky powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005348390A
Other languages
Japanese (ja)
Other versions
JP4798488B2 (en
Inventor
Hideki Kakizawa
英樹 垣澤
Kazumi Minagawa
和己 皆川
Susumu Takamori
晋 高森
Yoshiaki Osawa
嘉昭 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005348390A priority Critical patent/JP4798488B2/en
Publication of JP2007153645A publication Critical patent/JP2007153645A/en
Application granted granted Critical
Publication of JP4798488B2 publication Critical patent/JP4798488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively and rapidly manufacture a laminate having excellent mechanical characteristics and high reliability appropriate as a substrate material and protective material for nanotechnology and a structural material for micromachining. <P>SOLUTION: The laminate is manufactured by applying the flaky powder coated with a binder and unidirectionally oriented with flat faces onto the substrate and calcining the coating, then peeling the coating from the substrate and subjecting the laminate to pressing from a direction perpendicular to the flat coating surface, followed by calcining or sintering. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この出願の発明はフレーク状粉末を用いて作製した積層体とその製造方法に関するものである。さらに詳しくは、この出願の発明はフレーク状粉末を用いて作製したナノテク用の基板材料や保護材料、マイクロマシン用の構造材料として有用な積層体とその製造方法に関するものである。   The invention of this application relates to a laminate produced using flaky powder and a method for producing the same. More specifically, the invention of this application relates to a laminated body useful as a nanotech substrate material or protective material produced using a flaky powder, and a structural material for a micromachine, and a method for producing the same.

マイクロマシン用構造材料やナノテク用基板材料、保護材料として、数〜数百ミクロンのディメンジョン(寸法)で、かつ、高い信頼性を持つ複合材料が求められている。   As a structural material for micromachines, a substrate material for nanotechnology, and a protective material, a composite material having a dimension (dimension) of several to several hundred microns and high reliability is required.

このようなサイズでは、従来の数〜数十ミクロンオーダーの構成素材を用いた複合材料では材料の不均一性が無視できなくなる。そのため、信頼性を確保するにはより小さな構成素材を用い、サブミクロン以下のオーダーで複合化することが必要である。また、微細な複合構造にすることで、高信頼性に加え、高靭化や高強度化が達成される可能性もある。特に、単純な構造では大きな複合効果が得られる積層材料では、この効果が顕著に期待できる。   With such a size, the non-uniformity of the material cannot be ignored in the conventional composite material using constituent materials of the order of several to several tens of microns. Therefore, in order to ensure reliability, it is necessary to use a smaller constituent material and to make a composite on the order of submicron or less. Further, by making a fine composite structure, in addition to high reliability, high toughness and high strength may be achieved. In particular, this effect can be remarkably expected in a laminated material that can obtain a large composite effect with a simple structure.

サブミクロンオーダー以下の積層構造を作製する方法としては、従来からバイオミメティック(生物を模倣した)なプロセスを応用した自己組織形成、蒸着法(特許文献1)、スピンコート法(特許文献2)、スパッタリング法(特許文献3)およびCVD法(特許文献4)等の製法が知られている。このような製法はいずれも非常に薄い層を均一に作製することが可能であり十数層程度の積層構造体を作製することも知られている。
: 特開2002− 1863号公報 : 特開2005−146308号公報 : 特開2001−328198号公報 : 特開2001−332749号公報
As a method for producing a laminated structure of sub-micron order or less, conventional self-organization using a biomimetic process (imitating a living organism), vapor deposition method (Patent Document 1), spin coating method (Patent Document 2), Production methods such as a sputtering method (Patent Document 3) and a CVD method (Patent Document 4) are known. In any of these manufacturing methods, a very thin layer can be uniformly formed, and it is also known to manufacture a laminated structure of about a dozen layers.
: JP 2002-1863 A : JP-A-2005-146308 : JP 2001-328198 A : JP 2001-332749 A

しかしながら、従来から知られているナノテク用の積層構造体の製法は本来「薄膜」を作製するための技術であり、ナノテク用の基板材料や保護材料、あるいはマイクロマシン用の構造材料のように、より厚みのある多層積層を要するバルクの積層体を製造することは技術的に非常に困難である。また、従来の製法はコスト、プロセス時間の面でも大きな問題があるため事実上利用することは不可能である。   However, the conventionally known method for producing a laminated structure for nanotechnology is a technique for producing a "thin film", and more like a substrate material for nanotechnology, a protective material, or a structural material for micromachines. It is technically very difficult to produce bulk laminates that require thick multilayer stacks. In addition, the conventional manufacturing method cannot be used practically because it has major problems in terms of cost and process time.

そこで、以上のとおりの事情に鑑みて、この出願の発明はこのような課題を解決するものとして、ナノテクノロジーを支える技術として多くの応用が期待できる積層体を、粉末の固化成形というシンプルな方法を用いて厚さ数μm〜数百nmのフレーク状の粉末を用いて微細な積層構造を持つバルクのナノ複合構造特有の力学特性を発現し、かつ機能性も付与できる積層体を提供することを課題とする。   Therefore, in view of the circumstances as described above, the invention of this application is a simple method of solidifying and molding a laminated body that can be expected to have many applications as a technology supporting nanotechnology as a solution to such problems. To provide a laminate capable of expressing mechanical characteristics peculiar to a bulk nanocomposite structure having a fine laminate structure and imparting functionality using a flake powder having a thickness of several μm to several hundreds of nm Is an issue.

この出願の発明は上記の課題を解決するものとして、第1には、バインダを被覆したフレーク状粉末を扁平面が配向させた状態で扁平面に対して垂直方向から加圧して焼成ないし焼結するナノテク用積層体の製造方法を提供する。   The invention of this application is to solve the above-mentioned problems. First, the flake powder coated with a binder is pressed from a direction perpendicular to the flat surface in a state where the flat surface is oriented, and is fired or sintered. Provided is a method for producing a laminate for nanotechnology.

第2には、好適なフレーク状粉末として金属、セラミックス、ガラス、有機物、あるい
は無機層状物質である上記方法を提供する。
Secondly, the above method is provided in which the preferred flaky powder is a metal, ceramics, glass, organic substance, or inorganic layered substance.

第3には、フレーク状粉末の被覆に好適なバインダとして金属、ガラス、あるいは有機物である上記方法を提供する。   Third, the above method is provided in which the binder suitable for coating the flaky powder is metal, glass, or organic matter.

第4および第5には、この出願の発明に好適な処理条件を提供する。   Fourth and fifth, processing conditions suitable for the invention of this application are provided.

第6には、上記の製造方法で得られるサブミクロンオーダー以下の微細なサイズ調整が可能なナノテク用として好適な積層体を提供する。   Sixth, it provides a laminate suitable for nanotech that can be finely adjusted in submicron order or less, obtained by the above manufacturing method.

上記第1の積層体の製造方法によれば、フレーク状の粉末を固化成形するという簡単な方法で微細なナノテク用に有用な積層構造を持ったバルクの積層体の製造方法を提供することができる。   According to the first method for producing a laminate, it is possible to provide a method for producing a bulk laminate having a laminate structure useful for fine nanotechnology by a simple method of solidifying and molding flaky powder. it can.

上記第2の積層体の製造方法の発明によれば、好適なフレーク状粉末を使用することができる。   According to the invention of the method for producing the second laminate, a suitable flaky powder can be used.

上記第3の積層体の製造方法の発明によれば、フレーク状粉末の被覆に好適なバインダを使用することができる。   According to the third method for producing a laminate, a binder suitable for coating flaky powder can be used.

上記第4および第5の積層体の製造方法の発明によれば、固化成形に好適な処理条件の範囲を特定することができる。   According to the fourth and fifth laminate manufacturing methods, a range of processing conditions suitable for solidification molding can be specified.

上記第6の積層体の発明によれば、サブミクロンオーダー以下の微細な調整が可能なナノテク用として好適な積層体を得ることができる。   According to the invention of the sixth laminate, a laminate suitable for nanotech that can be finely adjusted to a submicron order or less can be obtained.

この出願の発明は、アルミナ粉末、ガラス粉末、アルミニウム粉末等の金属やセラミックス、ガラス、有機物、あるいは無機層状物質、もしくはこれらの複合物のフレーク状粉末の表面にバインダとなる材料をコーティングした後に加圧および加熱して焼成もしくは焼結して固化することを特徴とするものであるが、この出願の発明におけるフレーク状粉末とは、粉末の断面形状のアスペクト比が1ではない、いわゆる扁平な平面形状を持つ粉末を意味するものであり、アスペクト比の範囲が限定されているわけではない。また、フレーク状粉末の素材としては、金属、セラミックス、ガラス、あるいは有機物、さらにはマイカやグラファイト等の無機層状物質等のフレーク状粉末が好適であるが、特にその種類は限定されるものではない。バインダについても各種であってよく、金属、ガラス、有機物等のうちから選択することができる。またフレーク状粉末の積層体の形成に際し、この出願の発明では、フレーク状粉末の扁平面に対して垂直方向(略垂直方向を含む)より加圧して焼成もしくは焼結する。   The invention of this application is applied after coating a material serving as a binder on the surface of a flake powder of a metal such as alumina powder, glass powder, aluminum powder, ceramics, glass, organic matter, inorganic layered substance, or a composite thereof. The flake-like powder in the invention of this application is a so-called flat plane in which the aspect ratio of the cross-sectional shape of the powder is not 1 but is characterized by being solidified by firing or sintering by pressure and heating. It means a powder having a shape, and the range of the aspect ratio is not limited. The material for the flake powder is preferably a flake powder such as metal, ceramics, glass, or organic matter, or inorganic layered material such as mica or graphite, but the type is not particularly limited. . The binder may also be various, and can be selected from metals, glasses, organic substances, and the like. In the formation of the flaky powder laminate, in the invention of this application, the flaky powder is fired or sintered by applying pressure from a direction perpendicular to the flat surface of the flaky powder (including a substantially vertical direction).

たとえば、バインダがコーティングされた粉末をスラリー状にして平板上に平ヘラで塗布した後乾燥させて仮焼結体を作り、それを扁平塗布面に垂直な一軸プレスをかけながら焼成を行う方法等も好ましい形態として例示することができる。いずれにしても成形時において図1の概要図に示されているようにフレーク状の粉末(1)の平面、すなわち扁平面が配向方向(2)に向って垂直(略垂直)になるように配向されていればよい。すなわち、フレーク状粉末(2)は、図1のように扁平面が相互に平行、あるいは略平行な状態にあればよい。ただ、固化成形時における雰囲気温度はフレーク状の粉末材料およびコーティング材料が気化しない温度に制御することが必要である。また、固化成形中に、フレーク状の粉末材料またはコーティング材料と雰囲気の気体をその場で反応させることによ
って、最終的に積層体を得ることも可能である。なお、バインダの塗布方法については各種であってよく、たとえばバインダが、銀、銅、アルミニウム、スズ、亜鉛等の金属や合金である場合には、メッキ、無電解メッキ、蒸着、スプレー等の方法が、また、バインダが、樹脂や硬化性化合物等の有機物である場合には、これらの溶融物のスプレー、混合、浸漬、もしくは蒸着等の方法がその例として考慮される。
For example, a powder coated with a binder is made into a slurry and applied on a flat plate with a flat spatula and then dried to make a temporary sintered body, which is fired while applying a uniaxial press perpendicular to the flat coated surface, etc. Can also be exemplified as a preferred form. In any case, at the time of molding, as shown in the schematic diagram of FIG. 1, the plane of the flaky powder (1), that is, the flat plane is vertical (substantially vertical) toward the orientation direction (2). It only needs to be oriented. That is, the flaky powder (2) only needs to have flat surfaces that are parallel or substantially parallel to each other as shown in FIG. However, it is necessary to control the atmospheric temperature during solidification molding to a temperature at which the flaky powder material and the coating material do not vaporize. Moreover, it is also possible to finally obtain a laminated body by reacting flake-like powder material or coating material and atmospheric gas in situ during solidification molding. Note that there are various methods for applying the binder. For example, when the binder is a metal or alloy such as silver, copper, aluminum, tin, or zinc, a method such as plating, electroless plating, vapor deposition, or spraying is used. However, when the binder is an organic substance such as a resin or a curable compound, a method of spraying, mixing, dipping, or depositing these melts is considered as an example.

そこで以下に、実施例を示し、さらに詳しくこの発明を説明する。もちろん、この出願の発明は以下の例によって限定されるものではない。   Therefore, the present invention will be described in more detail below with reference to examples. Of course, the invention of this application is not limited by the following examples.

フレーク状の粉末として表1で示されているアルミノケイ酸ガラスフレークのうち、厚さ0.7μm、平均粒径(扁平面最大径の平均)20μmのアルミノケイ酸ガラスフレークを用いて無電解めっき法により厚さ約50〜100nmの銀コーティングを施した。なお、図2はアルミノケイ酸ガラスフレークの概観の形状を示した写真である。   Of the aluminosilicate glass flakes shown in Table 1 as a flaky powder, electroless plating is performed using aluminosilicate glass flakes having a thickness of 0.7 μm and an average particle diameter (average of flat plane maximum diameter) of 20 μm. A silver coating with a thickness of about 50-100 nm was applied. FIG. 2 is a photograph showing the general shape of the aluminosilicate glass flakes.

このアルミノケイ酸ガラスフレークをポリビニルアルコール(PVA)水溶液と混合したスラリー(重量混合比 ガラスフレーク:水:PVA=100:130:4)を作製した。このスラリーを金属製の平ヘラでせん断力を与えながらモリブデン箔上に100回程度重ね塗りを行い、厚さ約1.2cmの成形体を得た。この成形体を直径約30mmの円板状に切り出した後、モリブデン箔を取り除き、直径30mmの黒鉛ダイスに入れ、真空(10Pa)中、943Kで上下方向のプレス(21.2kN)で押圧しながら900sパルス通電焼結を行った。以上の方法で製造された材料の断面図を図3に示す。 A slurry (weight mixing ratio glass flake: water: PVA = 100: 130: 4) in which this aluminosilicate glass flake was mixed with an aqueous polyvinyl alcohol (PVA) solution was prepared. This slurry was overcoated about 100 times on a molybdenum foil while applying a shearing force with a metal flat spatula to obtain a molded body having a thickness of about 1.2 cm. After cutting this molded body into a disk shape with a diameter of about 30 mm, the molybdenum foil was removed, placed in a graphite die with a diameter of 30 mm, and pressed with a vertical press (21.2 kN) at 943 K in vacuum (10 Pa). 900s pulse electric current sintering was performed. A cross-sectional view of the material produced by the above method is shown in FIG.

作製されたガラスフレークは積層面に沿って配向しており、焼結された積層体は完全に緻密化されていた。ガラスフレーク間には金属(銀)が存在しておりガラスフレークを接着していた。焼結した積層体の破壊抵抗(靭性)をビッカースインデンテーション法により簡易的に評価した。通常、ガラス単体材料にビッカース圧子を打ち込むと圧痕の四隅(頂点)から亀裂が発生するのに対して、この出願の発明の方法で製造した積層体は積層面に対して垂直な方向にはまったく亀裂が観察されず、大きな破壊抵抗を持つことが確認された(図4)。   The produced glass flakes were oriented along the laminate surface, and the sintered laminate was completely densified. Metal (silver) was present between the glass flakes, and the glass flakes were adhered. The fracture resistance (toughness) of the sintered laminate was simply evaluated by the Vickers indentation method. Normally, when a Vickers indenter is driven into a single glass material, cracks are generated from the four corners (vertices) of the indentation, whereas the laminate manufactured by the method of the invention of this application is completely in a direction perpendicular to the lamination surface. Cracks were not observed, and it was confirmed that they had a large fracture resistance (FIG. 4).

配向したフレーク粉末を模式的に示した図である。It is the figure which showed the oriented flake powder typically. アルミノケイ酸ガラスフレークの概観を示した写真である。It is the photograph which showed the general view of the aluminosilicate glass flake. この発明の方法によって作製されたガラス/銀からなる積層体の断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the laminated body which consists of glass / silver produced by the method of this invention. 本願発明のガラス/銀積層体(A)とガラス単体材料(B)の破壊抵抗をインデンテーション法により比較したものである。The fracture resistances of the glass / silver laminate (A) and the single glass material (B) of the present invention are compared by an indentation method.

符号の説明Explanation of symbols

1: フレーク粉末
2: 配向方向
1: Flake powder 2: Orientation direction

Claims (6)

バインダが塗布され、扁平面が配向されたフレーク状粉末の扁平塗布面に対して垂直方向から加圧して焼成ないし焼結することを特徴とする積層体の製造方法。 A method for producing a laminate, comprising applying a binder and applying pressure from a direction perpendicular to a flat coated surface of a flaky powder having a flat plane oriented, and firing or sintering. フレーク状粉末として、金属、セラミックス、ガラス、有機物、および無機層状物質から選択される少なくとも1種を使用することを特徴とする請求項1に記載された積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the flaky powder is at least one selected from metals, ceramics, glass, organic substances, and inorganic layered substances. バインダとして、金属、ガラス、および有機物から選択される少くとも1種を使用することを特徴とする請求項1または2に記載された積層体の製造方法。 The method for producing a laminate according to claim 1 or 2, wherein at least one selected from metal, glass, and organic matter is used as the binder. 焼成もしくは焼結温度をフレーク状粉末およびバインダが凝集せず、かつバインダの接合温度領域で行うことを特徴とする請求項1ないし3のいずれかの積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein the calcination or sintering temperature is carried out in a region where the flaky powder and the binder do not agglomerate and the binder is bonded. 焼成もしくは焼結を減圧および高温の環境下で行うことを特徴とする請求項1ないし4のいずれかに記載された積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein the firing or sintering is performed under a reduced pressure and high temperature environment. 上記請求項1ないし5のいずれかの製造方法で作製されたことを特徴とするナノテク用の積層体。 A laminate for nanotechnology, which is produced by the production method according to any one of claims 1 to 5.
JP2005348390A 2005-12-01 2005-12-01 Solidified molded body molded from flaky powder and method for producing the same Expired - Fee Related JP4798488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348390A JP4798488B2 (en) 2005-12-01 2005-12-01 Solidified molded body molded from flaky powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348390A JP4798488B2 (en) 2005-12-01 2005-12-01 Solidified molded body molded from flaky powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007153645A true JP2007153645A (en) 2007-06-21
JP4798488B2 JP4798488B2 (en) 2011-10-19

Family

ID=38238465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348390A Expired - Fee Related JP4798488B2 (en) 2005-12-01 2005-12-01 Solidified molded body molded from flaky powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4798488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844266B1 (en) * 2017-10-11 2018-04-02 (주)쓰리디허브시스템즈 Method for manufacturing 3d model
CN113102759A (en) * 2021-04-06 2021-07-13 合肥工业大学 Laminated high-strength aluminum alloy plate and regulating and controlling preparation method and testing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230460A (en) * 1988-03-09 1989-09-13 Hitachi Ltd Production of superconducting material of oxide
JPH07118701A (en) * 1993-10-22 1995-05-09 Katayama Tokushu Kogyo Kk Flaky metal powder, metallic porous body and production of the powder
JPH1053465A (en) * 1996-06-07 1998-02-24 Toyota Central Res & Dev Lab Inc Production of crystal-oriented ceramic
JPH11217272A (en) * 1998-02-02 1999-08-10 Hitachi Metals Ltd Silicon nitride sintered member having oriented crystal and its production
JP2003146767A (en) * 2001-11-09 2003-05-21 National Institute Of Advanced Industrial & Technology Method of producing ceramic sintered compact and inorganic film, ceramic sintered compact, and inorganic film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230460A (en) * 1988-03-09 1989-09-13 Hitachi Ltd Production of superconducting material of oxide
JPH07118701A (en) * 1993-10-22 1995-05-09 Katayama Tokushu Kogyo Kk Flaky metal powder, metallic porous body and production of the powder
JPH1053465A (en) * 1996-06-07 1998-02-24 Toyota Central Res & Dev Lab Inc Production of crystal-oriented ceramic
JPH11217272A (en) * 1998-02-02 1999-08-10 Hitachi Metals Ltd Silicon nitride sintered member having oriented crystal and its production
JP2003146767A (en) * 2001-11-09 2003-05-21 National Institute Of Advanced Industrial & Technology Method of producing ceramic sintered compact and inorganic film, ceramic sintered compact, and inorganic film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844266B1 (en) * 2017-10-11 2018-04-02 (주)쓰리디허브시스템즈 Method for manufacturing 3d model
CN113102759A (en) * 2021-04-06 2021-07-13 合肥工业大学 Laminated high-strength aluminum alloy plate and regulating and controlling preparation method and testing method thereof
CN113102759B (en) * 2021-04-06 2022-02-22 合肥工业大学 Laminated high-strength aluminum alloy plate and regulating and controlling preparation method and testing method thereof

Also Published As

Publication number Publication date
JP4798488B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US10940671B2 (en) Substrate for electrical circuits and method for producing a substrate of this type
JP4115521B2 (en) Method of coating, method of manufacturing ceramic-metal structure, bonding method, and structure formed by them
US20080149322A1 (en) Metal Coated Graphite Sheet
US11390054B2 (en) Composite and multilayered silver films for joining electrical and mechanical components
JP6166117B2 (en) Method for producing composite material of metal and carbon fiber
WO2012165208A1 (en) Joint of metal material and ceramic-carbon composite material, method for producing same, carbon material joint, jointing material for carbon material joint, and method for producing carbon material joint
CN111065613B (en) Ceramic composite material
JP6383726B2 (en) Sputtering target and manufacturing method thereof
TW200520661A (en) Multi-layered ceramic substrate and its production method, and electronic device comprising same
TWI441796B (en) Method for manufacturing ceramic joint
JP4798488B2 (en) Solidified molded body molded from flaky powder and method for producing the same
RU2760896C1 (en) Method for producing heat-conducting composite material from powders of aluminium or alloy thereof with graphene coating
WO2020241714A1 (en) Impregnatable high-density, brittle material structure
JP7272653B2 (en) STRUCTURE, LAMINATED STRUCTURE, LAMINATED STRUCTURE MANUFACTURING METHOD AND LAMINATED STRUCTURE MANUFACTURING APPARATUS
TWI356665B (en)
TW200831441A (en) Method for manufacturing ceramic compact
JP2003342610A (en) Metal sintered compact and manufacturing method therefor
TW572866B (en) Centrifugal sintering method and use thereof
US9120245B1 (en) Methods for fabrication of parts from bulk low-cost interface-defined nanolaminated materials
EP1388527A3 (en) Highly heat-resistant inorganic fiber bonded ceramic component and process for the production thereof
KR102556297B1 (en) brittle material structure
Nave et al. Reliable additive manufacturing using transient liquid phase sintering
CN108265258B (en) Preparation method of multilayer energy-containing nano-structure foil for material connection
JPH046163A (en) Production of carrier consisting of aluminium nitride
CN107488047B (en) Connection method of silicon carbide ceramic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees