JP2007153239A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2007153239A
JP2007153239A JP2005354024A JP2005354024A JP2007153239A JP 2007153239 A JP2007153239 A JP 2007153239A JP 2005354024 A JP2005354024 A JP 2005354024A JP 2005354024 A JP2005354024 A JP 2005354024A JP 2007153239 A JP2007153239 A JP 2007153239A
Authority
JP
Japan
Prior art keywords
circumferential
tire
pneumatic tire
small hole
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005354024A
Other languages
Japanese (ja)
Other versions
JP4717615B2 (en
Inventor
Fumio Takahashi
文男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005354024A priority Critical patent/JP4717615B2/en
Publication of JP2007153239A publication Critical patent/JP2007153239A/en
Application granted granted Critical
Publication of JP4717615B2 publication Critical patent/JP4717615B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrict pitch noise due to lag treads without changing key design of a tread pattern so as to improve quietness of a vehicle, in regard to a pneumatic tire having a ribbed tread pattern. <P>SOLUTION: In the pneumatic tire provided with a rib 14 provided with lug grooves having ribbed parts 14a continued in the circumferential direction and wing parts 14b divided by the lug grooves 15, a nearly triangular small hole area 14c, which is formed by arranging multiple small holes 14h with an equal interval and having length along the tire cross direction at 0.1 to 1.0 in relation to the width of the wing part 14b and having length along the tire circumferential direction at 0.3 to 1.0 in relation to a circumferential interval of the lag tread 15 and 15, is provided on a circumferential groove 11d side of a line connecting two circumferential end points of each of the wing parts 14b of the rib 14 with lag treads. With this structure, a load burden to the wing part 14b is effectively shifted to the ribbed part 14a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気入りタイヤに関するもので、特に、一端が陸部内で終端するラグ溝が配置されたリブ状のトレッドパターンを有する空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire having a rib-shaped tread pattern in which a lug groove having one end terminating in a land portion is disposed.

近年、車両の静粛化に伴って、タイヤに起因したノイズの自動車騒音に対する寄与が大きくなり、その低減が求められている。上記タイヤノイズの原因としては、タイヤが路面に接地する際に起こる接地摩擦振動音や、路面の凹凸に起因する路面騒音があるが、乗用車の場合には、特に、タイヤトレッド表面に形成されたトレッドパターンに起因するパターンノイズの割合が大きい。特に、ラグパターンやブロックパターンのように、トレッドパターンの不連続部が接地するとき路面と衝突して起こる打撃音は、ラグ溝やブロックのピッチ間隔と車速とに依存した周波数(パターンピッチ周波数)において特に大きくなることから、ピッチノイズとも呼ばれている。
このような打撃音によるタイヤ騒音を低減する方法としては、ピッチ間隔を複数にしたりなどして、単一周波数にピークを持たせないようにする方法などが提案されている。
また、ラグ溝については、タイヤ幅方向に対して角度を持ったラグ溝とすることにより、上記打撃音を低減する方法が行なわれている。
In recent years, with the quietness of vehicles, the contribution of noise caused by tires to automobile noise has increased, and the reduction thereof has been demanded. As the cause of the tire noise, there are ground frictional vibration sound that occurs when the tire contacts the road surface and road surface noise caused by unevenness of the road surface, but in the case of a passenger car, it is particularly formed on the tire tread surface. The ratio of pattern noise due to the tread pattern is large. In particular, when the tread pattern discontinuous part comes into contact with the ground, such as a lag pattern or block pattern, the hitting sound generated by the collision with the road surface is a frequency (pattern pitch frequency) depending on the pitch interval of the lag grooves and blocks and the vehicle speed. This is also called pitch noise.
As a method for reducing the tire noise due to the hitting sound, a method for preventing a single frequency from having a peak by, for example, increasing the pitch interval has been proposed.
Moreover, about the lug groove, the method of reducing the said impact sound is performed by making it into a lug groove with an angle with respect to the tire width direction.

一方、ブロックパターンを有するタイヤにおいては、ラグ溝に角度を持たせると、ブロック形状が平行四辺形に近づくためブロック剛性が低下したり、偏摩耗が生じるなどの問題があることが指摘されていることから、図15(a)に示すように、ブロック50の周方向溝側に、当該ブロック50の最初に接地する側50Aでは幅が広く、タイヤ周方向に沿ってその幅が次第に狭くなっている、その高さがタイヤクラウン部の仮想輪郭線よりも低い面取り部51を設けて、上記ブロック50を徐々に接地させるようにすることにより、踏み込み、蹴り出しのタイミングをずらし、時間軸で上記ピッチノイズを分散させて、上記ピッチノイズを低減する方法や、図15(b)に示すように、ブロック60の踏み込み縁60Aから蹴り出し縁60Bまで、その高さがタイヤクラウン部の仮想輪郭線と等しく、その延長方向がタイヤ周方向に対して傾いた所定幅の平坦部61を設けるとともに、当該ブロック60の最初に接地する踏み込み縁60Aと最後に接地する蹴り出し縁60Bには、周方向溝側に行くに従ってその高さが漸減する低地部62,63を設けて、上記ブロック60を徐々に接地させるようにするとともに、上記ブロック60が徐々に路面から離れるようにすることにより、踏み込み、蹴り出しのタイミングをずらして、上記ピッチノイズを低減する方法などが提案されている(例えば、特許文献1参照)。
特開2003−25810号公報
On the other hand, in tires having a block pattern, it has been pointed out that if the lug grooves are angled, the block shape approaches a parallelogram, resulting in problems such as reduced block rigidity and uneven wear. Therefore, as shown in FIG. 15 (a), on the circumferential groove side of the block 50, the width 50A on the first grounding side of the block 50 is wide, and the width gradually decreases along the tire circumferential direction. By providing a chamfered portion 51 whose height is lower than the virtual contour line of the tire crown portion and gradually bringing the block 50 into contact with the ground, the timing of stepping on and kicking out is shifted, and the time axis is A method of reducing the pitch noise by dispersing the pitch noise, or a kicking edge 60 from the stepping edge 60A of the block 60 as shown in FIG. Until the height of the step 60 is equal to the virtual contour of the tire crown, and a flat portion 61 having a predetermined width in which the extension direction is inclined with respect to the tire circumferential direction is provided. The kicking edge 60B that is finally brought into contact with the ground is provided with low ground portions 62 and 63 that gradually decrease in height toward the circumferential groove side so that the block 60 is grounded gradually. A method has been proposed in which the pitch noise is reduced by gradually moving away from the road surface to shift the stepping and kicking timings (see, for example, Patent Document 1).
JP 2003-25810 A

ところで、自動車用タイヤのトレッドパターンとしては、図16に示すような、一端が周方向溝71側に開口し、他端が周方向溝71,71で区画された陸部内で終端するラグ溝73を有する、周方向に連続するリブ状部72と上記ラグ溝が配置された翼部74とを有する陸部(ラグ溝付リブ)75を備えたトレッドパターンも多く用いられている。このようなトレッドパターンを有するタイヤにおいても、上記ラグ溝73によって区画された翼部74がトレッドパターンの不連続となるので、上記ラグ溝73のピッチに依存するピッチノイズが発生する。
上記ラグ溝付リブ75のように、周方向に連続するリブ状部72を有するトレッドパターンにおいては、ノイズ対策のため、上記ラグ溝73をその延長方向がタイヤ幅方向に対して角度を持つように形成しているので、踏み込み時や蹴り出し時には上記陸部の接地幅は徐々に変化する。したがって、上記ラグ溝73が傾斜している場合には、時間軸で上記ピッチノイズを引き伸すことができるだけでなく、上記リブ状部72では、パターンピッチの周波数成分を持たないので、上記のような面取り部51や低地部62,63を設けなくても、ブロックパターンを有するタイヤに比較して騒音レベルは低くなっている。
しかしながら、上記ラグ溝73のタイヤ幅方向に対する角度を大きくすると、ラグ溝を有するタイヤの特徴である操縦安定性が低下するだけでなく、偏摩耗が起こりやすくなる恐れがある。このように、上記ラグ溝73の角度を大きくするには限界があることから、現状では、トレッドパターンの基調を変更することなく、上記ピッチノイズを低減することは困難であった。
また、上記ラグ溝付リブ75に上記のような面取り部51や低地部62,63を設けることも考えられるが、表面形状の加工において接地面積を過剰に失わないようにするためには、0.5mm程度の落ち高を持たせるのが精一杯であるので、ノイズ性能の改良は必ずしも十分とはいえないだけでなく、表面形状の改良では大きく加工しすぎると偏磨耗性能が悪化することも懸念される。
By the way, as a tread pattern of an automobile tire, as shown in FIG. 16, a lug groove 73 having one end opened on the circumferential groove 71 side and the other end terminated in a land portion defined by the circumferential grooves 71, 71. A tread pattern including a land portion (rib with a lug groove) 75 having a rib-like portion 72 having a circumferential shape and a wing portion 74 in which the lug groove is disposed is also often used. Even in a tire having such a tread pattern, the wings 74 defined by the lug grooves 73 are discontinuous in the tread pattern, so that pitch noise depending on the pitch of the lug grooves 73 is generated.
In a tread pattern having rib-like portions 72 that are continuous in the circumferential direction, such as the ribs 75 with the lug grooves, the extension direction of the lug grooves 73 has an angle with respect to the tire width direction to prevent noise. Therefore, when the foot is stepped on or kicked out, the contact width of the land portion gradually changes. Therefore, when the lug groove 73 is inclined, not only the pitch noise can be stretched on the time axis, but the rib-like portion 72 does not have a frequency component of the pattern pitch. Even without providing the chamfered portion 51 and the low ground portions 62 and 63, the noise level is lower than that of a tire having a block pattern.
However, when the angle of the lug groove 73 with respect to the tire width direction is increased, not only the steering stability, which is a feature of the tire having the lug groove, is deteriorated, but also there is a risk that uneven wear is likely to occur. As described above, since there is a limit to increasing the angle of the lug groove 73, it is difficult to reduce the pitch noise without changing the basic tone of the tread pattern.
In addition, it is conceivable to provide the chamfered portion 51 and the low ground portions 62 and 63 as described above in the lug grooved rib 75. However, in order not to lose the ground contact area excessively in the surface shape processing, 0 Since it is perfect to have a drop height of about 5 mm, the improvement in noise performance is not always sufficient, and if the surface shape is improved too much, uneven wear performance may deteriorate. Concerned.

本発明は、従来の問題点に鑑みてなされたもので、リブ状のトレッドパターンを有する空気入りタイヤにおいて、トレッドパターンの基調を変更することなく、ラグ溝に起因するピッチノイズを抑制して、車両の静粛性を向上させることを目的とする。   The present invention was made in view of conventional problems, and in a pneumatic tire having a rib-like tread pattern, without changing the basic tone of the tread pattern, the pitch noise caused by the lug groove is suppressed, The purpose is to improve the quietness of the vehicle.

本願の請求項1に記載の発明は、タイヤトレッドの表面に、タイヤ周方向に沿って延びる周方向溝により区画され、かつ、一端が上記周方向溝側に開口し他端が当該陸部内で終端し、タイヤ幅方向に対して傾斜した複数本の傾斜ラグ溝を備えた、周方向に連続するリブ状部と上記ラグ溝により区画された翼部とを有する陸部が少なくとも1列設けられた空気入りタイヤであって、上記翼部のタイヤ接地面側で、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に多数の小穴を設けたことを特徴とするものである。
上記周方向端点は、詳細には、図3に示す、傾斜ラグ溝により区画された略平行四辺形状の翼部が、タイヤの正転時において最初に踏込む点である端点P1と最後に踏込む点である端点P2を指す。
In the invention according to claim 1 of the present application, the surface of the tire tread is partitioned by a circumferential groove extending along the tire circumferential direction, and one end is opened to the circumferential groove side and the other end is in the land portion. At least one row of land portions having a plurality of inclined lug grooves that are terminated and inclined with respect to the tire width direction and that have rib-like portions that are continuous in the circumferential direction and wing portions that are partitioned by the lug grooves are provided. The pneumatic tire is characterized in that a large number of small holes are provided in the circumferential groove side on the tire ground contact surface side of the wing portion with respect to the line connecting the circumferential end points of the wing portion. .
More specifically, the circumferential end point is the end point P1, which is the first point at which the substantially parallelogram-shaped wing section defined by the inclined lug groove steps in during normal rotation of the tire, as shown in FIG. The end point P2, which is a point to be inserted, is indicated.

請求項2に記載の発明は、請求項1に記載の空気入りタイヤにおいて、上記ラグ溝のタイヤ幅方向長さをL1とし、上記小穴が設けられた領域の幅をL3としたときに、上記領域幅L3が、0.1≦(L3/L1)≦1.0を満たすことを特徴とするものである。
請求項3に記載の発明は、請求項1または請求項2に記載の空気入りタイヤにおいて、上記ラグ溝の周方向間隔をL2とし、上記小穴が設けられた領域の周方向の長さをL4としたときに、上記領域長さL4が、0.3≦(L4/L2)≦1.0を満たすことを特徴とするものである。
The invention according to claim 2 is the pneumatic tire according to claim 1, wherein when the length of the lug groove in the tire width direction is L1, and the width of the region where the small hole is provided is L3, The region width L3 satisfies 0.1 ≦ (L3 / L1) ≦ 1.0.
According to a third aspect of the present invention, in the pneumatic tire according to the first or second aspect, the circumferential interval between the lug grooves is L2, and the circumferential length of the region where the small holes are provided is L4. In this case, the region length L4 satisfies 0.3 ≦ (L4 / L2) ≦ 1.0.

また、請求項4に記載の発明は、請求項1〜請求項3のいずれかに記載の空気入りタイヤにおいて、上記小穴の深さ方向の断面積を変化させたものである。
請求項5に記載の発明は、請求項1〜請求項4のいずれかに記載の空気入りタイヤにおいて、上記小穴の深さ、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に位置する端点(図3に示す端点P3)に近い位置に形成されたもの程深くしたものである。
請求項6に記載の発明は、請求項1〜請求項5のいずれかに記載の空気入りタイヤにおいて、深さ方向がタイヤ接地面に垂直な方向と所定の角度を有する小穴を設けたものである。
請求項7に記載の発明は、請求項1〜請求項6のいずれかに記載の空気入りタイヤにおいて、上記小穴の密度を上記端点P3に近い程高くしたものである。
請求項8に記載の発明は、請求項1〜請求項7のいずれかに記載の空気入りタイヤにおいて、上記小穴の断面積を上記端点P3に近い程大きくしたものである。
The invention according to claim 4 is the pneumatic tire according to any one of claims 1 to 3, wherein the cross-sectional area in the depth direction of the small hole is changed.
The invention according to claim 5 is the pneumatic tire according to any one of claims 1 to 4, wherein the depth of the small hole and the circumferential groove side from the line connecting the circumferential end points of the wing portion. The one formed closer to the end point located at (end point P3 shown in FIG. 3) is deeper.
The invention according to claim 6 is the pneumatic tire according to any one of claims 1 to 5, wherein a small hole having a predetermined angle with a direction perpendicular to the tire contact surface is provided in the depth direction. is there.
A seventh aspect of the present invention is the pneumatic tire according to any one of the first to sixth aspects, wherein the density of the small holes is increased as the end point P3 is approached.
The invention according to claim 8 is the pneumatic tire according to any one of claims 1 to 7, wherein the cross-sectional area of the small hole is increased as the end point P3 is approached.

本発明によれば、周方向に連続するリブ状部とラグ溝により区画された翼部とを有する陸部(ラグ溝付リブ)が少なくとも1列設けられた空気入りタイヤにおいて、上記翼部のタイヤ接地面側で、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に多数の小穴を設けて、翼部の圧縮剛性を低下させて、翼部の荷重負担を、この翼部と連結されている、周方向に連続なリブ状部にシフトさせるようにしたので、接地面の形状をタイヤ外輪郭に保持したまま、上記翼部に入力する踏み込み時や蹴り出し時の打撃力を減少させることができる。したがって、偏摩耗性能を低下させることなく、上記ラグ溝に起因するピッチノイズを効果的に低減することができる。
このとき、上記翼部の幅をL1とし、上記小穴を形成する領域の幅をL3としたときに、上記L3を、0.1≦(L3/L1)≦1.0を満たす範囲とし、上記ラグ溝の周方向間隔をL2とし、上記小穴が設けられた領域の周方向の長さをL4としたときに、上記領域長さL4を、0.3≦(L4/L2)≦1.0を満たす範囲とすれば、上記ピッチノイズを確実に低減することができる。
また、上記小穴を形成する際に、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に位置する端点P3に近い側に形成する小穴程その深さを深くしたり、断面積を大きくしたり、あるいは、上記端点P3に近い程小穴の密度が高くなるような分布を持たせたりなどして、上記翼部の周方向溝側の圧縮剛性を低下させるようにすれば、上記ピッチノイズを更に低減することができる。
According to the present invention, in a pneumatic tire provided with at least one row of land portions (ribs with lug grooves) having rib-shaped portions continuous in the circumferential direction and wing portions partitioned by lug grooves, On the tire ground contact surface side, many small holes are provided on the circumferential groove side of the line connecting the circumferential end points of the wing part to reduce the compression rigidity of the wing part, and the load burden on the wing part is reduced. Since it is shifted to a rib-like part that is connected to the circumferential part and is continuous in the circumferential direction, the striking at the time of stepping in and kicking out input to the wing part while maintaining the shape of the ground contact surface at the outer contour of the tire The power can be reduced. Therefore, it is possible to effectively reduce the pitch noise caused by the lug groove without deteriorating the uneven wear performance.
At this time, when the width of the wing portion is L1 and the width of the region where the small hole is formed is L3, the L3 is in a range satisfying 0.1 ≦ (L3 / L1) ≦ 1.0, When the circumferential interval between the lug grooves is L2, and the circumferential length of the region provided with the small holes is L4, the region length L4 is set to 0.3 ≦ (L4 / L2) ≦ 1.0. If the range satisfies the above, it is possible to reliably reduce the pitch noise.
Further, when forming the small hole, the depth of the small hole formed closer to the end point P3 located on the circumferential groove side than the line connecting the circumferential end points of the wing portion is increased, or the cross-sectional area is increased. If the compression rigidity on the circumferential groove side of the wing portion is reduced by increasing the diameter or by giving a distribution such that the density of the small holes becomes higher as the end point P3 is closer, the above-mentioned Pitch noise can be further reduced.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本発明の最良の形態に係る空気入りタイヤ10のトレッドパターンの一例を示す図で、図2はその要部を示す斜視図である。各図において、11a〜11dはタイヤ周方向に沿って延びる周方向溝、12は上記周方向溝11a〜11dのうち、タイヤ幅方向外側に位置する周方向溝11a,11dからそれぞれタイヤ幅方向外側に延長する横溝、13はタイヤ幅方向の中央に位置する第1の陸部、14,14は上記中央陸部13の両側に位置し、それぞれに、一端が上記周方向溝11aもしくは周方向溝11d側に開口し他端が当該陸部内で終端する、タイヤ幅方向に対して所定の角度傾斜して形成された複数本のラグ溝15を備えた第2の陸部、16は上記周方向溝11a,11dと上記横溝12とにより区画されたショルダーブロックである。
上記第2の陸部14は、タイヤ周方向に連続して延長するリブ状部14aとこのリブ状部14aから上記周方向溝11d(または、周方向溝11a)側に突出する、上記ラグ溝15,15により区画された多数の翼部14bとを有する陸部で、本実施の形態では、この第2の陸部14、14の各翼部14bがリブ状部14aと一体となっている側とは反対側のタイヤ接地面側に、多数の小穴14hが形成された略三角形状の小穴領域14cを設けるようにしている。なお、以下、この第2の陸部14,14をラグ溝付リブと呼ぶ。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing an example of a tread pattern of a pneumatic tire 10 according to the best mode of the present invention, and FIG. 2 is a perspective view showing an essential part thereof. In each figure, 11a-11d is a circumferential groove extending along the tire circumferential direction, and 12 is an outer side in the tire width direction from circumferential grooves 11a, 11d located on the outer side in the tire width direction among the circumferential grooves 11a-11d. , 13 is a first land portion located in the center in the tire width direction, 14 and 14 are located on both sides of the central land portion 13, and one end thereof is the circumferential groove 11 a or the circumferential groove. A second land portion 16 having a plurality of lug grooves 15 formed at a predetermined angle with respect to the tire width direction, opened to the 11d side and terminated at the other end in the land portion. A shoulder block defined by the grooves 11a and 11d and the lateral grooves 12.
The second land portion 14 includes a rib-like portion 14a extending continuously in the tire circumferential direction and the lug groove protruding from the rib-like portion 14a toward the circumferential groove 11d (or the circumferential groove 11a). In this embodiment, each wing part 14b of the second land parts 14 and 14 is integrated with the rib-like part 14a. A substantially triangular small hole region 14c in which a large number of small holes 14h are formed is provided on the tire contact surface side opposite to the side. Hereinafter, the second land portions 14 and 14 are referred to as lug grooved ribs.

上記小穴14hは、基本的には、その周囲の接地圧を下げる方向に働く。その理由はゴムの非圧縮性にある。すなわち、ピッチに対応した騒音入力はゴムを変形させる力として作用するので、上記翼部14bのような周方向に不連続な部分の接地圧を効果的に下げることができれば、その部分の荷重はピッチ入力のない周方向連続部(リブ状部14a)が負担することになる。また、上記翼部14bにおいては、周方向連続部であるリブ状部14aから遠いほど、部分的には完全に溝で区画されたブロックに近い挙動を示すので、騒音入力としての寄与は周方向溝11d側に近いほど大きい。
そこで、本例では、図3(a),(b)に示すように、翼部14bの、タイヤ転動時において最初に踏込む点または最後に踏込む点である周方向端点P1及び端点P2とを結ぶ線よりも周方向溝11d側に、上記周方向溝側の周方向端点ではない端点P3(以下、このP3を中間端点という)を含む、タイヤ幅方向に沿った長さ(領域幅)がL3で、タイヤ外輪郭に沿う周方向長さ(領域長さ)がL4の、等間隔に設けられた多数の小穴14hを配置して成る略三角形状の小穴領域14cを設けることにより、図3(c)に示すように、上記周方向に連続なリブ状部14aから離れるにつれて、上記翼部14bの接地圧を減少させることができるので、上記翼部14bの荷重負担を、上記翼部14bと連結されている、周方向に連続なリブ状部14aにシフトさせることができる。
The small hole 14h basically works in a direction to lower the surrounding ground pressure. The reason is the incompressibility of rubber. That is, since the noise input corresponding to the pitch acts as a force for deforming the rubber, if the ground contact pressure in the circumferentially discontinuous portion such as the wing portion 14b can be effectively reduced, the load on that portion is The circumferential continuous portion (rib-shaped portion 14a) without pitch input bears this. Further, in the wing part 14b, the further away from the rib-like part 14a that is a circumferentially continuous part, the behavior is closer to a block that is partially partitioned by a groove, so the contribution as noise input is circumferential. The closer to the groove 11d side, the larger.
Therefore, in this example, as shown in FIGS. 3A and 3B, the circumferential end point P1 and the end point P2 of the wing portion 14b, which are the first step point or the last step point when the tire rolls. A length (region width) along the tire width direction including an end point P3 (hereinafter, P3 is referred to as an intermediate end point) that is not a circumferential end point on the circumferential groove side on the circumferential groove 11d side of the line connecting ) Is L3, and the circumferential length (region length) along the outer contour of the tire is L4, by providing a substantially triangular small hole region 14c formed by arranging a large number of small holes 14h provided at equal intervals, As shown in FIG. 3 (c), the ground pressure of the wing part 14b can be reduced as the distance from the rib-like part 14a continuous in the circumferential direction decreases. Rib shape connected to the portion 14b and continuous in the circumferential direction It can be shifted to 14a.

ここで、上記小穴領域14cの形状を略三角形状としたことについて説明する。
踏み込み時にエッジが路面に当たった際のインパクト入力(=力や荷重)は小穴14hがない部分に集中し、小穴14hの近傍では騒音入力が減少すると考えられる。そこで、踏み込み側のエッジ内及び蹴りだし側のエッジ内(上記の端点P1及び端点P2近傍)において、このインパクト入力が集中するタイミングを減らすには、最初に踏込む点または最後に踏込む点が「穴のない部分」であることが望ましい。すなわち、可能な限り長い時間をかけて荷重入力を受け止めるためには、翼部14bの周方向端点P1,P2近傍には小穴14hを設けないほうがよい。このような条件を満たすためには、上記小穴領域14cとしては、上記翼部14bの周方向端点P1,P2を結ぶ線よりも周方向溝11d側に設けてあればよい。
すなわち、上記小穴領域14cの適切な形状としては、上記図3(a)に示したような、タイヤ幅方向に沿った長さが上記端点P1側から上記端点P2側に行くにしたがって一様に小さくなるような略三角形状に限らず、例えば、図4(a),(b)に示すような、タイヤ幅方向に沿った長さの変化が上記端点P1側では小さいが端点P2側では大きくなるような形状や、その逆に上記端点P1側では大きく端点P2側では小さくなるような形状など、翼部14bの周方向端点P1及び端点P2とを結ぶ線よりも周方向溝11d側に設けられた、領域幅がL3で、領域長さがL4の周方向溝側の周方向端点ではない端点P3を含む形状であれば、上記翼部14bの接地圧を下げることができるとともに、上記翼部14bの荷重負担を、上記翼部14bと連結されている、周方向に連続なリブ状部14aにシフトさせることができるので、上記翼部14bに入力する踏み込み時や蹴り出し時の打撃力を減少させることができ、上記ラグ溝15に起因するピッチノイズを大幅に低減することができる。
また、本発明のように、表面形状の加工ではなく、小穴領域14cを設けて翼部14bの接地圧を下げるようにすれば、基本的にパターンはその表面形状がタイヤ外輪郭と一致するので、偏摩耗しにくいだけでなく、磨耗の原因となる接地面内の剪断力が上記小穴14hによる接地圧低減効果により小さくなるので、従来のタイヤで懸念されていた、偏摩耗への影響を大幅に小さくすることができる。
Here, the fact that the shape of the small hole region 14c is substantially triangular will be described.
It is considered that the impact input (= force or load) when the edge hits the road surface when stepping on is concentrated in a portion where there is no small hole 14h, and the noise input is reduced in the vicinity of the small hole 14h. Therefore, in order to reduce the timing at which this impact input is concentrated in the stepping side edge and the kicking side edge (near the end point P1 and end point P2), the first step point or the last step point is It is desirable that the “portion without a hole”. That is, in order to receive the load input as long as possible, it is better not to provide the small hole 14h in the vicinity of the circumferential end points P1 and P2 of the wing portion 14b. In order to satisfy such a condition, the small hole region 14c may be provided on the circumferential groove 11d side with respect to the line connecting the circumferential end points P1 and P2 of the wing portion 14b.
That is, as an appropriate shape of the small hole region 14c, as shown in FIG. 3A, the length along the tire width direction is uniform as it goes from the end point P1 side to the end point P2 side. For example, as shown in FIGS. 4A and 4B, the change in length along the tire width direction is small on the end point P1 side but large on the end point P2 side. Such as a shape that is larger on the end point P1 side and smaller on the end point P2 side than the line connecting the circumferential end point P1 and the end point P2 of the wing part 14b. If the shape includes the end point P3 that is not the circumferential end point on the circumferential groove side with the region width of L3 and the region length of L4, the contact pressure of the blade part 14b can be reduced, and the blade The load on the portion 14b 14b can be shifted to the circumferentially continuous rib-like portion 14a, so that the striking force when stepping on or kicking out the wing portion 14b can be reduced, and the lug groove The pitch noise caused by 15 can be greatly reduced.
In addition, as in the present invention, instead of processing the surface shape, if the small hole region 14c is provided to reduce the contact pressure of the wing portion 14b, the surface shape of the pattern basically matches the outer contour of the tire. In addition to being less susceptible to uneven wear, the shear force in the ground contact surface, which causes wear, is reduced by the effect of reducing the contact pressure by the small hole 14h, greatly affecting the uneven wear that has been a concern with conventional tires. Can be made smaller.

このとき、上記図3(a)に示した小穴領域14cの領域幅L3としては、上記翼部14bのタイヤ表面に沿った幅(翼部幅)をL1としたとき、0.1≦(L3/L1)≦1.0を満たす範囲に設定することが好ましい。
上記領域幅L3の翼部幅L1に対する比である幅比(L3/L1)が0.1未満である場合には小穴14hを設けた効果が少なく、上記翼部14bの荷重負担を連続部であるリブ状部14aに十分にシフトさせることができないので、パターンノイズの低減が望めない。また、幅比の上限値が1.0なのは、小穴領域14cを翼部14bにのみ設けることを意味している。すなわち、リブ状部14aにも小穴14hを設けると、リブ状部14aの接地圧まで減少してしまうので、かえってパターンノイズが増大する恐れがある。したがって、上記幅比(L3/L1)の範囲としては0.1〜1.0とすることが好ましい。
なお、このような小穴14hは、サイプなどの細溝と異なり、翼部14bそのものの挙動を大きく変えることはないので、偏摩耗や操縦安定性に悪影響を与えることなく、ノイズ特性を改善することができる。
At this time, as the region width L3 of the small hole region 14c shown in FIG. 3A, 0.1 ≦ (L3) when the width (wing portion width) along the tire surface of the wing portion 14b is L1. / L1) It is preferable to set in a range satisfying ≦ 1.0.
When the width ratio (L3 / L1), which is the ratio of the region width L3 to the blade width L1, is less than 0.1, the effect of providing the small hole 14h is small, and the load burden of the blade 14b is a continuous portion. Since it cannot be sufficiently shifted to a certain rib-like portion 14a, reduction of pattern noise cannot be expected. Further, the upper limit value of the width ratio being 1.0 means that the small hole region 14c is provided only in the wing portion 14b. That is, if the small holes 14h are also provided in the rib-shaped portion 14a, the ground pressure of the rib-shaped portion 14a is reduced, so that pattern noise may be increased. Therefore, the range of the width ratio (L3 / L1) is preferably 0.1 to 1.0.
Such small holes 14h, unlike narrow grooves such as sipes, do not significantly change the behavior of the wings 14b themselves, so that noise characteristics can be improved without adversely affecting uneven wear or steering stability. Can do.

また、上記小穴領域14cの領域長さL4としては、上記ラグ溝15,15の周方向間隔(翼部長さ)をL2としたとき、0.3≦(L4/L2)≦1.0を満たす範囲に設定することが好ましい。上記領域長さL4の翼部長さL2に対する比である長さ比(L4/L2)が0.3未満である場合には小穴14hを設けた効果が少ないので、パターンノイズの低減が望めない。また、上記小穴領域14cは翼部14bの周方向端点P1及び端点P2とを結ぶ線よりも周方向溝11d側に設けられるので、長さ比の上限値は1.0としても上記端点P2近傍では殆ど小穴14hがなく、いわゆる「穴のない部分」になるので、問題はない。   Further, the region length L4 of the small hole region 14c satisfies 0.3 ≦ (L4 / L2) ≦ 1.0, where L2 is the circumferential interval (blade portion length) of the lug grooves 15 and 15. It is preferable to set the range. When the length ratio (L4 / L2), which is the ratio of the region length L4 to the wing length L2, is less than 0.3, the effect of providing the small holes 14h is small, and therefore the pattern noise cannot be reduced. Further, since the small hole region 14c is provided on the circumferential groove 11d side with respect to the line connecting the circumferential end point P1 and the end point P2 of the wing portion 14b, even if the upper limit value of the length ratio is 1.0, the vicinity of the end point P2 Then, since there is almost no small hole 14h, it becomes a so-called “part without a hole”, so there is no problem.

このように、本最良の形態によれば、タイヤトレッドの表面に、タイヤ周方向に連続して延長するリブ状部14aとこのリブ状部14aから上記周方向溝11d側に突出する、上記ラグ溝15,15により区画された多数の翼部14bとを有するラグ溝付リブ14が設けられたトレッドパターンを有する空気入りタイヤにおいて、上記ラグ溝付リブ14の各翼部14bの周方向端点P1及び端点P2とを結ぶ線よりも周方向溝11d側に、タイヤ幅方向に沿った長さL3が翼部14bの幅L1に対して0.1〜1.0であり、タイヤ周方向に沿った長さL4が上記ラグ溝15,15の周方向間隔L2に対して0.3〜1.0である、略三角形状の、等間隔に設けられた多数の小穴14hを配置して成る小穴領域14cを設けたので、上記翼部14bの接地圧を効果的に低減させることができ、上記翼部14bの荷重負担を上記リブ状部14aに有効にシフトさせることができる。したがって、上記翼部14bに入力する踏み込み時や蹴り出し時の打撃力を減少させることができ、上記ラグ溝15に起因するパターンノイズを大幅に低減することができる。   Thus, according to the best mode, the lug on the surface of the tire tread continuously extends in the tire circumferential direction and the lug protrudes from the rib-shaped portion 14a toward the circumferential groove 11d. In a pneumatic tire having a tread pattern provided with ribs 14 with lug grooves having a plurality of wing parts 14b partitioned by grooves 15, 15, circumferential end points P1 of the wing parts 14b of the ribs 14 with lag grooves The length L3 along the tire width direction is 0.1 to 1.0 with respect to the width L1 of the wing portion 14b on the circumferential groove 11d side of the line connecting the end point P2 and along the tire circumferential direction. A small hole formed by arranging a large number of small holes 14h provided at equal intervals in a substantially triangular shape having a length L4 of 0.3 to 1.0 with respect to the circumferential distance L2 of the lug grooves 15, 15. Since the region 14c is provided, the wing portion The ground pressure of 4b can be effectively reduced, the load bearing of the blade portion 14b can be effectively shifted to the rib-like portion 14a. Therefore, the striking force at the time of depressing and kicking input to the wing portion 14b can be reduced, and the pattern noise caused by the lug groove 15 can be greatly reduced.

なお、上記実施の形態では、その断面積が深さ方向に一様な小穴14hを設けた場合について説明したが、上記小穴14hは上記ラグ溝付リブ14内、特に、上記翼部14b内で剛性の分布が得られればよいので、小穴の形や大きさ、深さ方向等は、必ずしも一様なものである必要はない。
ところで、小穴の深さが深い方が剛性差が大きい。そこで、図3(c)に示すような接地圧分布を作り出すためには、上記周方向溝側の周方向端点ではない端点である中間端点P3に近づくほど接地圧が低下するようにする必要がある。そこで、例えば、図5(a),(b)に示すように、上記中間端点P3近傍の小穴を深くしたり、図6に示すように、小穴の密度を高くしたりすることが好ましい。あるいは、図7に示すように、上記中間端点P3近傍の小穴の穴径を大きくするなどして、上記小穴の断面積を大きくするようにしてもよい。
また、上記小穴は、図8(a),(b)に示すように、断面積が深さ方向に変化したものであってもよい。これにより、接地面での穴径が同じでも小穴14hの断面積を変化させることもできる。また、ラグ溝付リブ14あるいは翼部14bに壁角度がついている場合には、図9(a),(b)に示すように、小穴14hの延長方向を溝壁角度に合わせるようにすれば、トレッドゲージよりも深い穴を容易に形成することができる。
In the above-described embodiment, the case where the small holes 14h having a uniform cross-sectional area in the depth direction has been described. However, the small holes 14h are formed in the ribs 14 with the lug grooves, particularly in the blade 14b. Since it is only necessary to obtain a distribution of rigidity, the shape, size, depth direction, and the like of the small holes are not necessarily uniform.
By the way, the rigidity difference is larger when the small hole is deeper. Therefore, in order to create a contact pressure distribution as shown in FIG. 3C, it is necessary to reduce the contact pressure as it approaches the intermediate end point P3 that is not the end point in the circumferential direction on the circumferential groove side. is there. Therefore, for example, as shown in FIGS. 5A and 5B, it is preferable to make the small holes near the intermediate end point P3 deeper or to increase the density of the small holes as shown in FIG. Alternatively, as shown in FIG. 7, the cross-sectional area of the small hole may be increased by increasing the diameter of the small hole near the intermediate end point P3.
Further, the small hole may have a cross-sectional area that changes in the depth direction as shown in FIGS. Thereby, even if the hole diameter in the contact surface is the same, the cross-sectional area of the small hole 14h can be changed. Further, when the wall angle is attached to the lug-grooved rib 14 or the wing portion 14b, as shown in FIGS. 9A and 9B, the extending direction of the small hole 14h is adjusted to the groove wall angle. A hole deeper than the tread gauge can be easily formed.

また、本発明は、図10(a),(b)に示すような、例えば、溝幅が1mm以下である細溝(サイプ)17などでリブ状部14aが分断されているようなトレッドパターンであっても適用可能である。これは、上記細溝17の幅がラグ溝15の溝幅よりも狭く、かつ、接地面内において閉じてしまうので、ノイズ入力にはなりにくいので、ノイズ入力としては、ラグ溝15によるもののみを対象とすればよいからである。同様に、ラグ溝幅に分布がある場合には、周方向断面から見て、その幅の広い部分に上記小穴14hを設けるようにすれば、ピッチノイズを効果的に低減することができる。   Further, the present invention is a tread pattern in which the rib-like portion 14a is divided by a narrow groove (sipe) 17 having a groove width of 1 mm or less, as shown in FIGS. 10 (a) and 10 (b). Even so, it is applicable. This is because the width of the narrow groove 17 is narrower than the width of the lug groove 15 and closes in the ground plane, so that it is difficult for noise to be input. This is because it is sufficient to target. Similarly, when there is a distribution in the lug groove width, pitch noise can be effectively reduced by providing the small hole 14h in a portion having a wide width as viewed from the circumferential cross section.

図1に示した、本発明による翼部14bに多数の小穴14hが形成されたラグ溝付リブ部を備えたトレッドパターンを有するタイヤ(実施例1)を作製し、タイヤ騒音を測定した。上記トレッドパターンにおいて、翼部の幅は、L1=25mm、L2=30mmであり、小穴領域は、領域幅がL3=20mm、領域長さがL4=25mmの略三角形状とし、この領域に、ほぼ等間隔で直径が1mm、深さが7mmの円形の小穴を44個/ブロック設けた。また、比較のため、図16に示した、翼部14bに小穴が形成されていないラグ溝付リブ部75を備えたトレッドパターンを有するタイヤ(従来例)を作製し、タイヤ騒音を測定した。
上記タイヤのタイヤサイズは、いずれも235/50R17で、荷重は4.8kN、タイヤ内圧は210kPaである。また、タイヤ騒音の測定は、試験タイヤを回転ドラム上で、速度80km/hrにて走行させ、タイヤ横方向1m、高さ0.25mの位置に設置したマイクロフォンを使用して、上記タイヤの発生する音圧レベルをそれぞれ測定するとともに、その音圧レベルを従来例を100とした指数で評価した。このとき、希求水準は実車試験でも効果が見込める値として、指数で10以上の改善(削減)としている。
試験の結果、実施例1の本発明のトレッドパターンを有するタイヤの音圧レベルの指標は82であった。これにより、本発明のトレッドパターンを有するタイヤは、従来のタイヤに比べてタイヤ騒音が大幅に改善されていることが確認された。
A tire (Example 1) having a tread pattern provided with rib portions with lug grooves in which a large number of small holes 14h are formed in the wing portion 14b according to the present invention shown in FIG. 1 was manufactured, and tire noise was measured. In the tread pattern, the width of the wing portion is L1 = 25 mm, L2 = 30 mm, and the small hole region has a substantially triangular shape with a region width of L3 = 20 mm and a region length of L4 = 25 mm. 44 small circular holes / block having a diameter of 1 mm and a depth of 7 mm were provided at equal intervals. For comparison, a tire (conventional example) having a tread pattern provided with rib portions 75 with lug grooves in which small holes are not formed in the wing portion 14b shown in FIG. 16 was manufactured, and tire noise was measured.
The tire sizes of all the tires are 235 / 50R17, the load is 4.8 kN, and the tire internal pressure is 210 kPa. The tire noise is measured by running a test tire on a rotating drum at a speed of 80 km / hr and using a microphone installed at a position 1 m in the tire lateral direction and 0.25 m in height. The sound pressure level to be measured was measured, and the sound pressure level was evaluated by an index with the conventional example as 100. At this time, the demand level is an improvement (reduction) of 10 or more in the index as a value that can be expected to be effective in the actual vehicle test.
As a result of the test, the index of the sound pressure level of the tire having the tread pattern of the present invention of Example 1 was 82. As a result, it was confirmed that the tire having the tread pattern of the present invention has significantly improved tire noise as compared with the conventional tire.

次に、領域長さをL4=25mmに固定し、領域幅をL3=1.25mm〜25mmまで変化させて音圧レベルを測定した結果を図11(a),(b)に示す。小穴は、上記実施例1と同様に、直径が1mm、深さが7mmの円形のものとし、小穴の密度についても実施例1と同じ密度とした。なお、図11(b)の横軸は幅比(L3/L1)、縦軸は従来例の音圧レベルを100としたときの音圧レベルの指数(結果指数)Kである。
図11(a),(b)から明らかなように、結果指数は(L3/L1)が0.7である実施例5がK=81と最も良いが、(L3/L1)の値が0.1〜1.0の範囲にある実施例2〜4、及び、実施例6,7においても、指数で10以上の改善が見られ、実車試験でも効果が見込める値となることが確認された。
一方、(L3/L1)の値が0.05である比較例1では、K=94とあまり改善効果が見られなかった。
Next, the results of measuring the sound pressure level with the region length fixed at L4 = 25 mm and the region width varied from L3 = 1.25 mm to 25 mm are shown in FIGS. The small holes were circular with a diameter of 1 mm and a depth of 7 mm, as in Example 1, and the density of the small holes was also the same as in Example 1. In FIG. 11B, the horizontal axis represents the width ratio (L3 / L1), and the vertical axis represents the sound pressure level index (result index) K where the sound pressure level of the conventional example is 100.
As is apparent from FIGS. 11A and 11B, the result index is best when K = 81 in Example 5 where (L3 / L1) is 0.7, but the value of (L3 / L1) is 0. Also in Examples 2 to 4 and Examples 6 and 7 in the range of .1 to 1.0, an improvement of 10 or more was observed in the index, and it was confirmed that the value can be expected in the actual vehicle test. .
On the other hand, in Comparative Example 1 in which the value of (L3 / L1) is 0.05, K = 94, and the improvement effect was not seen so much.

また、領域幅をL3=20mmに固定し、領域長さをL4=6mm〜30mmまで変化させて音圧レベルを測定した結果を図12(a),(b)に示す。小穴は、上記実施例1と同様に、直径が1mm、深さが7mmの円形のものとし、小穴の密度についても実施例1と同じ密度とした。なお、図12(b)の横軸は長さ比(L4/L2)、縦軸は従来例の音圧レベルを100としたときの音圧レベルの指数(結果指数)Kである。
図12(a),(b)から明らかなように、結果指数は(L4/L2)が0.5である実施例9がK=76と最も良いが、(L4/L2)の値が0.3〜1.0の範囲にある実施例8,9、及び、実施例11,12においても、指数で10以上の改善が見られ、実車試験でも効果が見込める値となることが確認された。
一方、(L4/L2)の値が0.2である比較例2では、K=98とあまり改善効果が見られなかった。
12A and 12B show the results of measuring the sound pressure level while fixing the region width to L3 = 20 mm and changing the region length from L4 = 6 mm to 30 mm. The small holes were circular with a diameter of 1 mm and a depth of 7 mm, as in Example 1, and the density of the small holes was also the same as in Example 1. In FIG. 12B, the horizontal axis represents the length ratio (L4 / L2), and the vertical axis represents the sound pressure level index (result index) K when the conventional sound pressure level is 100.
As is clear from FIGS. 12A and 12B, the result index is best in Example 9 where (L4 / L2) is 0.5, with K = 76, but the value of (L4 / L2) is 0. Also in Examples 8 and 9 and Examples 11 and 12 in the range of 3 to 1.0, an improvement of 10 or more was observed in the index, and it was confirmed that the value could be expected in the actual vehicle test. .
On the other hand, in Comparative Example 2 in which the value of (L4 / L2) is 0.2, K = 98, and the improvement effect was not seen so much.

次に、小穴の形成領域幅をL2=20mm、L4=25mmに、穴数を44個/ブロックに固定し、小穴の深さ、密度分布、開口部の大きさ、形成領域などの異なるトレッドパターンを有するタイヤ(実施例13〜実施例17)を作製して、音圧レベルを測定した。
実施例13は、図5(a),(b)に示したような、小穴の深さを3mm〜9mmの間で分布させ、かつ、小穴の深さを中間端点P3に近い程深くしたもので、結果指数はK=80と、穴深さが全て7mmと一様な実施例1よりも騒音低減効果が更に向上していることが分かった。
実施例14は、図6に示したような、小穴の密度を中間端点P3に近いほど高くしたもので、結果指数はK=78と、小穴の密度分布が一定な実施例1よりも騒音低減効果が更に向上していることが分かった。
実施例15は、図7に示したような、小穴の径を0.8mm〜3mmの間で分布させるとともに、中間端点P3近傍の小穴の径を大きくしたもので、結果指数はK=76と騒音低減効果が大幅に向上していることが分かった。
また、実施例16は、図13に示すように、開口部の穴径を大小ランダムに組合わせたものとし、かつ、穴の総面積を実施例1と同じくしたもので、結果指数はK=83と実施例1とほぼ同等の改善が見られた。
また、実施例17は、図14(a),(b)に示すように、穴深さが異なる小穴14h,14Hを設けるとともに、小穴の径が周囲の小穴と異なるように配置したもので、上記実施例17の小穴14h,14Hの個数と深さの合計は、上記実施例1の場合と一致するようにしている。実施例17の結果指数はK=81で、実施例1とほぼ同等であった。このように、穴深さが周囲の小穴と異なるように配置した場合には、穴底のクラックの発生によるブロック(翼部)の破壊の可能性が小さくなるという利点を有する。
Next, the formation area width of small holes is fixed to L2 = 20 mm, L4 = 25 mm, the number of holes is fixed to 44 / block, and different tread patterns such as small hole depth, density distribution, opening size, formation area, etc. The tires (Example 13 to Example 17) having the above were manufactured, and the sound pressure level was measured.
In Example 13, as shown in FIGS. 5A and 5B, the depth of the small holes is distributed between 3 mm and 9 mm, and the depth of the small holes is made deeper as it is closer to the intermediate end point P3. Thus, the result index was K = 80, and it was found that the noise reduction effect was further improved as compared with Example 1 where the hole depth was all 7 mm.
In the fourteenth embodiment, as shown in FIG. 6, the density of the small holes is increased as the distance from the intermediate end point P3 is increased. It was found that the effect was further improved.
In Example 15, as shown in FIG. 7, the diameter of the small holes was distributed between 0.8 mm and 3 mm, and the diameter of the small holes near the intermediate end point P3 was increased. The result index was K = 76. It was found that the noise reduction effect was greatly improved.
Further, in Example 16, as shown in FIG. 13, the hole diameters of the openings are combined at random, and the total area of the holes is the same as that in Example 1, and the result index is K = 83 and almost the same improvement as in Example 1 were observed.
Further, in Example 17, as shown in FIGS. 14A and 14B, small holes 14h and 14H having different hole depths are provided, and the diameters of the small holes are different from those of the surrounding small holes. The total number of the small holes 14h and 14H and the depth of the seventeenth embodiment are made to coincide with those of the first embodiment. The result index of Example 17 was K = 81, which was almost equivalent to Example 1. Thus, when it arrange | positions so that a hole depth may differ from the surrounding small hole, it has an advantage that the possibility of destruction of the block (wing | blade part) by generation | occurrence | production of the crack of a hole bottom becomes small.

このように、本発明によれば、トレッドパターンの基調を変更することなく、ラグ溝に起因するピッチノイズを抑制することができるので、車両の静粛性を容易に向上させることができる。   Thus, according to the present invention, since the pitch noise caused by the lug groove can be suppressed without changing the basic tone of the tread pattern, the quietness of the vehicle can be easily improved.

本発明の最良の形態に係る空気入りタイヤのトレッドパターンを示す図である。It is a figure which shows the tread pattern of the pneumatic tire which concerns on the best form of this invention. 本最良の形態に係るラグ溝付リブの概要を示す斜視図である。It is a perspective view which shows the outline | summary of the rib with a lug groove which concerns on this best form. 本最良の形態に係る翼部の詳細と、ラグ溝付リブの接地圧分布を示す図である。It is a figure which shows the detail of the wing | blade part which concerns on this best form, and the contact pressure distribution of the rib with a lug groove. 本発明による小穴領域の他の形態を示す図である。It is a figure which shows the other form of the small hole area | region by this invention. 本発明による小穴の分布状態の一例を示す図である。It is a figure which shows an example of the distribution state of the small hole by this invention. 本発明による小穴の分布状態の一例を示す図である。It is a figure which shows an example of the distribution state of the small hole by this invention. 本発明による小穴の分布状態の一例を示す図である。It is a figure which shows an example of the distribution state of the small hole by this invention. 本発明による小穴の形状を示す図である。It is a figure which shows the shape of the small hole by this invention. 本発明による小穴の形状を示す図である。It is a figure which shows the shape of the small hole by this invention. 本発明によるラグ溝付リブの他の形態を示す図である。It is a figure which shows the other form of the rib with a lug groove | channel by this invention. 小穴領域の幅比と音圧レベルとの関係を示す図である。It is a figure which shows the relationship between the width ratio of a small hole area | region, and a sound pressure level. 小穴領域の長さ比と音圧レベルとの関係を示す図である。It is a figure which shows the relationship between the length ratio of a small hole area | region, and a sound pressure level. 本発明による小穴の分布状態の他の例を示す図である。It is a figure which shows the other example of the distribution state of the small hole by this invention. 本発明による小穴の分布状態の他の例を示す図である。It is a figure which shows the other example of the distribution state of the small hole by this invention. 従来のブロックパターンを有する空気入りタイヤのブロックの構成を示す図である。It is a figure which shows the structure of the block of the pneumatic tire which has the conventional block pattern. 従来のラグ溝付リブを備えたトレッドパターンを示す図である。It is a figure which shows the tread pattern provided with the conventional rib with a lug groove.

符号の説明Explanation of symbols

10 空気入りタイヤ、11a〜11d 周方向溝、12 横溝、13 第1の陸部、14 第2の陸部(ラグ溝付リブ)、14a リブ状部、14b 翼部、
14c 小穴領域、14h 小穴、15 ラグ溝、16 ショルダーブロック。
DESCRIPTION OF SYMBOLS 10 Pneumatic tire, 11a-11d Circumferential groove | channel, 12 Lateral groove, 13 1st land part, 14 2nd land part (rib with a lug groove), 14a Rib-shaped part, 14b Wing part,
14c Small hole area, 14h Small hole, 15 lug groove, 16 shoulder block.

Claims (8)

タイヤトレッドの表面に、タイヤ周方向に沿って延びる周方向溝により区画され、かつ、一端が上記周方向溝側に開口し他端が当該陸部内で終端し、タイヤ幅方向に対して傾斜した複数本の傾斜ラグ溝を備えた、周方向に連続するリブ状部と上記ラグ溝により区画された翼部とを有する陸部が少なくとも1列設けられた空気入りタイヤであって、上記翼部のタイヤ接地面側で、上記翼部の最初に踏込む点または最後に踏込む点である周方向端点同士を結ぶ線よりも周方向溝側に多数の小穴を設けたことを特徴とする空気入りタイヤ。   The surface of the tire tread is partitioned by a circumferential groove extending along the tire circumferential direction, and one end opens to the circumferential groove side and the other end terminates in the land portion, and is inclined with respect to the tire width direction. A pneumatic tire provided with at least one row of land portions each having a plurality of inclined lug grooves and having rib-like portions continuous in the circumferential direction and wing portions partitioned by the lug grooves, An air characterized in that a large number of small holes are provided in the circumferential groove side from the line connecting the circumferential end points that are the first step or the last step of the wing on the tire contact surface side. Enter tire. 上記ラグ溝のタイヤ幅方向長さをL1とし、上記小穴が設けられた領域の幅をL3としたときに、上記領域幅L3は、0.1≦(L3/L1)≦1.0を満たすことを特徴とする請求項1に記載の空気入りタイヤ。   When the length of the lug groove in the tire width direction is L1, and the width of the region provided with the small hole is L3, the region width L3 satisfies 0.1 ≦ (L3 / L1) ≦ 1.0. The pneumatic tire according to claim 1. 上記ラグ溝の周方向間隔をL2とし、上記小穴が設けられた領域の周方向の長さをL4としたときに、上記領域長さL4は、0.3≦(L4/L2)≦1.0を満たすことを特徴とする請求項1または請求項2に記載の空気入りタイヤ。   When the circumferential interval between the lug grooves is L2, and the circumferential length of the region provided with the small holes is L4, the region length L4 is 0.3 ≦ (L4 / L2) ≦ 1. The pneumatic tire according to claim 1 or 2, wherein 0 is satisfied. 上記小穴の深さ方向の断面積を変化させたことを特徴とする請求項1〜請求項3のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein a cross-sectional area in the depth direction of the small hole is changed. 上記小穴の深さを、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に位置する端点に近い位置に形成されたもの程深くしたことを特徴とする請求項1〜請求項4のいずれかに記載の空気入りタイヤ。   The depth of the small hole is made deeper as it is formed closer to the end point located on the circumferential groove side than the line connecting the circumferential end points of the wing part. 4. The pneumatic tire according to any one of 4 above. 深さ方向がタイヤ接地面に垂直な方向と所定の角度を有する小穴を設けたことを特徴とする請求項1〜請求項5のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 5, wherein a small hole having a predetermined angle with a direction perpendicular to the tire ground contact surface is provided. 上記小穴の密度を、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に位置する端点に近い位置に形成されたもの程高くしたことを特徴とする請求項1〜請求項6のいずれかに記載の空気入りタイヤ。   The density of the small holes is made higher as it is formed closer to the end point located on the circumferential groove side than the line connecting the circumferential end points of the wing part. The pneumatic tire according to any one of the above. 上記小穴の断面積を、上記翼部の周方向端点同士を結ぶ線よりも周方向溝側に位置する端点に近い位置に形成されたもの程大きくしたことを特徴とする請求項1〜請求項7のいずれかに記載の空気入りタイヤ。

The cross-sectional area of the small hole is made larger as it is formed closer to the end point located on the circumferential groove side than the line connecting the circumferential end points of the wing part. The pneumatic tire according to any one of 7.

JP2005354024A 2005-12-07 2005-12-07 Pneumatic tire Expired - Fee Related JP4717615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354024A JP4717615B2 (en) 2005-12-07 2005-12-07 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354024A JP4717615B2 (en) 2005-12-07 2005-12-07 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2007153239A true JP2007153239A (en) 2007-06-21
JP4717615B2 JP4717615B2 (en) 2011-07-06

Family

ID=38238132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354024A Expired - Fee Related JP4717615B2 (en) 2005-12-07 2005-12-07 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4717615B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056478A (en) * 2010-09-09 2012-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
US20120145293A1 (en) * 2010-12-14 2012-06-14 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
JP2013028233A (en) * 2011-07-27 2013-02-07 Bridgestone Corp Tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140605A (en) * 1979-04-18 1980-11-04 Bridgestone Corp Tread sheath for large radial tire
JPS6259107A (en) * 1985-08-15 1987-03-14 Bridgestone Corp Pneumatic tire
JPH0485108A (en) * 1990-07-26 1992-03-18 Bridgestone Corp Pneumatic tire suppressed in offset abrasion
JP2002248906A (en) * 2000-11-13 2002-09-03 Soc De Technol Michelin Tread pattern for radial carcass tire
JP2004001608A (en) * 2002-05-31 2004-01-08 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2004090766A (en) * 2002-08-30 2004-03-25 Bridgestone Corp Pneumatic tire and method for measuring vibration transmission characteristic of wheel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140605A (en) * 1979-04-18 1980-11-04 Bridgestone Corp Tread sheath for large radial tire
JPS6259107A (en) * 1985-08-15 1987-03-14 Bridgestone Corp Pneumatic tire
JPH0485108A (en) * 1990-07-26 1992-03-18 Bridgestone Corp Pneumatic tire suppressed in offset abrasion
JP2002248906A (en) * 2000-11-13 2002-09-03 Soc De Technol Michelin Tread pattern for radial carcass tire
JP2004001608A (en) * 2002-05-31 2004-01-08 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2004090766A (en) * 2002-08-30 2004-03-25 Bridgestone Corp Pneumatic tire and method for measuring vibration transmission characteristic of wheel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056478A (en) * 2010-09-09 2012-03-22 Yokohama Rubber Co Ltd:The Pneumatic tire
US20120145293A1 (en) * 2010-12-14 2012-06-14 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
CN102555678A (en) * 2010-12-14 2012-07-11 东洋橡胶工业株式会社 Pneumatic tire
US8708010B2 (en) * 2010-12-14 2014-04-29 Toyo Tire & Rubber Co., Ltd. Pneumatic tire
JP2013028233A (en) * 2011-07-27 2013-02-07 Bridgestone Corp Tire

Also Published As

Publication number Publication date
JP4717615B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4350103B2 (en) Pneumatic tire
US8875757B2 (en) Pneumatic tire with tread having long hole shaped depressions
JP5421135B2 (en) Pneumatic tire
JP4813492B2 (en) Pneumatic tire
EP1498288A1 (en) Pneumatic tire
JP6304329B2 (en) Pneumatic tire
US20100089509A1 (en) pneumatic tire
JP5471511B2 (en) Pneumatic tire
JP4717575B2 (en) Pneumatic tire
JP4675736B2 (en) Pneumatic tire
JP4717615B2 (en) Pneumatic tire
JP4935507B2 (en) Pneumatic tire
JP2007314029A (en) Pneumatic tire
JP5133635B2 (en) Pneumatic tire
JP2009067180A (en) Pneumatic tire
JP6369602B1 (en) Pneumatic tire
JP4647432B2 (en) Pneumatic tire
JP2008247336A (en) Pneumatic tire
JP2003154815A (en) Pneumatic tire
JP7225853B2 (en) tire
JP4717548B2 (en) Pneumatic tire
JPH08142612A (en) Pneumatic tire
JP4353515B2 (en) Pneumatic tire
JP2005349970A (en) Pneumatic tire
JP3880121B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees