JP2007152436A - Metal foil cutting method - Google Patents

Metal foil cutting method Download PDF

Info

Publication number
JP2007152436A
JP2007152436A JP2005346369A JP2005346369A JP2007152436A JP 2007152436 A JP2007152436 A JP 2007152436A JP 2005346369 A JP2005346369 A JP 2005346369A JP 2005346369 A JP2005346369 A JP 2005346369A JP 2007152436 A JP2007152436 A JP 2007152436A
Authority
JP
Japan
Prior art keywords
blade
metal foil
cutting
blades
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005346369A
Other languages
Japanese (ja)
Inventor
Torayoshi Nagao
虎義 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005346369A priority Critical patent/JP2007152436A/en
Publication of JP2007152436A publication Critical patent/JP2007152436A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal foil cutting method, attaining excellent condition of an edge section. <P>SOLUTION: In this metal foil cutting method, metal foil is passed between a first blade and a second blade disposed opposite to each other with the tips thereof adjacent to each other to be cut between both blades. The method is characterized in that the lap (blade contact depth) of the first blade and the second blade is set to 150 μm to 250 μm to shear the metal foil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属箔の裁断方法、特にコンデンサ用金属箔の裁断方法並びにこの方法により得られる金属箔を陽極基体として用いたコンデンサの製造方法及びこの方法により得られるコンデンサ、特に固体電解コンデンサに関する。   The present invention relates to a method for cutting a metal foil, particularly a method for cutting a metal foil for a capacitor, a method for producing a capacitor using the metal foil obtained by this method as an anode substrate, and a capacitor obtained by this method, particularly a solid electrolytic capacitor.

固体電解コンデンサにおいて、コンデンサ素子の基材(陽極基体)となる金属箔は、幅広の原箔をスリッタと称される切断装置によって複数の金属テープ状に裁断し、さらにこれを個片に切断して製造する。このため、例えば、矩形に切断した陽極基体では、そのうちの2面はスリッタによる裁断面である。   In a solid electrolytic capacitor, the metal foil that is the base material (anode base) of the capacitor element is cut into a plurality of metal tapes by a cutting device called a slitter, and further cut into individual pieces. Manufactured. For this reason, for example, in an anode substrate cut into a rectangular shape, two of them are cut by a slitter.

スリッタは押圧または剪断による切断を基本とするが、陽極基体用金属箔は通常、表面に化成箔を有する状態で使用に供しており、これらの酸化皮膜は金属に比べ靭性が低い。このため裁断時の損傷が生じやすい。また、通常の金属箔でも一般に空気酸化による酸化皮膜を有するため、裁断時、表面に微細なひび割れを発生しやすい。また、裁断に際しては、歪みが生じたり裁断屑が発生することがあると考えられるが、従来、これらについては十分な対策が講じられていなかった。   The slitter is basically cut by pressing or shearing, but the metal foil for the anode substrate is usually used in a state having a chemical conversion foil on the surface, and these oxide films have lower toughness than the metal. For this reason, damage at the time of cutting tends to occur. Moreover, since a normal metal foil generally has an oxide film formed by air oxidation, fine cracks are likely to occur on the surface during cutting. In cutting, it is considered that distortion or cutting waste may occur, but conventionally, sufficient measures have not been taken for these.

本発明は、固体電解コンデンサの製造方法において、金属箔切断について上記の問題の解決を試みたものであり、合わせて他の用途の金属箔にも適用し得る際断面性状に優れた金属箔裁断方法を提供することを目的とする。   The present invention is an attempt to solve the above-mentioned problems concerning the cutting of a metal foil in a method for producing a solid electrolytic capacitor, and the metal foil cutting excellent in cross-sectional properties when applied to metal foils for other uses. It aims to provide a method.

本発明者は、上記課題について検討した結果、先端が近接して配置された対向する第1刃と第2刃の間に金属箔を通して両刃間で切断する金属箔の裁断方法において、第1刃と第2刃のラップ(刃噛み深さ)を特定の範囲に設定することにより、裁断面の状態が顕著に改善されることを見出し、本発明を完成するに至った。   As a result of studying the above problems, the present inventor has found that the first blade in the metal foil cutting method in which the metal foil is cut between the two blades by passing the metal foil between the opposing first blade and the second blade, the tips of which are arranged close to each other. And the second blade lapping (blade biting depth) within a specific range, the cutting surface was found to be remarkably improved, and the present invention was completed.

すなわち、本発明は、以下の金属箔の裁断方法、コンデンサ、固体電解コンデンサを提供する。
1.先端が近接して配置された対向する第1刃と第2刃の間に金属箔を通して両刃間で切断する金属箔の裁断方法において、第1刃と第2刃のラップ(刃噛み深さ)を150μm〜250μmに設定して金属箔の剪断を行なうことを特徴とする金属箔の裁断方法。
2.第1刃と第2刃のラップ(刃噛み深さ)を180〜220μmに設定して金属箔の切断を行なう前記1に記載の金属箔の裁断方法。
3.前記第1刃は平行に配置された複数の刃からなる第1刃群であり、前記第2刃は平行に配置された複数の刃からなる第2刃群であり、対向して交互に配置された各第1刃と各第2刃間で切断を行なう前記1または2に記載の金属箔の裁断方法。
4.第1刃及び第2刃は円形の回転刃である前記1〜3のいずれかに記載の金属箔の裁断方法。
5.第1刃及び第2刃はそれぞれ厚刃と薄刃の組により構成されている前記1〜4のいずれかに記載の金属箔の裁断方法。
6.有機溶媒を含浸させた清浄化部材を金属箔裁断部以外の部分で前記回転刃に接触させる前記4または5に記載の金属箔の裁断方法。
7.金属箔がコンデンサ用金属箔である前記1〜6のいずれかに記載の金属箔の裁断方法。
8.コンデンサ用金属箔が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウムからなる群から選択される少なくとも一種の金属の箔である前記7に記載の金属箔の裁断方法。
9.第1刃及び第2刃が超硬鋼、ハイス鋼、ダイス鋼からなる群から選択される材料で構成されている前記1〜8のいずれかに記載の金属箔の裁断方法。
10.切断刃の交換限度を10万回として金属箔の切断を行なう前記9に記載の弁作用金属箔の裁断方法。
11.前記8に記載の金属箔の裁断方法を用いて製造した金属テープを用いたことを特徴とするコンデンサの製造方法。
12.前記11に記載の方法により製造されるコンデンサ。
13.前記8に記載の方法を用いて製造した金属テープを陽極基体用原箔として用いたことを特徴とする固体電解コンデンサ。
That is, the present invention provides the following metal foil cutting method, capacitor, and solid electrolytic capacitor.
1. In a cutting method of a metal foil in which a metal foil is cut between both blades through a metal foil between opposing first blades and second blades, the tips of which are arranged close to each other. A metal foil cutting method characterized by shearing the metal foil with a thickness of 150 μm to 250 μm.
2. 2. The metal foil cutting method according to 1 above, wherein the metal foil is cut by setting a wrap (blade biting depth) between the first blade and the second blade to 180 to 220 μm.
3. The first blade is a first blade group made up of a plurality of blades arranged in parallel, and the second blade is a second blade group made up of a plurality of blades arranged in parallel, and are arranged alternately facing each other. 3. The metal foil cutting method according to 1 or 2, wherein cutting is performed between each of the first blades and each of the second blades.
4). 4. The metal foil cutting method according to any one of 1 to 3, wherein the first blade and the second blade are circular rotary blades.
5. The cutting method of the metal foil according to any one of 1 to 4, wherein the first blade and the second blade are each configured by a set of a thick blade and a thin blade.
6). 6. The metal foil cutting method according to 4 or 5, wherein the cleaning member impregnated with the organic solvent is brought into contact with the rotary blade at a portion other than the metal foil cutting portion.
7). 7. The metal foil cutting method according to any one of 1 to 6, wherein the metal foil is a capacitor metal foil.
8). 8. The metal foil cutting method according to 7, wherein the capacitor metal foil is at least one metal foil selected from the group consisting of aluminum, tantalum, niobium, titanium, and zirconium.
9. The metal foil cutting method according to any one of 1 to 8, wherein the first blade and the second blade are made of a material selected from the group consisting of cemented steel, high-speed steel, and die steel.
10. 10. The cutting method for a valve-acting metal foil as described in 9 above, wherein the metal foil is cut by setting the exchange limit of the cutting blade to 100,000 times.
11. 9. A method for producing a capacitor, comprising using a metal tape produced using the method for cutting a metal foil according to the above 8.
12 12. A capacitor manufactured by the method described in 11 above.
13. 9. A solid electrolytic capacitor characterized in that a metal tape produced using the method described in 8 above is used as a raw foil for an anode substrate.

本発明の方法によれば、金属箔の裁断面(切口断面)形状を良好にすることが可能であり、特に固体電解コンデンサにおいて良好な特性を得ることができる。   According to the method of the present invention, it is possible to make the cut surface (cut section) shape of the metal foil good, and particularly good characteristics can be obtained in a solid electrolytic capacitor.

本発明は、先端が近接して配置された対向する第1刃と第2刃の間に金属箔を通して両刃間で切断する金属箔の裁断方法において、第1刃と第2刃のラップ(刃噛み深さ)を150μm〜250μmに設定して金属箔の剪断を行なうことを特徴とする。   The present invention relates to a metal foil cutting method in which a metal foil is cut between both blades by passing the metal foil between opposing first blades and second blades whose tips are arranged close to each other. The metal foil is sheared by setting the biting depth to 150 μm to 250 μm.

本発明の方法では、先端が近接して配置された対向する第1刃と第2刃の間に金属箔を挿入し、その剪断応力により切断を行なう。ここで、ラップ(刃噛み深さ)は、図1において第1刃1と第2刃2が平行して重なる部分の長さlである。ラップ(刃噛み深さ)の最適値は、金属箔3の材質や厚さにもよるが、基本的には物理的作用によるため、上記範囲であれば金属箔、特に後述する弁作用金属では、その材質によらず良好な結果が得られる。ラップは好ましくは180〜220μmである。一般にラップが小さいと箔に及ぶ応力の総和が減少するため、確実な裁断を行なうためには、ラップはある程度大きく設定することが好ましいと考えられ、従来は、0.2〜0.6mmが通常であった。しかし、本発明では200μm近傍の値で確実かつ良好な裁断が可能であることを見出した。   In the method of the present invention, a metal foil is inserted between the first blade and the second blade facing each other with the tips close to each other, and cutting is performed by the shear stress. Here, the wrap (blade biting depth) is the length l of the portion where the first blade 1 and the second blade 2 overlap in parallel in FIG. The optimum value of the lap (blade biting depth) depends on the material and thickness of the metal foil 3, but basically depends on the physical action. Good results can be obtained regardless of the material. The wrap is preferably 180-220 μm. In general, if the wrap is small, the total stress applied to the foil is reduced. Therefore, it is considered preferable to set the wrap to be somewhat large for reliable cutting. Conventionally, 0.2 to 0.6 mm is usually used. Met. However, in the present invention, it has been found that reliable and good cutting is possible with a value in the vicinity of 200 μm.

第1刃1と第2刃2間の水平距離(クリアランス;図中cで示す。)は、好ましくは金属箔の厚みの3〜30%、より好ましくは5〜15%である。なお、図1では図解の便宜上、クリアランスを実際よりも大きく示している。現実には金属箔は第1刃1と第2刃2間で屈曲するのではなく押圧されるとともに剪断力を受けて裁断される。   The horizontal distance (clearance; indicated by c in the figure) between the first blade 1 and the second blade 2 is preferably 3 to 30%, more preferably 5 to 15% of the thickness of the metal foil. In FIG. 1, for the sake of illustration, the clearance is shown larger than the actual clearance. In reality, the metal foil is not bent between the first blade 1 and the second blade 2, but is pressed and cut by receiving a shearing force.

金属箔を第1刃と第2刃の間に挿入しつつ剪断を行なうためには、第1刃及び第2刃が円形の回転刃であることが好ましい。すなわち、図1中の第1刃1及び第2刃2は周縁に刃部を有する円形刃であり、図示する断面は回転面に垂直に切った断面に相当する。各円形刃は同方向に回転しており、金属箔が円形刃の周縁に接すると、その回転により金属箔は両刃間に引き込まれ概ね前記のラップ部分で裁断される。   In order to perform shearing while inserting the metal foil between the first blade and the second blade, the first blade and the second blade are preferably circular rotary blades. That is, the first blade 1 and the second blade 2 in FIG. 1 are circular blades having blade portions on the periphery, and the illustrated cross section corresponds to a cross section cut perpendicularly to the rotation surface. Each circular blade rotates in the same direction, and when the metal foil comes into contact with the peripheral edge of the circular blade, the metal foil is drawn between the two blades by the rotation and is roughly cut at the lap portion.

本発明の好適態様では、前記第1刃は平行に配置された複数の刃からなる第1刃群であり、前記第2刃は平行に配置された複数の刃からなる第2刃群であり、対向して交互に配置された各第1刃と各第2刃間で切断を行なう。これにより、例えば、幅広の金属箔3を用いれば、同時に複数の金属テープを製造することができ、製造プロセス上有利である。   In a preferred aspect of the present invention, the first blade is a first blade group comprising a plurality of blades arranged in parallel, and the second blade is a second blade group comprising a plurality of blades arranged in parallel. The cutting is performed between the first blades and the second blades that are alternately arranged opposite to each other. Thus, for example, if a wide metal foil 3 is used, a plurality of metal tapes can be manufactured simultaneously, which is advantageous in terms of the manufacturing process.

この態様を図2に示す。但し、図2では、さらに好適な態様として、第1刃1が厚刃1aと薄刃1bの組、第2刃2が厚刃2aと薄刃2bの組により構成されている例を示した。厚刃1aと薄刃1bは第1刃群を貫くシャフト4によって同軸に回転するが、両者間には小さな空隙(通常、刃材料厚みの5%〜15%程度)が設けられおり、この空隙には弾性部材が挿入されている。また、厚刃2aと薄刃2bも第2刃群を貫くシャフト6によって同軸に回転するが、両者間には小さな空隙(通常、刃材料厚みの5%〜15%程度)が設けられおり、この空隙には弾性部材が挿入されている。このため、厚刃1aと薄刃1bの組、厚刃2aと薄刃2bの組は、応力を受けた場合、薄刃1b、薄刃2bが微細に変位する。金属箔3は薄刃1aと厚刃2bまたは薄刃1bと厚刃2aとの近接点で裁断される。この図でもクリアランス及びラップは便宜上大きめに示している。   This embodiment is shown in FIG. However, FIG. 2 shows an example in which the first blade 1 is composed of a pair of thick blades 1a and thin blades 1b, and the second blade 2 is composed of a pair of thick blades 2a and thin blades 2b as a more preferred embodiment. The thick blade 1a and the thin blade 1b are rotated coaxially by the shaft 4 penetrating the first blade group, but a small gap (usually about 5% to 15% of the blade material thickness) is provided between them. An elastic member is inserted. The thick blade 2a and the thin blade 2b are also rotated coaxially by the shaft 6 penetrating the second blade group, but a small gap (usually about 5% to 15% of the blade material thickness) is provided between them. An elastic member is inserted into the gap. For this reason, when the set of the thick blade 1a and the thin blade 1b and the set of the thick blade 2a and the thin blade 2b are subjected to stress, the thin blade 1b and the thin blade 2b are finely displaced. The metal foil 3 is cut at a proximity point between the thin blade 1a and the thick blade 2b or between the thin blade 1b and the thick blade 2a. Also in this figure, the clearance and lap are shown larger for convenience.

なお、本発明の方法では、第1刃及び第2刃は好ましくは超硬鋼、ハイス鋼、ダイス鋼からなる群から選択される材料で構成される。例えば、JISのSK材、SKS材、SDK材等が挙げられる。
また、上記のいずれかの回転刃構造でも、本発明では、有機溶媒を含浸させた清浄化部材を金属箔裁断部以外の部分で前記回転刃に接触させることが好ましい。図3に、図2に対応する構成において清浄化部材5を設けた態様を示す。清浄化部材5は不織布等であり、有機溶媒は揮発性を有し常温で低粘度の液体である。このような有機溶媒の例としては、トルエン、キシレン等の芳香族炭化水素、メタノール、エタノール、イソプロピルアルコール等の低級アルコール類、メチルエチルケトン等のケトン類、プロピルエーテル等のエーテル類を挙げることができる。安全性や作業環境への影響を考慮するとイソプロピルアルコールが好ましい。
In the method of the present invention, the first blade and the second blade are preferably made of a material selected from the group consisting of cemented steel, high-speed steel, and die steel. For example, JIS SK material, SKS material, SDK material and the like can be mentioned.
In any of the rotary blade structures described above, in the present invention, it is preferable that a cleaning member impregnated with an organic solvent is brought into contact with the rotary blade at a portion other than the metal foil cutting portion. FIG. 3 shows a mode in which the cleaning member 5 is provided in the configuration corresponding to FIG. The cleaning member 5 is a nonwoven fabric or the like, and the organic solvent is a volatile liquid with a low viscosity at room temperature. Examples of such organic solvents include aromatic hydrocarbons such as toluene and xylene, lower alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as methyl ethyl ketone, and ethers such as propyl ether. Isopropyl alcohol is preferred in view of safety and impact on the work environment.

上述のように、本発明の方法は、種々の金属箔に適用できるが、特に金属箔がコンデンサ用金属箔である場合に好適である。コンデンサ用金属箔としては弁作用金属が好ましく、具体的にはアルミニウム、タンタル、ニオブ、チタン、ジルコニウムからなる群から選択される少なくとも一種の金属が好ましい。なお、特に断らない限り、本願において金属箔は、これらの純金属のみならず、その合金及び金属が人工的または自然に酸化されてなる金属酸化物を含んでよい。金属箔の厚さは使用目的に適した厚さを用いることができるが、一般に厚み約40〜150μmの箔が使用される。   As described above, the method of the present invention can be applied to various metal foils, but is particularly suitable when the metal foil is a capacitor metal foil. The metal foil for a capacitor is preferably a valve metal, and specifically, at least one metal selected from the group consisting of aluminum, tantalum, niobium, titanium, and zirconium is preferable. Unless otherwise specified, in the present application, the metal foil may include not only these pure metals but also metal oxides obtained by oxidizing the alloys and metals artificially or naturally. As the thickness of the metal foil, a thickness suitable for the purpose of use can be used, but generally a foil having a thickness of about 40 to 150 μm is used.

さらにまた、本発明の方法では、切断刃の交換限度を10万回として金属箔の切断を行なうことが好ましい。なお、本願において「1回」の裁断操作とは、通常、原箔5cm程度の長さの裁断に相当する単位であり、個別に当該回数の裁断を行なうか否かに関わらない。すなわち、原箔5千mにつき切断刃を交換すればよい。このような管理を行なうことにより、コンデンサ、特に固体電解コンデンサの特性が顕著に改善される。
従って、本発明は記載の金属箔の裁断方法を用いて製造した金属テープを用いたことを特徴とするコンデンサの製造方法をも提供し、さらに上記の方法により製造されるコンデンサ、上記の方法を用いて製造した金属テープを陽極基体用原箔として用いたことを特徴とする固体電解コンデンサにも及ぶ。
Furthermore, in the method of the present invention, it is preferable to cut the metal foil with the replacement limit of the cutting blade being 100,000 times. In the present application, the “one-time” cutting operation is usually a unit corresponding to cutting of a length of about 5 cm of the original foil, regardless of whether or not the number of times is cut individually. That is, it is only necessary to replace the cutting blade per 5,000 m of the original foil. By performing such management, the characteristics of the capacitor, particularly the solid electrolytic capacitor, are remarkably improved.
Accordingly, the present invention also provides a capacitor manufacturing method characterized by using a metal tape manufactured using the metal foil cutting method described above, and further provides a capacitor manufactured by the above method and the above method. The present invention also extends to a solid electrolytic capacitor characterized in that a metal tape manufactured using the same is used as a raw foil for an anode substrate.

なお、上記の特徴を含む限りにおいて、本発明はどのような固体電解コンデンサの製造にも適用できる。例えば、固体電解質層の形成方法、陽極部及び陰陽極の構成は特に限定されない。また、必要に応じてマスキング層の形成や化成処理を行なってもよいが、これらの化成処理も慣用の任意の方法を用いることができる。以下、これらの点を含め、本発明で製造される固体電解コンデンサの好適実施態様について述べる。   Note that the present invention can be applied to the manufacture of any solid electrolytic capacitor as long as the above characteristics are included. For example, the formation method of the solid electrolyte layer and the configurations of the anode part and the negative anode are not particularly limited. Moreover, although formation of a masking layer and chemical conversion treatment may be performed as necessary, these chemical conversion treatments can also use any conventional method. Hereinafter, preferred embodiments of the solid electrolytic capacitor manufactured by the present invention will be described including these points.

[弁作用金属]
上記の弁作用金属としては、酸化アルミナ層を有するアルミニウム箔が好ましく用いられる。弁作用金属は粗面化後、予め、固体電解コンデンサの形状に合わせた寸法に裁断したものを使用するのが好ましい。
[Valve action metal]
As said valve action metal, the aluminum foil which has an alumina oxide layer is used preferably. It is preferable to use a valve action metal that has been roughened and cut in advance to a size that matches the shape of the solid electrolytic capacitor.

上記の方法により裁断された金属箔から得る箔片の大きさ及び形状は用途により異なるが、平板形素子単位として幅約1〜50mm、長さ約1〜50mmの矩形のものが好ましく、より好ましくは幅約2〜20mm、長さ約2〜20mm、さらに好ましくは幅約2〜5mm、長さ約2〜6mmである。   The size and shape of the foil piece obtained from the metal foil cut by the above method varies depending on the application, but a rectangular element having a width of about 1 to 50 mm and a length of about 1 to 50 mm is preferable, more preferably as a flat element unit. Is about 2 to 20 mm wide and about 2 to 20 mm long, more preferably about 2 to 5 mm wide and about 2 to 6 mm long.

[化成処理]
所定の形状に裁断された弁作用金属の化成処理は種々の方法によって行なうことができる。予め化成処理しておくことにより、仮にマスキング層に欠陥が生じた場合にも、漏れ電流の増加が防止される。
化成処理の条件は特に限定されるものではないが、例えばシュウ酸、アジピン酸、ホウ酸、リン酸等の少なくとも1種を含む電解液を用い、その電解液濃度が0.05〜20質量%、温度が0〜90℃、電流密度が0.1〜200mA/cm2、電圧は処理する化成箔の既に形成されている皮膜の化成電圧に応じた数値、化成時間が60分以内の条件で化成を行なう。さらに好ましくは前記電解液濃度が0.1〜15質量%、温度が20〜70℃、電流密度が1〜100mA/cm2、化成時間が30分以内の範囲内で条件を選定する。
[Chemical conversion treatment]
The chemical conversion treatment of the valve action metal cut into a predetermined shape can be performed by various methods. By performing the chemical conversion treatment in advance, even if a defect occurs in the masking layer, an increase in leakage current is prevented.
The conditions for the chemical conversion treatment are not particularly limited. For example, an electrolytic solution containing at least one of oxalic acid, adipic acid, boric acid, phosphoric acid and the like is used, and the electrolytic solution concentration is 0.05 to 20% by mass. The temperature is 0 to 90 ° C., the current density is 0.1 to 200 mA / cm 2 , and the voltage is a numerical value corresponding to the conversion voltage of the film already formed on the conversion foil to be processed, and the conversion time is within 60 minutes. Perform formation. More preferably, the conditions are selected within a range where the electrolytic solution concentration is 0.1 to 15% by mass, the temperature is 20 to 70 ° C., the current density is 1 to 100 mA / cm 2 , and the formation time is within 30 minutes.

前記の化成処理の条件は工業的方法として好適なものではあるが、弁作用金属材料表面にすでに形成されている誘電体酸化皮膜を破壊または劣化させない限り、電解液の種類、電解液濃度、温度、電流密度、化成時間等の諸条件は任意に選定することができる。
化成処理の前後に、必要により、例えば耐水性の向上のためのリン酸浸漬処理、皮膜強化のための熱処理または沸騰水への浸漬処理等を行なうことができる。
The conditions of the chemical conversion treatment are suitable as an industrial method, but unless the dielectric oxide film already formed on the surface of the valve metal material is destroyed or deteriorated, the type of electrolyte, concentration of electrolyte, temperature Various conditions such as current density and formation time can be arbitrarily selected.
Before and after the chemical conversion treatment, for example, a phosphoric acid immersion treatment for improving water resistance, a heat treatment for strengthening the film, or an immersion treatment in boiling water can be performed.

[マスキング材]
マスキング層は、前記化成処理時に化成液が固体電解コンデンサの陽極となる部分に滲み上がるのを防止し、かつ後工程で形成される固体電解質(陰極部分)との絶縁を確実とするために設けられるものである。マスキング材としては一般的な耐熱性樹脂、好ましくは溶剤に可溶あるいは膨潤しうる耐熱性樹脂またはその前駆体、無機質微粉とセルロース系樹脂からなる組成物(特開平11−80596号公報)などが使用できるが、材料そのものは制限されない。耐熱性樹脂の例としては、シリコン樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンスルホン樹脂、ポリエーテルスルホン樹脂、シアン酸エステル樹脂、フッ素樹脂またはこれらの混合物もしくは変性物から選択される1種以上の耐熱性樹脂が挙げられる。
[Masking material]
The masking layer is provided in order to prevent the chemical conversion liquid from spreading into the portion that becomes the anode of the solid electrolytic capacitor during the chemical conversion treatment, and to ensure insulation from the solid electrolyte (cathode portion) formed in a later step. It is As a masking material, a general heat resistant resin, preferably a heat resistant resin which can be dissolved or swelled in a solvent or a precursor thereof, a composition comprising inorganic fine powder and a cellulose resin (Japanese Patent Laid-Open No. 11-80596), etc. It can be used, but the material itself is not limited. Examples of heat resistant resins include silicon resins, epoxy resins, phenol resins, polyimide resins, polyester resins, polyphenylene sulfide resins, polyphenylene sulfone resins, polyether sulfone resins, cyanate ester resins, fluororesins, or mixtures or modified products thereof. 1 type or more of heat resistant resins selected from

特に弁作用金属に充分な密着力、充填性を有し、約450℃までの熱処理に耐えられる絶縁性に優れたポリイミドが好ましい。
ポリイミドとしては、従来、前駆体のポリアミック酸を溶剤に溶解した溶液を使用し、塗布後に高温に加熱処理してイミド化するものがあるが、250〜350℃の熱処理が必要であり、陽極箔の表面上の誘電体層の熱による破損などの問題があった。本発明では、200℃以下、好ましくは100〜200℃の低温度での熱処理により硬化が十分可能であり、陽極箔の表面上の誘電体層の熱による破損・破壊などの外的衝撃が少ないポリイミドが好ましい。
In particular, a polyimide that has sufficient adhesion and filling properties to the valve action metal and has excellent insulating properties that can withstand heat treatment up to about 450 ° C. is preferable.
As polyimide, there is conventionally used a solution obtained by dissolving a precursor polyamic acid in a solvent, and after coating, heat treatment is performed at a high temperature to imidize, but heat treatment at 250 to 350 ° C. is required, and anode foil There was a problem such as damage to the dielectric layer on the surface of the substrate due to heat. In the present invention, curing is sufficiently possible by heat treatment at a low temperature of 200 ° C. or less, preferably 100 to 200 ° C., and there is little external impact such as damage or destruction due to heat of the dielectric layer on the surface of the anode foil. Polyimide is preferred.

本発明では、上記マスキング材溶液に消泡剤(低級アルコール系、鉱物油系、シリコーン樹脂系、オレイン酸、ポリプロピレングリコールなど)、チキソトロピー付与剤(シリカ微粉末、マイカ、タルク、炭酸カルシウムなど)、樹脂改質用シリコン剤(シランカップリング剤、シリコーンオイル、シリコン系界面活性剤、シリコーン系合成潤滑油など)などを添加することができる。例えばシリコーンオイル(ポリシロキサン)、シランカップリング剤を添加することにより、消泡性(硬化時の発泡を抑える)、離型性(導電性重合体の付着防止)、潤滑性(細孔部内への浸透性)、電気絶縁性(漏れ電流防止)、撥水性(導電性重合体の重合時に溶液の侵入(液上がり)防止)、制動・防振性(コンデンサ素子の積層時の圧力に対向)、樹脂の耐熱性・耐候性(架橋機構の導入)の改善が期待できる。   In the present invention, the masking material solution contains an antifoaming agent (lower alcohol, mineral oil, silicone resin, oleic acid, polypropylene glycol, etc.), thixotropic agent (silica fine powder, mica, talc, calcium carbonate, etc.), Resin-modifying silicone agents (such as silane coupling agents, silicone oils, silicone surfactants, silicone synthetic lubricating oils, etc.) can be added. For example, by adding silicone oil (polysiloxane) and a silane coupling agent, defoaming (suppresses foaming during curing), releasability (preventing adhesion of conductive polymer), lubricity (into pores) Penetrability), electrical insulation (leakage current prevention), water repellency (prevention of solution intrusion (liquid rise) during polymerization of conductive polymer), braking / vibration resistance (opposing pressure when capacitor elements are stacked) Improvement of heat resistance and weather resistance of resin (introduction of crosslinking mechanism) can be expected.

また、本発明では、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物(特開平8−253677号公報(米国特許第5643986号))を用いることによって、上記シリコーンオイル(ポリシロキサン)の添加と同様の効果を得ることができる。   Further, in the present invention, by using a composition comprising a soluble polyimide siloxane and an epoxy resin (Japanese Patent Laid-Open No. 8-253777 (US Pat. No. 5,643,986)), the same effect as the addition of the silicone oil (polysiloxane) is obtained. Can be obtained.

[マスキング層の形成方法]
マスキング層の形成方法は、マスキング材の塗布、マスキングテープの貼り付け等様々な方法が知られており、本発明にはいずれの方法も利用できる。マスキング材の塗布の例については、マスキング材をブレード等に塗布して転写する方法、ロールに塗布して転写する方法(例えば、国際公開第00/67267号パンフレット参照)等が挙げられる。
[Method for forming masking layer]
Various methods are known for forming a masking layer, such as application of a masking material and application of a masking tape, and any method can be used in the present invention. Examples of the application of the masking material include a method in which the masking material is applied and transferred to a blade or the like, a method in which the masking material is applied and transferred onto a roll (for example, see International Publication No. 00/67267 pamphlet), and the like.

[固体電解質]
本発明において、固体電解質としては、ピロール、チオフェン、フランあるいはアニリン構造のいずれか1つの二価基、またはそれらの置換誘導体の少なくとも1つを繰り返し単位として有する導電性重合体が好ましく使用できるが、材料として従来知られているものを特に制限なく使用できる。
[Solid electrolyte]
In the present invention, as the solid electrolyte, a conductive polymer having as a repeating unit at least one divalent group of pyrrole, thiophene, furan or aniline structure, or a substituted derivative thereof can be preferably used. Conventionally known materials can be used without particular limitation.

例えば、3,4−エチレンジオキシチオフェンモノマー及び酸化剤を好ましくは溶液の形態において、前後して別々にまたは一緒に金属箔の酸化皮膜層に塗布して形成する方法(特開平2−15611号公報(米国特許第4,910,645号)や特開平10−32145号公報(欧州特許公開第820076(A2)号))等が利用できる。   For example, a method in which a 3,4-ethylenedioxythiophene monomer and an oxidizing agent are preferably applied in the form of a solution, separately or together, and applied to an oxide film layer of a metal foil (JP-A-2-15611). Gazette (U.S. Pat. No. 4,910,645) and JP-A-10-32145 (European Patent Publication No. 820076 (A2))) can be used.

導電性重合体は、アリールスルホン酸塩系ドーパントを含んでもよい。例えば、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホン酸、アントラキノンスルホン酸などの塩を用いることができる。   The conductive polymer may include an aryl sulfonate dopant. For example, salts such as benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, anthracenesulfonic acid, anthraquinonesulfonic acid, and the like can be used.

このように、本発明は、以上の方法により得られた固体電解コンデンサを含む。なお、固体電解コンデンサは、上記のように製造された固体電解コンデンサ素子をそのまま、または積層し、陰極リード部、陽極リード部を取り付けた上、エポキシ樹脂等で封止して製造することができる。   Thus, the present invention includes a solid electrolytic capacitor obtained by the above method. The solid electrolytic capacitor can be manufactured by sealing the solid electrolytic capacitor element manufactured as described above as it is or by stacking the cathode lead portion and the anode lead portion, and then sealing with an epoxy resin or the like. .

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。   The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.

実施例1
ハイス鋼からなる薄刃(直径:100mm)と厚刃(直径:100mm)を組にして組み合わせ刃を構成した。上刃(第1刃)群、下刃(第2刃)群には、上刃と下刃が交互になるようにこれらの組み合わせ刃を配置し上刃の上方及び下刃の下方に清浄化部材を配置した(図3参照)。清浄化部材としてはガラスウール製の不織布を用い、イソプロピルアルコールを滴下して刃面を清浄化した。
Example 1
A combination blade was constructed by combining a thin blade (diameter: 100 mm) and a thick blade (diameter: 100 mm) made of high-speed steel. In the upper blade (first blade) group and the lower blade (second blade) group, these combination blades are arranged so that the upper blade and the lower blade are alternately arranged, and cleaned above the upper blade and below the lower blade. Members were placed (see FIG. 3). A glass wool non-woven fabric was used as the cleaning member, and isopropyl alcohol was dropped to clean the blade surface.

相対する上刃と下刃間のラップ値を200μm、クリアランスを0.23μmに設定して厚さ110μmのアルミニウム箔(表面に酸化皮膜を有するアルミニウム化成箔)を両刃間に通して裁断を行なった。裁断面の顕微鏡写真を図4に示す。   The lap value between the upper and lower blades facing each other was set to 200 μm, the clearance was set to 0.23 μm, and a 110 μm-thick aluminum foil (aluminum conversion foil having an oxide film on the surface) was passed between the two blades for cutting. . A micrograph of the cut surface is shown in FIG.

比較例1
相対する上刃と下刃間のラップ値を300μmとした他は実施例1と同様にしてアルミニウム箔の裁断を行なった。裁断面の顕微鏡写真を図5に示す。
図4と図5の対比から明らかなように、本発明(実施例1)では表面性状が優れたほぼ平滑な裁断面が全面にわたって得られているのに対し、比較例1では厚み方向に周期的な凹凸が生じ、特に縁部には微細な割れ(欠落部)が目立つ。
Comparative Example 1
The aluminum foil was cut in the same manner as in Example 1 except that the lap value between the opposed upper and lower blades was 300 μm. A photomicrograph of the cut surface is shown in FIG.
As apparent from the comparison between FIG. 4 and FIG. 5, in the present invention (Example 1), a substantially smooth cut surface having excellent surface properties was obtained over the entire surface, whereas in Comparative Example 1, the period in the thickness direction was Concavities and convexities occur, and fine cracks (missing portions) are particularly noticeable at the edge.

比較例2
相対する上刃と下刃間のラップ値を100μmとした他は実施例1と同様にしてアルミニウム箔の裁断を行なったが、部分的に未裁断部分が残り、安定した裁断が実現できなかった。
Comparative Example 2
The aluminum foil was cut in the same manner as in Example 1 except that the lap value between the opposed upper and lower blades was set to 100 μm. However, the uncut portion remained partially, and stable cutting could not be realized. .

試験例
切断回数の増加による切口形状の状態変化を、切口の化成絞り電流値を測定することによって検討した。
すなわち、実施例1及び比較例1により製造したアルミニウム箔テープから経時的に4本を取り出し、同一条件で切断して試験片をそれぞれ100片ずつ作成した。これを化成液(9%アジピン酸水溶液、液温80℃)に浸し、4Vの電圧を印加して、絞り電流値を測定した。
Test Example A change in the shape of the cut shape due to an increase in the number of cuts was examined by measuring the value of the conversion aperture current of the cut.
That is, 4 pieces were taken out from the aluminum foil tapes manufactured according to Example 1 and Comparative Example 1 with time, and cut under the same conditions to prepare 100 test pieces. This was immersed in a chemical conversion solution (9% adipic acid aqueous solution, liquid temperature 80 ° C.), a voltage of 4 V was applied, and the aperture current value was measured.

その結果、裁断1万回時点では絞り電流が平均(以下同じ)1μAであり、試料の裁断面は図4に示すように表面が平滑で縁部も乱れのない好適なものであった。
一方、9万5千回時点では絞り電流が2.5μAに増加し表面の周期的凹凸が若干観察された。さらに15万回の時点では絞り電流が2.6μAに増加し表面に微細なひび割れが観察された。また、40万回の時点では絞り電流が3.0μAに増加し縁部に顕著な割れが観察された。
As a result, at the time of cutting 10,000 times, the drawing current was 1 μA on average (hereinafter the same), and the cut surface of the sample was suitable as shown in FIG.
On the other hand, at 95,000 times, the aperture current increased to 2.5 μA, and some periodic irregularities on the surface were observed. Further, at 150,000 times, the aperture current increased to 2.6 μA, and fine cracks were observed on the surface. Moreover, at the time of 400,000 times, the aperture current increased to 3.0 μA, and a remarkable crack was observed at the edge.

この測定によって、切断回数が約10万回を超えると、金属箔の切口形状が悪化する傾向になる。なお、切断回数約90万回を境にして切口形状が顕著に悪化(アルミくず切り子付着)し、同時にペースト塗布後の電気特性(ソリッド漏れ電流)が悪化し、LC収率が低下することが判明した。   If the number of cuts exceeds about 100,000 by this measurement, the cut shape of the metal foil tends to deteriorate. In addition, the cut shape is markedly deteriorated after about 900,000 cuts (adhesion of aluminum scraps), and at the same time, the electrical characteristics (solid leakage current) after applying the paste are deteriorated and the LC yield is lowered. found.

本発明は、上記測定結果に基づき、切断回数の限度を10万回として切断刃を交換することによって、金属箔の良好な切断面を維持する。このように、本発明の方法によれば、上刃と下刃のラップ(刃噛み深さ)を150μm〜250μmに設定し、好ましくは200μmに設定し、さらに、上記ラップ範囲内において、上刃と下刃からなる切断刃の交換限度を10万回として金属箔の切断を行うことにより、切口形状を良好に維持して、高いLC収率を達成することができる。   Based on the above measurement results, the present invention maintains a good cut surface of the metal foil by exchanging the cutting blade with the limit of the number of cutting being 100,000 times. Thus, according to the method of the present invention, the lap (blade biting depth) of the upper blade and the lower blade is set to 150 μm to 250 μm, preferably 200 μm. By cutting the metal foil with the replacement limit of the cutting blade composed of the lower blade being 100,000 times, it is possible to maintain a good cut shape and achieve a high LC yield.

本発明によれば、金属箔の裁断面の性状が良好で、縁部にも乱れのない箔を得ることができる。このため、金属箔の裁断方法として幅広い分野に利用可能であるが、コンデンサ用、特に固体電解コンデンサ用陽極基体用の材料の製造方法として優れている。   According to the present invention, it is possible to obtain a foil having a good cut surface property of the metal foil and having no disturbance at the edges. For this reason, it can be used in a wide range of fields as a method for cutting a metal foil, but is excellent as a method for producing a material for a capacitor, particularly for an anode substrate for a solid electrolytic capacitor.

本発明で規定するラップ値の意味を示す金属箔と裁断刃との関係を示す模式的断面図である。It is typical sectional drawing which shows the relationship between the metal foil which shows the meaning of the lapping value prescribed | regulated by this invention, and a cutting blade. 本発明の一好適態様を示す模式的断面図である。It is a typical sectional view showing one suitable mode of the present invention. 本発明のさらなる好適態様を示す模式的断面図である。It is a typical sectional view showing the further suitable mode of the present invention. 実施例1による裁断面を示す写真である。2 is a photograph showing a cut surface according to Example 1; 比較例1による裁断面を示す写真である。5 is a photograph showing a cut surface according to Comparative Example 1.

符号の説明Explanation of symbols

1 第1刃
1a 第1刃(薄刃)
1b 第1刃(厚刃)
2 第2刃
2a 第2刃(薄刃)
2b 第2刃(厚刃)
3 金属箔
4 回転刃駆動軸
5 清浄化部材
1 1st blade 1a 1st blade (thin blade)
1b 1st blade (thick blade)
2 Second blade 2a Second blade (thin blade)
2b Second blade (thick blade)
3 Metal foil 4 Rotary blade drive shaft 5 Cleaning member

Claims (13)

先端が近接して配置された対向する第1刃と第2刃の間に金属箔を通して両刃間で切断する金属箔の裁断方法において、第1刃と第2刃のラップ(刃噛み深さ)を150μm〜250μmに設定して金属箔の剪断を行なうことを特徴とする金属箔の裁断方法。   In a cutting method of a metal foil in which a metal foil is cut between both blades through a metal foil between opposing first blades and second blades, the tips of which are arranged close to each other, a wrap (blade biting depth) between the first blade and the second blade. A metal foil cutting method characterized by shearing the metal foil with a thickness of 150 μm to 250 μm. 第1刃と第2刃のラップ(刃噛み深さ)を180〜220μmに設定して金属箔の切断を行なう請求項1に記載の金属箔の裁断方法。   The metal foil cutting method according to claim 1, wherein the metal foil is cut by setting a wrap (blade biting depth) between the first blade and the second blade to 180 to 220 µm. 前記第1刃は平行に配置された複数の刃からなる第1刃群であり、前記第2刃は平行に配置された複数の刃からなる第2刃群であり、対向して交互に配置された各第1刃と各第2刃間で切断を行なう請求項1または2に記載の金属箔の裁断方法。   The first blade is a first blade group made up of a plurality of blades arranged in parallel, and the second blade is a second blade group made up of a plurality of blades arranged in parallel, and are arranged alternately facing each other. The cutting method of the metal foil of Claim 1 or 2 which cuts between each made 1st blade and each 2nd blade. 第1刃及び第2刃は円形の回転刃である請求項1〜3のいずれかに記載の金属箔の裁断方法。   The method for cutting a metal foil according to claim 1, wherein the first blade and the second blade are circular rotary blades. 第1刃及び第2刃はそれぞれ厚刃と薄刃の組により構成されている請求項1〜4のいずれかに記載の金属箔の裁断方法。   The metal foil cutting method according to any one of claims 1 to 4, wherein each of the first blade and the second blade is composed of a combination of a thick blade and a thin blade. 有機溶媒を含浸させた清浄化部材を金属箔裁断部以外の部分で前記回転刃に接触させる請求項4または5に記載の金属箔の裁断方法。   The metal foil cutting method according to claim 4 or 5, wherein the cleaning member impregnated with the organic solvent is brought into contact with the rotary blade at a portion other than the metal foil cutting portion. 金属箔がコンデンサ用金属箔である請求項1〜6のいずれかに記載の金属箔の裁断方法。   The method for cutting a metal foil according to any one of claims 1 to 6, wherein the metal foil is a capacitor metal foil. コンデンサ用金属箔が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウムからなる群から選択される少なくとも一種の金属の箔である請求項7に記載の金属箔の裁断方法。   The metal foil cutting method according to claim 7, wherein the capacitor metal foil is at least one metal foil selected from the group consisting of aluminum, tantalum, niobium, titanium, and zirconium. 第1刃及び第2刃が超硬鋼、ハイス鋼、ダイス鋼からなる群から選択される材料で構成される請求項1〜8のいずれかに記載の金属箔の裁断方法。   The metal foil cutting method according to any one of claims 1 to 8, wherein the first blade and the second blade are made of a material selected from the group consisting of cemented steel, high-speed steel, and die steel. 切断刃の交換限度を10万回として金属箔の切断を行なう請求項9に記載の弁作用金属箔の裁断方法。   The method for cutting a valve-acting metal foil according to claim 9, wherein the metal foil is cut with a replacement limit of the cutting blade being 100,000 times. 請求項8に記載の金属箔の裁断方法を用いて製造した金属テープを用いたことを特徴とするコンデンサの製造方法。   A method for producing a capacitor, comprising using a metal tape produced by the method for cutting a metal foil according to claim 8. 請求項11に記載の方法により製造されるコンデンサ。   A capacitor manufactured by the method according to claim 11. 請求項8に記載の方法を用いて製造した金属テープを陽極基体用原箔として用いたことを特徴とする固体電解コンデンサ。
A solid electrolytic capacitor, wherein a metal tape produced by using the method according to claim 8 is used as a raw foil for an anode substrate.
JP2005346369A 2005-11-30 2005-11-30 Metal foil cutting method Pending JP2007152436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346369A JP2007152436A (en) 2005-11-30 2005-11-30 Metal foil cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346369A JP2007152436A (en) 2005-11-30 2005-11-30 Metal foil cutting method

Publications (1)

Publication Number Publication Date
JP2007152436A true JP2007152436A (en) 2007-06-21

Family

ID=38237433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346369A Pending JP2007152436A (en) 2005-11-30 2005-11-30 Metal foil cutting method

Country Status (1)

Country Link
JP (1) JP2007152436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218501A (en) * 2008-03-12 2009-09-24 Sanyo Electric Co Ltd Method for manufacturing metallic foil for electrolytic capacitor, and electrolytic capacitor
US8491672B2 (en) 2008-03-12 2013-07-23 Sanyo Electric Co., Ltd Method of manufacturing metal foil for electrolytic capacitor
WO2015045580A1 (en) 2013-09-30 2015-04-02 日産自動車株式会社 Cutting device for metal foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274599A (en) * 1985-09-25 1987-04-06 日本碍子株式会社 Cutter for thin-film material
JPH03120397U (en) * 1990-03-26 1991-12-11
JPH08318494A (en) * 1995-05-23 1996-12-03 Toyo Hamono Kk Slitter
JP2003094382A (en) * 2001-09-27 2003-04-03 Mitsui Mining & Smelting Co Ltd Metal foil slitting method and slitter
JP2006007404A (en) * 2004-06-29 2006-01-12 Tdk Corp Slitter device and manufacturing method for electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274599A (en) * 1985-09-25 1987-04-06 日本碍子株式会社 Cutter for thin-film material
JPH03120397U (en) * 1990-03-26 1991-12-11
JPH08318494A (en) * 1995-05-23 1996-12-03 Toyo Hamono Kk Slitter
JP2003094382A (en) * 2001-09-27 2003-04-03 Mitsui Mining & Smelting Co Ltd Metal foil slitting method and slitter
JP2006007404A (en) * 2004-06-29 2006-01-12 Tdk Corp Slitter device and manufacturing method for electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218501A (en) * 2008-03-12 2009-09-24 Sanyo Electric Co Ltd Method for manufacturing metallic foil for electrolytic capacitor, and electrolytic capacitor
US8491672B2 (en) 2008-03-12 2013-07-23 Sanyo Electric Co., Ltd Method of manufacturing metal foil for electrolytic capacitor
WO2015045580A1 (en) 2013-09-30 2015-04-02 日産自動車株式会社 Cutting device for metal foil
EP3053714A4 (en) * 2013-09-30 2016-12-28 Nissan Motor Cutting device for metal foil
US10259032B2 (en) 2013-09-30 2019-04-16 Nissan Motor Co., Ltd. Cutting device for metal foil

Similar Documents

Publication Publication Date Title
US7141081B2 (en) Solid electrolytic capacitor and method for producing the same
EP2264727B1 (en) Solid electrolytic capacitor having an insulating part between anode and cathode and method for producing the same
KR100767549B1 (en) Lithium-ion battery separator
KR101142312B1 (en) Solid electrolytic capacitor element and method for producing solid electrolytic capacitor element
JP2000235937A (en) Solid electrolytic capacitor and manufacture of the same
MXPA06008210A (en) Electrolytic capacitors with a polymeric outer layer and process for the production thereof.
TW200919511A (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
WO2007077914A1 (en) Solid electrolytic capacitor and method for manufacturing the same
JP2007152436A (en) Metal foil cutting method
TW200908047A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2023015261A (en) Electrode foil, wound capacitor, method for manufacturing electrode foil, and method for manufacturing wound capacitor
US8491672B2 (en) Method of manufacturing metal foil for electrolytic capacitor
JP2005050561A (en) Compound ion exchange membrane
JP2010245150A5 (en) Solid electrolytic capacitor
CN112424894A (en) Hybrid capacitor and method for manufacturing capacitor
JP4623404B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008186841A (en) Method for manufacturing solid-state electrolytic capacitor
JP2007123733A (en) Solid-state electrolytic capacitor element manufacturing method
WO2008038584A1 (en) Base material for solid electrolytic capacitor, capacitor using the base material, and method for manufacturing the capacitor
JP3752235B2 (en) Separator for electronic parts
JP4811709B2 (en) Method for manufacturing solid electrolytic capacitor element
JP5137666B2 (en) Method for producing metal foil for electrolytic capacitor, and electrolytic capacitor
DE102011013068A1 (en) Capacitor for electronic circuit, comprises anode formed by covering dielectric surface of electrode component by using electrode material, and solid electrolyte including conductive polymer and polyglycerol
JP5467502B2 (en) Method for producing porous membrane
TWI235392B (en) Solid-state electrolytic capacitor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110701