JP2007152278A - Hydrogen storage material and its manufacturing method - Google Patents

Hydrogen storage material and its manufacturing method Download PDF

Info

Publication number
JP2007152278A
JP2007152278A JP2005353622A JP2005353622A JP2007152278A JP 2007152278 A JP2007152278 A JP 2007152278A JP 2005353622 A JP2005353622 A JP 2005353622A JP 2005353622 A JP2005353622 A JP 2005353622A JP 2007152278 A JP2007152278 A JP 2007152278A
Authority
JP
Japan
Prior art keywords
carbon
hydrogen
hydrogen storage
gas
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005353622A
Other languages
Japanese (ja)
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Toyoyuki Kubokawa
豊之 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Taiheiyo Cement Corp
Original Assignee
Hiroshima University NUC
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Taiheiyo Cement Corp filed Critical Hiroshima University NUC
Priority to JP2005353622A priority Critical patent/JP2007152278A/en
Publication of JP2007152278A publication Critical patent/JP2007152278A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material with a large hydrogen occulusion ratio comprising a nano-carbon material, and its manufacturing method. <P>SOLUTION: In the hydrogen storage material, a part of a carbon atom of a nano-carbon material in which a basic skeleton is constituted by a carbon-carbon bond is replaced by both or any one of a nitrogen atom and a boron atom. In such a hydrogen storage material, the carbon material and both or any one of the nitrogen compound and the boron compound are crushed under an atmosphere of a hydrogen gas, a hydrocarbon gas or these mixing gas. The hydrogen storage material can be manufactured by exposing the thus obtained sample to a hydrogen gas atmosphere and performing occulusion of the hydrogen. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば燃料電池等の燃料として利用される水素の貯蔵に用いられる水素貯蔵材料およびその製造方法に関する。   The present invention relates to a hydrogen storage material used for storing hydrogen used as a fuel for a fuel cell, for example, and a method for producing the same.

NOやSO等の有害物質やCO等の温室効果ガスを出さないクリーンなエネルギー源として燃料電池の開発が盛んに行われており、既に幾つかの分野で実用化されている。この燃料電池技術を支える重要な技術として、燃料電池の燃料となる水素を貯蔵する技術がある。水素の貯蔵形態としては、高圧ボンベによる圧縮貯蔵や液体水素化させる冷却貯蔵、水素貯蔵材料による貯蔵が知られているが、これらの形態の中で、水素貯蔵材料による貯蔵は、分散貯蔵や輸送の点で有利である。このような水素貯蔵材料として、グラファイトや活性炭等の炭素材料が知られている。 NO X and development of fuel cells have been actively as a clean energy source that does not emit greenhouse gases such as toxic substances and CO 2 in the SO X or the like, and is already practiced in several areas. As an important technology that supports this fuel cell technology, there is a technology for storing hydrogen as fuel for the fuel cell. As storage forms of hydrogen, compression storage by high-pressure cylinders, cooling storage by liquid hydrogenation, and storage by hydrogen storage materials are known. Among these forms, storage by hydrogen storage materials is distributed storage and transportation. This is advantageous. As such a hydrogen storage material, carbon materials such as graphite and activated carbon are known.

炭素材料における水素吸蔵サイトは、炭素−炭素骨格中の欠陥構造部分に形成されていると考えられている。また、炭素材料の水素吸蔵率は、その表面積に依存していると考えられている。したがって水素吸蔵率を高めるためには、この欠陥構造部分を多量に形成させることや、表面積を大きくすることが必要となる。このような欠陥構造部分の導入や、表面積を大きくする方法として、炭素材料を水素ガス雰囲気中で機械的に微粉砕する方法が知られている(例えば、特許文献1参照)。   It is considered that the hydrogen storage site in the carbon material is formed in a defect structure portion in the carbon-carbon skeleton. Moreover, it is thought that the hydrogen storage rate of a carbon material is dependent on the surface area. Therefore, in order to increase the hydrogen storage rate, it is necessary to form a large amount of this defect structure portion and to increase the surface area. As a method of introducing such a defect structure portion or increasing the surface area, a method of mechanically pulverizing a carbon material in a hydrogen gas atmosphere is known (for example, see Patent Document 1).

しかしながら、このような機械的粉砕方法では、多大なエネルギーコストが必要となるという問題があり、また、粉砕粒径を小さくすることに限界があるため、表面積を大きくすることや、多くの欠陥構造部分を導入するには限界がある。
特開2004−290810号公報
However, such a mechanical pulverization method has a problem that enormous energy costs are required, and since there is a limit to reducing the pulverized particle size, it is necessary to increase the surface area and to provide many defect structures. There is a limit to introducing the part.
JP 2004-290810 A

本発明はかかる事情に鑑みてなされたものであり、炭素材料からなる,水素吸蔵率の大きな水素貯蔵材料およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a hydrogen storage material made of a carbon material and having a high hydrogen storage rate, and a method for producing the same.

本発明によれば、基本骨格が炭素−炭素結合により構成されているナノ炭素材料の炭素原子の一部が、窒素原子とホウ素原子の両方またはいずれか一方で置換されていることを特徴とする水素貯蔵材料が提供される。なお、「ナノ炭素材料」は、ナノオーダーレベルにまで微粉砕された炭素材料であって水素化された炭素材料の概念であるが、水素貯蔵材料は水素の吸蔵/放出を繰り返して行うものであるから、水素吸蔵状態および水素放出状態のいずれの態様をも指すものである。   According to the present invention, a part of carbon atoms of a nanocarbon material whose basic skeleton is constituted by a carbon-carbon bond is substituted with either or both of a nitrogen atom and a boron atom. A hydrogen storage material is provided. The “nanocarbon material” is a carbon material that has been finely pulverized to the nano-order level and is a hydrogenated carbon material. However, a hydrogen storage material is one that repeatedly stores and releases hydrogen. Therefore, it refers to both the hydrogen storage state and the hydrogen release state.

本発明によれば、このような水素貯蔵材料の製造方法、すなわち、基本骨格が炭素−炭素結合により構成されている炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方とを、水素ガスまたは炭化水素ガスまたはこれらの混合ガスの雰囲気において、粉砕・混合する工程を有することを特徴とする水素貯蔵材料の製造方法が提供される。   According to the present invention, a method for producing such a hydrogen storage material, that is, a carbon material having a basic skeleton composed of carbon-carbon bonds, and / or a nitrogen compound and / or a boron compound, Alternatively, there is provided a method for producing a hydrogen storage material, comprising a step of pulverizing and mixing in an atmosphere of hydrocarbon gas or a mixed gas thereof.

また、本発明によれば、上記水素貯蔵材料の別の製造方法、すなわち、基本骨格が炭素−炭素結合により構成されているナノ炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方とを、水素ガス,炭化水素ガス,不活性ガスまたはこれらのガスから選ばれた2種以上のガスからなる混合ガスの雰囲気において、粉砕・混合する工程を有することを特徴とする水素貯蔵材料の製造方法が提供される。   According to the present invention, another method for producing the hydrogen storage material, that is, a nanocarbon material having a basic skeleton composed of carbon-carbon bonds, and / or a nitrogen compound and / or a boron compound, A method for producing a hydrogen storage material, comprising a step of pulverizing and mixing in an atmosphere of a mixed gas comprising two or more gases selected from hydrogen gas, hydrocarbon gas, inert gas, or these gases Is provided.

これらの製造方法により得られる材料は水素貯蔵材料として機能するが、このような水素貯蔵材料にさらに、加熱処理と、この加熱処理により得られた試料を加圧水素ガス雰囲気において所定の温度に加熱して水素を吸蔵させる処理とを施して、水素吸蔵のメカニズムが異なると考えられる水素貯蔵材料に変化させてもよい。なお、第2の製造方法で用いるナノ炭素材料としては、炭素材料を水素ガス雰囲気において微粉砕処理することにより製造されたものが好適である。   The material obtained by these production methods functions as a hydrogen storage material. Further, such a hydrogen storage material is further subjected to a heat treatment and a sample obtained by the heat treatment is heated to a predetermined temperature in a pressurized hydrogen gas atmosphere. The hydrogen storage material may be changed to a hydrogen storage material that is considered to have a different hydrogen storage mechanism. As the nanocarbon material used in the second production method, a material produced by pulverizing the carbon material in a hydrogen gas atmosphere is preferable.

水素貯蔵材料の製造に用いられる炭素材料としては、グラファイト,アントラセン,活性炭,アモルファスカーボン,カーボンナノチューブまたはこれらから選ばれた2種以上の混合物のいずれかが好適に用いられる。   As the carbon material used for the production of the hydrogen storage material, any of graphite, anthracene, activated carbon, amorphous carbon, carbon nanotubes, or a mixture of two or more selected from these is preferably used.

窒素化合物としては、アンモニア,金属アミド化合物,金属イミド化合物,金属窒化物,シアン化合物,アミン化合物のいずれかが好適であり、ホウ素化合物としては、ボロハイドライド,ホウ素が好適である。なお、一般的には、ホウ素は金属の範疇に属し、化合物の範疇には属さないが、ここでは便宜上、ホウ素化合物にホウ素が含まれるものとする。   As the nitrogen compound, any one of ammonia, a metal amide compound, a metal imide compound, a metal nitride, a cyanide compound, and an amine compound is preferable, and as the boron compound, borohydride and boron are preferable. In general, boron belongs to the category of metals and does not belong to the category of compounds, but here, for convenience, it is assumed that boron is included in the boron compound.

本発明によれば、炭素骨格を構成する炭素の一部を窒素およびホウ素の両方または一方で置換することにより骨格に生ずる歪みが、水素を吸着する欠陥構造部分となる。このような元素置換による欠陥構造部分は、従来の炭素−炭素結合の乱れによる欠陥構造部分に加えて生成させることができるので、従来の炭素材料よりも高い水素吸蔵率を得ることができる。また、炭素材料への元素置換による欠陥構造部分の導入は、原料を機械的に粉砕する際の処理能力の制約を受け難いという利点がある。   According to the present invention, the strain generated in the skeleton by substituting part or both of nitrogen and boron in the carbon skeleton constitutes a defect structure portion that adsorbs hydrogen. Such a defect structure portion due to element substitution can be generated in addition to the conventional defect structure portion due to disorder of the carbon-carbon bond, so that a higher hydrogen storage rate than that of a conventional carbon material can be obtained. In addition, the introduction of the defect structure portion by element substitution into the carbon material has an advantage that it is difficult to be restricted by the processing capability when mechanically crushing the raw material.

以下、本発明の実施の形態について説明する。本発明の水素貯蔵材料は、基本骨格が炭素−炭素結合により構成されているナノ炭素材料の炭素原子(C)の一部が窒素原子(N)とホウ素原子(B)の両方またはいずれか一方で置換された材料である。   Embodiments of the present invention will be described below. In the hydrogen storage material of the present invention, a part of carbon atoms (C) of the nanocarbon material whose basic skeleton is composed of carbon-carbon bonds is either or both of nitrogen atoms (N) and boron atoms (B). The material is replaced with

この水素貯蔵材料の基本となる炭素材料は、グラファイト,アントラセン,活性炭,アモルファスカーボン,カーボンナノチューブ等であり、これらの混合物であってもよい。本説明において、単に炭素材料というときは、水素化されていないものを指すものとする。ナノ炭素材料は、これら各種の炭素材料がナノオーダーレベルにまで微粉砕され、水素化されたものである。ナノ炭素材料は、水素の吸蔵/放出を繰り返して行うものであるから、水素吸蔵状態および水素放出状態のいずれの態様をも指す。   The carbon material that is the basis of the hydrogen storage material is graphite, anthracene, activated carbon, amorphous carbon, carbon nanotube, or the like, and may be a mixture thereof. In the present description, the term “carbon material” means a material that is not hydrogenated. The nanocarbon material is obtained by pulverizing and hydrogenating these various carbon materials to the nano-order level. Since the nanocarbon material is one in which hydrogen is occluded / released repeatedly, it indicates both the hydrogen occlusion state and the hydrogen release state.

炭素骨格を構成する炭素の一部を窒素およびホウ素の両方または一方で置換することにより、炭素骨格の六員環に歪みが生ずる。こうして歪みの生じた部分が、水素を吸着する欠陥構造部分となる。この欠陥構造部分は、炭素骨格中の欠陥構造部分(つまり、炭素原子どうしの結合に乱れが生じている部分)と併存する。そのため、本発明に係る水素貯蔵材料は、従来の炭素材料を用いた水素貯蔵材料よりも高い水素吸蔵率を示すようになる。   By substituting a part of carbon constituting the carbon skeleton with nitrogen and / or boron, distortion occurs in the six-membered ring of the carbon skeleton. Thus, the portion where the distortion is generated becomes a defect structure portion that adsorbs hydrogen. This defect structure portion coexists with the defect structure portion in the carbon skeleton (that is, the portion where the bond between the carbon atoms is disturbed). Therefore, the hydrogen storage material according to the present invention exhibits a higher hydrogen storage rate than a hydrogen storage material using a conventional carbon material.

図1にこのような水素貯蔵材料の製造方法および製造された水素貯蔵材料の水素吸蔵/放出プロセスのフローチャートを示す。図1には、窒素化合物およびホウ素化合物の両方またはいずれか一方に、炭素材料を混合する場合(以下「第1製造方法」という)と、ナノ炭素材料を混合する場合(以下「第2製造方法」という)の2通りの製造方法が示されている。   FIG. 1 shows a flowchart of a method for producing such a hydrogen storage material and a hydrogen storage / release process of the produced hydrogen storage material. FIG. 1 shows a case where a carbon material is mixed with nitrogen compound and / or a boron compound (hereinafter referred to as “first manufacturing method”) and a case where a nano carbon material is mixed (hereinafter referred to as “second manufacturing method”). 2) manufacturing methods are shown.

第1製造方法では、炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方とを、水素ガス,炭化水素ガスまたはこれらの混合ガスの雰囲気において粉砕・混合することにより、水素貯蔵材料(水素吸蔵体)が製造される。この粉砕・混合処理により、原料の炭素材料はナノ炭素材料化される。なお、この粉砕・混合処理は、水素ガスおよび炭化水素ガスの少なくとも一方のガスに不活性ガスを添加してなる混合ガスの雰囲気において行ってもよい。   In the first production method, a carbon material and / or a nitrogen compound and / or a boron compound are pulverized and mixed in an atmosphere of hydrogen gas, hydrocarbon gas, or a mixed gas thereof to obtain a hydrogen storage material (hydrogen (Occlusion body) is produced. By this pulverization / mixing process, the raw carbon material is converted into a nano carbon material. The pulverization / mixing process may be performed in an atmosphere of a mixed gas obtained by adding an inert gas to at least one of hydrogen gas and hydrocarbon gas.

第1製造方法により製造された水素貯蔵材料は、例えば、200℃〜350℃程度に加熱することにより水素放出が可能であり、これにより水素貯蔵材料は水素を放出した状態(つまり、水素放出体)となる。水素放出体への水素吸蔵処理は、この水素放出体を水素ガス雰囲気において200〜350℃に加熱する方法により行うことができ、これにより水素を吸蔵した状態の水素貯蔵材料に戻る。この水素吸蔵処理において、水素ガス圧を陽圧(例えば、3MPa以上)とすると、水素吸蔵速度を速くすることができる。   The hydrogen storage material manufactured by the first manufacturing method can release hydrogen, for example, by heating to about 200 ° C. to 350 ° C., whereby the hydrogen storage material releases hydrogen (that is, a hydrogen emitter). ) The hydrogen storage treatment in the hydrogen emitter can be performed by heating the hydrogen emitter to 200 to 350 ° C. in a hydrogen gas atmosphere, thereby returning to the hydrogen storage material in the state of storing hydrogen. In this hydrogen storage process, if the hydrogen gas pressure is positive (for example, 3 MPa or more), the hydrogen storage rate can be increased.

第1製造方法において原料として用いられる炭素材料は、上述したグラファイト等である。窒素化合物としては、アンモニア,金属アミド化合物,金属イミド化合物,金属窒化物,シアン化合物,アミン化合物が好適に用いられる。また、ホウ素化合物としては、ボロハイドライド,ホウ素が好適に用いられる。   The carbon material used as a raw material in the first manufacturing method is the above-described graphite or the like. As the nitrogen compound, ammonia, metal amide compound, metal imide compound, metal nitride, cyanide compound, and amine compound are preferably used. As the boron compound, borohydride and boron are preferably used.

第2製造方法では、最初に、炭素材料を粉砕処理することによりナノ炭素材料を作製する。この粉砕処理は、水素ガスまたは炭化水素ガスまたはこれらの混合ガスの雰囲気で行うことが最も好ましいが、このようなガスにさらに不活性ガスが添加されていてもよい。   In the second manufacturing method, first, a nanocarbon material is produced by pulverizing the carbon material. This pulverization treatment is most preferably performed in an atmosphere of hydrogen gas, hydrocarbon gas or a mixed gas thereof, but an inert gas may be further added to such a gas.

次いで、作製したナノ炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方と、を粉砕・混合することにより、水素貯蔵材料(水素吸蔵体)を得る。この粉砕混合は、水素ガス,炭化水素ガス,不活性ガスまたはこれらのガスから選ばれた2種以上のガスからなる混合ガスの雰囲気において行うことができる。第1製造方法により製造された水素貯蔵材料と、第2製造方法により製造された水素貯蔵材料とは、実質的に同じである。   Next, a hydrogen storage material (hydrogen storage material) is obtained by pulverizing and mixing the produced nanocarbon material and / or one or both of the nitrogen compound and the boron compound. This pulverization and mixing can be performed in an atmosphere of a mixed gas composed of hydrogen gas, hydrocarbon gas, inert gas, or two or more gases selected from these gases. The hydrogen storage material manufactured by the first manufacturing method and the hydrogen storage material manufactured by the second manufacturing method are substantially the same.

図2に水素貯蔵材料の別の製造方法および製造された水素貯蔵材料の水素吸蔵/放出プロセスのフローチャートを示す。図2にも、窒素化合物およびホウ素化合物の両方またはいずれか一方に、炭素材料を混合する場合(以下「第3製造方法」という)と、ナノ炭素材料を混合する場合(以下「第4製造方法」という)の2通りの製造方法が示されている。   FIG. 2 shows a flowchart of another method for producing a hydrogen storage material and a hydrogen storage / release process of the produced hydrogen storage material. Also in FIG. 2, a case where a carbon material is mixed with one or both of a nitrogen compound and a boron compound (hereinafter referred to as “third manufacturing method”) and a case where a nanocarbon material is mixed (hereinafter referred to as “fourth manufacturing method”). 2) manufacturing methods are shown.

第3製造方法では、まず、炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方とを、水素ガス,炭化水素ガスまたはこれらの混合ガスの雰囲気において粉砕・混合する。ここで用いられる炭素材料、窒素化合物およびホウ素化合物は、上述した第1,第2製造方法で用いるものと同じである。また、この粉砕・混合処理は、水素ガスおよび炭化水素ガスの少なくとも一方のガスに不活性ガスを添加してなる混合ガスの雰囲気において行うこともできる。   In the third production method, first, the carbon material and / or one or both of the nitrogen compound and the boron compound are pulverized and mixed in an atmosphere of hydrogen gas, hydrocarbon gas, or a mixed gas thereof. The carbon material, nitrogen compound, and boron compound used here are the same as those used in the first and second manufacturing methods described above. The pulverization / mixing treatment can also be performed in an atmosphere of a mixed gas obtained by adding an inert gas to at least one of hydrogen gas and hydrocarbon gas.

次いで、得られた試料を熱処理(例えば、150〜500℃、真空雰囲気に保持)する。この熱処理は、水素化した材料の材料表面や内部より脱ガスを行うことにより、水素を貯蔵するための微小空孔や炭素−炭素骨格中へ多量の欠陥構造を導入させ、水素吸着量を増加させるために行われる。こうして水素貯蔵材料(水素放出体)を得ることができる。   Next, the obtained sample is heat-treated (for example, 150 to 500 ° C., kept in a vacuum atmosphere). This heat treatment introduces a large amount of defect structure into the micro vacancies and carbon-carbon skeleton for storing hydrogen by degassing from the material surface and inside of the hydrogenated material, increasing the hydrogen adsorption amount Done to make. Thus, a hydrogen storage material (hydrogen releaser) can be obtained.

水素放出体への水素吸蔵処理は、加圧水素ガス雰囲気において室温または所定の温度(例えば、室温〜300℃)で行うことができる。一方、水素吸蔵体からの水素放出方法としては、例えば室温〜450℃で行うことができる。但し、このような条件に限定されるわけではない。   The hydrogen storage treatment for the hydrogen emitter can be performed at room temperature or a predetermined temperature (for example, room temperature to 300 ° C.) in a pressurized hydrogen gas atmosphere. On the other hand, as a method for releasing hydrogen from the hydrogen storage body, for example, it can be performed at room temperature to 450 ° C. However, it is not necessarily limited to such conditions.

第4製造方法は、先に説明した第2製造方法と同様にして、ナノ炭素材料を製造し、続いて上述の第3製造方法と同様に、ナノ炭素材料と窒素化合物等を粉砕・混合し、加熱処理し、水素吸蔵処理を行うものである。なお、この粉砕・混合処理の雰囲気は、第2製造方法に準ずる。第3製造方法により製造された水素貯蔵材料と、第4製造方法により製造された水素貯蔵材料とは、実質的に同じである。   In the fourth manufacturing method, the nanocarbon material is manufactured in the same manner as the second manufacturing method described above, and then the nanocarbon material and the nitrogen compound are pulverized and mixed in the same manner as in the third manufacturing method described above. , Heat treatment, and hydrogen storage treatment. In addition, the atmosphere of this grinding | pulverization / mixing process applies to a 2nd manufacturing method. The hydrogen storage material manufactured by the third manufacturing method and the hydrogen storage material manufactured by the fourth manufacturing method are substantially the same.

第1,第2製造方法により製造された水素貯蔵材料と、第3,第4製造方法により製造された水素貯蔵材料とでは、水素の吸着サイトの違いにより、水素の吸蔵/放出メカニズムが異なるものと考えられる。つまり、第1,第2製造方法により製造された水素貯蔵材料における水素吸蔵/放出のメカニズムは、詳細は不明であるが、200℃〜350℃という高温での処理が不可欠であることから、水素は、欠陥構造が導入された骨格に対して緩やかに結合し、また、この結合が切れて脱離するものと考えられる。これに対して、第3,4製造方法により製造された水素貯蔵材料では、材料中の微小空孔や炭素−炭素骨格中へ導入された多量の欠陥構造が水素吸着サイトとなり、比較的低温での水素吸着/脱離が行えるようになっているものと考えられる。   Hydrogen storage materials produced by the first and second production methods and hydrogen storage materials produced by the third and fourth production methods have different hydrogen storage / release mechanisms due to differences in hydrogen adsorption sites. it is conceivable that. That is, although the details of the hydrogen storage / release mechanism in the hydrogen storage material manufactured by the first and second manufacturing methods are unknown, it is indispensable to treat at a high temperature of 200 ° C. to 350 ° C. Is considered to be loosely bonded to the skeleton in which the defect structure is introduced, and this bond is broken and detached. On the other hand, in the hydrogen storage material produced by the third and fourth production methods, a large amount of defect structures introduced into the material and into the carbon-carbon skeleton serve as hydrogen adsorption sites, and at a relatively low temperature. It is considered that hydrogen adsorption / desorption can be performed.

上述した各製造方法における粉砕処理および粉砕・混合処理には、粉砕対象試料の表面積を大きくし、欠陥構造部分の生成を促進するために、粉砕能力の高い装置等を用いることが好ましいが、炭素材料およびナノ炭素材料に対する元素置換による欠陥構造部分の導入は、粉砕装置の処理能力の制約を受け難いという利点がある。水素貯蔵材料の製造には、ボールミル、アトライタミル、気流粉砕型ミル等の種々の粉砕装置を用いることができる。   In the pulverization process and the pulverization / mixing process in each of the manufacturing methods described above, it is preferable to use an apparatus with high pulverization ability in order to increase the surface area of the sample to be pulverized and promote the generation of defective structure parts. The introduction of the defect structure portion by element substitution into the material and the nanocarbon material has an advantage that it is difficult to be restricted by the processing capability of the grinding apparatus. Various pulverizing apparatuses such as a ball mill, an attritor mill, and an airflow pulverizing mill can be used for producing the hydrogen storage material.

(実施例1の試料調製)
グラファイト粉末(レアメタリック社製Carbon Powder、純度99.999%、粒径200μm)とリチウムアミド(LiNH;シグマ・アルドリッチ社製、純度99.5%)を、重量比で2:1となるように1.3g秤量し、これを高クロム鋼製のバルブ付ミル容器に、高クロム鋼製の粉砕ボールとともに投入した。続いて、このミル容器内を真空排気した後、ミル容器内圧が1MPaとなるように高純度水素ガスを導入した。これを室温、大気雰囲気に設置された遊星型ボールミル装置(Fritsch社製,型番:P−5)を用いて、250rpmの回転数で32時間、粉砕混合した。
(Sample preparation of Example 1)
Graphite powder (Carbon Powder manufactured by Rare Metallic, purity 99.999%, particle size 200 μm) and lithium amide (LiNH 2 ; manufactured by Sigma-Aldrich, purity 99.5%) are in a weight ratio of 2: 1. 1.3 g were weighed and placed in a high-chromium steel valve-equipped mill container together with high-chromium steel grinding balls. Subsequently, after the inside of the mill container was evacuated, high-purity hydrogen gas was introduced so that the inner pressure of the mill container was 1 MPa. This was pulverized and mixed for 32 hours at a rotational speed of 250 rpm using a planetary ball mill apparatus (manufactured by Fritsch, model number: P-5) installed in a room temperature and atmospheric atmosphere.

次いで、ミル容器内を真空排気した後、高純度アルゴンガスを外圧と同じとなるようにミル容器に導入し、高純度アルゴングローブボックス中においてミル容器を開いて実施例1の試料を取り出した。   Next, after the inside of the mill container was evacuated, high purity argon gas was introduced into the mill container so as to be the same as the external pressure, and the mill container was opened in the high purity argon glove box, and the sample of Example 1 was taken out.

(実施例2の試料調製)
グラファイト粉末(実施例1と同じ)と水素化ホウ素リチウム(LiBH;シグマ・アルドリッチ社製、純度95%)を、重量比で2:1となるように1.3g秤量し、その後は実施例1と同様に処理して、実施例2の水素貯蔵材料を得た。
(Sample preparation of Example 2)
Graphite powder (same as Example 1) and lithium borohydride (LiBH 4 ; manufactured by Sigma-Aldrich, purity 95%) were weighed to a weight ratio of 1.3 g, and then the Examples The hydrogen storage material of Example 2 was obtained in the same manner as in Example 1.

(実施例3の試料調製)
グラファイト粉末(実施例1と同じ)を1.3g秤量し、これをミル容器に粉砕ボールとともに投入した。このミル容器内を真空排気した後、ミル容器内圧が1MPaとなるように高純度水素ガスを導入し、遊星型ボールミル装置P−5を用いて、250rpmの回転数で80時間、粉砕混合した。その後、ミル容器を高純度アルゴングローブボックス中に移してミル容器内を真空排気し、次いでミル容器に高純度アルゴンガスを外圧と同じとなるように導入してミル容器を開き、ナノグラファイトを取り出した。
(Sample preparation of Example 3)
1.3 g of graphite powder (same as in Example 1) was weighed and put into a mill container together with pulverized balls. After the inside of the mill container was evacuated, high-purity hydrogen gas was introduced so that the inner pressure of the mill container was 1 MPa, and pulverized and mixed at a rotational speed of 250 rpm for 80 hours using a planetary ball mill device P-5. Then, the mill container is transferred into a high purity argon glove box, the inside of the mill container is evacuated, and then the high purity argon gas is introduced into the mill container so as to be the same as the external pressure, the mill container is opened, and the nanographite is taken out. It was.

このナノグラファイトとリチウムアミドを重量比で2:1となるように1.3g秤量し、遊星型ボールミル装置P−5を用いて、250rpmの回転数で2時間、粉砕混合した。次いで、ミル容器内を真空排気した後、高純度アルゴンガスを外圧と同じとなるようにミル容器に導入し、高純度アルゴングローブボックス中においてミル容器を開いて実施例3の水素貯蔵材料を得た。   1.3 g of this nanographite and lithium amide were weighed to a weight ratio of 2: 1, and pulverized and mixed for 2 hours at a rotational speed of 250 rpm using a planetary ball mill device P-5. Next, after evacuating the inside of the mill container, high purity argon gas was introduced into the mill container so as to be the same as the external pressure, and the mill container was opened in the high purity argon glove box to obtain the hydrogen storage material of Example 3. It was.

(実施例4の試料調製)
グラファイト粉末(実施例1と同じ)と水素化ホウ素リチウム(実施例2と同じ)を用いて、実施例3と同様に処理し、実施例4の水素貯蔵材料を得た。
(Sample preparation of Example 4)
Using the graphite powder (same as in Example 1) and lithium borohydride (same as in Example 2), the same treatment as in Example 3 was carried out to obtain the hydrogen storage material of Example 4.

(比較例1の試料調製)
グラファイト粉末(実施例1と同じ)と水素化リチウム(LiH;シグマ・アルドリッチ社製、純度:95%)を、重量比で2:1となるように1.3g秤量し、その後は実施例1と同様に処理して、比較例1の水素貯蔵材料を得た。
(Sample preparation of Comparative Example 1)
Graphite powder (same as in Example 1) and lithium hydride (LiH; manufactured by Sigma-Aldrich, purity: 95%) were weighed to a weight ratio of 1.3 g, and then Example 1 was measured. The hydrogen storage material of Comparative Example 1 was obtained in the same manner as described above.

(比較例2の試料調製)
グラファイト粉末(実施例1と同じ)と水素化リチウム(比較例1と同じ)を用いて、実施例3と同様に処理し、比較例2の水素貯蔵材料を得た。
(Sample preparation of Comparative Example 2)
A graphite powder (same as in Example 1) and lithium hydride (same as in Comparative Example 1) were used in the same manner as in Example 3 to obtain a hydrogen storage material of Comparative Example 2.

(実施例1〜4,比較例1,2の積算水素放出率測定方法とその結果)
上述の通りに調製した各試料について、高純度アルゴングローブボックス内において0.5g採取し、SUS製の反応容器(内容積:30cm3)に充填した。この反応容器を真空排気した後、電気炉で昇温速度10℃/分で加熱し、室温〜250℃、250〜300℃、300〜350℃の間で試料から放出されたガスをガスボンベに採取した。このガスボンベ内の放出ガスを、配管を通じてガスクロマトグラフ(島津製作所製、GC9A、TCD検出器、カラム:Molecular Sieve5A)に導入し、水素放出量を測定した。水素放出率としては、この水素量を加熱前の試料量で除した値とした。
(Integrated hydrogen release rate measuring method and results of Examples 1 to 4 and Comparative Examples 1 and 2)
About each sample prepared as mentioned above, 0.5g was extract | collected in the high purity argon glove box, and it filled in the reaction container (internal volume: 30 cm < 3 >) made from SUS. The reaction vessel is evacuated and heated in an electric furnace at a heating rate of 10 ° C./min, and the gas released from the sample at room temperature to 250 ° C., 250 to 300 ° C., and 300 to 350 ° C. is collected in a gas cylinder. did. The released gas in the gas cylinder was introduced into a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve5A) through a pipe, and the amount of hydrogen released was measured. The hydrogen release rate was a value obtained by dividing the hydrogen amount by the sample amount before heating.

図3に250℃、300℃、350℃での積算水素放出率を示す。実施例1および実施例2では、250℃、300℃、350℃での積算水素放出率が、比較例1に比べていずれの温度においても大きく、350℃までの積算水素放出率は3wt%近い値となった。実施例3および実施例4では、350℃での積算水素放出率を比較例2と比べると、同等の値となっているものの、実施例3および実施例4においては、低温域である250℃での積算水素放出率が比較例2の2倍以上となっており、本発明の効果により、水素放出が低温化している。   FIG. 3 shows the cumulative hydrogen release rate at 250 ° C., 300 ° C., and 350 ° C. In Example 1 and Example 2, the cumulative hydrogen release rate at 250 ° C., 300 ° C., and 350 ° C. is larger at any temperature than Comparative Example 1, and the cumulative hydrogen release rate up to 350 ° C. is close to 3 wt%. Value. In Example 3 and Example 4, the cumulative hydrogen release rate at 350 ° C. is equivalent to that in Comparative Example 2, but in Example 3 and Example 4, 250 ° C., which is a low temperature region, The cumulative hydrogen release rate at 2 is more than twice that of Comparative Example 2, and the effect of the present invention reduces the hydrogen release temperature.

(実施例5の試料調製)
高純度アルゴングローブボックス中において、前述のグラファイト粉末とリチウムアミドを、重量比で4:1となるように1.3g秤量し、これを高クロム鋼製のバルブ付ミル容器に、高クロム鋼製の粉砕ボールとともに投入した。続いて、このミル容器内を真空排気した後、ミル容器内圧が1MPaとなるように高純度水素ガスを導入した。これを室温、大気雰囲気に設置された遊星型ボールミル装置(Fritsch社製,型番:P−5)を用いて、250rpmの回転数で32時間、粉砕混合した。
(Sample preparation of Example 5)
In a high-purity argon glove box, 1.3 g of the above-mentioned graphite powder and lithium amide are weighed to a weight ratio of 4: 1, and this is placed in a high-chromium steel valve-equipped mill container and made of high-chromium steel. Were added together with crushed balls. Subsequently, after the inside of the mill container was evacuated, high-purity hydrogen gas was introduced so that the inner pressure of the mill container was 1 MPa. This was pulverized and mixed for 32 hours at a rotational speed of 250 rpm using a planetary ball mill apparatus (manufactured by Fritsch, model number: P-5) installed in a room temperature and atmospheric atmosphere.

次いで、ミル容器内を真空排気した後、高純度アルゴンガスを外圧と同じとなるようにミル容器に導入し、高純度アルゴングローブボックス中においてミル容器から試料を取り出し、SUS製の反応容器(内容積:100cm3)に充填した。この反応容器を真空排気しながら、電気炉で昇温速度10℃/分で室温から300℃まで加熱し、300℃で16時間加熱処理を行った。室温まで降温させた後、高純度アルゴングローブボックス中において実施例5の試料を取り出した。 Next, after evacuating the inside of the mill container, high purity argon gas was introduced into the mill container so as to be the same as the external pressure, the sample was taken out from the mill container in the high purity argon glove box, and the reaction container made of SUS (contents) Product: 100 cm 3 ). While evacuating the reaction vessel, the reactor was heated from room temperature to 300 ° C. at a heating rate of 10 ° C./min in an electric furnace, and heat treatment was performed at 300 ° C. for 16 hours. After the temperature was lowered to room temperature, the sample of Example 5 was taken out in a high purity argon glove box.

(実施例6の試料調製)
グラファイト粉末(実施例5と同じ)とホウ素粉末(シグマ・アルドリッチ社製、純度99%、<60mesh)を、重量比で4:1となるように1.3g秤量し、その後は実施例5と同様に処理して、実施例6の水素貯蔵材料を得た。
(Sample preparation of Example 6)
Graphite powder (same as Example 5) and boron powder (manufactured by Sigma-Aldrich, purity 99%, <60 mesh) were weighed to a weight ratio of 4: 1, and then weighed with Example 5 The same process was performed to obtain the hydrogen storage material of Example 6.

(比較例3の試料調製)
グラファイト粉末(実施例5と同じ)を、1.3g秤量し、その後は実施例5と同様に処理して、比較例3の試料を得た。
(Sample preparation of Comparative Example 3)
Graphite powder (same as in Example 5) was weighed in 1.3 g, and thereafter treated in the same manner as in Example 5 to obtain a sample of Comparative Example 3.

(実施例5,6,比較例3の水素吸着量測定方法とその結果)
実施例5、実施例6および比較例3に係る試料を前述の高純度アルゴングローブボックス内において各々0.3g採取したものをSUS製の耐圧容器に充填した。真空排気した後、ジーベルツ法により高純度水素ガスを内圧が2MPa、4MPaおよび8MPa(各圧力下での平衡待ち時間を2時間とした)と変化させた時の水素圧力変化(室温)を測定し、水素吸着量として評価した。
(Methods and results of measuring hydrogen adsorption amount in Examples 5 and 6 and Comparative Example 3)
Samples according to Example 5, Example 6, and Comparative Example 3 were collected in the above-described high-purity argon glove box by 0.3 g, and filled into SUS pressure-resistant containers. After vacuum evacuation, the hydrogen pressure change (room temperature) when high-purity hydrogen gas was changed to 2MPa, 4MPa and 8MPa (equilibrium waiting time under each pressure was 2 hours) was measured by the Siebelz method. The hydrogen adsorption amount was evaluated.

実施例5および実施例6では、水素圧2MPa、4MPa、8MPaでの水素吸着量が、比較例3に比べていずれの圧力においても大きくなっていることが分かった。   In Example 5 and Example 6, it was found that the hydrogen adsorption amount at hydrogen pressures of 2 MPa, 4 MPa, and 8 MPa was larger than that of Comparative Example 3 at any pressure.

本発明は、水素と酸素を燃料として発電する燃料電池等に用いられる水素貯蔵材料とその製造に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for a hydrogen storage material used for a fuel cell or the like that generates power using hydrogen and oxygen as fuel, and its production.

水素貯蔵材料の製造方法および製造された水素貯蔵材料の水素吸蔵/放出プロセスのフローチャート。The flowchart of the manufacturing method of a hydrogen storage material, and the hydrogen storage / release process of the manufactured hydrogen storage material. 水素貯蔵材料の別の製造方法および製造された水素貯蔵材料の水素吸蔵/放出プロセスのフローチャート。5 is a flowchart of another method for producing a hydrogen storage material and a hydrogen storage / release process of the produced hydrogen storage material. 実施例1〜4,比較例1,2の積算水素放出率を示すグラフ。The graph which shows the integrated hydrogen discharge | release rate of Examples 1-4 and Comparative Examples 1 and 2. FIG. 実施例5,6,比較例3の水素吸着量を示すグラフ。The graph which shows the hydrogen adsorption amount of Example 5, 6, and the comparative example 3. FIG.

Claims (7)

基本骨格が炭素−炭素結合により構成されているナノ炭素材料の炭素原子の一部が、窒素原子とホウ素原子の両方またはいずれか一方で置換されていることを特徴とする水素貯蔵材料。   A hydrogen storage material, wherein a part of carbon atoms of a nanocarbon material whose basic skeleton is composed of carbon-carbon bonds is substituted with either or both of a nitrogen atom and a boron atom. 基本骨格が炭素−炭素結合により構成されている炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方とを、水素ガスまたは炭化水素ガスまたはこれらの混合ガスの雰囲気において、粉砕・混合する工程を有することを特徴とする水素貯蔵材料の製造方法。   A step of pulverizing and mixing a carbon material whose basic skeleton is composed of carbon-carbon bonds and / or a nitrogen compound and / or a boron compound in an atmosphere of hydrogen gas, hydrocarbon gas, or a mixed gas thereof. A method for producing a hydrogen storage material, comprising: 基本骨格が炭素−炭素結合により構成されているナノ炭素材料と、窒素化合物およびホウ素化合物の両方またはいずれか一方とを、水素ガス,炭化水素ガス,不活性ガスまたはこれらのガスから選ばれた2種以上のガスからなる混合ガスの雰囲気において、粉砕・混合する工程を有することを特徴とする水素貯蔵材料の製造方法。   2 selected from a hydrogen gas, a hydrocarbon gas, an inert gas, or a gas selected from a nanocarbon material whose basic skeleton is composed of carbon-carbon bonds and / or a nitrogen compound and / or a boron compound. A method for producing a hydrogen storage material, comprising a step of pulverizing and mixing in an atmosphere of a mixed gas comprising at least a seed gas. 前記ナノ炭素材料は、炭素材料を水素ガス雰囲気において微粉砕処理することにより製造されたものであることを特徴とする請求項3に記載の水素貯蔵材料の製造方法。   4. The method for producing a hydrogen storage material according to claim 3, wherein the nanocarbon material is produced by pulverizing a carbon material in a hydrogen gas atmosphere. さらに、前記粉砕・混合工程により得られた試料を加熱する工程と、
前記加熱工程により得られた試料を加圧水素ガス雰囲気において所定の温度に加熱して水素を吸蔵させる工程と、
を有することを特徴とする請求項2から請求項4のいずれか1項に記載の水素貯蔵材料の製造方法。
Furthermore, a step of heating the sample obtained by the pulverization / mixing step,
Heating the sample obtained by the heating step to a predetermined temperature in a pressurized hydrogen gas atmosphere to occlude hydrogen;
The method for producing a hydrogen storage material according to any one of claims 2 to 4, wherein:
前記炭素材料は、グラファイト,アントラセン,活性炭,アモルファスカーボン,カーボンナノチューブ,またはこれらから選ばれた2種以上の混合物のいずれかであることを特徴とする請求項2,4,5のいずれか1項に記載の水素貯蔵材料の製造方法。   The carbon material is any one of graphite, anthracene, activated carbon, amorphous carbon, carbon nanotube, or a mixture of two or more selected from these. The manufacturing method of hydrogen storage material as described in any one of. 窒素化合物は、アンモニア,金属アミド化合物,金属イミド化合物,金属窒化物,シアン化合物,アミン化合物のいずれかであり、
前記ホウ素化合物は、ボロハイドライド,ホウ素のいずれかであることを特徴とする請求項2から請求項6のいずれか1項に記載の水素貯蔵材料の製造方法。
The nitrogen compound is any one of ammonia, a metal amide compound, a metal imide compound, a metal nitride, a cyanide compound, and an amine compound.
The method for producing a hydrogen storage material according to any one of claims 2 to 6, wherein the boron compound is borohydride or boron.
JP2005353622A 2005-12-07 2005-12-07 Hydrogen storage material and its manufacturing method Pending JP2007152278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353622A JP2007152278A (en) 2005-12-07 2005-12-07 Hydrogen storage material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353622A JP2007152278A (en) 2005-12-07 2005-12-07 Hydrogen storage material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007152278A true JP2007152278A (en) 2007-06-21

Family

ID=38237299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353622A Pending JP2007152278A (en) 2005-12-07 2005-12-07 Hydrogen storage material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007152278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139106A (en) * 2007-12-03 2009-06-25 Panasonic Electric Works Co Ltd Hydrogen detection element
JP2012050940A (en) * 2010-09-02 2012-03-15 Toyota Motor Corp Method for manufacturing hydrogen storage body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139106A (en) * 2007-12-03 2009-06-25 Panasonic Electric Works Co Ltd Hydrogen detection element
JP2012050940A (en) * 2010-09-02 2012-03-15 Toyota Motor Corp Method for manufacturing hydrogen storage body

Similar Documents

Publication Publication Date Title
Zhang et al. Nickel-decorated graphene nanoplates for enhanced H 2 sorption properties of magnesium hydride at moderate temperatures
Yong et al. Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y
Seayad et al. Recent advances in hydrogen storage in metal‐containing inorganic nanostructures and related materials
Bobet et al. Study of Mg-M (M= Co, Ni and Fe) mixture elaborated by reactive mechanical alloying—hydrogen sorption properties
Zou et al. Hydrogen storage properties of Mg–TM–La (TM= Ti, Fe, Ni) ternary composite powders prepared through arc plasma method
Skripnyuk et al. Hydrogen storage properties of as-synthesized and severely deformed magnesium–multiwall carbon nanotubes composite
US20100135899A1 (en) Process for releasing hydrogen gas
Mustafa et al. Enhanced hydrogen storage properties of 4MgH2+ LiAlH4 composite system by doping with Fe2O3 nanopowder
Rud et al. Hydrogen storage of the Mg–C composites
Zhu et al. Hydrogen storage properties of Mg–Ni–C system hydrogen storage materials prepared by hydriding combustion synthesis and mechanical milling
Phetsinorath et al. Preparation and hydrogen storage properties of ultrafine pure Mg and Mg–Ti particles
El-Eskandarany et al. Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt% TiMn2 binary system
Yuan et al. Preparation and hydrogen storage property of Mg-based hydrogen storage composite embedded by polymethyl methacrylate
Wu et al. Effect of MWCNTs on hydrogen storage properties of a Zr-based Laves phase alloy
Vellingiri et al. Single-walled carbon nanotubes/lithium borohydride composites for hydrogen storage: role of in situ formed LiB (OH) 4, Li 2 CO 3 and LiBO 2 by oxidation and nitrogen annealing
JP6295170B2 (en) Method for producing magnesium hydride
JP2007152278A (en) Hydrogen storage material and its manufacturing method
JP4853810B2 (en) Hydrogen storage material and method for producing the same
Babu et al. Magnesium hydrides for hydrogen storage: A mini review
Li et al. On the characterization of La1. 5Mg17Ni0. 5 composite materials prepared by hydriding combustion synthesis
RU2686898C1 (en) Method of producing magnesium hydride for chemical generator of hydrogen
Palma et al. MgAl alloy synthesis, characterization and its use in hydrogen storage
CN101574742B (en) Method for preparing nano-structure of magnesium
Révész et al. The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides
CN104891434B (en) A kind of Hydroboron/graphite fluoride nano-composite hydrogen storage material and preparation method thereof