JP2007152252A - Aqueous dispersion of coating oil particles and method for producing the same - Google Patents

Aqueous dispersion of coating oil particles and method for producing the same Download PDF

Info

Publication number
JP2007152252A
JP2007152252A JP2005352457A JP2005352457A JP2007152252A JP 2007152252 A JP2007152252 A JP 2007152252A JP 2005352457 A JP2005352457 A JP 2005352457A JP 2005352457 A JP2005352457 A JP 2005352457A JP 2007152252 A JP2007152252 A JP 2007152252A
Authority
JP
Japan
Prior art keywords
oil
particles
aqueous dispersion
coated
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005352457A
Other languages
Japanese (ja)
Inventor
Hiroki Kuriyama
裕樹 栗山
Hiroaki Umezawa
宏明 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP2005352457A priority Critical patent/JP2007152252A/en
Publication of JP2007152252A publication Critical patent/JP2007152252A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an aqueous dispersion containing coating oil particles capable of stably enfolding an oil constituent even under such a severe condition as about 50°C. <P>SOLUTION: The aqueous dispersion of coating oil particles having a pH of 6.0-8.0 composed of coated oil particles having an average particle size not greater than 5 μm which is constituted by attaching the hardly water-soluble fine particles of an inorganic calcium salt on the surface of the oil particles is obtained by preparing an oil particle dispersion so as to disperse the oil constituent into water, preparing an inorganic particle dispersion by dispersing a fine particle coagulated body of a hardly water-soluble inorganic calcium salt into water, thereafter pulverizing the fine particle coagulated body into a fine particle having an average particle size not greater than 1 μm and further adjusting the pH of the dispersion into a range of 6.0-8.0, and mixing the oil dispersion with the inorganic fine particle dispersion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被覆油粒子水分散液及びその製造方法に関し、詳しくは、油粒子の表面に無機微粒子が付着されてなる、油分を安定に内包した被覆油粒子を水に分散させてなる被覆油粒子水分散液及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a coating oil particle aqueous dispersion and a method for producing the same, and more specifically, a coating oil in which inorganic fine particles are adhered to the surface of oil particles, and coating oil particles stably containing oil are dispersed in water. The present invention relates to an aqueous particle dispersion and a method for producing the same.

周知のように、薬効成分、化粧成分、殺菌成分、殺虫成分、香料成分等には油分が含まれているものが多数存在する。しかしながら、上記成分中に含まれる油分は、光、酸素、熱、圧力等から影響を受けやすく、経時安定性が良くないものが多い。また、油分の中には、苦味や独特な異臭を有するものが多数存在する。上記油分の経時安定性の不良や苦味や独特な異臭を有することは、目的とする用途における効果を保存中に低減させたり、商品価値を落としたりするという問題があった。   As is well known, many medicinal ingredients, cosmetic ingredients, bactericidal ingredients, insecticidal ingredients, perfume ingredients, etc. contain oil. However, many of the oils contained in the above components are easily affected by light, oxygen, heat, pressure, etc., and are not stable over time. In addition, many oils have bitter tastes and unique odors. Poor oil stability over time, bitterness, and a unique odor caused problems such as reducing the effect of the intended application during storage and reducing the commercial value.

これに対して、従来、油分を被覆することが提案されており、特許文献1には、界面活性剤の存在下、水性溶液中に油溶性物質およびカルシウム成分を分散させ、得られた混合液を乾燥させることによって油溶性物質含有粉末を得る技術が開示されている。   On the other hand, conventionally, it has been proposed to coat an oil component. Patent Document 1 discloses a mixed liquid obtained by dispersing an oil-soluble substance and a calcium component in an aqueous solution in the presence of a surfactant. A technique for obtaining an oil-soluble substance-containing powder by drying is disclosed.

特開2005−263948号公報JP 2005-263948 A

前記特許文献1の方法においては、油溶性物質をホモミキサーを用いて乳化しているが、このレベルの剪断力では油溶性物質の微粒化は数10μmレベルに留まり、更に、ホモミキサーではローターとステーターの間のクリアランスが広く、カルシウム粒子を1μmよりも小さく粉砕する力は無い。したがって、油溶性物質を含有した粒子の粒径は、必然的に数10μm以上と大きいものになってしまう。さらに、本技術では、加えて、粉末化させているので、粉体としての取り扱いやすさとしての粉立ちが起こらない点から考えても、数10μm以上になってしまう。このような大きな粒子では、生体内等の微小部分(例えば、皮膚、毛穴、歯周ポケット、歯牙の小窩裂溝など)への浸透性や隙間に入り込むことによる滞留性を発揮できない欠点がある。   In the method of Patent Document 1, an oil-soluble substance is emulsified using a homomixer, but with this level of shearing force, the atomization of the oil-soluble substance remains at a level of several tens of μm. The clearance between the stators is wide, and there is no force to grind calcium particles to less than 1 μm. Therefore, the particle diameter of the particles containing the oil-soluble substance is inevitably as large as several tens of μm. Furthermore, in the present technology, in addition, since it is pulverized, it becomes several tens of μm or more from the viewpoint that powdering does not occur as ease of handling as powder. Such large particles have a drawback that they cannot exhibit permeability to microscopic parts (eg, skin, pores, periodontal pockets, tooth pits and fissures in the living body) and retention due to entering the gaps. .

この特許文献1に開示の技術では、界面活性剤のありなしにかかわらず、油分をカルシウム成分で被覆できること、かつ乾燥工程を必要とせず油分を被覆できるとしているが、乾燥工程なしでは油分がカルシウム成分で被覆されない。しかも、前述のように、カルシウム成分の粒径が大きいため、油分が漏れやすい欠点がある。   In the technique disclosed in Patent Document 1, the oil component can be coated with a calcium component regardless of the presence or absence of a surfactant, and the oil component can be coated without a drying step. Not coated with ingredients. In addition, as described above, since the calcium component has a large particle size, there is a drawback that the oil component easily leaks.

これに対して、本発明者らは、本願発明に先立って、油粒子を水難溶性無機カルシウム塩の粒子で被覆した被覆油粒子及びその製造方法を提案している(特願2005−187210号および特願2005−325312号)。   On the other hand, prior to the present invention, the present inventors have proposed coated oil particles in which oil particles are coated with particles of poorly water-soluble inorganic calcium salt and a method for producing the same (Japanese Patent Application No. 2005-187210 and Japanese Patent Application No. 2005-187210). (Japanese Patent Application No. 2005-325312).

これらの先の出願では、油粒子の表面に平均粒径1μm以下の水難溶性無機カルシウム塩の微粒子を付着させて平均粒径が5μm以下の被覆油粒子を得る方法を提案した。   In these previous applications, a method of obtaining coated oil particles having an average particle size of 5 μm or less by attaching finely water-insoluble inorganic calcium salt particles having an average particle size of 1 μm or less to the surface of the oil particles was proposed.

前記本発明者らの先の出願によれば、固着剤等を用いることなく、油粒子を水難溶性無機カルシウム塩の微粒子により被覆した平均粒径5μm以下の微細な被覆油粒子を形成することができる。しかしながら、被覆油粒子を実際の応用現場で使用しようとする場合、被覆油粒子はより過酷な条件下で使用されることも視野に入れなければならない。より過酷な条件下でも被覆油粒子は高い安定性を有することが望ましい。過酷な条件下とは、例えば、室温以上の高い温度下で使用される場合が想定される。油粒子としてフェノール性化合物を含む油分を用いる場合、50℃程度のより過酷な条件下でも油分が溶出してしまうことがないことが、より一層の性能向上につながる。かかるより一層の性能向上については、本発明者らの先の出願では、検討に至っていない。   According to the previous application of the present inventors, fine coated oil particles having an average particle diameter of 5 μm or less formed by coating oil particles with fine particles of poorly water-soluble inorganic calcium salt can be formed without using a fixing agent or the like. it can. However, if the coated oil particles are to be used in actual application sites, it must also be considered that the coated oil particles are used under more severe conditions. It is desirable that the coated oil particles have high stability even under more severe conditions. The severe conditions are assumed to be used at a high temperature of room temperature or higher, for example. In the case of using an oil component containing a phenolic compound as the oil particles, the fact that the oil component does not elute even under more severe conditions of about 50 ° C. leads to a further improvement in performance. Such further performance improvement has not been studied in the earlier application of the present inventors.

本発明は、上記の問題点を解消しようとするものであり、室温より高い温度、例えば、50℃程度のより過酷な温度条件下でも、油分を安定に内包できる、被覆油粒子を含有してなる水分散液を提供することを課題とする。   The present invention is intended to solve the above-described problems, and contains coated oil particles that can stably contain oil even under a temperature higher than room temperature, for example, a severer temperature condition of about 50 ° C. It is an object to provide an aqueous dispersion.

本発明者らは、上記課題を解決するため鋭意検討したところ、被覆油粒子を分散させておく水分散液のpHを6〜8に調整することにより、以下のような作用および効果を確認するに至った。
(1) 無機カルシウム塩微粒子同士の凝集性が増し、固着剤なしにでも油分を安定に被覆できる。
(2) 無機カルシウム塩微粒子による被覆厚が薄くても、安定な被膜が形成できる。
(3) フェノール性化合物を含む油分を含む油粒子を安定に内包できる。
(4) 得られた水分散液中の被覆油粒子は50℃程度のより過酷な条件下での安定性も良好である。
本発明は、かかる知見に基づいてなされたものである。
The inventors of the present invention have intensively studied to solve the above problems, and confirm the following actions and effects by adjusting the pH of the aqueous dispersion in which the coating oil particles are dispersed to 6-8. It came to.
(1) Aggregation between inorganic calcium salt fine particles is increased, and oil can be stably coated even without a fixing agent.
(2) A stable film can be formed even if the coating thickness of the inorganic calcium salt fine particles is thin.
(3) Oil particles containing an oil component containing a phenolic compound can be stably encapsulated.
(4) The coated oil particles in the obtained aqueous dispersion have good stability under more severe conditions of about 50 ° C.
The present invention has been made based on such knowledge.

すなわち、本発明の被覆油粒子水分散液は、油粒子の表面に水難溶性無機カルシウム塩の微粒子が付着されてなる被覆油粒子が水に分散されてなる被覆油粒子水分散液であって、前記水難溶性無機カルシウム塩微粒子の平均粒径が1μm以下、前記被覆油粒子の平均粒径が5μm以下であり、かつ、pHが6.0〜8.0であることを特徴とする。   That is, the coated oil particle aqueous dispersion of the present invention is a coated oil particle aqueous dispersion in which coated oil particles in which fine particles of poorly water-soluble inorganic calcium salt are adhered to the surface of oil particles are dispersed in water, The poorly water-soluble inorganic calcium salt fine particles have an average particle size of 1 μm or less, the coated oil particles have an average particle size of 5 μm or less, and a pH of 6.0 to 8.0.

また、本発明にかかる被覆油粒子水分散液の製造方法は、油分を水分中に分散して油粒子分散液を得る乳化工程と、水難溶性無機カルシウム塩の微粒子凝集体を水に分散させた後、前記微粒子凝集体を平均粒径1μm以下の微粒子に粉砕し、さらにこの分散液のpHを6.0〜8.0の範囲に調整することにより、無機微粒子水分散液を得る無機微粒子水分散液調製工程と、前記油粒子分散液と前記無機微粒子水分散液とを混合することにより、油粒子の表面に水難溶性無機カルシウム塩の微粒子が付着されてなる被覆油粒子が水に分散されてなるpHが6.0〜8.0の被覆油粒子水分散液を得る被覆油粒子水分散液調製工程と、を含むことを特徴とする。   Also, the method for producing a coated oil particle aqueous dispersion according to the present invention comprises an emulsification step in which an oil component is dispersed in moisture to obtain an oil particle dispersion, and a water-soluble inorganic calcium salt fine particle aggregate is dispersed in water. Thereafter, the fine particle aggregate is pulverized into fine particles having an average particle diameter of 1 μm or less, and the pH of the dispersion is adjusted to a range of 6.0 to 8.0 to obtain an inorganic fine particle water dispersion. By mixing the dispersion liquid preparation step and the oil particle dispersion liquid and the inorganic fine particle aqueous dispersion liquid, coated oil particles in which fine particles of poorly water-soluble inorganic calcium salt are adhered to the surface of the oil particles are dispersed in water. And a coated oil particle aqueous dispersion preparation step for obtaining a coated oil particle aqueous dispersion having a pH of 6.0 to 8.0.

本発明によれば、以下のような効果を得ることができる。
(1) フェノール性化合物を含む油分を、被覆油粒子から溶出することなく安定に内包し、50℃程度のより過酷な条件下での経時安定性も良好である。
(2) 油分を安定に内包し、油分が光、酸素、熱、圧力等から受ける影響を弱めることができる。
(3) 油分(薬効成分等)を大量に内包することができる。
(4) 水難溶性カルシウム含有無機微粒子で被覆しているため壊れにくく、被覆厚が薄くても安定である。
(5) 油分の味、匂い等をマスクすることができる。
(6) 油粒子表面に凝集して被膜を形成しているため、膜には微細孔が存在し、内包する油分の徐放が可能である。
(7) 水難溶性無機カルシウム塩の微粒子を用いているため、生体に用いた場合でも、安全性が高い。
(8) 油分の量と水難溶性無機カルシウム塩の微粒子の量を適宜調整することにより、本発明の被覆油粒子の被覆厚を制御することが可能である。
(9) 油粒子の粒径を制御することにより、被覆油粒子の平均粒径を例えば5μm以下に制御することが可能である。
According to the present invention, the following effects can be obtained.
(1) The oil containing a phenolic compound is stably encapsulated without being eluted from the coated oil particles, and the stability over time under more severe conditions of about 50 ° C. is also good.
(2) The oil component can be contained stably, and the influence of the oil component from light, oxygen, heat, pressure, etc. can be weakened.
(3) A large amount of oil (medicinal components, etc.) can be included.
(4) It is hard to break because it is coated with water-insoluble calcium-containing inorganic fine particles, and is stable even if the coating thickness is thin.
(5) It can mask the taste and smell of oil.
(6) Since the coating is formed by agglomerating on the surface of the oil particles, the membrane has micropores, and the oil contained therein can be gradually released.
(7) Since fine particles of poorly water-soluble inorganic calcium salt are used, safety is high even when used in a living body.
(8) The coating thickness of the coated oil particles of the present invention can be controlled by appropriately adjusting the amount of oil and the amount of fine particles of poorly water-soluble inorganic calcium salt.
(9) By controlling the particle size of the oil particles, it is possible to control the average particle size of the coated oil particles to, for example, 5 μm or less.

以下に、本発明の実施形態について説明する。
本発明における油粒子は、1種または2種以上の油分からなる。この油分は、上記水難溶性無機カルシウム塩や後述する界面活性剤と反応しない油分であれば、特に限定されない。
Hereinafter, embodiments of the present invention will be described.
The oil particles in the present invention are composed of one or more oil components. The oil is not particularly limited as long as it is an oil that does not react with the poorly water-soluble inorganic calcium salt or the surfactant described later.

このような油分としては、例えば、n−ヘキサン、n−オクタン、シクロヘキサン、流動パラフィン、ベンゼン、トルエン、キシレン、クメン、スチレンなどの炭化水素類、また、トリクロロエタン、トリクロロエチレンなどのハロゲン化炭化水素、またパルミチン酸メチル、ステアリン酸メチル、オレイン酸メチル、ミリスチン酸イソプロピル、パルミチン酸イソプロピルなどのエステル類、また、ラウリルアルコール、ステアリルアルコール、オレイルアルコールなどの高級アルコール類、また、サラダ油、オリーブ油、ゴマ油、ヒマシ油、大豆油、菜種油、アマニ油、コーン油、パーム油、鯨ロウ、コレステロール、シリコーン油、ミネラルオイル、ラード、ミツロウ、綿実油、ラノリン、ワセリンなどの天然及び合成の油、油脂、ロウ類、また、ポリスチレン、ポリエチレンなどの高分子ポリマー、また、メントール、リモネン、テルピネン、ゲラニオール、ムスコン、レモン香料などの香料、スクワラン、セラミド、コラーゲン、パンテノール、パントテン酸などの化粧成分、薬効・有効成分、その他農薬、殺虫成分、抗菌、抗カビ成分等が挙げられる。   Examples of such oils include hydrocarbons such as n-hexane, n-octane, cyclohexane, liquid paraffin, benzene, toluene, xylene, cumene and styrene, halogenated hydrocarbons such as trichloroethane and trichloroethylene, and Esters such as methyl palmitate, methyl stearate, methyl oleate, isopropyl myristate, isopropyl palmitate, and higher alcohols such as lauryl alcohol, stearyl alcohol, oleyl alcohol, salad oil, olive oil, sesame oil, castor oil Natural and synthetic oils such as soybean oil, rapeseed oil, linseed oil, corn oil, palm oil, whale wax, cholesterol, silicone oil, mineral oil, lard, beeswax, cottonseed oil, lanolin and petrolatum, , High molecular weight polymers such as polystyrene and polyethylene, fragrances such as menthol, limonene, terpinene, geraniol, muscone, lemon fragrance, cosmetic ingredients such as squalane, ceramide, collagen, panthenol, pantothenic acid, medicinal and effective Ingredients, other agricultural chemicals, insecticidal ingredients, antibacterial, antifungal ingredients and the like.

また、これらの油分に溶解しない成分、もしくは油分そのものではなく、その他の成分であって、油分に溶解する成分でも不溶性の成分でも、上記水難溶性無機カルシウム塩や後述する界面活性剤と反応しない油分であれば、上記油分中に溶解もしくは分散させることによって包含させることができる。このようにして用いることができるものとしては、例えば、アミノ酸や、タンパク質、酵素、DNA、糖類などの高分子物質が挙げられる。   In addition, these components that are not soluble in the oil, or other components that are not the oil itself, and that do not react with the poorly water-soluble inorganic calcium salt or the surfactant described later, whether the component is soluble or insoluble in the oil. If so, it can be included by dissolving or dispersing in the oil. Examples of substances that can be used in this way include amino acids, and high-molecular substances such as proteins, enzymes, DNA, and sugars.

前記フェノール性化合物は、分子内にフェノール構造を持つ化合物である。例えば、トリクロサン、イソプロピルメチルフェノール(IPMP)、チモール、o−クレゾール、m−クレゾール、p−クレゾール、o−クロロフェノール、m−クロロフェノール、p−クロロフェノール、o−ニトロフェノール、m−ニトロフェノール、p−ニトロフェノール、フェノール、フェノキシエタノール、ヒノキチオール、サリチル酸、サリチル酸メチル、サリチルアルデヒド、チロシン、2−メトキシフェノール、3−メトキシフェノール、4−メトキシフェノール、チオフェノールなどが挙げられる。これらを単独で油分として使用しても、また上記の油分にこれを溶解させて用いてもよい。上述のn−ヘキサン、n−オクタンなどを例に挙げた油分である。   The phenolic compound is a compound having a phenol structure in the molecule. For example, triclosan, isopropylmethylphenol (IPMP), thymol, o-cresol, m-cresol, p-cresol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-nitrophenol, m-nitrophenol, Examples thereof include p-nitrophenol, phenol, phenoxyethanol, hinokitiol, salicylic acid, methyl salicylate, salicylaldehyde, tyrosine, 2-methoxyphenol, 3-methoxyphenol, 4-methoxyphenol, and thiophenol. These may be used alone as an oil, or may be used by dissolving them in the above oil. It is the oil which mentioned above n-hexane, n-octane, etc. as an example.

本発明に用いる水難溶性無機カルシウム塩としては、本発明に用いる油分と反応しない水難溶性無機カルシウム塩であれば、特に限定されない。例えば、炭酸カルシウム、リン酸カルシウム、硫酸カルシウム、フッ化カルシウム、珪酸カルシウム、第二リン酸カルシウム、ハイドロキシアパタイト、フッ化アパタイトなどを挙げることができる。   The poorly water-soluble inorganic calcium salt used in the present invention is not particularly limited as long as it is a poorly water-soluble inorganic calcium salt that does not react with the oil used in the present invention. For example, calcium carbonate, calcium phosphate, calcium sulfate, calcium fluoride, calcium silicate, dicalcium phosphate, hydroxyapatite, fluoride apatite and the like can be mentioned.

水難溶性無機カルシウム塩の微粒子の平均粒子径は1μm以下の粒子であるため、高い表面活性を付与できているので、油粒子の粒径を適宜に制御することにより、最終的に得られる本発明における被覆油粒子の粒径を容易に制御することが可能である。   Since the average particle size of the fine water-insoluble inorganic calcium salt particles is 1 μm or less, high surface activity can be imparted. Therefore, the present invention finally obtained by appropriately controlling the particle size of the oil particles It is possible to easily control the particle size of the coated oil particles.

本発明の被覆油粒子水分散液は、pHが6.0〜8.0の範囲に設定される。pHが6.0未満であると、水難溶性無機カルシウム塩が溶解し、被覆油粒子から油分が漏れ出るおそれがある。一方、pHが8.0を超えると、油分中のフェノール性化合物が被覆油粒子から溶出するおそれがある。水分散液のpHを6.0〜8.0の範囲に制御することにより、フェノール性化合物を含む油分でも、より安定に内包できる。しかも、50℃程度のより過酷な条件下でも、油分を安定に内包できる。   The coating oil particle aqueous dispersion of the present invention has a pH set in the range of 6.0 to 8.0. If the pH is less than 6.0, the poorly water-soluble inorganic calcium salt is dissolved, and there is a risk that the oil will leak from the coated oil particles. On the other hand, if the pH exceeds 8.0, the phenolic compound in the oil may be eluted from the coated oil particles. By controlling the pH of the aqueous dispersion in the range of 6.0 to 8.0, even oil components containing phenolic compounds can be included more stably. Moreover, oil can be stably encapsulated even under more severe conditions of about 50 ° C.

本発明において、後述の被覆油粒子水分散液の製造工程においてpHが6.0〜8.0の範囲から外れた場合は、pHを6.0〜8.0の範囲にpH調整することを必要とする。この時、酸およびアルカリを用いてpHが6.0〜8.0の範囲になるように調整する。   In the present invention, when the pH is out of the range of 6.0 to 8.0 in the manufacturing process of the coating oil particle aqueous dispersion described later, the pH is adjusted to the range of 6.0 to 8.0. I need. At this time, it adjusts so that pH may be in the range of 6.0-8.0 using an acid and an alkali.

pH調整用の酸としては、塩酸、硫酸、硝酸、リン酸、酢酸、乳酸、クエン酸などを用いることができる。これらのうちで、硫酸、リン酸、クエン酸が好ましい。   As the acid for adjusting the pH, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, lactic acid, citric acid and the like can be used. Of these, sulfuric acid, phosphoric acid, and citric acid are preferred.

pH調整用のアルカリとしては、水酸化ナトリウム、水酸化カリウムなどを用いることができる。   As an alkali for pH adjustment, sodium hydroxide, potassium hydroxide, etc. can be used.

本発明の被覆油粒子水分散液中の被覆油粒子は、油粒子の表面に平均粒径1μm以下の水難溶性無機カルシウム塩の微粒子が付着されることにより前記油粒子が被覆されてなるもので、その平均粒径が5μm以下の寸法に制御される。ここで、図1は、油粒子が水難溶性無機カルシウム塩の微粒子で被覆された被覆油粒子の概念図である。図1に示すように、油粒子2aは、水難溶性無機カルシウム塩の微粒子1aで被覆され、被覆油粒子3となっている。   The coated oil particles in the coated oil particle aqueous dispersion of the present invention are formed by coating the oil particles by attaching fine particles of a poorly water-soluble inorganic calcium salt having an average particle size of 1 μm or less to the surface of the oil particles. The average particle diameter is controlled to a dimension of 5 μm or less. Here, FIG. 1 is a conceptual diagram of coated oil particles in which oil particles are coated with fine particles of a poorly water-soluble inorganic calcium salt. As shown in FIG. 1, the oil particles 2 a are coated with fine particles 1 a of a poorly water-soluble inorganic calcium salt to form coated oil particles 3.

図2は、水難溶性無機カルシウム塩の微粒子が、油粒子に付着する機構を図示したものである。図2に示すように、粒径1μm以下の水難溶性無機カルシウム塩の微粒子1aは、表面エネルギーが大きいため、油粒子表面に吸引されて付着し、固着剤を用いることなく安定に油粒子2aを被覆する。さらに、被覆厚が薄くても安定な被膜を形成することができる。そのため、水難溶性無機カルシウム塩に対する油分の重量比を大きくすることができる。また、この被膜には、細孔が存在するため、被覆された油分の徐放性に優れる。さらに、油分を放出したい場合は、水難溶性無機カルシウム塩からなる被覆層を酸かアルカリにより溶解させることにより溶出させることが可能である。例えば、炭酸カルシウムの場合、酸を作用させれば、被覆層が溶解するので、油分の放出が自在となる。   FIG. 2 illustrates a mechanism in which fine particles of a poorly water-soluble inorganic calcium salt adhere to oil particles. As shown in FIG. 2, the slightly water-soluble inorganic calcium salt fine particles 1a having a particle size of 1 μm or less have a large surface energy, so that they are attracted and adhered to the surface of the oil particles, and the oil particles 2a can be stably attached without using a sticking agent. Cover. Furthermore, a stable coating can be formed even if the coating thickness is thin. Therefore, the weight ratio of the oil to the poorly water-soluble inorganic calcium salt can be increased. Moreover, since this coating film has pores, it is excellent in the sustained release property of the coated oil. Furthermore, when it is desired to release the oil, it is possible to dissolve the coating layer made of a poorly water-soluble inorganic calcium salt by dissolving it with an acid or an alkali. For example, in the case of calcium carbonate, if an acid is allowed to act, the coating layer dissolves, so that oil can be released freely.

本発明の被覆油粒子の平均粒径は5μm以下である。この粒径は、油粒子自体の粒径制御と、水難溶性無機カルシウム塩微粒子の被覆厚を調整することにより、制御することができる。   The average particle diameter of the coated oil particles of the present invention is 5 μm or less. This particle size can be controlled by controlling the particle size of the oil particles themselves and adjusting the coating thickness of the poorly water-soluble inorganic calcium salt fine particles.

平均被覆厚は、本発明の被覆油粒子を構成する水難溶性無機カルシウム塩の微粒子の被覆厚の平均値を表す。上記表面に付着している微粒子状の水難溶性無機カルシウム塩と上記油粒子との重量比を適宜調整することにより制御することが可能である。   The average coating thickness represents the average value of the coating thickness of the slightly water-soluble inorganic calcium salt fine particles constituting the coated oil particles of the present invention. It can be controlled by appropriately adjusting the weight ratio between the finely particulate water-insoluble inorganic calcium salt adhering to the surface and the oil particles.

次に、本発明の被覆油粒子水分散液の製造方法について図を用いて説明する。
(i)油分を水分中に分散して油粒子分散液を得る乳化工程
上記油分からなる油粒子は、上記油分がいかなる方法によって油粒子となっていてもよい。油粒子とする方法の具体的な一例としては、乳化処理が挙げられる。乳化により油粒子を形成する場合、油粒子の粒径は、ホモジナイザー、粉砕装置、乳化装置等を用い、攪拌時間、攪拌速度、温度等を調整することによって調整することができる。
Next, the manufacturing method of the coating oil particle aqueous dispersion of this invention is demonstrated using figures.
(I) The emulsification process which disperses | distributes oil in a water | moisture content and obtains an oil particle dispersion liquid The oil particle which consists of the said oil component may make the said oil component into an oil particle by what kind of method. As a specific example of the method for obtaining oil particles, emulsification treatment may be mentioned. When oil particles are formed by emulsification, the particle size of the oil particles can be adjusted by adjusting the stirring time, stirring speed, temperature, etc. using a homogenizer, a pulverizer, an emulsifier or the like.

まず、被覆される油分2を水4に混合して乳化装置等で攪拌し、油粒子2aを水分中に分散して油粒子分散液、すなわち乳化物(O/W乳化物)5を得る(乳化工程)。この時、固体状である油性物質を油分に含む場合、その融点よりも高い温度にて上記乳化物(O/W乳化物)5を調製する(乳化工程)のが好ましい。乳化装置の例としては、ホモジナイザー、ホモミキサー、ディスパーミキサー、ウルトラミキサー、ホモミックラインミル、マイルダー、クレアミックスなどの高速剪断乳化機、マイクロフルイダイザー、ゴーリン、アルティマイザー、ナノマイザーなどの高圧乳化機、超音波分散機、超音波ホモジナイザーなどの超音波乳化機などが挙げられる。一般に界面活性剤がない場合は、油分2と水4のみでは乳化物(O/W乳化物)5を得ることは困難であるが、上記の乳化装置等を用いることにより、装置内で乳化物(O/W乳化物)5を得ることが可能となる。この場合、油粒子2aを、水難溶性無機カルシウム塩をpH調整した微粒子でより被覆させやすくするため、油分2と水4にさらに界面活性剤を添加して混合、撹拌し、乳化物(O/W乳化物)5とすることが望ましい。   First, the oil 2 to be coated is mixed with water 4 and stirred with an emulsifying device or the like, and the oil particles 2a are dispersed in moisture to obtain an oil particle dispersion, that is, an emulsion (O / W emulsion) 5 ( Emulsification step). At this time, when an oily substance that is solid is included in the oil, it is preferable to prepare the emulsion (O / W emulsion) 5 at a temperature higher than the melting point (emulsification step). Examples of emulsifiers include high-speed shearing emulsifiers such as homogenizers, homomixers, disper mixers, ultramixers, homomic line mills, milders, and CLEARMIX, high-pressure emulsifiers such as microfluidizers, gorin, optimizers, and nanomizers, Examples thereof include an ultrasonic emulsifier such as an ultrasonic disperser and an ultrasonic homogenizer. In general, when there is no surfactant, it is difficult to obtain an emulsion (O / W emulsion) 5 with only oil 2 and water 4, but by using the above-mentioned emulsifying apparatus etc., the emulsion is obtained in the apparatus. (O / W emulsion) 5 can be obtained. In this case, in order to make it easier to coat the oil particles 2a with fine particles whose pH is adjusted with a poorly water-soluble inorganic calcium salt, a surfactant is further added to the oil 2 and water 4 and mixed, stirred, and an emulsion (O / W emulsion) 5 is desirable.

(ii)無機微粒子水分散液を調製する工程
水難溶性無機カルシウム塩を平均粒径1μm以下に微粒化するのは、平均粒径1μm以下に微粒化できれば、いかなる装置を用いて調製しても構わないが、例えば、慣用の微粒化装置を用いて粉砕することにより調製することができる。このような微粒化装置を具体的に挙げると、ビーズミルやボールミル、各種メディアレスミル、超音波分散機などを用いることができる。本発明に用いることができる微粒化装置としては、例えば、ウルトラアペックスミル(寿工業(株)製)、スターミル(アシザワ・ファインテック(株))、フィルミックス(プライミクス(株)製)、ディスコプレックス(ホソカワアルピネ社製)、ACM−Aパルベライザ(ホソカワミクロン(株)製)、ナノカット((株)マツボー製)、CLEAR SS−5、クレアミックス(エムテクニック(株)製)、超音波分散機UH−600SR((株)エスエムテー製)、超音波ホモジナイザー(Dr.Hielscher社製)等が挙げられる。
(Ii) Step of preparing an inorganic fine particle aqueous dispersion The hardly water-soluble inorganic calcium salt is atomized to an average particle diameter of 1 μm or less as long as it can be atomized to an average particle diameter of 1 μm or less. For example, it can be prepared by pulverization using a conventional atomizer. Specific examples of such atomizers include bead mills, ball mills, various medialess mills, ultrasonic dispersers, and the like. As the atomization apparatus that can be used in the present invention, for example, Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.), Star Mill (Ashizawa Finetech Co., Ltd.), Philmix (manufactured by Primics Co., Ltd.), Discoplex (Manufactured by Hosokawa Alpine Co., Ltd.), ACM-A Pulverizer (manufactured by Hosokawa Micron Corporation), Nanocut (manufactured by Matsubo Co., Ltd.), CLEAR SS-5, Claremix (manufactured by M Technique Co., Ltd.), ultrasonic disperser UH -600SR (manufactured by SMT Co., Ltd.), ultrasonic homogenizer (manufactured by Dr. Hielscher) and the like.

このようにして得られた、平均粒径1μm以下に微粒化した水難溶性無機カルシウム塩微粒子の水分散液のpHを6.0〜8.0の範囲に調整するのは、この水分散液に酸またはアルカリを添加することにより行う。この時、上記無機微粒子水分散液を調製した装置に酸またはアルカリを添加し、同じ装置でpH調整を行うことが好ましい。同じ装置で混合することにより、水難溶性無機カルシウム塩の微粒化、さらにpH調整を同時に行うことができ、工程の簡略化が可能となる。   The pH of the aqueous dispersion of the water-insoluble inorganic calcium salt fine particles finely atomized to an average particle diameter of 1 μm or less thus obtained is adjusted to the range of 6.0 to 8.0. This is done by adding acid or alkali. At this time, it is preferable that acid or alkali is added to the apparatus in which the inorganic fine particle aqueous dispersion is prepared, and the pH is adjusted with the same apparatus. By mixing with the same apparatus, the water-insoluble inorganic calcium salt can be atomized and the pH can be adjusted simultaneously, and the process can be simplified.

水難溶性無機カルシウム塩の微粒子凝集体1を水4に分散させた後、水難溶性無機カルシウム塩の微粒子凝集体1を上記粉砕装置により粉砕して平均粒径1μm以下の水難溶性無機カルシウム塩の微粒子1aとし、無機微粒子水分散液6を得る(無機微粒子水分散液調製工程)。しかし、これに限定されず、水難溶性無機カルシウム塩を平均粒径1μm以下に調製し、水難溶性無機カルシウム塩の微粒子1aとした後、水4に分散させることにより調製してもよい。   After the slightly water-soluble inorganic calcium salt fine particle aggregate 1 is dispersed in water 4, the fine water aggregate of the poorly water-soluble inorganic calcium salt 1 is pulverized by the above-mentioned pulverizer and the average particle diameter of the slightly water-soluble inorganic calcium salt having an average particle size of 1 μm or less. 1a to obtain an inorganic fine particle aqueous dispersion 6 (inorganic fine particle aqueous dispersion preparation step). However, the present invention is not limited thereto, and it may be prepared by preparing a slightly water-insoluble inorganic calcium salt with an average particle diameter of 1 μm or less to form fine particles 1a of a poorly water-soluble inorganic calcium salt and then dispersing in water 4.

次いで、無機微粒子水分散液6のpHを6.0〜8.0に調整する。上記水難溶性無機カルシウム塩の微粒化工程の後、微粒化装置にそのまま酸またはアルカリを、pHが6.0〜8.0の範囲に入るまで添加する。   Next, the pH of the inorganic fine particle aqueous dispersion 6 is adjusted to 6.0 to 8.0. After the step of atomizing the poorly water-soluble inorganic calcium salt, acid or alkali is added to the atomizer as it is until the pH falls within the range of 6.0 to 8.0.

(iii)被覆油粒子を分散した被覆油粒子水分散液調製工程
この工程では、前記油粒子分散液と前記無機微粒子水分散液とを混合することにより、前記油粒子を前記水難溶性無機カルシウム塩の微粒子で被覆した被覆油粒子を水分散液中に得る。
(Iii) Coating oil particle aqueous dispersion preparation step in which coating oil particles are dispersed In this step, the oil particles are mixed with the inorganic fine particle aqueous dispersion to thereby make the oil particles less water-soluble inorganic calcium salt. Coated oil particles coated with the above fine particles are obtained in an aqueous dispersion.

上記乳化工程で得られた乳化物(O/W乳化物)5と上記無機微粒子水分散液をpH調整した無機微粒子水分散液6とを混合することにより、上記乳化物中の油粒子2aを水難溶性無機カルシウム塩の微粒子1aで被覆して水分散液中に被覆油粒子3を得る(混合被覆工程)。この混合は、上記乳化物5と無機微粒子水分散液をpH調整した無機微粒子水分散液6とを均一撹拌できる混合装置を用いることにより行なうことができる。   By mixing the emulsion (O / W emulsion) 5 obtained in the emulsification step and the inorganic fine particle aqueous dispersion 6 obtained by adjusting the pH of the inorganic fine particle aqueous dispersion, the oil particles 2a in the emulsion are mixed. The coated oil particles 3 are obtained in an aqueous dispersion by coating with fine particles 1a of a poorly water-soluble inorganic calcium salt (mixed coating step). This mixing can be performed by using a mixing apparatus capable of uniformly stirring the emulsion 5 and the inorganic fine particle aqueous dispersion 6 obtained by adjusting the pH of the inorganic fine particle aqueous dispersion.

本発明に用いることができる混合装置としては、上述した乳化装置、微粒化装置に加えて、パドルミキサー、プロペラミキサーなどの撹拌装置が挙げられ、スターラーチップによる撹拌でも行うことができる。また、無機微粒子水分散液をpH調整した分散液を調製する装置と同じ装置を用い、無機微粒子水分散液をpH調整した分散液に乳化物5を添加してもよい。この時、無機微粒子水分散液のpH調整分散液を調製した装置に乳化物5を添加し、同じ装置で混合を行うことが好ましい。同じ装置で混合することにより、油粒子2aと水難溶性無機カルシウム塩の微粒子1aの微粒化、さらに乳化物5と無機微粒子水分散液6の混合を同時に行うことができ、工程の簡略化が可能となる。   Examples of the mixing apparatus that can be used in the present invention include stirring apparatuses such as a paddle mixer and a propeller mixer in addition to the above-described emulsification apparatus and atomization apparatus, and can be performed by stirring with a stirrer chip. Alternatively, the emulsion 5 may be added to the dispersion of the inorganic fine particle aqueous dispersion whose pH is adjusted using the same apparatus as that for preparing the dispersion of the inorganic fine particle aqueous dispersion whose pH is adjusted. At this time, it is preferable to add the emulsion 5 to the apparatus in which the pH-adjusted dispersion of the inorganic fine particle aqueous dispersion is prepared, and perform mixing in the same apparatus. By mixing with the same apparatus, the oil particles 2a and the slightly water-soluble inorganic calcium salt fine particles 1a can be atomized, and the emulsion 5 and the inorganic fine particle aqueous dispersion 6 can be mixed simultaneously, thereby simplifying the process. It becomes.

なお、上記乳化物5と無機微粒子水分散液6のpH調整分散液とを混合することにより被覆油粒子の水分散液7が得られ、この中に多数の前記被覆油粒子3が分散していることになる。この場合、被覆油粒子3の水分散液7が本発明の被覆油粒子水分散液である。   In addition, by mixing the emulsion 5 and the pH-adjusted dispersion of the inorganic fine particle aqueous dispersion 6, an aqueous dispersion 7 of the coated oil particles is obtained, in which a large number of the coated oil particles 3 are dispersed. Will be. In this case, the aqueous dispersion 7 of the coated oil particles 3 is the coated oil particle aqueous dispersion of the present invention.

前記被覆油粒子が適正に調製されていることを確認するには、得られた被覆油粒子をガラス板で挟みこみ圧力をかけるという簡易な方法が可能である。この方法によると、粒子がつぶれて油分が浮き出してくるので、被覆層によって油粒子が内包されていることを確認することができる。   In order to confirm that the coated oil particles are properly prepared, a simple method of sandwiching the obtained coated oil particles with a glass plate and applying pressure is possible. According to this method, since the particles are crushed and the oil component comes out, it can be confirmed that the oil particles are encapsulated by the coating layer.

さらに正確には、本発明の被覆油粒子をスライスし、その断面を透過型電子顕微鏡(TEM)観察することによっても確認することができる。   More precisely, it can also be confirmed by slicing the coated oil particles of the present invention and observing the cross section with a transmission electron microscope (TEM).

その他、水難溶性無機カルシウム塩として、酸やアルカリで溶解する水難溶性無機カルシウム塩を用いた場合には、その水難溶性無機カルシウム塩を酸やアルカリで溶解させれば、油分が浮き出てくるので、それを観察することによっても確認することができる。   In addition, when a poorly water-soluble inorganic calcium salt that dissolves in acid or alkali is used as the poorly water-soluble inorganic calcium salt, if the poorly water-soluble inorganic calcium salt is dissolved in acid or alkali, the oil will emerge. It can also be confirmed by observing it.

本発明の被覆油粒子水分散液の特徴は、そのpHが6.0〜8.0の範囲内に調整されていることにある。このpH値は、前述のようにして得られた被覆油粒子水分散液を、pHメーター(例えば、横河電機(株)製、PH82型)にて測定するという簡易な方法にて求めることができる。   The feature of the aqueous dispersion of coated oil particles of the present invention is that its pH is adjusted within the range of 6.0 to 8.0. This pH value can be obtained by a simple method of measuring the coating oil particle aqueous dispersion obtained as described above with a pH meter (for example, PH82 type, manufactured by Yokogawa Electric Corporation). it can.

前記乳化工程にて調製する油粒子の平均粒径は、好ましくは10nm〜5μmであり、更に好ましくは50nm〜1μmである。油粒子の平均粒径が10nm未満であると、被覆油粒子とした場合の油分内包量が実用の範囲を逸脱した量に低下するので好ましくない。また、逆に油粒子の平均粒径が5μmを超えると、被覆油粒子の安定性が低下するので好ましくない。   The average particle size of the oil particles prepared in the emulsification step is preferably 10 nm to 5 μm, more preferably 50 nm to 1 μm. If the average particle size of the oil particles is less than 10 nm, the amount of oil contained in the coated oil particles is undesirably reduced to an amount outside the practical range. On the other hand, if the average particle diameter of the oil particles exceeds 5 μm, the stability of the coated oil particles decreases, which is not preferable.

本発明において油粒子の被覆層を形成する水難溶性無機カルシウム塩微粒子の平均粒径は、油分に界面活性剤が含まれる場合では、好ましくは1nm〜1μmであり、更に好ましくは5nm〜500nmであり、特に好ましくは10nm〜200nmである。また、油分に界面活性剤が含まれない場合では、水難溶性無機カルシウム塩微粒子の平均粒径は、好ましくは1nm〜100nmであり、更に好ましくは5nm〜80nmであり、特に好ましくは10nm〜50nmである。水難溶性無機カルシウム塩微粒子の平均粒径が、前記下限値未満となると、水難溶性無機カルシウム塩の微粒子が溶解する量が多くなるので、好ましくない。逆に前記上限値を超えると、油粒子の被覆効率が低下し、被覆油粒子の安定性が低下するので、好ましくない。   In the present invention, the average particle size of the poorly water-soluble inorganic calcium salt fine particles forming the coating layer of oil particles is preferably 1 nm to 1 μm, more preferably 5 nm to 500 nm when the oil component contains a surfactant. Particularly preferably, the thickness is 10 nm to 200 nm. When the oil does not contain a surfactant, the average particle diameter of the poorly water-soluble inorganic calcium salt fine particles is preferably 1 nm to 100 nm, more preferably 5 nm to 80 nm, and particularly preferably 10 nm to 50 nm. is there. When the average particle diameter of the slightly water-soluble inorganic calcium salt fine particles is less than the lower limit, the amount of the slightly water-soluble inorganic calcium salt fine particles dissolved is increased, which is not preferable. On the contrary, if the upper limit is exceeded, the coating efficiency of the oil particles is lowered, and the stability of the coated oil particles is lowered.

本発明の被覆油粒子水分散液のpHは好ましくは6.0〜8.0であり、更に好ましくは6.5〜7.5である。被覆油粒子水分散液のpHが6.0未満であると、水難溶性無機カルシウム塩の微粒子が溶解しやすく、被覆油粒子の安定性が低下する。逆に、水難溶性無機カルシウム塩微粒子のpHが8.0を超えると、油分中のフェノール性化合物が被覆油粒子から溶出しやすく、被覆油粒子の安定性が低下する。   The pH of the coated oil particle aqueous dispersion of the present invention is preferably 6.0 to 8.0, and more preferably 6.5 to 7.5. When the pH of the coating oil particle aqueous dispersion is less than 6.0, the fine particles of the poorly water-soluble inorganic calcium salt are easily dissolved, and the stability of the coating oil particles is lowered. Conversely, when the pH of the slightly water-soluble inorganic calcium salt fine particles exceeds 8.0, the phenolic compound in the oil is easily eluted from the coated oil particles, and the stability of the coated oil particles decreases.

本発明の被覆油粒子水分散液中の被覆油粒子の平均粒径は、好ましくは10nm〜5μmであり、更に好ましくは50nm〜1μmである。被覆油粒子の平均粒径が10nm未満であると、被覆油粒子の被覆厚が小さすぎるため内包油分が漏れやすい。逆に被覆油粒子の平均粒径が5μmを超えると、被覆油粒子が外圧で壊れやすくなり、さらには生体内等の微小部分への浸透性や、その投与部分における滞留性が低下する。   The average particle diameter of the coated oil particles in the coated oil particle aqueous dispersion of the present invention is preferably 10 nm to 5 μm, more preferably 50 nm to 1 μm. If the average particle diameter of the coating oil particles is less than 10 nm, the coating oil particles are likely to leak because the coating thickness of the coating oil particles is too small. On the other hand, when the average particle diameter of the coated oil particles exceeds 5 μm, the coated oil particles are easily broken by external pressure, and further, the permeability to a minute part such as a living body and the retention in the administration part are lowered.

前記被覆油粒子の平均被覆厚(水難溶性無機カルシウム塩微粒子による被覆層の厚み)は、内包油分を保持できる厚さであれば特に限定されないが、好ましくは10nm〜2μmであり、更に好ましくは20nm〜1μmであり、特に好ましくは50nm〜500nmである。この平均被覆厚が10nm未満になると、被覆油粒子が壊れやすくなり、2μmを超えると、必然的に油分内包量が低下する。   The average coating thickness of the coating oil particles (the thickness of the coating layer made of the poorly water-soluble inorganic calcium salt fine particles) is not particularly limited as long as it is a thickness capable of retaining the encapsulated oil content, but is preferably 10 nm to 2 μm, and more preferably 20 nm. ˜1 μm, particularly preferably 50 nm to 500 nm. When the average coating thickness is less than 10 nm, the coated oil particles are easily broken, and when the average coating thickness exceeds 2 μm, the amount of oil contained inevitably decreases.

本発明の被覆油粒子水分散液中の被覆油粒子における水難溶性無機カルシウム塩の微粒子と油分との重量比は、好ましくは10/10〜100/10であり、更に好ましくは30/10〜90/10であり、特に好ましくは50/10〜80/10である。この重量比が10/10未満であると、被覆厚が小さくなり、被覆油粒子が壊れやすくなる。逆に、この重量比が100/10を超えると、得られる被覆油粒子の中には上記油粒子を内包しないものも存在する場合が生じ、被覆の均一性に欠けるおそれがあり、さらに、非被覆油粒子同士が凝集して粗大な粒子が形成されてしまうというおそれもある。   The weight ratio of the slightly water-soluble inorganic calcium salt fine particles to the oil in the coated oil particles in the coated oil particle aqueous dispersion of the present invention is preferably 10/10 to 100/10, more preferably 30/10 to 90. / 10, and particularly preferably 50/10 to 80/10. When this weight ratio is less than 10/10, the coating thickness becomes small, and the coated oil particles are easily broken. On the other hand, if this weight ratio exceeds 100/10, some of the resulting coated oil particles may not contain the oil particles, which may result in lack of coating uniformity. There is also a risk that the coated oil particles aggregate to form coarse particles.

本発明の被覆油粒子水分散液における油分と水分との重量比は、好ましくは1/1000〜7/10であり、更に好ましくは1/200〜1/2であり、特に好ましくは1/100〜3/10である。この重量比が1/1000未満となると、水難溶性無機カルシウム塩微粒子をpH調整した分散液と混合した際、被覆油粒子が形成される速度が遅くなり、水難溶性無機カルシウム塩微粒子が単独で凝集し、油分を被覆する被覆油粒子の存在率が下がってしまう。逆に、この重量比が7/10を超えると、製造過程において粘度が著しく上昇し、後述する水難溶性無機カルシウム塩微粒子をpH調整した分散液と混合した際に無機微粒子による均一被覆が困難になったり、凝集固化が起こったりする。   The weight ratio of oil to water in the coated oil particle aqueous dispersion of the present invention is preferably 1/1000 to 7/10, more preferably 1/200 to 1/2, and particularly preferably 1/100. ~ 3/10. When this weight ratio is less than 1/1000, when the poorly water-soluble inorganic calcium salt fine particles are mixed with a pH-adjusted dispersion, the rate at which the coated oil particles are formed becomes slow, and the poorly water-soluble inorganic calcium salt fine particles are aggregated alone. As a result, the abundance of coated oil particles covering the oil component decreases. On the contrary, when the weight ratio exceeds 7/10, the viscosity is remarkably increased in the production process, and it becomes difficult to uniformly coat with inorganic fine particles when the water-insoluble inorganic calcium salt fine particles described later are mixed with a pH adjusted dispersion. Or coagulation solidification occurs.

上記水難溶性無機カルシウム塩微粒子の水分散液中の水難溶性無機カルシウム塩微粒子の質量%は、好ましくは0.1〜50質量%であり、更に好ましくは0.5〜30質量%であり、特に好ましくは1〜10質量%である。この水難溶性無機カルシウム塩微粒子の水分散液全量に対する質量%が0.1質量%未満となると、水難溶性無機カルシウム塩微粒子の濃度が小さいため、油粒子の被覆効率が低下する。逆に、この水難溶性無機カルシウム塩微粒子の水分散液全量に対する質量%が50質量%を超えると、無機微粒子水分散液の粘度が上昇し、凝集固化が起こるおそれがあり、さらには製造効率の低下につながる。   The mass% of the poorly water-soluble inorganic calcium salt fine particles in the aqueous dispersion of the poorly water-soluble inorganic calcium salt fine particles is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, especially. Preferably it is 1-10 mass%. When the mass% of the hardly water-soluble inorganic calcium salt fine particles with respect to the total amount of the aqueous dispersion is less than 0.1 mass%, the concentration of the poorly water-soluble inorganic calcium salt fine particles is small, so that the coating efficiency of the oil particles decreases. On the other hand, if the mass% of the hardly water-soluble inorganic calcium salt fine particles with respect to the total amount of the aqueous dispersion exceeds 50 mass%, the viscosity of the inorganic fine particle aqueous dispersion may increase, and aggregation and solidification may occur. Leading to a decline.

本発明の被覆油粒子水分散液においては、油分を分散させるために界面活性剤を含むことができる。すなわち、本発明の被覆油粒子水分散液中の被覆油粒子の油分は、好ましくは界面活性剤を含有する。この場合、界面活性剤は、好ましくは油粒子の表面に存在する。そして、使用する界面活性剤としては、好ましくはアニオン性界面活性剤もしくはカルシウム粒子分散能の高いノニオン性界面活性剤である。   The coated oil particle aqueous dispersion of the present invention may contain a surfactant in order to disperse the oil. That is, the oil content of the coated oil particles in the coated oil particle aqueous dispersion of the present invention preferably contains a surfactant. In this case, the surfactant is preferably present on the surface of the oil particles. The surfactant to be used is preferably an anionic surfactant or a nonionic surfactant having high calcium particle dispersibility.

前述のように油分に界面活性剤を含ませることで、水難溶性無機カルシウム塩の微粒子の油粒子表面への吸着性、付着力が増し、界面活性剤を含有しない場合と比較して、さらに多くの油分を安定に内包した被覆油粒子を得ることができる。   By including a surfactant in the oil as described above, the adsorptivity and adhesion of finely water-insoluble inorganic calcium salt particles to the oil particle surface are increased, and more than in the case where no surfactant is contained. Coated oil particles that stably encapsulate the oil component can be obtained.

上記アニオン性界面活性剤としては、例えば、高級アルコールの硫酸塩やアルカンのスルホン酸塩を使用することができる。この高級アルコール硫酸塩としては、具体的には、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ミリスチル硫酸ナトリウム、ミリスチル硫酸カリウム、パルミチル硫酸ナトリウム、パルミチル硫酸カリウム、ステアリル硫酸ナトリウム、ステアリル硫酸カリウム、オレイル硫酸ナトリウム、オレイル硫酸カリウムなど。アルカンのスルホン酸塩として、ドデカンスルホン酸ナトリウム、ドデカンスルホン酸カリウム、テトラデカンスルホン酸ナトリウム、テトラデカンスルホン酸カリウム、ヘキサデカンスルホン酸ナトリウム、ヘキサデカンスルホン酸カリウム、オクタデカンスルホン酸ナトリウム、オクタデカンスルホン酸カリウムなどを挙げることができる。   Examples of the anionic surfactant include higher alcohol sulfates and alkane sulfonates. Specific examples of the higher alcohol sulfate include sodium lauryl sulfate, potassium lauryl sulfate, sodium myristyl sulfate, potassium myristyl sulfate, sodium palmityl sulfate, potassium palmityl sulfate, sodium stearyl sulfate, potassium stearyl sulfate, sodium oleyl sulfate, and oleyl. Such as potassium sulfate. Examples of alkane sulfonates include sodium dodecane sulfonate, potassium dodecane sulfonate, sodium tetradecane sulfonate, potassium tetradecane sulfonate, sodium hexadecane sulfonate, potassium hexadecane sulfonate, sodium octadecane sulfonate, potassium octadecane sulfonate, etc. Can do.

上記カルシウム粒子分散能の高いノニオン界面活性剤としては、特願2005−325312に記載されるカルシウム粒子分散性の高いノニオン性界面活性剤を使用することができる。具体的には、ショ糖ステアリン酸エステル(例えば、三菱化学フーズ製リョートーシュガーエステルS−1570、S−1670)、ショ糖パルミチン酸エステル(例えば、三菱化学フーズ製リョートーシュガーエステルP−1570、P−1670)、ショ糖ミリスチン酸エステル(例えば、三菱化学フーズ製リョートーシュガーエステルM−1695)、ショ糖オレイン酸エステル(例えば、三菱化学フーズ製リョートーシュガーエステルO−1570)、ショ糖ラウリン酸エステル(例えば、三菱化学フーズ製リョートーシュガーエステルL−1695)、モノミリスチン酸デカグリセリル(例えば、日光ケミカルズ製Decaglyn 1−M)、モノステアリン酸デカグリセリル(例えば、日光ケミカルズ製Decaglyn 1−S)、モノイソステアリン酸デカグリセリル(例えば、日光ケミカルズ製Decaglyn 1−IS)、ポリオキシエチレン(15)ラウリルエーテル(例えば、日本エマルジョン製EMALEX715)などを挙げることができる。   As the nonionic surfactant having high calcium particle dispersibility, a nonionic surfactant having high calcium particle dispersibility described in Japanese Patent Application No. 2005-325312 can be used. Specifically, sucrose stearate (for example, Ryoto Sugar Ester S-1570, S-1670 manufactured by Mitsubishi Chemical Foods), sucrose palmitate (for example, Ryoto Sugar Ester P-1570 manufactured by Mitsubishi Chemical Foods, P-1670), sucrose myristic acid ester (for example, Ryoto Sugar Ester M-1695 manufactured by Mitsubishi Chemical Foods), sucrose oleic acid ester (for example, Ryoto Sugar Ester O-1570 manufactured by Mitsubishi Chemical Foods), sucrose laurin Acid ester (for example, Ryoto Sugar Ester L-1695 manufactured by Mitsubishi Chemical Foods), decaglyceryl monomyristate (for example, Decaglyn 1-M manufactured by Nikko Chemicals), decaglyceryl monostearate (for example, Decaglyn 1- manufactured by Nikko Chemicals) S), decaglyceryl monoisostearate (for example, Decaglyn 1-IS manufactured by Nikko Chemicals), polyoxyethylene (15) lauryl ether (for example, EMALEX 715 manufactured by Nihon Emulsion), and the like.

その他の界面活性剤として、高分子化合物であっても、上記水難溶性無機カルシウム塩や上記油分と反応しない化合物であれば用いることが可能である。   As other surfactants, even a polymer compound can be used as long as it does not react with the poorly water-soluble inorganic calcium salt or the oil.

前記界面活性剤の油分に対する質量%は、好ましくは100質量%以下であり、更に好ましくは1〜70質量%であり、特に好ましくは5〜50質量%である。この界面活性剤の油分に対する添加量の下限値は、添加効果が得られない範囲を除外する値であるが、油粒子自体の物性によって若干の差が生じる。この界面活性剤の油分に対する質量%が100質量%を超えると、界面活性剤が一部ミセルを形成し、このミセルの周りを水難溶性無機カルシウム塩の微粒子が被覆する可能性が高くなり、油分を内包する被覆油粒子の存在率が下がってしまう。   The mass% of the surfactant based on the oil content is preferably 100% by mass or less, more preferably 1 to 70% by mass, and particularly preferably 5 to 50% by mass. The lower limit of the amount of the surfactant added to the oil is a value that excludes a range where the addition effect cannot be obtained, but a slight difference occurs depending on the physical properties of the oil particles themselves. When the mass% of the surfactant with respect to the oil content exceeds 100 mass%, the surfactant partially forms micelles, and there is a high possibility that the water-insoluble inorganic calcium salt fine particles are coated around the micelles. The abundance of the coated oil particles encapsulating is reduced.

以下、実施例に基づき、本発明についてさらに詳細に説明する。以下に説明する実施例は、本発明を好適に説明する例示に過ぎず、何ら本発明を限定するものではない。   Hereinafter, the present invention will be described in more detail based on examples. The examples described below are merely examples for suitably explaining the present invention, and do not limit the present invention.

(実施例1)
200mLビーカー内で、純水67.2gに、アニオン性界面活性剤としてラウリル硫酸ナトリウム(純正化学(株)製)1.4gを溶解させ、ここに油分としてフェノール性化合物であるトリクロサン(チバ・スペシャリティ・ケミカルズ(株)製)0.4gを大豆油(商品名:大豆油YM/日清オイリオグループ(株)製)1.0gに溶解させた混合物を添加し、ホモジナイザー(TKA−WERKE製 ULTRA−TURRAX T25BASIC)を用いて撹拌(10000rpm,5分)して、O/W乳化物を調製した。
Example 1
In a 200 mL beaker, 1.4 g of sodium lauryl sulfate (manufactured by Junsei Chemical Co., Ltd.) as an anionic surfactant was dissolved in 67.2 g of pure water, and triclosan (Ciba Specialty), which is a phenolic compound, was used as an oil here.・ A mixture of 0.4 g of Chemicals Co., Ltd. dissolved in 1.0 g of soybean oil (trade name: Soybean Oil YM / Nisshin Oillio Group Co., Ltd.) was added, and a homogenizer (ULTRA manufactured by TKA-WERKE) was added. O / W emulsion was prepared by stirring (10000 rpm, 5 minutes) using TURRAX T25BASIC.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを7.0に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 7.0.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.5であった。この水分散液中の被覆油粒子の物性を表1に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed and further pulverized in a bead mill for 30 minutes to coat the mixture of triclosan and soybean oil with calcium carbonate fine particles. An aqueous dispersion of coated oil particles was obtained. The pH of this aqueous dispersion was 7.5. Table 1 shows the physical properties of the coated oil particles in this aqueous dispersion.

(実施例2)
200mLビーカー内で、純水67.2gに、アニオン性界面活性剤としてラウリル硫酸ナトリウム(純正化学(株)製)1.4gを溶解させ、ここに油分としてフェノール性化合物であるトリクロサン(チバ・スペシャリティ・ケミカルズ(株)製)1.4gを分散させ、65℃に加温した後、撹拌子(2cm長)で300rpmで30分撹拌し、O/W乳化物を調製した。
(Example 2)
In a 200 mL beaker, 1.4 g of sodium lauryl sulfate (manufactured by Junsei Chemical Co., Ltd.) as an anionic surfactant was dissolved in 67.2 g of pure water, and triclosan (Ciba Specialty), which is a phenolic compound, was used as an oil here. -1.4g of Chemicals Co., Ltd. was dispersed and heated to 65 ° C, and then stirred with a stirrer (2 cm length) at 300 rpm for 30 minutes to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて60〜65℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを6.9に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 60 to 65 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 6.9.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンを炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.9であった。この水分散液中の被覆油粒子の物性を表1に示す。   In the mill raw material tank in which the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed, and further pulverized in a bead mill for 30 minutes, and water of coated oil particles coated with triclosan with fine particles of calcium carbonate. A dispersion was obtained. The pH of this aqueous dispersion was 7.9. Table 1 shows the physical properties of the coated oil particles in this aqueous dispersion.

(実施例3)
200mLビーカー内で、純水48gに、アニオン性界面活性剤としてラウリル硫酸ナトリウム(純正化学(株)製)1gを溶解させ、ここに油分としてフェノール性化合物であるトリクロサン(チバ・スペシャリティ・ケミカルズ(株)製)1gを分散させ、65℃に加温した後、撹拌子(2cm長)で300rpmで30分撹拌し、O/W乳化物を調製した。
(Example 3)
In a 200 mL beaker, 1 g of sodium lauryl sulfate (manufactured by Junsei Chemical Co., Ltd.) as an anionic surfactant is dissolved in 48 g of pure water, and a phenolic compound, triclosan (Ciba Specialty Chemicals Co., Ltd.), is used as an oil here. 1) 1 g was dispersed and heated to 65 ° C., and then stirred with a stirrer (2 cm long) at 300 rpm for 30 minutes to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて60〜65℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを6.9に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 60 to 65 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 6.9.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンを炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.6であった。この被覆油粒子の物性を表1に示す。   In the mill raw material tank in which the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed, and further pulverized in a bead mill for 30 minutes, and water of coated oil particles coated with triclosan with fine particles of calcium carbonate. A dispersion was obtained. The pH of this aqueous dispersion was 7.6. Table 1 shows the physical properties of the coated oil particles.

(実施例4)
200mLビーカー内で、純水67.2gに、アニオン性界面活性剤としてラウリル硫酸ナトリウム(純正化学(株)製)1.4gを溶解させ、ここに油分としてフェノール性化合物であるイソプロピルメチルフェノール(IPMP)(大阪化成(株)製)0.4gを大豆油(商品名:大豆油YM/日清オイリオグループ(株)製)1.0gに溶解させた混合物を添加してホモジナイザー(TKA−WERKE製 ULTRA−TURRAX T25BASIC)を用いて撹拌(10000rpm、5分)し、O/W乳化物を調製した。
Example 4
In a 200 mL beaker, 1.4 g of sodium lauryl sulfate (manufactured by Junsei Chemical Co., Ltd.) as an anionic surfactant is dissolved in 67.2 g of pure water, and isopropylmethylphenol (IPMP), which is a phenolic compound, is used as an oil here. ) (Osaka Kasei Co., Ltd.) 0.4 g of soybean oil (trade name: Soybean Oil YM / Nisshin Oillio Group Co., Ltd.) 1.0 g was added and a homogenizer (manufactured by TKA-WERKE) was added. The mixture was stirred (10000 rpm, 5 minutes) using ULTRA-TURRAX T25BASIC to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを6.8に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 6.8.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、IPMPと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.4であった。この被覆油粒子の物性を表1に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed and further pulverized in a bead mill for 30 minutes to coat the mixture of IPMP and soybean oil with calcium carbonate fine particles. An aqueous dispersion of coated oil particles was obtained. The pH of this aqueous dispersion was 7.4. Table 1 shows the physical properties of the coated oil particles.

(実施例5)
200mLビーカー内で、純水67.2gに、アニオン性界面活性剤としてラウリル硫酸ナトリウム(純正化学(株)製)1.4gを溶解させ、ここに油分としてフェノール性化合物であるチモール(東京化成工業(株)製)0.4gを大豆油(商品名:大豆油YM/日清オイリオグループ(株)製)1.0gに溶解させた混合物を添加してホモジナイザー(TKA−WERKE製 ULTRA−TURRAX T25BASIC)を用いて撹拌(10000rpm,5分)し、O/W乳化物を調製した。
(Example 5)
In a 200 mL beaker, 1.4 g of sodium lauryl sulfate (manufactured by Junsei Chemical Co., Ltd.) as an anionic surfactant is dissolved in 67.2 g of pure water, and thymol (Tokyo Chemical Industry Co., Ltd.), which is a phenolic compound, is used as an oil here. Co., Ltd.) 0.4 g of soybean oil (trade name: soybean oil YM / Nisshin Oillio Group Co., Ltd.) 1.0 g was added to the mixture and a homogenizer (ULTRA-TURRAX T25BASIC manufactured by TKA-WERKE) was added. ) Was used (10000 rpm, 5 minutes) to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを7.0に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 7.0.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、チモールと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.5であった。この被覆油粒子の物性を表1に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed and further pulverized in a bead mill for 30 minutes to coat the mixture of thymol and soybean oil with calcium carbonate fine particles. An aqueous dispersion of coated oil particles was obtained. The pH of this aqueous dispersion was 7.5. Table 1 shows the physical properties of the coated oil particles.

(実施例6)
200mLビーカー内で、純水67.2gに、アニオン性界面活性剤としてラウリル硫酸ナトリウム(純正化学(株)製)1.4gを溶解させ、ここに油分としてフェノール性化合物であるチモール(東京化成工業(株)製)1.4gを分散させ、65℃に加温した後、撹拌子(2cm長)で300rpmで30分撹拌し、O/W乳化物を調製した。
(Example 6)
In a 200 mL beaker, 1.4 g of sodium lauryl sulfate (manufactured by Junsei Chemical Co., Ltd.) as an anionic surfactant is dissolved in 67.2 g of pure water, and thymol (Tokyo Chemical Industry Co., Ltd.), which is a phenolic compound, is used as an oil here. 1.4 g was dispersed and heated to 65 ° C., and then stirred with a stirrer (2 cm length) at 300 rpm for 30 minutes to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて60〜65℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを6.9に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 60 to 65 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 6.9.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、チモールを炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.5であった。この水分散液中の被覆油粒子の物性を表1に示す。   In the mill raw material tank in which the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed and further pulverized in a bead mill for 30 minutes, and the water of the coated oil particles in which thymol is coated with the fine particles of calcium carbonate. A dispersion was obtained. The pH of this aqueous dispersion was 7.5. Table 1 shows the physical properties of the coated oil particles in this aqueous dispersion.

(実施例7)
実施例1におけるpH調整工程を次のようにした。すなわち、粉砕10分時点で原液タンク内に2N硫酸(純正化学(株)製)を1.9g添加し、pHを7.0に調整し、粉砕25分時点で同様に原液タンク内に2N硫酸(純正化学(株)製)を0.9g添加し、pHを6.9に調整した。その他は実施例1と同様の操作を行い、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.3であった。この水分散液中の被覆油粒子の物性を表2に示す。
(Example 7)
The pH adjustment step in Example 1 was as follows. Specifically, 1.9 g of 2N sulfuric acid (manufactured by Junsei Chemical Co., Ltd.) was added to the stock solution tank at 10 minutes of pulverization, the pH was adjusted to 7.0, and 2N sulfuric acid was similarly placed into the stock solution tank at 25 minutes of pulverization. 0.9 g (manufactured by Pure Chemical Co., Ltd.) was added to adjust the pH to 6.9. Otherwise, the same operation as in Example 1 was performed to obtain an aqueous dispersion of coated oil particles obtained by coating a mixture of triclosan and soybean oil with fine particles of calcium carbonate. The pH of this aqueous dispersion was 7.3. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

(実施例8)
実施例1におけるpH調整工程を次のようにした。すなわち、粉砕10分時点で原液タンク内にリン酸(純正化学(株)製)を1.6g添加し、pHを7.0に調整し、粉砕25分時点で同様に原液タンク内にリン酸(純正化学(株)製)を0.8g添加し、pHを7.0に調整した。その他は実施例1と同様の操作を行い、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.3であった。この水分散液中の被覆油粒子の物性を表2に示す。
(Example 8)
The pH adjustment step in Example 1 was as follows. That is, 1.6 g of phosphoric acid (manufactured by Junsei Chemical Co., Ltd.) was added to the stock solution tank at the time of pulverization 10 minutes, the pH was adjusted to 7.0, and phosphoric acid was similarly placed in the stock solution tank at the time of pulverization 25 minutes. 0.8 g of (manufactured by Pure Chemical Co., Ltd.) was added, and the pH was adjusted to 7.0. Otherwise, the same operation as in Example 1 was performed to obtain an aqueous dispersion of coated oil particles obtained by coating a mixture of triclosan and soybean oil with fine particles of calcium carbonate. The pH of this aqueous dispersion was 7.3. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

(実施例9)
実施例1におけるpH調整工程を次のようにした。すなわち、粉砕10分時点で原液タンク内にクエン酸一水和物(関東化学(株)製)の40質量%水溶液を3.1g添加し、pHを7.0に調整し、粉砕25分時点で同様に原液タンク内にクエン酸一水和物(関東化学(株)製)の40質量%水溶液を1.4g添加し、pHを7.1に調整した。その他は実施例1と同様の操作を行い、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.4であった。この水分散液中の被覆油粒子の物性を表2に示す。
Example 9
The pH adjustment step in Example 1 was as follows. That is, 3.1 g of a 40% by mass aqueous solution of citric acid monohydrate (manufactured by Kanto Chemical Co., Ltd.) was added to the stock solution tank at the time of pulverization 10 minutes, pH was adjusted to 7.0, and pulverization was at 25 minutes. In the same manner, 1.4 g of a 40% by mass aqueous solution of citric acid monohydrate (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.1. Otherwise, the same operation as in Example 1 was performed to obtain an aqueous dispersion of coated oil particles obtained by coating a mixture of triclosan and soybean oil with fine particles of calcium carbonate. The pH of this aqueous dispersion was 7.4. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

(実施例10)
200mLビーカー内で、純水67.2gに、カルシウム粒子分散能の高いノニオン性界面活性剤としてリョートーシュガーエステルS−1670(三菱化学フーズ製)1.4gを溶解させ、ここに油分としてフェノール性化合物であるトリクロサン(チバ・スペシャリティ・ケミカルズ(株)製)0.4gを大豆油(商品名:大豆油YM/日清オイリオグループ(株)製)1.0gに溶解させた混合物を添加してホモジナイザー(TKA−WERKE製 ULTRA−TURRAX T25BASIC)を用いて撹拌(10000rpm,5分)し、O/W乳化物を調製した。
(Example 10)
In a 200 mL beaker, 1.4 g of Ryoto Sugar Ester S-1670 (manufactured by Mitsubishi Chemical Foods) is dissolved in 67.2 g of pure water as a nonionic surfactant having a high ability to disperse calcium particles. A mixture prepared by dissolving 0.4 g of the compound triclosan (manufactured by Ciba Specialty Chemicals Co., Ltd.) in 1.0 g of soybean oil (trade name: soybean oil YM / Nisshin Oilio Group Co., Ltd.) was added. The mixture was stirred (10000 rpm, 5 minutes) using a homogenizer (ULTRA-TURRAX T25BASIC manufactured by TKA-WERKE) to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.9g添加し、pHを7.0に調整した。 On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, 0.9 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank at the time of pulverization 25 minutes, and the pH was adjusted to 7.0.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは7.3であった。この被覆油粒子の物性を表2に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed and further pulverized in a bead mill for 30 minutes to coat the mixture of triclosan and soybean oil with calcium carbonate fine particles. An aqueous dispersion of coated oil particles was obtained. The pH of this aqueous dispersion was 7.3. Table 2 shows the physical properties of the coated oil particles.

(比較例1)
200mLビーカー内で、純水54gに、アニオン性界面活性剤としてオレイン酸ナトリウム(純正化学(株)製)0.4gを溶解させ、ここに油分としてフェノール性化合物であるトリクロサン(チバ・スペシャリティ・ケミカルズ(株)製)0.8gを大豆油(商品名:大豆油YM/日清オイリオグループ(株)製)2.0gに溶解させた混合物を添加してホモジナイザー(TKA−WERKE製 ULTRA−TURRAX T25BASIC)を用いて撹拌(10000rpm,5分)し、O/W乳化物を調製した。
(Comparative Example 1)
In a 200 mL beaker, 0.4 g of sodium oleate (manufactured by Junsei Kagaku Co., Ltd.) as an anionic surfactant is dissolved in 54 g of pure water, and triclosan (Ciba Specialty Chemicals), which is a phenolic compound, is used as an oil here. Co., Ltd.) 0.8 g of soybean oil (trade name: Soybean oil YM / Nisshin Oillio Group Co., Ltd.) 2.0 g was added and a homogenizer (manufactured by TKA-WERKE ULTRA-TURRAX T25BASIC) ) Was used (10000 rpm, 5 minutes) to prepare an O / W emulsion.

一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)14gを純水686gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。 On the other hand, 14 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 686 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm).

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、上記O/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは9.9であった。この水分散液中の被覆油粒子の物性を表2に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the above O / W emulsion is mixed and further pulverized in a bead mill for 30 minutes to coat the mixture of triclosan and soybean oil with calcium carbonate fine particles. An aqueous dispersion of coated oil particles was obtained. The pH of this aqueous dispersion was 9.9. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

(比較例2)
一方、炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて60〜65℃で30分間粉砕を行なった(ミル回転数4350rpm)。
(Comparative Example 2)
On the other hand, 7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 60 to 65 ° C. for 30 minutes (mill rotational speed: 4350 rpm).

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、実施例2に示すO/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンを炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは9.8であった。この水分散液中の被覆油粒子の物性を表2に示す。   The mill raw material tank in which the obtained calcium carbonate fine particle dispersion is present is mixed with the O / W emulsion shown in Example 2 and further pulverized in a bead mill for 30 minutes to coat triclosan with calcium carbonate fine particles. An aqueous dispersion of oil particles was obtained. The pH of this aqueous dispersion was 9.8. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

(比較例3)
炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕10分時点で、原液タンク内に2N塩酸(関東化学(株)製)を2.0g添加し、pHを7.0に調整した。さらに、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を12.5g添加し、pHを5.0に調整した。
(Comparative Example 3)
7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 10 minutes of pulverization, 2.0 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 7.0. Furthermore, at the time of pulverization 25 minutes, 12.5 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 5.0.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、実施例1に示すO/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは5.7であった。この水分散液中の被覆油粒子の物性を表2に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the O / W emulsion shown in Example 1 is mixed and further pulverized in a bead mill for 30 minutes, and the mixture of triclosan and soybean oil is mixed with calcium carbonate. An aqueous dispersion of coated oil particles coated with fine particles was obtained. The pH of this aqueous dispersion was 5.7. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

(比較例4)
炭酸カルシウム(白石カルシウム(株)製ポアカル−N)7gを純水343gに分散させた。これをビーズミル(ウルトラアペックスミルUAM−015(寿工業(株)製))の原液タンクに仕込み、分散させながらミル内に供給して(流量10kg/hr)、ZrO2のφ0.1mmビーズを用いて23〜25℃で30分間粉砕を行なった(ミル回転数4350rpm)。この間、粉砕25分時点で、原液タンク内に2N塩酸(関東化学(株)製)を0.73g添加し、pHを8.6に調整した。
(Comparative Example 4)
7 g of calcium carbonate (Porecal-N manufactured by Shiraishi Calcium Co., Ltd.) was dispersed in 343 g of pure water. This was charged into a stock solution tank of a bead mill (Ultra Apex Mill UAM-015 (manufactured by Kotobuki Industries Co., Ltd.)), supplied to the mill while being dispersed (flow rate 10 kg / hr), and ZrO 2 φ0.1 mm beads were used. Then, pulverization was performed at 23 to 25 ° C. for 30 minutes (mill rotational speed: 4350 rpm). During this time, at 25 minutes after pulverization, 0.73 g of 2N hydrochloric acid (manufactured by Kanto Chemical Co., Inc.) was added to the stock solution tank to adjust the pH to 8.6.

得られた炭酸カルシウム微粒子分散液が存在するミル原料タンク内に、実施例1に示すO/W乳化物を混合して更にビーズミル内で30分間粉砕し、トリクロサンと大豆油の混合物を炭酸カルシウムの微粒子で被覆した被覆油粒子の水分散液を得た。この水分散液のpHは8.3であった。この水分散液中の被覆油粒子の物性を表2に示す。   In the mill raw material tank where the obtained calcium carbonate fine particle dispersion is present, the O / W emulsion shown in Example 1 is mixed and further pulverized in a bead mill for 30 minutes, and the mixture of triclosan and soybean oil is mixed with calcium carbonate. An aqueous dispersion of coated oil particles coated with fine particles was obtained. The pH of this aqueous dispersion was 8.3. Table 2 shows the physical properties of the coated oil particles in this aqueous dispersion.

以上の操作で得られた被覆油粒子の水分散液の各物性の評価は以下に示す方法で行なった。   The physical properties of the aqueous dispersion of coated oil particles obtained by the above operations were evaluated by the methods shown below.

(評価方法)
(a)無機粒子平均粒径
水難溶性無機カルシウム塩の微粒子の平均粒径は、上記水難溶性無機カルシウム塩の粉砕条件に対し、水難溶性無機カルシウム塩とともに分散剤としてクエン酸三ナトリウム(純正化学(株)製)を水難溶性無機カルシウム塩の重量に対して3倍量添加して粉砕を行い、得られた水難溶性無機カルシウム塩微粒子の水分散液を、動的光散乱式マイクロトラックUPA−150(日機装(株)製)で測定し、無機粒子平均粒径を求めた。
(Evaluation methods)
(A) Average particle size of inorganic particles The average particle size of the hardly water-soluble inorganic calcium salt fine particles is trisodium citrate as a dispersant together with the hardly water-soluble inorganic calcium salt (pure chemical ( Co., Ltd.) was added in an amount of 3 times the weight of the poorly water-soluble inorganic calcium salt and pulverized, and the resulting aqueous dispersion of the poorly water-soluble inorganic calcium salt fine particles was obtained as a dynamic light scattering microtrack UPA-150. The average particle size of inorganic particles was determined by measurement with Nikkiso Co., Ltd.

(b)平均被覆厚
被覆油粒子の水難溶性無機カルシウム塩の微粒子による平均被覆厚は、被覆油粒子水分散液に2%四酸化オスミウム水溶液を添加した後、水分をエタノール、プロピレンオキサイド・エポキシ樹脂で順に置換し、ウルトラミクロトームを用いてスライスし、その断面を透過型電子顕微鏡(TEM)観察し、10個の被覆油粒子それぞれの被覆層を8ヶ所測定し、算術平均により算出した。
(B) Average coating thickness The average coating thickness of the coating oil particles with the slightly water-insoluble inorganic calcium salt fine particles is obtained by adding 2% osmium tetroxide aqueous solution to the coating oil particle aqueous dispersion, and then adding water to ethanol, propylene oxide / epoxy resin. Then, the sample was sliced using an ultramicrotome, the cross-section was observed with a transmission electron microscope (TEM), and eight coating layers of each of the ten coated oil particles were measured and calculated by arithmetic mean.

(c)被覆油粒子平均粒径
被覆油粒子平均粒径は、上記(b)と同様に被覆油粒子(乳化物)を透過型電子顕微鏡(TEM)観察し、10個の被覆油粒子それぞれの粒径を測定し、算術平均により算出した。
(C) Coated oil particle average particle diameter The coated oil particle average particle diameter was determined by observing the coated oil particles (emulsion) with a transmission electron microscope (TEM) in the same manner as in (b) above. The particle size was measured and calculated by arithmetic mean.

(d)被覆油粒子の形成状況
被覆油粒子の形成状況は、得られたサンプルを透過型電子顕微鏡で観察すること、または分散液に油分が浮上分離していないことを観察することにより評価した。
(D) Formation status of coated oil particles The formation status of the coated oil particles was evaluated by observing the obtained sample with a transmission electron microscope or observing that the oil component was not floated and separated in the dispersion. .

(e)乳化粒子の安定性
得られたサンプルを過酷な条件である50℃で1ヶ月間静置し、油分の分離状況を観察することにより乳化粒子の安定性を評価した。表中の評価「○」、「△」、「×」の意味は以下のとおりである。
○:1ヶ月後でも油分の分離は起こらない。
△:1週間後では油分の分離は起こらないが、1ヶ月後には油分の分離が見られた。
×:1週間以内に油分の分離が生じた。
(E) Stability of emulsified particles The obtained samples were allowed to stand at harsh conditions of 50 ° C for 1 month, and the stability of the emulsified particles was evaluated by observing the separation of oil. The meanings of the evaluations “◯”, “Δ”, “X” in the table are as follows.
○: Oil separation does not occur even after one month.
Δ: Separation of oil did not occur after 1 week, but separation of oil was observed after 1 month.
X: Separation of oil occurred within one week.

(f)油分溶出率(比較例2の定量)
1H−NMRを用いて定量した。得られた被覆油粒子の水分散液約80g(秤量する)を遠心分離装置05PR−22((株)日立製作所製)を用いて3000rpmで10分間遠心分離し、デカンテーションにより沈降物と上清に分けた。沈降物は一晩凍結乾燥し、白色粉末を得た(秤量する)。遠心分離を行うのに使用した被覆油粒子の水分散液の量から、上記白色粉末の量を差し引いた量を上清の量とした。
(F) Oil content elution rate (quantification of Comparative Example 2)
Quantified using 1 H-NMR. About 80 g (weighed) of the obtained aqueous dispersion of coated oil particles is centrifuged at 3000 rpm for 10 minutes using a centrifugal separator 05PR-22 (manufactured by Hitachi, Ltd.), and the sediment and supernatant are decanted. Divided into. The sediment was freeze-dried overnight to obtain a white powder (weighed). The amount obtained by subtracting the amount of the white powder from the amount of the aqueous dispersion of the coated oil particles used for the centrifugation was used as the amount of the supernatant.

この粉末約20mg(秤量する)と内部標準1,1,2,2−テトラクロロエタン約4mg(秤量する)とをNMRチューブに入れ、重メタノール約0.4mLを溶媒として添加した。更に35質量%塩化重水素酸を3滴添加し、炭酸カルシウム膜を完全に溶解させて油分を抽出した。6.5ppmのピークが1,1,2,2−テトラクロロエタンであり、この積分値を2とし、トリクロサンの7.5ppmのピーク面積を求めた。この値から粉末中のトリクロサンの含有量を算出した。IPMP、チモール、大豆油の量は、上記NMR測定において、溶媒を重クロロホルムとして測定した。6.0ppmのピークが1,1,2,2−テトラクロロエタンであり、同様にIPMP(2.3ppm)、チモール(2.3ppm)、大豆油(4.1〜4.3ppm)のピーク面積を求め、粉末中の含有量を求めた(比較例2では、粉末18.1mgと内標4.3mgで、トリクロサン面積は0.1972→粉末に対して8.1質量%)。   About 20 mg (weighed) of this powder and about 4 mg (weighed) of internal standard 1,1,2,2-tetrachloroethane (weighed) were placed in an NMR tube, and about 0.4 mL of deuterated methanol was added as a solvent. Further, 3 drops of 35% by mass deuterated hydrochloric acid was added to completely dissolve the calcium carbonate film, and the oil was extracted. The peak at 6.5 ppm was 1,1,2,2-tetrachloroethane. This integrated value was set to 2, and the peak area of 7.5 ppm of triclosan was determined. From this value, the content of triclosan in the powder was calculated. The amounts of IPMP, thymol, and soybean oil were measured using heavy chloroform as the solvent in the NMR measurement. The peak at 6.0 ppm is 1,1,2,2-tetrachloroethane. Similarly, the peak areas of IPMP (2.3 ppm), thymol (2.3 ppm), and soybean oil (4.1 to 4.3 ppm) are obtained. The content in the powder was determined (in Comparative Example 2, the powder was 18.1 mg and the internal standard was 4.3 mg, and the triclosan area was 0.1972 → 8.1 mass% with respect to the powder).

一方、上記上清約250mg(秤量する)と内部標準1,1,2,2−テトラクロロエタン約4mg(秤量する)とをNMRチューブに入れ、重メタノール約0.4mLを溶媒として添加した。更に35質量%塩化重水素酸を3滴添加した。6.5ppmのピークが1,1,2,2−テトラクロロエタンであり、この積分値を2とし、トリクロサンの7.5ppmのピーク面積を求めた。この値から上清中のトリクロサンの含有量を算出した。IPMP、チモール、大豆油の量は、上記NMR測定において、溶媒を重クロロホルムとして測定した。6.0ppmのピークが1,1,2,2−テトラクロロエタンであり、同様にIPMP(2.3ppm)、チモール(2.3ppm)、大豆油(4.1〜4.3ppm)のピーク面積を求め、上清中の含有量を算出した(比較例2では、上清256.9mgと内標4.6mgで、トリクロサン面積は0.0417→上清に対して0.129質量%)。比較例1、比較例4についても同様の方法で測定した。   On the other hand, about 250 mg of the supernatant (weighed) and about 4 mg of the internal standard 1,1,2,2-tetrachloroethane (weighed) were placed in an NMR tube, and about 0.4 mL of heavy methanol was added as a solvent. Further, 3 drops of 35% by mass deuterated hydrochloric acid was added. The peak at 6.5 ppm was 1,1,2,2-tetrachloroethane. This integrated value was set to 2, and the peak area of 7.5 ppm of triclosan was determined. From this value, the content of triclosan in the supernatant was calculated. The amounts of IPMP, thymol, and soybean oil were measured using heavy chloroform as the solvent in the NMR measurement. The peak at 6.0 ppm is 1,1,2,2-tetrachloroethane. Similarly, the peak areas of IPMP (2.3 ppm), thymol (2.3 ppm), and soybean oil (4.1 to 4.3 ppm) are obtained. The content in the supernatant was calculated (in Comparative Example 2, the supernatant was 256.9 mg and the internal standard was 4.6 mg, and the triclosan area was 0.0417 → 0.129% by mass with respect to the supernatant). Comparative Example 1 and Comparative Example 4 were also measured by the same method.

以上から、粉末、上清それぞれの重量と、粉末、上清それぞれに含まれる油分の濃度が算出されたので、これらから粉末、上清それぞれに含まれる油分の量、また比率を計算し、上清に含まれている油分の比率を油分溶出率とした。   From the above, the weight of each powder and supernatant and the concentration of oil contained in each powder and supernatant were calculated. From these, the amount and ratio of oil contained in each powder and supernatant were calculated. The ratio of the oil contained in the oil was taken as the oil elution rate.

(g)油分溶出防止性
上記(f)油分溶出率から、油分溶出防止性を評価した。表中の評価「○」、「△」、「×」の意味は以下のとおりである。
○:油分に含まれる全ての成分の油分溶出率が0%であり、油分は安定に被覆油粒子内に保持されている。
△:油分に含まれるいずれかの成分の油分溶出率が0〜20%であり、油分に含まれるいずれかの成分が一部被覆油粒子内から水中へ溶出している。
×:油分に含まれるいずれかの成分の油分溶出率が20%を超えており、油分に含まれるいずれかの成分が一部被覆油粒子内から水中へ溶出している。
(G) Oil content elution prevention property The oil content elution prevention property was evaluated from said (f) oil content elution rate. The meanings of the evaluations “◯”, “Δ”, “X” in the table are as follows.
◯: The oil elution rate of all the components contained in the oil is 0%, and the oil is stably held in the coated oil particles.
Δ: The oil elution rate of any component contained in the oil component is 0 to 20%, and any component contained in the oil component is partially eluted into the water from the coated oil particles.
×: The oil elution rate of any component contained in the oil component exceeds 20%, and any component contained in the oil component is partially eluted into the water from the coated oil particles.

Figure 2007152252
Figure 2007152252

Figure 2007152252
Figure 2007152252

表1および表2の結果から、実施例1〜10については、フェノール性化合物を含む油分を含む油粒子を炭酸カルシウムの微粒子で被覆した安定な被覆油粒子が得られ、かつ油分に含まれる全ての成分の油分溶出率が0%であり、油分は50℃というより過酷な条件下でも安定に被覆油粒子内に保持されていることが確認された。   From the results of Tables 1 and 2, for Examples 1 to 10, stable coated oil particles obtained by coating oil particles containing an oil component containing a phenolic compound with fine particles of calcium carbonate were obtained, and all contained in the oil component It was confirmed that the oil elution rate of this component was 0%, and the oil content was stably held in the coated oil particles even under the severer condition of 50 ° C.

一方、表2の結果から、比較例1、2については、pH調整を行わず、得られた被覆油粒子の水分散液のpHが9.8〜9.9と、本発明に示す6.0〜8.0の範囲よりも高いため、フェノール性化合物であるトリクロサンのみが溶出していることが分かった(大豆油は漏れなし)。   On the other hand, from the results of Table 2, in Comparative Examples 1 and 2, pH adjustment was not performed, and the pH of the obtained aqueous dispersion of coated oil particles was 9.8 to 9.9. Since it was higher than the range of 0-8.0, it turned out that only the triclosan which is a phenolic compound is eluting (a soybean oil does not leak).

また、比較例3については、pH調整を行っているが、塩酸の添加量が多く、本発明に示す6.0〜8.0の範囲よりも低いため、炭酸カルシウムの水への溶解量が多くなり、本発明の水分散液中の被覆油粒子を形成する炭酸カルシウムの微粒子の量が少なくなり、被覆油粒子の安定性が低下し、油分の分離が生じてしまうことが分かった。   Moreover, about Comparative Example 3, although pH adjustment is performed, since the addition amount of hydrochloric acid is large and is lower than the range of 6.0 to 8.0 shown in the present invention, the dissolution amount of calcium carbonate in water is small. It was found that the amount of fine particles of calcium carbonate forming the coated oil particles in the aqueous dispersion of the present invention was decreased, the stability of the coated oil particles was lowered, and the oil content was separated.

また、比較例4については、pH調整を行っているが、塩酸の添加量が少なく、得られた被覆油粒子の水分散液のpHが8.3と、本発明に示す6.0〜8.0の範囲よりも高いため、フェノール性化合物であるトリクロサンのみが溶出していることが分かった。   Moreover, about Comparative Example 4, although pH adjustment is performed, the addition amount of hydrochloric acid is small, and the pH of the obtained aqueous dispersion of coated oil particles is 8.3, which is 6.0 to 8 shown in the present invention. Since it was higher than the range of 0.0, it was found that only triclosan, which is a phenolic compound, was eluted.

以上から、本発明の被覆油粒子水分散液中の被覆油粒子は、1または2以上の成分からなるフェノール性化合物を含む油分を平均粒径1μm以下の水難溶性無機カルシウム塩の微粒子で被覆した平均粒径5μm以下で、pHが6.0〜8.0の範囲にある安定な被覆油粒子であることが分かった。   As described above, the coated oil particles in the aqueous dispersion of coated oil particles of the present invention are obtained by coating an oil containing a phenolic compound composed of one or more components with fine particles of a poorly water-soluble inorganic calcium salt having an average particle size of 1 μm or less. It was found to be stable coated oil particles having an average particle size of 5 μm or less and a pH in the range of 6.0 to 8.0.

以上のように、本発明にかかる被覆油粒子水分散液中の被覆油粒子は、油分として薬効成分、化粧成分、殺菌成分、食用油、香料、色素、その他農薬、殺虫成分、抗菌、抗カビ成分等を安定に水難溶性無機カルシウム塩の微粒子で被覆した被覆油粒子であるため、医薬品、食品、化粧品、歯磨きや洗口剤などの口腔用製品などへの用途に用いるのに好適である。   As described above, the coated oil particles in the coated oil particle aqueous dispersion according to the present invention are composed of medicinal components, cosmetic components, bactericidal components, edible oils, fragrances, pigments, other agricultural chemicals, insecticide components, antibacterial components, antifungal components as oil components Since it is a coated oil particle in which ingredients and the like are stably coated with fine particles of a poorly water-soluble inorganic calcium salt, it is suitable for use in pharmaceuticals, foods, cosmetics, oral products such as toothpastes and mouthwashes.

また、本発明の水分散液中の被覆油粒子は、特定条件下における被覆粒子の溶解等により、内包油分を放出する機能を持つ素材、または徐放性製剤として、パーソナルケア製品やドラッグデリバリーシステムにおける薬物キャリアへの応用が可能である。   Further, the coated oil particles in the aqueous dispersion of the present invention may be used as a personal care product or drug delivery system as a material having a function of releasing the encapsulated oil by dissolution of the coated particles under a specific condition, or a sustained-release preparation. Can be applied to drug carriers.

油粒子を水難溶性無機カルシウム塩の微粒子で被覆した被覆油粒子の模式図である。It is a schematic diagram of the covering oil particle which coat | covered the oil particle with the fine particle of the water poorly soluble inorganic calcium salt. 本発明の被覆油粒子水分散液の製造工程における各成分の状態を模式的に表した図である。It is the figure which represented typically the state of each component in the manufacturing process of the coating oil particle aqueous dispersion of this invention.

符号の説明Explanation of symbols

1 水難溶性無機カルシウム塩の微粒子凝集体
1a 水難溶性無機カルシウム塩の微粒子
2 油分
2a 油粒子
3 被覆油粒子
4 水
5 乳化物
6 無機微粒子水分散液
7 被覆油粒子水分散液
DESCRIPTION OF SYMBOLS 1 Fine particle aggregate of poorly water-soluble inorganic calcium salt 1a Fine particle of poorly water-soluble inorganic calcium salt 2 Oil 2a Oil particle 3 Coated oil particle 4 Water 5 Emulsion 6 Inorganic fine particle aqueous dispersion 7 Coated oil particle aqueous dispersion

Claims (3)

油粒子の表面に水難溶性無機カルシウム塩の微粒子が付着されてなる被覆油粒子が水に分散されてなる被覆油粒子水分散液であって、
前記水難溶性無機カルシウム塩微粒子の平均粒径が1μm以下、前記被覆油粒子の平均粒径が5μm以下であり、かつ、pHが6.0〜8.0であることを特徴とする被覆油粒子水分散液。
A coated oil particle aqueous dispersion in which coated oil particles in which fine particles of a poorly water-soluble inorganic calcium salt are adhered to the surface of oil particles are dispersed in water,
Coated oil particles wherein the poorly water-soluble inorganic calcium salt fine particles have an average particle size of 1 μm or less, the coated oil particles have an average particle size of 5 μm or less, and a pH of 6.0 to 8.0. Water dispersion.
前記油粒子がフェノール性化合物またはフェノール性化合物を含有する油分を含むことを特徴とする請求項1に記載の被覆油粒子水分散液。   The coated oil particle aqueous dispersion according to claim 1, wherein the oil particles contain a phenolic compound or an oil containing a phenolic compound. 油分を水分中に分散して油粒子分散液を得る乳化工程と、
水難溶性無機カルシウム塩の微粒子凝集体を水に分散させた後、前記微粒子凝集体を平均粒径1μm以下の微粒子に粉砕し、さらにこの分散液のpHを6.0〜8.0の範囲に調整することにより、無機微粒子水分散液を得る無機微粒子水分散液調製工程と、
前記油粒子分散液と前記無機微粒子水分散液とを混合することにより、油粒子の表面に水難溶性無機カルシウム塩の微粒子が付着されてなる被覆油粒子が水に分散されてなるpHが6.0〜8.0の被覆油粒子水分散液を得る被覆油粒子水分散液調製工程と、
を含むことを特徴とする被覆油粒子水分散液の製造方法。
An emulsification step of dispersing oil in water to obtain an oil particle dispersion;
The fine particle aggregate of the poorly water-soluble inorganic calcium salt is dispersed in water, and then the fine particle aggregate is pulverized into fine particles having an average particle size of 1 μm or less, and the pH of the dispersion is set in the range of 6.0 to 8.0. An inorganic fine particle aqueous dispersion preparation step to obtain an inorganic fine particle aqueous dispersion by adjusting;
By mixing the oil particle dispersion and the inorganic fine particle aqueous dispersion, the pH of the coated oil particles in which fine particles of poorly water-soluble inorganic calcium salt are adhered to the surface of the oil particles is dispersed in water. A coating oil particle aqueous dispersion preparation step for obtaining a coating oil particle aqueous dispersion of 0 to 8.0,
A method for producing an aqueous dispersion of coated oil particles, comprising:
JP2005352457A 2005-12-06 2005-12-06 Aqueous dispersion of coating oil particles and method for producing the same Pending JP2007152252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005352457A JP2007152252A (en) 2005-12-06 2005-12-06 Aqueous dispersion of coating oil particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005352457A JP2007152252A (en) 2005-12-06 2005-12-06 Aqueous dispersion of coating oil particles and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007152252A true JP2007152252A (en) 2007-06-21

Family

ID=38237274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352457A Pending JP2007152252A (en) 2005-12-06 2005-12-06 Aqueous dispersion of coating oil particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007152252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007479A (en) * 2006-06-30 2008-01-17 Lion Corp Composition for oral cavity and method for producing sugar alcohol aqueous solution dispersion of calcium carbonate-coated water-slightly soluble pharmaceutically effective ingredient fine particles
JP2015101576A (en) * 2013-11-27 2015-06-04 株式会社ニイタカ Skin body sterilizing and washing agent composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007479A (en) * 2006-06-30 2008-01-17 Lion Corp Composition for oral cavity and method for producing sugar alcohol aqueous solution dispersion of calcium carbonate-coated water-slightly soluble pharmaceutically effective ingredient fine particles
JP2015101576A (en) * 2013-11-27 2015-06-04 株式会社ニイタカ Skin body sterilizing and washing agent composition

Similar Documents

Publication Publication Date Title
Talón et al. Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: Release kinetics, antioxidant and antimicrobial properties
Budinčić et al. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules
JP4979109B2 (en) Compositions showing enhanced formulation stability and delivery of topical active ingredients
Surassmo et al. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method
Lasoń et al. Influence of process parameters on properties of Nanostructured Lipid Carriers (NLC) formulation.
JP5134192B2 (en) Coated oil particle emulsion and method for producing the same
Lee et al. Combination of internal structuring and external coating in an oleogel-based delivery system for fish oil stabilization
Ashraf et al. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment
EP2768582B1 (en) Granules comprising an active substance
JPH0150449B2 (en)
KR101116899B1 (en) Concentrated and diluted stable oil/water emulsions
Tang et al. Industrially scalable complex coacervation process to microencapsulate food ingredients
JP2008273881A (en) Multilayer-coated oil particles, aqueous dispersion thereof and method for producing the same
JP4637991B2 (en) Microcapsule and manufacturing method thereof
Dzulhi et al. Formulation, characterization and in vitro skin penetration of green tea (Camellia sinensis L.) leaves extract-loaded solid lipid nanoparticles
JP5175436B2 (en) Emulsion and production method thereof
KR20210069344A (en) An active substance carrier comprising biopolymer
JP4733387B2 (en) Containment of two liquid bubbles
Khalid et al. Encapsulation of cholecalciferol and ergocalciferol in oil‐in‐water emulsions by different homogenization techniques
JP4637992B2 (en) Microcapsule and manufacturing method thereof
JP2007152252A (en) Aqueous dispersion of coating oil particles and method for producing the same
JP2016079107A (en) Emulsion composition for making aerosol, and aerosol agent
JP2004250450A (en) Cosmetics including effective component in microcapsule
CN106076213A (en) A kind of citral solid lipid nanoparticle under acid condition and preparation method thereof
Cortial et al. Hot homogenization process optimization for fragrance encapsulation in solid lipid nanoparticles