JP2007150232A - Glass-sealed light emiting element, circuit board with glass-sealed light emitting element, method of manufacturing glass-sealed light emitting eelement, and glass-sealed light emitting element mounting method - Google Patents

Glass-sealed light emiting element, circuit board with glass-sealed light emitting element, method of manufacturing glass-sealed light emitting eelement, and glass-sealed light emitting element mounting method Download PDF

Info

Publication number
JP2007150232A
JP2007150232A JP2006111089A JP2006111089A JP2007150232A JP 2007150232 A JP2007150232 A JP 2007150232A JP 2006111089 A JP2006111089 A JP 2006111089A JP 2006111089 A JP2006111089 A JP 2006111089A JP 2007150232 A JP2007150232 A JP 2007150232A
Authority
JP
Japan
Prior art keywords
glass
light emitting
emitting element
light
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006111089A
Other languages
Japanese (ja)
Other versions
JP4876685B2 (en
Inventor
Nobuhiro Nakamura
伸宏 中村
Shuji Matsumoto
修治 松本
Hitoshi Onoda
仁 小野田
Masaru Segawa
優 瀬川
Tetsuo Matsumoto
哲郎 松本
Hiroshi Usui
寛 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006111089A priority Critical patent/JP4876685B2/en
Publication of JP2007150232A publication Critical patent/JP2007150232A/en
Application granted granted Critical
Publication of JP4876685B2 publication Critical patent/JP4876685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/253Silica-free oxide glass compositions containing germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To seal a diode chip with a glass material. <P>SOLUTION: A glass-sealed light emitting element comprises a light emitting diode chip and a glass member adhered to at least a part of the surface of the light emitting diode chip. The glass member has a curved surface making at least a part of its surface form. The curved surface is preferably a part of a sphere or ellipsoid of revolution. The surface form of the glass member is composed of a spherical part and a flat part, and the diode chip is disposed preferably on the flat part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラス封止発光素子、ガラス封止発光素子付き回路基板、ガラス封止発光素子の製造方法およびガラス封止発光素子の実装方法に関する。   The present invention relates to a glass-sealed light-emitting element, a circuit board with a glass-sealed light-emitting element, a method for producing a glass-sealed light-emitting element, and a method for mounting a glass-sealed light-emitting element.

発光ダイオードを用いた光源(以下、LEDランプという)は、小型で、高効率な光源であり、かつLEDランプは玉切れの心配がないなど高信頼性を有する。近年青色発光ダイオードが発明され、従来の緑、赤色の発光ダイオードと組み合わせることにより、フルカラーディスプレイ用の光源の作製が可能となる。   A light source using a light emitting diode (hereinafter referred to as an LED lamp) is a small and highly efficient light source, and the LED lamp has high reliability such that there is no fear of running out of balls. In recent years, blue light emitting diodes have been invented, and by combining with conventional green and red light emitting diodes, it becomes possible to produce light sources for full color displays.

一方、青色の発光と色変換材料を組み合わせることにより、白色発光を得る方法も開示されている(特許文献1参照)。この方法で得られた白色LEDランプは、携帯電話のバックライトとして利用されている。   On the other hand, a method of obtaining white light emission by combining blue light emission and a color conversion material is also disclosed (see Patent Document 1). The white LED lamp obtained by this method is used as a backlight of a mobile phone.

図20は、従来のLEDランプの断面図である。発光ダイオードチップ101はボンディングワイヤ104により、電極102および103に接続され、樹脂105でモールドされている。樹脂モールドは、発光ダイオードの保護および、出射光指向性の制御の役割を果たしている。砲弾型の樹脂封止構造では、先端部に球面形状を有している。発光ダイオードと球面の距離およびその曲率半径で、出射光の指向性を制御している。一方で、発光ダイオードの短波長化および高輝度化が進んでいる。   FIG. 20 is a cross-sectional view of a conventional LED lamp. The light emitting diode chip 101 is connected to the electrodes 102 and 103 by a bonding wire 104 and molded with a resin 105. The resin mold plays the role of protecting the light emitting diode and controlling the outgoing light directivity. The bullet-shaped resin sealing structure has a spherical shape at the tip. The directivity of the emitted light is controlled by the distance between the light emitting diode and the spherical surface and its radius of curvature. On the other hand, light-emitting diodes have been shortened in wavelength and increased in luminance.

短波長化については、紫外領域で発光させる取り組みが行われている。赤、青、緑の色変換材料と組み合わせることで、色再現性のよい紫外光が得られる。1個当たりの高輝度化を達成できれば、所定の光量を得るのに少数の発光ダイオードチップでまかなうことができる。また、屋外のように外光が強い場合でも光源として使用することができるようになる。   For shortening the wavelength, efforts are being made to emit light in the ultraviolet region. By combining with red, blue and green color conversion materials, ultraviolet light with good color reproducibility can be obtained. If high luminance per unit can be achieved, a small number of light emitting diode chips can be used to obtain a predetermined amount of light. Further, even when the outside light is strong such as outdoors, it can be used as a light source.

しかし、発光ダイオードに用いられる封止樹脂の劣化が問題となっている。従来用いられていたエポキシ系樹脂では、青や紫外線による分解が著しい。透明樹脂が茶色に変色して結果として出射光量が低下してしまう。これは、エポキシ樹脂中の存在しているエポキシ環に酸素のある状態で紫外線が当ると、開環し、その構造が可視光域に吸収を持つからである。最近シリコーン系の樹脂が適用されるようになっているが、エポキシ樹脂と比較して変色の程度は改善される。しかし、変色による出射光量の低下が依然として起こる。
特に短波長、高輝度の発光ダイオードの場合には、問題となっている。
However, the deterioration of the sealing resin used in the light emitting diode is a problem. Conventional epoxy resins are significantly decomposed by blue and ultraviolet rays. The transparent resin turns brown and as a result, the amount of emitted light decreases. This is because when an ultraviolet ray hits an epoxy ring present in an epoxy resin in the presence of oxygen, the ring is opened and the structure has absorption in the visible light region. Recently, silicone-based resins have been applied, but the degree of discoloration is improved as compared with epoxy resins. However, a decrease in the amount of emitted light still occurs due to discoloration.
This is a problem particularly in the case of a light emitting diode having a short wavelength and high brightness.

また、従来の封止樹脂は屈折率が1.4〜1.6であるのに対し、発光ダイオードを構成する膜や基板は屈折率が2.4〜2.5と高い。この屈折率の差が原因となって、発光ダイオードから出射した光は樹脂界面で反射する。そのため、光の取り出し効率が悪い。
さらに従来の封止樹脂は熱伝導率が小さいため、放熱性が悪く、温度上昇による色変化、ひいては輝度劣化の原因となっている。一方、ガラス材料は耐光性に優れ、紫外線および青色光に対して殆ど劣化しない。また材料組成を選べば屈折率および熱伝導率の高いガラスを作成することができる。
The conventional sealing resin has a refractive index of 1.4 to 1.6, whereas the film or substrate constituting the light emitting diode has a high refractive index of 2.4 to 2.5. Due to this difference in refractive index, the light emitted from the light emitting diode is reflected at the resin interface. Therefore, the light extraction efficiency is poor.
Furthermore, since the conventional sealing resin has a low thermal conductivity, the heat dissipation is poor, causing a color change due to a temperature rise and a deterioration in luminance. On the other hand, the glass material is excellent in light resistance and hardly deteriorates against ultraviolet rays and blue light. If the material composition is selected, a glass having a high refractive index and high thermal conductivity can be produced.

従って、ガラス材料で発光ダイオードを封止できれば、光取り出し効率が改善し、かつ出射光による劣化、放熱の問題が低減できる。ガラスを用いた発光ダイオードのモールド部材としては、特許文献2にその例がある。ここでは、発光ダイオード用色変換部材としてガラス材料が挙げられているが、そのガラスは窓材のものである。この場合発光ダイオードからの出射光は一度空気あるいは、窒素などの屈折率が1と低い媒体に直接出るため、界面での反射成分が大きく、光り取り出し効率が著しく低下する。また放熱性の問題が残る。   Therefore, if the light-emitting diode can be sealed with a glass material, the light extraction efficiency can be improved, and deterioration due to emitted light and heat radiation problems can be reduced. An example of a mold member of a light emitting diode using glass is disclosed in Patent Document 2. Here, although a glass material is mentioned as the color conversion member for the light emitting diode, the glass is a window material. In this case, since the light emitted from the light emitting diode is directly emitted to a medium having a low refractive index of 1 such as air or nitrogen, the reflection component at the interface is large, and the light extraction efficiency is significantly reduced. Moreover, the problem of heat dissipation remains.

これに対して、GaNをガラスで封止する技術も知られている(特許文献3参照)。その実施例の一つを図21、図22に示す。その構造は以下の通りである。
「この発光素子1010は、図に示すとおり、電力受送手段としてのマウントリード1021の上に発光素子1010を固定し、発光素子の上面の電極からマウントリード1021と他の電力受送手段としてのサブリード1022とへそれぞれボンディングワイヤ1023、1024が懸架されている。図22に示すように、低融点ガラスからなる筒状体1058aを準備し、これを発光素子1010とリード1021、1022の組み付け体1020に被せる。これを炉に入れて筒状体1058aを軟化させる。その結果、筒状体1058aはその材料の表面張力によりレンズ状に組み付け体1020を被覆することとなる。」
On the other hand, a technique for sealing GaN with glass is also known (see Patent Document 3). One of the embodiments is shown in FIGS. Its structure is as follows.
“As shown in the figure, this light-emitting element 1010 has a light-emitting element 1010 fixed on a mount lead 1021 serving as a power transmission means, and the mount lead 1021 and other power transmission means serving as an electric power transmission means. Bonding wires 1023 and 1024 are respectively suspended from the sub-lead 1022. As shown in Fig. 22, a cylindrical body 1058a made of low melting point glass is prepared, and this is an assembly 1020 of the light emitting element 1010 and the leads 1021 and 1022. This is put in a furnace to soften the cylindrical body 1058a. As a result, the cylindrical body 1058a covers the assembled body 1020 in a lens shape by the surface tension of the material.

しかし、特許文献3では、発光ダイオードチップ1020およびボンディングワイヤ1023、1024を全て低融点ガラスによって被覆しているので、ボンディングワイヤが断線する可能性があると考えられる。また、低融点ガラスは一般に温度によって粘度が急激に変化するので、封止部材1058は扁平な形状になりやすい。このため、発光ダイオードチップ1020からの出射光の指向性を十分高めることが難しいと考えられる。
また、特許文献4では、封止時における封止部材の加圧力等が発光素子に付与されることに起因して生じる発光素子のバンプの変形、移動、バンプ間短絡等を防止できるようにした発光装置が示されている。
一方、本発明者らは、TeOおよびZnOを主成分とするガラスで封止された発光装置を提案した(特許文献5参照)。この場合、LEDの平均線膨張係数が85×10−7/℃であるのに対して、ガラスの平均線膨張係数は75×10−7〜140×10−7/℃である。したがって、ガラス封止後に発生する残留応力は、特許文献3に比較して小さいことが見込まれる。それ故、特許文献5に記載のガラスによれば、特許文献3のようにLEDに応力緩和部を設けずとも、応力に起因する破壊のおそれを低減することが可能となる。
However, in Patent Document 3, since the light emitting diode chip 1020 and the bonding wires 1023 and 1024 are all covered with the low melting point glass, it is considered that the bonding wire may be disconnected. Further, since the viscosity of low-melting glass generally changes abruptly with temperature, the sealing member 1058 tends to be flat. For this reason, it is considered difficult to sufficiently enhance the directivity of the emitted light from the light emitting diode chip 1020.
Further, in Patent Document 4, it is possible to prevent the deformation, movement, short circuit between bumps, etc. of the bumps of the light emitting element caused by the pressure applied to the light emitting element being applied to the light emitting element at the time of sealing. A light emitting device is shown.
On the other hand, the present inventors have proposed a light-emitting device sealed with glass mainly composed of TeO 2 and ZnO (see Patent Document 5). In this case, the average linear expansion coefficient of the LED is 85 × 10 −7 / ° C., whereas the average linear expansion coefficient of the glass is 75 × 10 −7 to 140 × 10 −7 / ° C. Therefore, the residual stress generated after glass sealing is expected to be smaller than that of Patent Document 3. Therefore, according to the glass described in Patent Document 5, it is possible to reduce the risk of breakage due to stress without providing a stress relaxation portion in the LED as in Patent Document 3.

特許第3366586号公報Japanese Patent No. 3366586 特開2003−258308号公報JP 2003-258308 A 国際公開第2004/082036号パンフレットInternational Publication No. 2004/082036 Pamphlet 特開2006−54210号公報JP 200654210 A 特開2005−11933号公報JP 2005-11933 A

本発明はこのような問題点に鑑みてなされたものである。即ち、本発明の目的は、出射光の指向性を向上させることのできるガラス封止発光素子を提供することにある。   The present invention has been made in view of such problems. That is, an object of the present invention is to provide a glass-sealed light emitting device capable of improving the directivity of emitted light.

また、本発明の目的は、断線を低減し、また、出射光の指向性を向上させることのできる発光素子付き回路基板、ガラス封止発光素子の製造方法およびガラス封止発光素子の実装方法を提供することにある。   Another object of the present invention is to provide a circuit board with a light-emitting element, a method for manufacturing a glass-sealed light-emitting element, and a method for mounting a glass-sealed light-emitting element that can reduce disconnection and improve the directivity of emitted light. It is to provide.

本発明の他の目的および利点は、以下の記載から明らかとなるであろう。   Other objects and advantages of the present invention will become apparent from the following description.

本発明の第1の態様は、発光素子と、前記発光素子を封止するガラス部材とを備え、前記ガラス部材の上側の表面形状は曲面によって構成され、下側の表面形状の少なくとも一部に曲面を備え、前記発光素子の端子側の面の少なくとも一部が前記ガラス部材から露出していることを特徴とするガラス封止発光素子に関する。
本発明の第1の態様において、前記ガラス部材の下側の表面形状に平坦である部分を含み、前記平坦である部分に前記発光素子が配置されていることが好ましい。
A first aspect of the present invention includes a light emitting element and a glass member that seals the light emitting element, wherein the upper surface shape of the glass member is configured by a curved surface, and at least part of the lower surface shape. The present invention relates to a glass-sealed light emitting device comprising a curved surface, wherein at least a part of the terminal side surface of the light emitting device is exposed from the glass member.
1st aspect of this invention WHEREIN: It is preferable that the surface shape of the lower side of the said glass member contains a flat part, and the said light emitting element is arrange | positioned in the said flat part.

本発明の第1の態様において、表面形状が曲面である部分において、発光素子の端子側の面に対して水平方向の主軸に沿う径Aおよび鉛直方向の主軸に沿う径Bと、表面形状が平坦である部分の径Cとの間には
A>B>C
の関係が成立することが好ましい。また、さらに
(C/A)≦0.6
の関係が成立することが好ましい。
発光素子は、正面視で矩形状の半導体チップであり、ガラス部材の曲面である部分の曲率半径は、発光ダイオードチップの1辺の長さの2.5倍以上であることが好ましい。また、曲面は、球面または回転楕円体面の一部であることが好ましい。発光素子は、LEDおよび半導体レーザのいずれか一方とすることができる。ガラス部材は、TeO、BおよびZnOを含むことが好ましい。前記発光素子に備えられた半導体基板の熱膨張係数αと前記ガラス部材の熱膨張係数αとの間に、
|α−α|<20×10−7(℃−1
の関係が成立することが好ましい。さらに、
|α−α|<15×10−7(℃−1
の関係が成立することがより好ましい。また、前記ガラス部材の屈折率が1.7以上であることが好ましい。
In the first aspect of the present invention, in the portion where the surface shape is a curved surface, the surface shape is a diameter A along the main axis in the horizontal direction and a diameter B along the main axis in the vertical direction with respect to the terminal side surface of the light emitting element. Between diameter C of the flat part A>B> C
It is preferable that the relationship is established. Further, (C / A) ≦ 0.6
It is preferable that the relationship is established.
The light emitting element is a semiconductor chip that is rectangular in a front view, and the radius of curvature of the curved portion of the glass member is preferably 2.5 times or more the length of one side of the light emitting diode chip. The curved surface is preferably a part of a spherical surface or a spheroid surface. The light emitting element can be either an LED or a semiconductor laser. The glass member preferably contains TeO 2 , B 2 O 3 and ZnO. Between the thermal expansion coefficient α 1 of the semiconductor substrate provided in the light emitting element and the thermal expansion coefficient α 2 of the glass member,
| Α 1 −α 2 | <20 × 10 −7 (° C. −1 )
It is preferable that the relationship is established. further,
| Α 1 −α 2 | <15 × 10 −7 (° C. −1 )
It is more preferable that the relationship is established. Moreover, it is preferable that the refractive index of the said glass member is 1.7 or more.

本発明の第2の態様は、上記ガラス封止発光素子と、この発光素子に設けられている端子と電気的に接続された基板とを備えたことを特徴とする発光素子付き回路基板に関する。   According to a second aspect of the present invention, there is provided a circuit board with a light-emitting element, comprising: the glass-sealed light-emitting element; and a substrate electrically connected to a terminal provided in the light-emitting element.

本発明の第3の態様は、発光素子の上に固体のガラス部材を載置する工程と、前記発光素子および前記ガラス部材を加熱し、この加熱によって固体のガラス材料を溶融し前記ガラス部材と前記発光素子との当接部を密着させる工程と、前記溶融されたガラス部材および前記発光素子を徐冷する工程とを有することを特徴とするガラス封止発光素子の製造方法に関する。この場合、溶融ガラスに対する濡れ性の低い離型材で覆われた面に発光素子を載置する工程を有することが好ましい。   According to a third aspect of the present invention, a step of placing a solid glass member on a light emitting element, heating the light emitting element and the glass member, and melting the solid glass material by this heating, The present invention relates to a method for producing a glass-sealed light emitting device, comprising: a step of closely contacting a contact portion with the light emitting device; and a step of gradually cooling the molten glass member and the light emitting device. In this case, it is preferable to include a step of placing the light emitting element on a surface covered with a release material having low wettability with respect to the molten glass.

本発明の第4の態様においては、発光素子を載置するための凹部を備えた治具を用い、この凹部内に発光素子およびガラス材料を載置してからこれらを加熱処理することにより、凹部の内側形状を利用してガラス部材を成形することが好ましい。   In the fourth aspect of the present invention, by using a jig provided with a recess for mounting the light emitting element, by placing the light emitting element and the glass material in the recess and then heat-treating them, It is preferable to mold the glass member using the inner shape of the recess.

また、発光素子の近傍に色変換材料が分散しているガラス部材を形成し、その後に、色変換材料を含まないガラス部材を色変換材料を含むガラス部材を覆うようにして形成することができる。また、前記発光素子が達する最高温度が、ガラス部材の軟化点よりも、80〜150℃高い温度であることが好ましい。より好ましくは、110〜150℃高い温度であることが好ましい。
本発明において、軟化点の測定は、測定の精度が±15℃である簡易的な方法で行った。その測定法は以下の通りである。直径5mm、長さ20mmの円柱状に加工したサンプルについて、マックサイエンス社製熱機械分析装置DILATOMETER(商品名)を用い、サンプルの伸びの検出部を押す圧力を4.9kPa(10gの加重)、昇温速度を5℃/分として、サンプルが軟化してサンプルの伸びの検出部を押すことができなくなる温度(屈服点)を求め、これを軟化点とした。
たとえば、後述するTeO含有のガラス部材の場合において、加熱の結果としての最高到達温度を600〜620℃とすることができる。なお、TeO含有のガラス部材において、その組成を調整することで、実施例の場合よりも低温域である、560〜570近傍の温度での処理に適合させることができる。
さらに、発光素子を構成する半導体基板の熱膨張係数αとガラス部材の熱膨張係数αとの間に、
|α−α|<20×10−7(℃−1
の関係が成立することが好ましい。さらに、
|α−α|<15×10−7(℃−1
の関係が成立することがより好ましい。発光素子は、LEDおよび半導体レーザのいずれか一方とすることができる。
In addition, a glass member in which the color conversion material is dispersed can be formed in the vicinity of the light emitting element, and thereafter, a glass member not including the color conversion material can be formed so as to cover the glass member including the color conversion material. . Moreover, it is preferable that the maximum temperature which the said light emitting element reaches is a temperature 80-150 degreeC higher than the softening point of a glass member. More preferably, the temperature is higher by 110 to 150 ° C.
In the present invention, the softening point was measured by a simple method with a measurement accuracy of ± 15 ° C. The measuring method is as follows. About the sample processed into the cylinder shape of diameter 5mm and length 20mm, the pressure which presses the detection part of a sample elongation using the thermomechanical analyzer DILATOMETER (brand name) made from a Mac Science company is 4.9 kPa (weight of 10 g), The temperature rise rate was set to 5 ° C./min, and the temperature at which the sample softened and the sample elongation detection part could not be pushed (oblique point) was determined, and this was used as the softening point.
For example, in the case of a TeO 2 -containing glass member to be described later, the maximum temperature achieved as a result of heating can be set to 600 to 620 ° C. Incidentally, the glass member of the TeO 2 content, by adjusting the composition, a low temperature region than in the embodiment can be adapted to the treatment at a temperature in the vicinity of 560 to 570.
Further, between the thermal expansion coefficient α 1 of the semiconductor substrate constituting the light emitting element and the thermal expansion coefficient α 2 of the glass member,
| Α 1 −α 2 | <20 × 10 −7 (° C. −1 )
It is preferable that the relationship is established. further,
| Α 1 −α 2 | <15 × 10 −7 (° C. −1 )
It is more preferable that the relationship is established. The light emitting element can be either an LED or a semiconductor laser.

本発明の第5の態様は、上記のガラス封止発光素子を配線付き基板に実装する工程を有することを特徴とするガラス封止発光素子の実装方法に関する。第5の態様において、発光素子が、半導体基板と、この半導体基板の主表面側に形成された発光部と、この発光部に給電するための端子とを備える場合、ガラス封止発光ダイオードチップの実装方法は、発光素子をガラス部材により封止する工程と、発光素子のp側およびn側の両端子にバンプを形成する工程と、バンプと配線付き基板の配線とを電気的に接続する工程とをさらに有することができる。発光素子は、LEDおよび半導体レーザのいずれか一方とすることができる。   According to a fifth aspect of the present invention, there is provided a method for mounting a glass-sealed light-emitting element, comprising the step of mounting the glass-sealed light-emitting element on a substrate with wiring. 5th aspect WHEREIN: When a light emitting element is provided with a semiconductor substrate, the light emission part formed in the main surface side of this semiconductor substrate, and the terminal for supplying electric power to this light emission part, it is a glass-sealed light emitting diode chip | tip. The mounting method includes a step of sealing the light emitting element with a glass member, a step of forming bumps on both the p-side and n-side terminals of the light emitting element, and a step of electrically connecting the bump and the wiring of the substrate with wiring. Can further be included. The light emitting element can be either an LED or a semiconductor laser.

本発明によれば、発光素子の封止材料として耐光性に優れたガラス材料を適用できる。
そのため、発光素子を光源として、出射光の指向性を制御できる。ガラス材料を採用することで、従来技術における封止樹脂の変色による輝度低下などの問題を解消できる。また高屈折率のガラスを用いれば、発光素子からの光取り出し率を向上させることができる。
さらにガラス材料は樹脂よりも、熱伝導性が良いため、特に高輝度LEDで問題となる放熱性も改善される。また色変換材料をガラス中に分散する態様においては、発光色と変換された色の混色により所望の色光を得るだけでなく、電子デバイスとしての放熱性を改善することができる。このように、耐光性、光り取り出し効率、放熱性のいずれか一つ以上に優れたガラスにより封止された発光素子を作製できる。かつ所定の曲面形状を形成することで、出射光の指向性を制御することもできる。
According to the present invention, a glass material having excellent light resistance can be applied as a sealing material for a light emitting element.
Therefore, the directivity of the emitted light can be controlled using the light emitting element as a light source. By adopting the glass material, it is possible to solve problems such as luminance reduction due to discoloration of the sealing resin in the prior art. In addition, when glass having a high refractive index is used, the light extraction rate from the light emitting element can be improved.
Furthermore, since the glass material has better thermal conductivity than the resin, the heat dissipation, which is a problem particularly in high-brightness LEDs, is also improved. Moreover, in the aspect which disperse | distributes a color conversion material in glass, not only desired color light can be obtained by the color mixture of the luminescent color and the converted color, but the heat dissipation as an electronic device can be improved. In this manner, a light-emitting element sealed with glass that is superior in any one of light resistance, light extraction efficiency, and heat dissipation can be manufactured. In addition, the directivity of the emitted light can be controlled by forming a predetermined curved surface shape.

次に、本発明の実施の形態について図を参照して説明する。
図1(a)は本発明に係るガラス部材の一実施形態を示す斜視図、同図(b)はIb−Ib’線断面図である。本発明は、半導体製の発光ダイオードチップの表面の少なくとも一部に、例えば図1(a)に示すガラス部材12を密着させる。この構造をとることで、耐光性や光取り出し率の優れたガラス封止発光素子を提供できる。
Next, embodiments of the present invention will be described with reference to the drawings.
Fig.1 (a) is a perspective view which shows one Embodiment of the glass member based on this invention, The same figure (b) is Ib-Ib 'sectional view taken on the line. In the present invention, for example, a glass member 12 shown in FIG. 1A is adhered to at least a part of the surface of a semiconductor light emitting diode chip. By adopting this structure, it is possible to provide a glass-sealed light emitting device having excellent light resistance and light extraction rate.

発光素子としては、発光ダイオード(Light Emitting Diode)または半導体レーザ(Laser Diode)などのチップを用いることができる。本実施の形態においては、ガラス部材を溶融する際の熱処理により劣化しないものであることが好ましい。一般に、バンドギャップの大きいものほど耐熱性が高くなるので、発光光が青色である発光ダイオードまたは半導体レーザが好ましく用いられる。例えば、発光光の主ピーク波長が500nm以下である発光ダイオードまたは半導体レーザ、より詳しくは、GaNおよびInGaNなどの窒化物半導体、または、ZnOおよびZnSなどのII−VI族化合物半導体などを用いた発光ダイオードまたは半導体レーザを用いることができる。   As the light-emitting element, a chip such as a light-emitting diode (Light Emitting Diode) or a semiconductor laser (Laser Diode) can be used. In the present embodiment, it is preferable that the glass member is not deteriorated by heat treatment when the glass member is melted. In general, since the heat resistance increases as the band gap increases, a light emitting diode or a semiconductor laser whose emitted light is blue is preferably used. For example, light emission using a light emitting diode or semiconductor laser having a main peak wavelength of emitted light of 500 nm or less, more specifically, a nitride semiconductor such as GaN and InGaN, or a II-VI group compound semiconductor such as ZnO and ZnS. A diode or a semiconductor laser can be used.

また、ガラス部材12は、屈折率が1.7以上(好ましくは1.7から2.0、さらに好ましくは1.7から1.8)の材料である。屈折率が大きいほど、発光ダイオードチップからガラス部材への光の取り出し効率が上がり、出射光の指向性もよく好適である。
特に、ガラス部材12には、軟化点が500℃以下、温度50℃〜300℃における平均線膨張係数が65×10−7/℃〜95×10−7/℃、波長405nmの光に対する厚さ1mmでの内部透過率が80%以上であって、この光に対する屈折率が1.7以上であるものが好ましく用いられる。このようなガラスであれば、屈折率が大きく、また、基板10との熱膨張係数差も小さいので、光の取り出し効率を損なうことなしに発光ダイオードチップ11を被覆することができる。具体的には、TeO、BおよびZnOを含むガラスが好ましく用いられる。特に、TeOの含有量が10mol%以上であるものが好ましい。TeOの含有量が多くなるほど、屈折率を高くすることができるからである。
次に、本発明における第1の手法を説明する(フローチャートを示す図18を参照)。まず、平板上に所望の方向に載置した発光素子の上部にガラス部材のブロック(細片)を載置する。その後、加熱処理を行い(全体雰囲気の昇温)、ガラス部材を溶融し、溶融したガラス部材を発光素子へ被着せしめ、さらに、ガラス部材に、曲面からなる上側の表面形状と、下側の表面形状の少なくとも一部に曲面を形成し、その後、加熱処理を停止し、徐冷工程に移行する。最終的にガラス部材を固化せしめて、所望のガラス封止発光素子を得ることができる。発光素子の端子が備えられた面の一部に若干のガラスが付着したとしても、発光素子の電気的駆動および発光動作に支障がなければ問題はない。
この際、ガラス部材のブロックの主表面をあらかじめ鏡面仕上げとし、ガラス部材を溶融した際に不用な泡の発生を防止することができるので好ましい。また、ガラス部材のブロックは所定の大きさ、質量のものを作成または選定して用いるようにすることが好ましい。
なお、ガラス部材の体積と発光素子の大きさとの関係を適宜調整することで、ガラス部材が発光素子に接した状態のままで、溶融したガラスを発光素子の上部で略球状に形成し、その後、徐冷することで、ガラス部材の下側先端の部分が平板側に接することなく、発光素子をガラス部材の表面に僅か埋設させ、平坦である部分の面積を減少させた形状、のガラス封止発光素子を得ることもできる。
次に、所定の形状を有するガラス部材(プリフォーム)をあらかじめ形成して用いる第2の手法を説明する。ガラス部材の上側の表面形状を曲面で構成し、下側の表面形状の一部に曲面および平坦である部分を備えた構造のものである。
まず、離型性を有する平板の上にガラス材料を載置した後に、加熱によりガラス材料を溶融することによって行われる。ここで、離型性を有する平板は、表面に離型材層が設けられた平板であってもよいし、離型性を有する材料からなる平板であってもよい。離型性を有する材料としては、窒化ホウ素またはカーボン(特に、ガラス質カーボン)などが挙げられる。但し、カーボンを用いる場合には、真空中または窒素などの不活性ガス雰囲気下で処理することが必要となる。
本発明において、ガラス部材の表面形状における「平坦である部分」は、ガラス部材と平板とが接触している部分に形成される。従って、平坦である部分の形状は、平板の表面形状に概ねしたがうものとなる。尚、この平坦である部分は、図1の平坦な表面12bに対応する。
例えば、離型材(溶融ガラスに対する濡れ性の低い部材)で被覆された基板(例えばアルミナ製)10上で、固形またはペースト状のガラス材料を昇温により溶融し、材料自身の凝集作用により、表面形状の少なくとも一部が曲面、好ましい態様としては、略球状になった状態を得る。そして、その状態の溶融ガラスを徐冷し、その形状を固定することでガラス部材を形成できる。
Further, the glass member 12 is a material having a refractive index of 1.7 or more (preferably 1.7 to 2.0, more preferably 1.7 to 1.8). The higher the refractive index, the better the light extraction efficiency from the light emitting diode chip to the glass member, and the better the directivity of the emitted light.
In particular, the glass member 12 has a softening point of 500 ° C. or less, an average linear expansion coefficient at a temperature of 50 ° C. to 300 ° C. of 65 × 10 −7 / ° C. to 95 × 10 −7 / ° C., and a thickness with respect to light having a wavelength of 405 nm. Those having an internal transmittance of 80% or more at 1 mm and a refractive index with respect to this light of 1.7 or more are preferably used. With such glass, since the refractive index is large and the difference in thermal expansion coefficient from the substrate 10 is small, the light emitting diode chip 11 can be covered without impairing the light extraction efficiency. Specifically, glass containing TeO 2 , B 2 O 3 and ZnO is preferably used. In particular, the TeO 2 content is preferably 10 mol% or more. This is because the refractive index can be increased as the TeO 2 content increases.
Next, a first method in the present invention will be described (see FIG. 18 showing a flowchart). First, a glass member block (strip) is placed on the light emitting element placed in a desired direction on a flat plate. Thereafter, heat treatment is performed (temperature increase of the entire atmosphere), the glass member is melted, the molten glass member is attached to the light emitting element, and the upper surface shape formed of a curved surface and the lower surface shape are attached to the glass member. A curved surface is formed on at least a part of the surface shape, and then the heat treatment is stopped, and the process proceeds to a slow cooling step. Finally, the glass member is solidified to obtain a desired glass-sealed light emitting device. Even if some glass adheres to a part of the surface where the terminals of the light emitting element are provided, there is no problem as long as the electric drive and light emitting operation of the light emitting element are not hindered.
At this time, the main surface of the block of the glass member is preferably mirror-finished in advance, so that it is possible to prevent generation of unnecessary bubbles when the glass member is melted. In addition, it is preferable to use a glass member block having a predetermined size and mass.
In addition, by appropriately adjusting the relationship between the volume of the glass member and the size of the light emitting element, the glass member remains in contact with the light emitting element, and the molten glass is formed in a substantially spherical shape above the light emitting element. By gradually cooling, the glass seal having a shape in which the light emitting element is slightly embedded in the surface of the glass member without the lower end portion of the glass member being in contact with the flat plate side, and the area of the flat portion is reduced. A light-emitting element can also be obtained.
Next, a second method of forming and using a glass member (preform) having a predetermined shape in advance will be described. The upper surface shape of the glass member is a curved surface, and a part of the lower surface shape includes a curved surface and a flat portion.
First, after placing a glass material on a flat plate having releasability, the glass material is melted by heating. Here, the flat plate having releasability may be a flat plate provided with a release material layer on the surface, or a flat plate made of a material having releasability. Examples of the material having releasability include boron nitride and carbon (particularly glassy carbon). However, when carbon is used, it is necessary to perform the treatment in a vacuum or in an inert gas atmosphere such as nitrogen.
In the present invention, the “flat portion” in the surface shape of the glass member is formed at the portion where the glass member and the flat plate are in contact with each other. Accordingly, the shape of the flat portion generally follows the surface shape of the flat plate. This flat portion corresponds to the flat surface 12b in FIG.
For example, on a substrate (for example, made of alumina) 10 coated with a release material (a member having low wettability with molten glass), a solid or paste-like glass material is melted by a temperature rise, and the surface of the material is agglomerated by the material itself. At least a part of the shape is a curved surface, and as a preferred embodiment, a substantially spherical state is obtained. And the glass member can be formed by slowly cooling the molten glass in that state and fixing its shape.

但し、ガラス部材が発光素子に対して相対的に大きな場合には、凝集力よりも相対的に重力の影響を受けるため、後述する実施例の場合には、凝集したガラス部材12の表面形状は、回転楕円体等の曲面体に近似した表面12aと、基板10と接する平坦な表面12bとで構成される。表面12aは、ガラス部材12の表面形状の「曲面である部分」に対応する。また、表面12bは、ガラス部材12の表面形状の「平坦である部分」に対応する。
ガラス部材12の形状は、表面12aにおいて、基板10に対して水平方向の主軸に沿った径Aと、鉛直方向の主軸に沿った径Bと、表面12bの径Cとの3種類のパラメータで規定される。尚、後述するように、発光ダイオードチップは、端子側の面を下方にして基板10の上に載置された状態でガラス部材12によって封止されるので、「基板10に対して水平方向」とは、発光ダイオードチップの端子側の面に対して水平方向と言い換えることもできる。鉛直方向についても同様である。
径A,B,Cの間には
A>B>C
の関係が成立する。本発明においては、曲面は、球面または楕円体面の一部であることが好ましい。特に、ガラス部材12が球形に近いほど、出射光の指向性が高くなることから
(C/A)≦0.6
の関係が成立することが好ましい。
ガラス部材12が搭載される発光ダイオードチップは、その大きさが正面視で0.3mm□程度と非常に微細であることからガラス部材12も微細かつ軽いものでよい。そのため、表面12aの形状は、実質的には球面に近似した形状となる。なお、ガラス球に対して、発光ダイオードベアチップが十分小さければ、点光源として近似でき、出射光の指向性が良いため、ガラス部材の球面である部分の曲率半径は、発光ダイオードチップの1辺の長さの2.5倍以上であることが好ましい。換言すると、径Aについて
(A/2)≧2.5
の関係が成立することが好ましい。
However, when the glass member is relatively large with respect to the light emitting element, it is affected by gravity rather than the cohesive force. Therefore, in the case of an example described later, the surface shape of the aggregated glass member 12 is The surface 12a approximated to a curved body such as a spheroid and a flat surface 12b in contact with the substrate 10 are formed. The surface 12 a corresponds to a “curved portion” of the surface shape of the glass member 12. The surface 12 b corresponds to a “flat portion” of the surface shape of the glass member 12.
The shape of the glass member 12 has three types of parameters on the surface 12a: a diameter A along the main axis in the horizontal direction with respect to the substrate 10, a diameter B along the main axis in the vertical direction, and a diameter C of the surface 12b. It is prescribed. As will be described later, the light emitting diode chip is sealed by the glass member 12 in a state where the light emitting diode chip is placed on the substrate 10 with the terminal-side surface facing downward. In other words, it can be said to be horizontal with respect to the terminal-side surface of the light-emitting diode chip. The same applies to the vertical direction.
A>B> C between diameters A, B, and C
The relationship is established. In the present invention, the curved surface is preferably a part of a spherical surface or an ellipsoidal surface. In particular, the closer the glass member 12 is to a spherical shape, the higher the directivity of the emitted light. (C / A) ≦ 0.6
It is preferable that the relationship is established.
The light-emitting diode chip on which the glass member 12 is mounted has a very fine size of about 0.3 mm □ in front view, and therefore the glass member 12 may be fine and light. Therefore, the shape of the surface 12a is substantially a shape that approximates a spherical surface. If the light emitting diode bare chip is sufficiently small with respect to the glass sphere, it can be approximated as a point light source, and the directivity of the emitted light is good. Therefore, the radius of curvature of the spherical portion of the glass member is one side of the light emitting diode chip. The length is preferably 2.5 times or more. In other words, for diameter A (A / 2) ≧ 2.5
It is preferable that the relationship is established.

尚、ある温度において、ガラスは、その表面エネルギーと基板の濡れ性によって定まる形状(球形状)になろうとするが、実際には、これに自重による変形が加わることによって最終的な形状、すなわち平衡状態で得られる形状が決定される。ガラス材料の重量が小さいほど、ガラス部材の表面形状は球面に近くなる一方で、ガラス材料の重量が大きくなると、ガラス部材の表面形状は扁平に近くなる。ガラス部材が球形に近いほど、出射光の指向性は高くなるので、ガラス材料の重量は小さい方が好ましい。本発明においては、径Aが1cm程度までのガラス部材であれば使用可能であると考えられる。
基本的に、ほぼ球状の形態を得ることができる。また、変形の程度が大きければ楕円体の形態になると考えられる。
At a certain temperature, glass tends to become a shape (spherical shape) determined by its surface energy and substrate wettability. However, in reality, the final shape, ie, equilibrium, is obtained by adding deformation due to its own weight. The shape obtained in the state is determined. As the weight of the glass material is smaller, the surface shape of the glass member is closer to a spherical surface, whereas when the weight of the glass material is larger, the surface shape of the glass member is closer to a flat shape. The closer the glass member is to a spherical shape, the higher the directivity of the emitted light, so the glass material is preferably smaller in weight. In the present invention, it is considered that any glass member having a diameter A up to about 1 cm can be used.
Basically, a substantially spherical form can be obtained. In addition, if the degree of deformation is large, an ellipsoidal shape is considered.

次に、本発明に係るガラス封止発光ダイオードチップの構造等について説明する。
図2は本発明に係るガラス封止発光ダイオードチップの一実施形態を示す斜視図であり、図3はIII−III’線断面図である。これらの図に示すガラス部材12は、図1(a)に示したものと同等のものであり、発光ダイオードチップ11は、平坦な表面12bに設けられている。
これらの図に示すように、離型材で被覆された基板10の上に、発光ダイオードチップ11を端子13を基板10の側に向けて載置する。次いで、発光ダイオードチップ11の上に、図1(a)で示したガラス部材12を載せ、昇温して固体のガラス部材12を軟化させる。すると、ガラス部材12が重力によって下方に移動し、発光ダイオードチップ11を取り囲んだ状態となる。ここで、ガラス部材12の比重は発光ダイオードチップ11の比重より大きいので、浮力によって発光ダイオードチップ11はガラス部材12中を上方に移動する。この移動距離rは、
r ∝ F×t×η−1
によって表される。但し、Fは浮力、tはガラスの軟化時間、ηはガラスの粘度である。
浮力は、ガラスの比重と発光ダイオードチップの比重との差によって決まる。ここで、発光ダイオードチップの質量の大部分は基板によって占められるので、発光ダイオードチップの比重は基板の比重で近似できると考えられる。例えば、一般的な発光ダイオードチップに用いられる基板の比重は、サファイア基板で4.0g/cm、SiC基板で3.1g/cm、GaAs基板で5.3g/cmである。一方、燐酸亜鉛系ガラスの比重は2.8g/cm〜3.3g/cmであり、ホウケイ酸亜鉛系ガラスの比重は2.6g/cm〜3.0g/cmである。さらに、TeO、BおよびZnOを含み、且つ、TeOの含有量が10mol%以上であるガラスの内で、TeO(45.0%)、TiO(1.0%)、GeO(5.0%)、B(18.0%)、Ga(6.0%)、Bi(3.0%)、ZnO(15%)、Y(0.5%)、La(0.5%)、Gd(3.0%)およびTa(3.0%)の組成を有するものの比重は5.2g/cmである。
発光ダイオードチップ11が同じものであれば、ガラスの比重が大きくなるほど、移動距離rは大きくなる。すなわち、ガラス部材12の内部に発光ダイオードチップ11が大きくめり込むことになる。この場合、離型材で被覆された基板と発光ダイオードチップ11との間に占める空間が大きくなるので、発光ダイオードチップ11をガラス部材12で被覆する際に、基板とガラス部材12の間に閉じ込められた空気をこの空間に逃がして、ガラス部材12の内部に気泡が生じるのを防ぐことができる。
以上のことを、図4(a)〜(c)を用いてさらに詳しく説明する。
図4(a)は、離型材で被覆された基板10上の発光ダイオードチップ11の上に、ガラス部材12を載せた状態を示したものである。加熱によってガラス部材12を軟化させると、ガラス部材12が重力によって下方に移動し、基板10、ガラス部材12および発光ダイオードチップ11の間に閉空間Sが形成される。そして、発光ダイオードチップ11の比重がガラス部材12の比重より小さい場合には、図4(c)に示すように、発光ダイオードチップ11が矢印の方向に移動して、ガラス部材12の中にめり込んだ状態となる。このとき、閉空間Sに閉じ込められた空気は、発光ダイオードチップ11と基板10の間に移動するので、ガラス部材12の中に気泡が生じるのを防ぐことができる。
尚、一般的な低融点ガラス(例えば、燐酸−スズ−亜鉛系ガラスなど。)では、温度によって粘度が急激に変化するので、軟化したガラスを球状にするのは困難である。
このように、ガラス部材12内部に発光ダイオードチップ11の一部がめり込むと、両者の間に隙間が生じることなく、密着状態で発光ダイオードチップ11の発光面にガラス部材12が固定される。発光ダイオードチップ11は、その端子側の面のみ露出して大部分がガラス部材12内に埋没し、この場合チップの裏面からの発光のみならずチップの端面(チップを直方体として捉えた場合の側面)からの発光もガラス部材内で反射および伝播するため、光取り出し率を向上させる上で有効である。但し、ガラス部材がチップの裏面のみ封止するもの、チップの裏面全体および端面の一部がガラス部材内に埋没したもの、ガラス部材がチップの裏面の一部のみ封止するものの何れも本発明に含まれる。なお、製法の詳細については実施例において説明する。
Next, the structure of the glass-sealed light emitting diode chip according to the present invention will be described.
FIG. 2 is a perspective view showing an embodiment of a glass-sealed light emitting diode chip according to the present invention, and FIG. 3 is a sectional view taken along line III-III ′. The glass member 12 shown in these drawings is equivalent to that shown in FIG. 1A, and the light-emitting diode chip 11 is provided on a flat surface 12b.
As shown in these drawings, a light emitting diode chip 11 is placed on a substrate 10 covered with a release material with terminals 13 facing the substrate 10 side. Next, the glass member 12 shown in FIG. 1A is placed on the light emitting diode chip 11, and the solid glass member 12 is softened by raising the temperature. Then, the glass member 12 moves downward by gravity, and the light emitting diode chip 11 is surrounded. Here, since the specific gravity of the glass member 12 is larger than the specific gravity of the light emitting diode chip 11, the light emitting diode chip 11 moves upward in the glass member 12 by buoyancy. This moving distance r is
r ∝ F × t × η −1
Represented by Where F is buoyancy, t is the glass softening time, and η is the glass viscosity.
Buoyancy is determined by the difference between the specific gravity of the glass and the specific gravity of the light emitting diode chip. Here, since most of the mass of the light-emitting diode chip is occupied by the substrate, the specific gravity of the light-emitting diode chip can be approximated by the specific gravity of the substrate. For example, the specific gravity of the substrate used in the conventional light emitting diode chips is 5.3 g / cm 3 at 3.1 g / cm 3, GaAs substrate at 4.0 g / cm 3, SiC substrates of sapphire substrate. On the other hand, the specific gravity of zinc phosphate-based glass is 2.8g / cm 3 ~3.3g / cm 3 , the specific gravity of zinc glass borosilicate is 2.6g / cm 3 ~3.0g / cm 3 . Further comprising a TeO 2, B 2 O 3 and ZnO, and, among the glass content of TeO 2 is not less than 10mol%, TeO 2 (45.0% ), TiO 2 (1.0%), GeO 2 (5.0%), B 2 O 3 (18.0%), Ga 2 O 3 (6.0%), Bi 2 O 3 (3.0%), ZnO (15%), Y 2 Those having a composition of O 3 (0.5%), La 2 O 3 (0.5%), Gd 2 O 3 (3.0%) and Ta 2 O 5 (3.0%) have a specific gravity of 5. 2 g / cm 3 .
If the light emitting diode chip 11 is the same, the moving distance r increases as the specific gravity of the glass increases. That is, the light-emitting diode chip 11 is greatly embedded in the glass member 12. In this case, since the space occupied between the substrate covered with the release material and the light emitting diode chip 11 becomes large, when the light emitting diode chip 11 is covered with the glass member 12, it is confined between the substrate and the glass member 12. It is possible to prevent the air from being generated in the glass member 12 by allowing the air to escape into this space.
The above will be described in more detail with reference to FIGS.
FIG. 4A shows a state in which the glass member 12 is placed on the light emitting diode chip 11 on the substrate 10 covered with the release material. When the glass member 12 is softened by heating, the glass member 12 moves downward by gravity, and a closed space S is formed between the substrate 10, the glass member 12, and the light emitting diode chip 11. When the specific gravity of the light-emitting diode chip 11 is smaller than the specific gravity of the glass member 12, the light-emitting diode chip 11 moves in the direction of the arrow and is recessed into the glass member 12, as shown in FIG. It becomes a state. At this time, the air confined in the closed space S moves between the light emitting diode chip 11 and the substrate 10, so that bubbles can be prevented from being generated in the glass member 12.
In general low-melting glass (for example, phosphoric acid-tin-zinc-based glass), the viscosity changes abruptly depending on the temperature, so it is difficult to make the softened glass spherical.
As described above, when a part of the light emitting diode chip 11 sinks into the glass member 12, the glass member 12 is fixed to the light emitting surface of the light emitting diode chip 11 in a close contact state without generating a gap therebetween. The light-emitting diode chip 11 is exposed only on the terminal-side surface and most of the light-emitting diode chip 11 is buried in the glass member 12. ) Is also reflected and propagated in the glass member, which is effective in improving the light extraction rate. However, the glass member seals only the back surface of the chip, the entire back surface and part of the end surface of the chip are embedded in the glass member, and the glass member seals only a part of the back surface of the chip. include. Details of the production method will be described in Examples.

図5は発光ダイオードチップの一実施形態を示す平面図であり、図6はV−V’線断面図である。図中の21はp電極、22はn電極、23は発光部、24はp型半導体層、25はn型半導体層、26は発光層、27はサファイア基板である。発光ダイオードチップはサファイア基板上にInGaNが半導体層として形成されている。発光ダイオードチップの一辺の長さは300μmの正方形であり、厚みは80μmである。電極はn、pいずれも、その表面は金で形成されている。ガラス封止時における発光ダイオードチップの耐熱性を高める点からは、金の膜厚を厚く形成した方が好ましい。   FIG. 5 is a plan view showing an embodiment of a light-emitting diode chip, and FIG. 6 is a cross-sectional view taken along line V-V ′. In the figure, 21 is a p-electrode, 22 is an n-electrode, 23 is a light-emitting portion, 24 is a p-type semiconductor layer, 25 is an n-type semiconductor layer, 26 is a light-emitting layer, and 27 is a sapphire substrate. In the light-emitting diode chip, InGaN is formed as a semiconductor layer on a sapphire substrate. The length of one side of the light emitting diode chip is a square of 300 μm, and the thickness is 80 μm. The surface of both the electrodes n and p is made of gold. From the viewpoint of increasing the heat resistance of the light-emitting diode chip during glass sealing, it is preferable to form a thick gold film.

図7は、発光ダイオード付き回路基板の実施形態の一例の側面図である。図2に示したガラス封止発光ダイオードチップは、所定の基板に実装することで照明等の各種用途に用いることができる。基板には公知の各種のものを使用できる。例えばガラス基板である。
図7に部材の配置構成例を示す。ガラスエポキシで作られた基板14の一方の面には、チップ11の端子13と電気接続するための二つの電極15が形成され、電極15の端部は基板14の他方の面まで延在している。
FIG. 7 is a side view of an example of an embodiment of a circuit board with a light emitting diode. The glass-sealed light-emitting diode chip shown in FIG. 2 can be used for various applications such as lighting by being mounted on a predetermined substrate. Various known substrates can be used. For example, a glass substrate.
FIG. 7 shows an example of the arrangement configuration of members. Two electrodes 15 for electrical connection with the terminals 13 of the chip 11 are formed on one surface of the substrate 14 made of glass epoxy, and the ends of the electrodes 15 extend to the other surface of the substrate 14. ing.

チップ11の各端子13と基板14の各電極15とは、はんだバンプ16を介してフリップチップ実装されている。本例では、チップ11にガラス部材12を取り付けてから、基板14に実装する。なお、基板14上に発光ダイオードチップ11等を実装してから、さらにそれら全体を樹脂で被覆することで、水分による端子13の劣化を防止できる。   Each terminal 13 of the chip 11 and each electrode 15 of the substrate 14 are flip-chip mounted via solder bumps 16. In this example, the glass member 12 is attached to the chip 11 and then mounted on the substrate 14. In addition, after mounting the light emitting diode chip | tip 11 etc. on the board | substrate 14, and covering them entirely with resin, degradation of the terminal 13 by a water | moisture content can be prevented.

本発明のガラス封止発光ダイオード付き回路基板によれば、発光ダイオードチップがガラスで封止されているので、従来の樹脂封止されたものに比較して、光束を大きくすることができる。一方、消費電力に関しては、樹脂封止されたものに比較して大きくなるので、光束と消費電力とがトレードオフの関係となる。消費電力が低下する一因としては、ガラス封止時の熱による発光ダイオードチップ(特に、電極部)の劣化が挙げられる。従って、耐熱性の高い発光ダイオードチップを用いることにより、消費電力の低減が図れると考えられる。   According to the circuit board with a glass-sealed light-emitting diode of the present invention, since the light-emitting diode chip is sealed with glass, the luminous flux can be increased as compared with a conventional resin-sealed one. On the other hand, since the power consumption is larger than that of the resin-sealed one, the light flux and the power consumption are in a trade-off relationship. One reason for the reduction in power consumption is deterioration of the light-emitting diode chip (particularly, the electrode portion) due to heat during glass sealing. Therefore, it is considered that power consumption can be reduced by using a light-emitting diode chip having high heat resistance.

次に、本発明の実施例である例1〜例6について説明する。   Next, Examples 1 to 6 which are embodiments of the present invention will be described.

(例1)
図8は、本発明に係るガラス封止発光ダイオードチップおよび発光ダイオード付き回路基板の製造プロセスの一実施形態を示すフローチャートである。また、図9は、製造プロセスにおける基板温度の履歴を示すグラフである。
(Example 1)
FIG. 8 is a flowchart showing an embodiment of a manufacturing process of a glass-sealed light-emitting diode chip and a circuit board with a light-emitting diode according to the present invention. FIG. 9 is a graph showing the history of the substrate temperature in the manufacturing process.

最初に離型材付き基板を作製する(ステップS1)。基板として6インチ・シリコン・ウエハ(大阪チタニウム社製)を用い、離型材として、窒化ホウ素パウダー(化研興業社製ボロンスプレー)をスプレーした。窒化ホウ素パウダーはシリコン表面が見えない程度スプレーする。次に封止用のガラス部材を作製する。ここでガラス材料としては、以下の組成のものを用いた。すなわち、TeO(45.0%)、TiO(1.0%)、GeO(5.0%)、B(18.0%)、Ga(6.0%)、Bi(3.0%)、ZnO(15%)、Y(0.5%)、La(0.5%)、Gd(3.0%)およびTa(3.0%)である。 First, a substrate with a release material is produced (step S1). A 6-inch silicon wafer (manufactured by Osaka Titanium Co., Ltd.) was used as the substrate, and boron nitride powder (boron spray manufactured by Kaken Kogyo Co., Ltd.) was sprayed as the release material. Spray boron nitride powder to the extent that the silicon surface is not visible. Next, a glass member for sealing is produced. Here, a glass material having the following composition was used. That, TeO 2 (45.0%), TiO 2 (1.0%), GeO 2 (5.0%), B 2 O 3 (18.0%), Ga 2 O 3 (6.0%) , Bi 2 O 3 (3.0%), ZnO (15%), Y 2 O 3 (0.5%), La 2 O 3 (0.5%), Gd 2 O 3 (3.0%) And Ta 2 O 5 (3.0%).

ここで、%はモル%である。本ガラス材料のガラス転移温度(Tg)は450℃であり、熱膨張係数(α)は86×10−7(℃−1)である。従って比較的低温で軟化し、かつ熱膨張係数が発光ダイオード基板の用いられるサファイア(α=68(C軸に平行)、52(C軸に垂直))等に近い。発光ダイオードの基板の熱膨張係数αとガラス部材の熱膨張係数αとは、|α−α|<15×10−7(℃−1)であることが好ましい。 Here,% is mol%. The glass transition temperature (Tg) of this glass material is 450 ° C., and the thermal expansion coefficient (α) is 86 × 10 −7 (° C. −1 ). Therefore, it softens at a relatively low temperature and has a thermal expansion coefficient close to that of sapphire (α = 68 (parallel to the C axis), 52 (perpendicular to the C axis)) used for the light emitting diode substrate. The thermal expansion coefficient alpha 2 of the thermal expansion coefficient alpha 1 and the glass member of the substrate of the light emitting diode, | α 12 | <is preferably 15 × 10 -7 (℃ -1) .

また屈折率は405nmで2.01と高いため、発光ダイオードチップからの光の取り出し効率および光指向性が良いと考えられる。また、耐水性、耐酸性に優れており、LEDや半導体レーザ等の発光素子の封止材料として好ましく用いることができる。本ガラス片30mgを前述の離型材付き基板上に載せた(ステップS2)。   Further, since the refractive index is as high as 2.01 at 405 nm, it is considered that the light extraction efficiency and the light directivity from the light emitting diode chip are good. Moreover, it is excellent in water resistance and acid resistance, and can be preferably used as a sealing material for light emitting elements such as LEDs and semiconductor lasers. 30 mg of this glass piece was placed on the aforementioned substrate with a release material (step S2).

次いで、ガラス片の載った離型材付き基板を昇温する(ステップS3)。昇温には、マッフル炉FP41(大和科学社製)を用いた。昇温レートは5℃/分として、25℃から610℃まで昇温し、15分保持した後に、5℃/分のレートで25℃まで徐々に冷却した(ステップS4)。   Next, the temperature of the substrate with the release material on which the glass piece is placed is increased (step S3). A muffle furnace FP41 (manufactured by Yamato Kagaku Co., Ltd.) was used for raising the temperature. The temperature rising rate was 5 ° C./minute, the temperature was raised from 25 ° C. to 610 ° C., held for 15 minutes, and then gradually cooled to 25 ° C. at a rate of 5 ° C./minute (step S4).

この処理でガラス材料は、図1(a)に示したように、基板と接している部分に平坦部を有する球状になった。球の直径は2.0mm(寸法A)であり、高さは1.9mm(寸法B)であり、底面は直径が0.8mm(寸法C)の円形であった。ついで、発光ダイオードチップを前記窒化ホウ素パウダーで被覆された基板上に載置する(ステップS5)。
発光ダイオードチップは青色発光チップ(昭和電工株式会社製 商品名GB−3070)であり、n電極とp電極がチップの片面に配置され、発光ダイオードチップの端子が基板面を向くようにチップは基板上に載せられる。
By this treatment, as shown in FIG. 1A, the glass material became a sphere having a flat portion in a portion in contact with the substrate. The diameter of the sphere was 2.0 mm (dimension A), the height was 1.9 mm (dimension B), and the bottom surface was circular with a diameter of 0.8 mm (dimension C). Next, the light emitting diode chip is placed on the substrate covered with the boron nitride powder (step S5).
The light-emitting diode chip is a blue light-emitting chip (trade name GB-3070, manufactured by Showa Denko KK). The n-electrode and the p-electrode are arranged on one side of the chip, and the chip is a substrate so that the terminals of the light-emitting diode chip face the substrate surface. It is put on.

発光ダイオードチップは小さくハンドリングが難しい。上記基板の上3cmから散布し、散布した発光ダイオードチップのうち、端子部が基板面を向いた発光ダイオードチップに、先に用意した略球状のガラス部材をその底面の中心に発光ダイオードチップが配置されるように載せた。ついで発光ダイオードチップ、ガラス部材の載った離型材付き基板を上述のマッフル炉に入れ、加熱し冷却した(ステップS7、S8)。   Light emitting diode chips are small and difficult to handle. Of the light-emitting diode chips dispersed from the top 3 cm of the substrate, the light-emitting diode chips are arranged on the center of the bottom surface of the light-emitting diode chips whose terminal portions face the substrate surface. I put it as it was. Next, the substrate with the release material on which the light emitting diode chip and the glass member were placed was placed in the muffle furnace described above, and heated and cooled (steps S7 and S8).

さらに、以上の一連の工程とは別工程で、上記ガラス封止発光ダイオードチップを基板(例えば図7に示したもの)に実装することにより、発光ダイオード付き回路基板が得られる(ステップS9)。   Further, by mounting the glass-sealed light-emitting diode chip on a substrate (for example, the one shown in FIG. 7) in a step different from the above series of steps, a circuit board with a light-emitting diode is obtained (step S9).

なお、加熱レート、保持温度、保持時間、冷却レートはガラス部材作成時と同一である。また、ステップS7の加熱処理により発光ダイオードチップは、ガラス部材の内部に若干めり込むが、電極形成面にガラスは付着していない。得られたガラス封止発光ダイオードチップは、図2に示したとおりである。ガラス部材12の寸法は、初期値とほぼ同じであった。ついで、ガラス部材12で封止された発光ダイオードチップ11に電圧を印加して、発光状態を確認した。   The heating rate, holding temperature, holding time, and cooling rate are the same as when the glass member was created. Further, although the light emitting diode chip is slightly sunk inside the glass member by the heat treatment in step S7, the glass is not attached to the electrode forming surface. The obtained glass-sealed light-emitting diode chip is as shown in FIG. The dimension of the glass member 12 was substantially the same as the initial value. Next, a voltage was applied to the light emitting diode chip 11 sealed with the glass member 12 to confirm the light emission state.

ここで、直流電源は、MC35−1A(菊水電子社)、端子と電源の接続にはマニュアルプローバを用いた。発光開始電圧は2.5Vであった。ここで発光開始電圧とは発光を視認できる電圧である。ガラス封止をしていないベアチップでの発光開始電圧は2.3Vであり、ガラス封止しても発光開始電圧は殆ど変わらない。印加電圧3.5V時の発光状態を図10の写真に示す。   Here, MC35-1A (Kikusui Electronics Co., Ltd.) was used as the DC power source, and a manual prober was used to connect the terminal and the power source. The light emission starting voltage was 2.5V. Here, the emission start voltage is a voltage at which emission can be visually recognized. The light emission start voltage in a bare chip not sealed with glass is 2.3 V, and the light emission start voltage hardly changes even when glass is sealed. The light emission state at an applied voltage of 3.5 V is shown in the photograph of FIG.

同図の中央部に位置する球状の物体が略球状のガラス部材であり、その周辺に白く光っている部位が発光によって照らし出された離型材で被覆された基板である。ガラス部材の中央には、同図からは視認し難いが発光ダイオードチップが密着固定されている。また、ガラス部材の中央近傍から突出する2本の黒い影は、チップの二つの端子に電気接続された電極である。   A spherical object located in the center of the figure is a substantially spherical glass member, and a substrate covered with a release material that is illuminated by light emission at a portion that shines in white at the periphery. In the center of the glass member, a light-emitting diode chip is closely fixed, which is difficult to see from the figure. The two black shadows protruding from the vicinity of the center of the glass member are electrodes electrically connected to the two terminals of the chip.

このように発光ダイオードが青色発光することを確認できた。
また、以上のようにして作られたガラス封止発光ダイオードチップの光束は2〜3lm程度が見込まれ、パワーLEDを用いればさらに向上し、20lmは得られるものと推定される。また、出射光指向性について調べるため、計算機シミュレーションを行ったところ、図11に示す視野角度(輝度が最大輝度の半分の値になる角度×2(開き角度))θが15°以下(ガラス材料の屈折率次第では10°以下も可能)であることを確認した。
さらに、発光ダイオードチップによる発光の主発光ピーク波長が、500nm以下であることを確認した。
Thus, it was confirmed that the light emitting diode emitted blue light.
In addition, the luminous flux of the glass-sealed light-emitting diode chip manufactured as described above is expected to be about 2 to 3 lm, and it is estimated that 20 lm can be obtained by using a power LED. Further, when a computer simulation was performed in order to investigate the emitted light directivity, the viewing angle shown in FIG. 11 (the angle at which the luminance is half the maximum luminance × 2 (opening angle)) θ is 15 ° or less (glass material) It was confirmed that the angle could be 10 ° or less depending on the refractive index.
Furthermore, it was confirmed that the main emission peak wavelength of light emission by the light emitting diode chip was 500 nm or less.

(例2)
例1と同じガラス材料カレット7.61gを乳鉢と乳棒を用いて粉砕した後、黄色蛍光体P46−Y3(化成オプトニクス社製)381mgを混合し、蛍光体入りフリットを得た。この蛍光体入りガラスフリットを34mg小分けにして、610℃、15分間加熱した。加熱速度、冷却速度は実施例1と同条件に設定した。これにより図1(a)と同様のガラス部材12を形成した。
(Example 2)
After pulverizing 7.61 g of the same glass material cullet as in Example 1 using a mortar and pestle, 381 mg of yellow phosphor P46-Y3 (manufactured by Kasei Optonix) was mixed to obtain a frit containing the phosphor. The phosphor-containing glass frit was divided into 34 mg portions and heated at 610 ° C. for 15 minutes. The heating rate and cooling rate were set to the same conditions as in Example 1. Thereby, the same glass member 12 as FIG. 1A was formed.

以下例1と同様に、離型材で被覆された基板に発光ダイオードチップおよび前述のガラス部材を載せ加熱し冷却すると、ガラス中に蛍光体が分散したガラス部材で封止された発光ダイオードチップが得られた。発光開始電圧は印加電圧2.4Vであり、白色の発光が得られた。   In the same manner as in Example 1, when a light emitting diode chip and the above glass member are placed on a substrate coated with a release material and heated and cooled, a light emitting diode chip sealed with a glass member in which phosphors are dispersed in glass is obtained. It was. The light emission starting voltage was an applied voltage of 2.4 V, and white light emission was obtained.

このように、発光ダイオードチップから出射した青色光がガラス体中の蛍光体で黄色に変換された。変換して得られた黄色と青色発光とが混色して白色発光していることが確認された。同様にして、例えば発光ダイオード近傍に、半径500μm程度の蛍光体入りガラス材料を半球状に形成する。図12に示すように、蛍光体入りガラスにより封止された発光ダイオードが得られる。31は発光ダイオードチップであり、32は蛍光体入り半球状のガラス部材である。   Thus, the blue light emitted from the light emitting diode chip was converted to yellow by the phosphor in the glass body. It was confirmed that yellow light obtained by the conversion and blue light emission were mixed to emit white light. Similarly, for example, a phosphor-containing glass material having a radius of about 500 μm is formed in a hemispherical shape in the vicinity of the light emitting diode. As shown in FIG. 12, a light emitting diode sealed with glass containing phosphor is obtained. 31 is a light emitting diode chip, and 32 is a hemispherical glass member containing a phosphor.

これの上に図1(a)に示した球状に成型されたガラス部材12を載せて、加熱しその後、冷却すると図13に示すような、発光ダイオード近傍に蛍光体が分散しているガラス部材封止物ができると考えられる。ここに、41は先に形成した発光ダイオードを半球状のガラス部材で封止したものであり、42はその後、載せたガラス部材である。この場合では、発光ダイオードのより近傍で青色光は一部黄色に変換され、黄色光と青色光とが混色されて白色を生じさせることができる。よって、点光源に近い白色光源となるため、より指向性が得られ易いと考えられる。なお、710℃において上記同様の実験も行ったが、蛍光体入りのガラスフリットが変色し灰色となり、所望の結果を得ることはできなかった。   A glass member 12 formed into a spherical shape as shown in FIG. 1A is placed thereon, heated, and then cooled, as shown in FIG. 13, a glass member in which phosphors are dispersed in the vicinity of the light emitting diodes. It is thought that a sealing material is formed. Here, 41 is a light-emitting diode formed earlier and sealed with a hemispherical glass member, and 42 is a glass member placed thereafter. In this case, the blue light is partially converted to yellow near the light emitting diode, and the yellow light and the blue light can be mixed to generate white. Therefore, since it becomes a white light source close to a point light source, it is considered that directivity is more easily obtained. Although the same experiment as described above was performed at 710 ° C., the glass frit containing the phosphor was discolored and turned gray, and a desired result could not be obtained.

(例3)
内径5.5mm、厚さ0.5mm、高さ10mmの円筒形のパイレックス(登録商標)管53(図14(a))の内側に離型材として窒化ホウ素パウダーをスプレーし、発光ダイオードチップの載った離型材付き基板50上に載せる。その後、実施例1と同じガラス材料381mgを管53の中に充填し、加熱し、冷却する。管53と基板50とは、ガラス部材を成形するための治具54を構成する。加熱条件および冷却条件は例1と同じである。
(Example 3)
Boron nitride powder is sprayed as a release material inside a cylindrical Pyrex (registered trademark) tube 53 (FIG. 14A) having an inner diameter of 5.5 mm, a thickness of 0.5 mm, and a height of 10 mm. It is placed on the substrate 50 with a release material. Thereafter, 381 mg of the same glass material as in Example 1 is filled into the tube 53, heated, and cooled. The tube 53 and the substrate 50 constitute a jig 54 for forming a glass member. The heating conditions and cooling conditions are the same as in Example 1.

冷却後、図14(b)に示すように先端部が表面張力により曲面形状のガラスで封止された発光ダイオードチップが得られた。51が発光ダイオードチップであり、52がそれを封止しているガラスである。寸法Dは5.5mm、寸法Eは2.1mm、寸法Fは1.5mmであった。発光開始電圧は2.3Vであり、青色発光が確認された。この形状のガラス部材では、発光ダイオードと球面との距離を離型材の付いた型とガラスの量で変えられるため、指向性を制御することが可能となる。管53内に投入するガラス材料の量を調整することで、チップを封止するガラス部材の長短(距離E+F)を容易に調整でき、指向性を調整する上で好適である。なお、パイレックス(登録商標)管の替わりに、SUS製の金属パイプ等を用いて同様の実験を行ったが、徐冷後にガラス部材をパイプ等の内部から取り出すことができず、実験を完了できなかった。   After cooling, a light-emitting diode chip was obtained in which the tip was sealed with curved glass by surface tension as shown in FIG. 14 (b). 51 is a light emitting diode chip, 52 is the glass which has sealed it. The dimension D was 5.5 mm, the dimension E was 2.1 mm, and the dimension F was 1.5 mm. The emission start voltage was 2.3 V, and blue emission was confirmed. In the glass member having this shape, the distance between the light emitting diode and the spherical surface can be changed by the amount of the mold with the mold release material and the glass, so that the directivity can be controlled. By adjusting the amount of the glass material put into the tube 53, the length (distance E + F) of the glass member for sealing the chip can be easily adjusted, which is suitable for adjusting the directivity. Although the same experiment was conducted using a SUS metal pipe instead of the Pyrex (registered trademark) pipe, the glass member could not be taken out of the pipe after slow cooling, and the experiment could be completed. There wasn't.

(例4)
まず、基板として6インチのシリコンウェハ(大阪チタニウム株式会社製)を用い、この基板の上に、表面が完全に被覆する程度に離型材をスプレー塗布して離型材層を形成した。離型材としては、窒化ホウ素の粉末(化研興業株式会社製 ボロンスプレー)を用いた。次いで、基板の上にガラス片を重量を変えて載せ、例1と同様の加熱処理をすることにより、全体が略球状で、離型材層と接している部分に平坦部を有する封止ガラスを形成した。ガラス材料としては、例1と同様のものを用いた。また、ガラス片の重量は、10mg、20mg、30mg、60mgおよび90mgの5種類とした。
(Example 4)
First, a 6-inch silicon wafer (manufactured by Osaka Titanium Co., Ltd.) was used as a substrate, and a release material layer was formed on the substrate by spray coating the release material to such an extent that the surface was completely covered. As the release material, boron nitride powder (Boron Spray manufactured by Kaken Kogyo Co., Ltd.) was used. Next, a glass piece is placed on the substrate with a different weight, and the same heat treatment as in Example 1 is performed, so that a sealing glass having a flat part at the part in contact with the release material layer is obtained. Formed. The same glass material as in Example 1 was used. Moreover, the weight of the glass piece was made into five types, 10 mg, 20 mg, 30 mg, 60 mg, and 90 mg.

次に、上記の離型材層が設けられたシリコンウェハの上で端子部が基板面を向いた発光ダイオードチップを選び、この発光ダイオードチップが中心に位置するようにして、封止ガラスを発光ダイオードチップの上に載せた。そして、封止ガラスの形成と同様の条件で加熱および冷却を行った。これにより、電極面を露出した状態で封止ガラスに被覆された発光ダイオードチップを得た。尚、発光ダイオードチップとしては、豊田合成株式会社製のE1C60−0B011−03(商品名)を用いた。この発光ダイオードチップの大きさは、正面視で0.32mm□程度であった。
上記の発光ダイオードチップ以外に、現在市場で利用されている各社の製品を本発明に適用することができる。たとえば、日亜化学株式会社、豊田合成株式会社、シャープ株式会社、昭和電工株式会社、株式会社東芝、米国のCree社の製品などがあげられる。本発明において、発光ダイオードチップの形状は略六面体に限られず、勿論、他の形状であってもよい。発光ダイオードチップの発光部をガラス部材で封止し、その端子側の面がガラス部材の外部に露出する構造をとることができればよい。
Next, a light emitting diode chip having a terminal portion facing the substrate surface is selected on the silicon wafer provided with the release material layer described above, and the sealing glass is disposed in the light emitting diode so that the light emitting diode chip is positioned at the center. It was placed on the chip. And it heated and cooled on the same conditions as formation of sealing glass. Thereby, the light emitting diode chip | tip coat | covered with sealing glass in the state which exposed the electrode surface was obtained. In addition, E1C60-0B011-03 (trade name) manufactured by Toyoda Gosei Co., Ltd. was used as the light emitting diode chip. The size of the light emitting diode chip was about 0.32 mm □ in front view.
In addition to the light emitting diode chip, products of various companies currently used in the market can be applied to the present invention. For example, Nichia Corporation, Toyoda Gosei Co., Ltd., Sharp Corporation, Showa Denko Co., Ltd., Toshiba Corporation, and Cree Inc. in the United States. In the present invention, the shape of the light-emitting diode chip is not limited to a substantially hexahedron, and may be other shapes. It is sufficient that the light emitting portion of the light emitting diode chip is sealed with a glass member and the terminal side surface is exposed to the outside of the glass member.

図15に、ガラス片の重量と、得られた封止ガラスの寸法(A,B,C)との関係を示す。また、図16に、寸法Aと形状パラメータとの関係を示す。形状パラメータとしては、(A/B)と(B/B’)の2種類を用いた。尚、B’は、封止ガラスが完全な球であったとしたときの鉛直方向の主軸に沿った径である。   In FIG. 15, the relationship between the weight of a glass piece and the dimension (A, B, C) of the obtained sealing glass is shown. FIG. 16 shows the relationship between the dimension A and the shape parameter. As the shape parameter, two types (A / B) and (B / B ′) were used. B ′ is a diameter along the main axis in the vertical direction when the sealing glass is a perfect sphere.

図15および図16より、ガラス片の重量が小さいほど、封止ガラスの表面形状が球面に近くなることが分かる。一方、ガラス片の重量が大きくなると、寸法Aに対して寸法Bが小さくなり、封止ガラスの表面形状は球面からずれた扁平な曲面に近くなる。これは、ガラス片の重量が大きくなると、自重の影響を受けやすくなるためである。そして、曲面を形成している部分の中心から平坦である部分までの距離Lは、ガラス片の重量が大きくなるほど短くなる。出射光の指向性は、封止ガラスの表面形状が球面に近いほど、また、距離Lが大きくなるほど高くなるので、図15の例においては、封止ガラスの重量は60mg以下(すなわち、(C/A)≦0.6)であることが好ましい。   15 and 16 that the surface shape of the sealing glass is closer to a spherical surface as the weight of the glass piece is smaller. On the other hand, when the weight of the glass piece increases, the dimension B decreases with respect to the dimension A, and the surface shape of the sealing glass becomes close to a flat curved surface deviated from the spherical surface. This is because as the weight of the glass piece increases, it becomes more susceptible to its own weight. And the distance L from the center of the part which forms the curved surface to the flat part becomes short, so that the weight of a glass piece becomes large. The directivity of the emitted light becomes higher as the surface shape of the sealing glass is closer to a spherical surface and as the distance L is larger. In the example of FIG. 15, the weight of the sealing glass is 60 mg or less (that is, (C /A)≦0.6).

(例5)
例1と同様にして略球状のガラス部材を形成し、これを発光ダイオードチップ(豊田合成株式会社製 商品名E1C60−0B011−03)の上に載せた後、例1と同様にして発光ダイオードチップをガラス部材で封止した。次いで、例1と同様にして、ガラス封止発光ダイオードチップを基板に実装することにより、発光ダイオード付き回路基板を得た。この発光ダイオード付き回路基板の電流電圧特性を、例1で得られた発光ダイオード付き回路基板と比較した。図17にその結果を示す。尚、図17において、「樹脂封止」とは、封止されていない発光ダイオードチップ(豊田合成株式会社製 商品名E1C60−0B011−03)が実装された基板の上に、樹脂組成物(信越化学株式会社製シリコーン樹脂 商品名:LPS3400,屈折率1.41)をポッティングし、100℃で60分間加熱した後、さらに150℃で60分間加熱して得られた発光ダイオード付き回路基板を言う。
(Example 5)
A substantially spherical glass member was formed in the same manner as in Example 1, and this was placed on a light-emitting diode chip (trade name E1C60-0B011-03 manufactured by Toyoda Gosei Co., Ltd.), and then the light-emitting diode chip in the same manner as in Example 1. Was sealed with a glass member. Next, in the same manner as in Example 1, a glass-sealed light emitting diode chip was mounted on a substrate to obtain a circuit board with a light emitting diode. The current-voltage characteristics of the circuit board with the light emitting diode were compared with the circuit board with the light emitting diode obtained in Example 1. FIG. 17 shows the result. In FIG. 17, “resin sealing” means a resin composition (Shin-Etsu) on a substrate on which an unsealed light emitting diode chip (trade name E1C60-0B011-03 manufactured by Toyoda Gosei Co., Ltd.) is mounted. This refers to a circuit board with a light-emitting diode obtained by potting a silicone resin manufactured by Chemical Co., Ltd. (trade name: LPS3400, refractive index 1.41), heating at 100 ° C. for 60 minutes, and further heating at 150 ° C. for 60 minutes.

図17に示すように、例5の発光ダイオード付き回路基板では、樹脂封止した発光ダイオード付き回路基板に比較して、消費電力が13%程度増加した。さらに、例1の発光ダイオード付き回路基板では、消費電力が31%程度増加した。
このようにガラス封止発光ダイオードの発光光を確認できた。その際、ガラス封止発光ダイオードの発光開始電圧が、ガラス封止前の値と同じであったことから、封止時の熱によってLED発光層に損傷は生じていないものと考えられる。
また、ガラス封止発光ダイオードにおける消費電力の増大は、ガラス封止時の熱によって、LEDの電極が熱履歴を受け、それによって電極部の電気伝導特性に若干の変動が生じたためと考えられる。しかしながら、この程度の変化であれば、発光装置の実用性能上は殆ど問題のないレベルと考えられる。尚、LED等の半導体デバイスにおいて、耐熱性を有する電極構造が知られている。例えば、特開2002−151737号公報、特開平10−303407号公報および特開2005−136415号公報などに開示された、特定材料による層構造を採用したLEDを本発明に適用することによって、上記の電気伝導特性の変化を抑制できると思われる。
また、本発明によるガラス封止発光素子と、従来技術による樹脂封止発光素子との出射光の角度依存性を計測し、その結果を図19に示す。本発明によると、出射光は0〜10度付近で強い相対強度を示しており、中心部分に集光されていることがわかった。
もともと指向性のない出射光を有するLEDに対し、本発明によるガラス封止を行った(樹脂封止品の特性カーブを参照:ほぼ平坦な出射光特性を示しており、ダイオードチップの出射光には指向性がほとんどないことがわかる。)。本発明によるガラス封止ダイオードチップにおいては、明確な指向性が発現した。従来技術の樹脂封止化LEDでも、その出射面側をレンズ形状とすることで、指向性を持たせることが理論的には可能であるが、樹脂の屈折率が小さいため、所望のサイズの樹脂部材で実用的な指向性を得るのは困難である。
As shown in FIG. 17, in the circuit board with a light emitting diode of Example 5, the power consumption increased by about 13% as compared with the circuit board with a light emitting diode sealed with resin. Furthermore, in the circuit board with a light emitting diode of Example 1, the power consumption increased by about 31%.
Thus, the emitted light of the glass-sealed light emitting diode was confirmed. At that time, since the light emission starting voltage of the glass-sealed light-emitting diode was the same as the value before glass sealing, it is considered that the LED light-emitting layer was not damaged by the heat during sealing.
The increase in power consumption in the glass-sealed light-emitting diode is considered to be due to the fact that the LED electrode receives a thermal history due to the heat at the time of glass sealing, thereby causing a slight fluctuation in the electrical conduction characteristics of the electrode portion. However, such a change is considered to be a level with almost no problem in practical performance of the light emitting device. In addition, in semiconductor devices, such as LED, the electrode structure which has heat resistance is known. For example, by applying to the present invention an LED that employs a layer structure made of a specific material, as disclosed in JP-A-2002-151737, JP-A-10-303407, JP-A-2005-136415, etc. It is thought that the change of the electric conduction characteristic of can be suppressed.
Moreover, the angle dependence of the emitted light of the glass sealing light emitting element by this invention and the resin sealing light emitting element by a prior art was measured, and the result is shown in FIG. According to the present invention, it has been found that the emitted light has a strong relative intensity in the vicinity of 0 to 10 degrees and is condensed at the central portion.
Originally, the LED having outgoing light with no directivity was glass-sealed according to the present invention (refer to the characteristic curve of the resin-sealed product: it shows almost flat outgoing light characteristics, Shows almost no directivity.) In the glass-sealed diode chip according to the present invention, a clear directivity was developed. Even in the conventional resin-sealed LED, it is theoretically possible to provide directivity by making the exit surface side into a lens shape, but since the refractive index of the resin is small, the desired size It is difficult to obtain practical directivity with the resin member.

例5の発光ダイオード付き回路基板に対して、20mAの電流を流した状態で温度80℃で1,000時間放置した。その後も、形状を保ったまま連続して発光していることを確認できた。   The circuit board with a light emitting diode of Example 5 was allowed to stand at a temperature of 80 ° C. for 1,000 hours with a current of 20 mA flowing. After that, it was confirmed that light was continuously emitted while maintaining the shape.

(例6)
例5で得られた発光ダイオード付き回路基板について、定格電流20mAでの光束を測定し、未封止のものおよび樹脂封止のものと比較したところ、表1のようになった。尚、「未封止」とは、封止されていない発光ダイオードチップ(豊田合成株式会社製 商品名E1C60−0B011−03)を基板に実装して得られた発光ダイオード付き回路基板を言う。また、「樹脂封止」とは、未封止の発光ダイオード付き回路基板の上に、樹脂組成物(信越化学株式会社製シリコーン樹脂 商品名:LPS3400,屈折率1.41)をポッティングし、100℃で60分間加熱した後、さらに150℃で60分間加熱して得られた発光ダイオード付き回路基板を言う。本発明のガラス封止発光ダイオード付き回路基板では、樹脂封止発光ダイオード付き回路基板に比較して光束が15%程度向上した。
(Example 6)
With respect to the circuit board with a light emitting diode obtained in Example 5, the luminous flux at a rated current of 20 mA was measured, and compared with the unsealed one and the resin-sealed one. “Unsealed” refers to a circuit board with a light emitting diode obtained by mounting an unsealed light emitting diode chip (trade name E1C60-0B011-03, manufactured by Toyoda Gosei Co., Ltd.) on the board. “Resin sealing” refers to potting a resin composition (silicone resin product name: LPS3400, refractive index: 1.41 manufactured by Shin-Etsu Chemical Co., Ltd.) on an unsealed circuit board with a light emitting diode, and 100 A circuit board with a light-emitting diode obtained by heating at 150 ° C. for 60 minutes and further heating at 150 ° C. for 60 minutes. In the circuit board with a glass-sealed light emitting diode of the present invention, the luminous flux was improved by about 15% as compared with the circuit board with a resin-sealed light emitting diode.

表1

Figure 2007150232
Table 1
Figure 2007150232

以上説明した本発明は、LEDディスプレイ、バックライト光源、車載用光源、信号機、光センサー、インジケータ、集魚ランプ並びに自動車用のヘッドランプ、方向指示ランプおよび警告ランプなどに用いられる発光ダイオードまたは光ピックアップ等の各種の用途に用いられる。   The present invention described above includes LED displays, backlight sources, vehicle-mounted light sources, traffic lights, optical sensors, indicators, fish collection lamps, and light-emitting diodes or optical pickups used in automotive headlamps, direction indicator lamps, warning lamps, and the like. It is used for various applications.

(a)本発明に係るガラス部材の一実施形態を示す斜視図、(b)Ib−Ib’線断面図である。(A) A perspective view showing one embodiment of a glass member concerning the present invention, (b) Ib-Ib 'line sectional view. 本発明に係るガラス封止発光ダイオードチップの一実施形態を示す斜視図である。1 is a perspective view showing an embodiment of a glass-sealed light emitting diode chip according to the present invention. III−III’線断面図である。It is III-III 'sectional view taken on the line. 発光ダイオードチップがガラス封止される際の模式図である。It is a schematic diagram when a light emitting diode chip is glass-sealed. 本発明に係る発光ダイオードチップの一実施形態を示す平面図である。It is a top view which shows one Embodiment of the light emitting diode chip which concerns on this invention. V−V’線断面図である。It is a V-V 'line sectional view. 発光ダイオード付き回路基板の一実施形態を示す側面図である。It is a side view which shows one Embodiment of a circuit board with a light emitting diode. 本発明に係るガラス封止発光ダイオードチップおよび発光ダイオード付き回路基板の製造プロセスの一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing process of the circuit board with a glass-sealed light emitting diode chip concerning this invention and a light emitting diode. 基板の温度履歴を示すグラフである。It is a graph which shows the temperature history of a board | substrate. 本発明に係るガラス封止発光ダイオードチップの一実施例を示す図である。It is a figure which shows one Example of the glass-sealed light emitting diode chip concerning this invention. 本実施例における視野角度を示す説明図である。It is explanatory drawing which shows the viewing angle in a present Example. 本発明に係る発光ダイオードチップのその他の例を示す斜視図である。It is a perspective view which shows the other example of the light emitting diode chip which concerns on this invention. 本発明に係る発光ダイオードチップのその他の例を示す斜視図である。It is a perspective view which shows the other example of the light emitting diode chip which concerns on this invention. (a)ガラス部材の製造に用いた管、(b)発光ダイオードチップのその他の実施例を示す斜視図である。(A) The pipe | tube used for manufacture of a glass member, (b) It is a perspective view which shows the other Example of a light emitting diode chip. 本実施例におけるガラス片の重量と封止ガラスの寸法(A,B,C)との関係を示す図である。It is a figure which shows the relationship between the weight of the glass piece in a present Example, and the dimension (A, B, C) of sealing glass. 本実施例における寸法Aと形状パラメータとの関係を示す図である。It is a figure which shows the relationship between the dimension A and a shape parameter in a present Example. 本実施例における発光ダイオード付き回路基板の電流電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the circuit board with a light emitting diode in a present Example. 本発明の製造プロセスの他の実施形態を示すフローチャートである。It is a flowchart which shows other embodiment of the manufacturing process of this invention. 本発明と従来技術における出射光の角度依存性を示すグラフである。It is a graph which shows the angle dependence of the emitted light in this invention and a prior art. 従来例を示す断面図である。It is sectional drawing which shows a prior art example. 他の従来例を示す断面図である。It is sectional drawing which shows another prior art example. 他の従来例の製造過程における中間状態を示す斜視図である。It is a perspective view which shows the intermediate state in the manufacture process of another prior art example.

符号の説明Explanation of symbols

10,14,50:基板
11,31,51,101,201:発光ダイオードチップ
12,32,42:ガラス部材
12a,12b:表面
13:端子
15:電極
16:はんだバンプ
21:p電極
22:n電極
23:発光部
24:p型半導体層
25:n型半導体層
26:発光層
27:サファイア基板
52:ガラス
53:管
54:治具
102,103:電極
104,205:ボンディングワイヤ
105:樹脂
202 サブマウント
203,204 リード
206 封止部材
10, 14, 50: Substrate 11, 31, 51, 101, 201: Light emitting diode chip 12, 32, 42: Glass member 12a, 12b: Surface 13: Terminal 15: Electrode 16: Solder bump 21: P electrode 22: n Electrode 23: Light emitting portion 24: P-type semiconductor layer 25: N-type semiconductor layer 26: Light emitting layer 27: Sapphire substrate 52: Glass 53: Tube 54: Jig 102, 103: Electrode 104, 205: Bonding wire 105: Resin 202 Submount 203, 204 Lead 206 Sealing member

Claims (20)

発光素子と、
前記発光素子を封止するガラス部材とを備え、
前記ガラス部材の上側の表面形状は曲面によって構成され、下側の表面形状の少なくとも一部に曲面を備え、
前記発光素子の端子側の面の少なくとも一部が前記ガラス部材から露出していることを特徴とするガラス封止発光素子。
A light emitting element;
A glass member for sealing the light emitting element,
The upper surface shape of the glass member is constituted by a curved surface, and a curved surface is provided on at least a part of the lower surface shape,
A glass-sealed light emitting device, wherein at least a part of the terminal side surface of the light emitting device is exposed from the glass member.
前記ガラス部材の下側の表面形状に平坦である部分を含み、
前記平坦な部分に前記発光素子が配置されている請求項1に記載のガラス封止発光素子。
Including a portion that is flat on the lower surface shape of the glass member;
The glass-sealed light emitting device according to claim 1, wherein the light emitting device is disposed on the flat portion.
前記表面形状が曲面である部分において、前記発光素子の端子側の面に対して水平方向の主軸に沿う径Aおよび鉛直方向の主軸に沿う径Bと、
前記表面形状が平坦である部分の径Cとの間に
A>B>C
の関係が成立する請求項2に記載のガラス封止発光素子。
In the portion where the surface shape is a curved surface, the diameter A along the main axis in the horizontal direction and the diameter B along the main axis in the vertical direction with respect to the terminal-side surface of the light emitting element,
Between the diameter C of the portion where the surface shape is flat A>B> C
The glass-sealed light emitting device according to claim 2, wherein the relationship is established.
さらに
(C/A)≦0.6
の関係が成立する請求項3に記載のガラス封止発光素子。
Furthermore, (C / A) ≦ 0.6
The glass-sealed light emitting device according to claim 3, wherein the relationship is established.
前記発光素子は、正面視で矩形状の半導体チップであり、
前記ガラス部材の曲面である部分の曲率半径は、前記半導体チップの1辺の長さの2.5倍以上である請求項1〜4のいずれか1項に記載のガラス封止発光素子。
The light emitting element is a semiconductor chip that is rectangular in a front view,
The glass-sealed light emitting element according to any one of claims 1 to 4, wherein a radius of curvature of a portion of the glass member that is a curved surface is 2.5 times or more a length of one side of the semiconductor chip.
前記曲面は、球面または楕円体面の一部である請求項1〜5のいずれか1項に記載のガラス封止発光素子。   The glass-sealed light-emitting element according to claim 1, wherein the curved surface is a part of a spherical surface or an ellipsoidal surface. 前記発光素子は、LEDおよび半導体レーザのいずれか一方である請求項1〜6のいずれか1項に記載のガラス封止発光素子。   The said light emitting element is any one of LED and a semiconductor laser, The glass-sealed light emitting element of any one of Claims 1-6. 前記ガラス部材は、TeO、BおよびZnOを含む請求項1〜7のいずれか1項に記載のガラス封止発光素子。 The glass member is a glass-sealed light emitting device according to claim 1 containing TeO 2, B 2 O 3 and ZnO. 前記発光素子に備えられた半導体基板の熱膨張係数αと前記ガラス部材の熱膨張係数αとの間に
|α−α|<15×10−7(℃−1
の関係が成立する請求項1〜8のいずれか1項に記載のガラス封止発光素子。
| Α 1 −α 2 | <15 × 10 −7 (° C. −1 ) between the thermal expansion coefficient α 1 of the semiconductor substrate provided in the light emitting element and the thermal expansion coefficient α 2 of the glass member.
The glass-sealed light-emitting element according to claim 1, wherein the relationship is established.
前記ガラス部材の屈折率が1.7以上である請求項1〜9のいずれか1項に記載のガラス封止発光素子。   The glass-sealed light-emitting device according to claim 1, wherein the glass member has a refractive index of 1.7 or more. 請求項1〜10のいずれか1項に記載の発光素子と、
前記発光素子の端子に電気的に接続する基板とが備えられたことを特徴とするガラス封止発光素子付き回路基板。
The light emitting device according to any one of claims 1 to 10,
A circuit board with a glass-sealed light emitting element, comprising: a substrate electrically connected to a terminal of the light emitting element.
発光素子の上に固体のガラス部材を載置する工程と、
前記発光素子および前記ガラス部材を加熱し、この加熱によって固体のガラス材料を溶融し前記ガラス部材と前記発光素子との当接部を密着させる工程と、
前記溶融されたガラス部材および前記発光素子を徐冷する工程とを有することを特徴とするガラス封止発光素子の製造方法。
Placing a solid glass member on the light emitting element;
Heating the light emitting element and the glass member, melting the solid glass material by this heating, and closely contacting the contact portion between the glass member and the light emitting element;
And a step of slowly cooling the molten glass member and the light emitting element.
溶融ガラスに対する濡れ性の低い離型材で覆われた面に発光素子を載置する工程を有することを特徴とする請求項12に記載のガラス封止発光素子の製造方法。   The method for producing a glass-sealed light-emitting element according to claim 12, further comprising a step of placing the light-emitting element on a surface covered with a release material having low wettability with respect to molten glass. 前記発光素子を載置するための凹部を備えた治具を用い、この凹部内に前記発光素子およびガラス材料を載置してからこれらを加熱処理することにより、前記凹部の内側形状を利用してガラス部材を成形する請求項12または13に記載のガラス封止発光素子の製造方法。   By using a jig having a recess for mounting the light emitting element and placing the light emitting element and the glass material in the recess and then heat-treating them, the inner shape of the recess is utilized. The method for producing a glass-sealed light emitting device according to claim 12 or 13, wherein the glass member is molded. 前記発光素子の近傍に色変換材料が分散しているガラス部材を形成し、その後に、色変換材料を含まないガラス部材を前記色変換材料を含むガラス部材を覆うようにして形成する請求項12、13または14に記載のガラス封止発光素子の製造方法。   13. A glass member in which a color conversion material is dispersed is formed in the vicinity of the light emitting element, and then a glass member that does not include the color conversion material is formed so as to cover the glass member that includes the color conversion material. The manufacturing method of the glass-sealed light emitting element of Claim 13 or 14. 前記発光素子が達する最高温度が、ガラス部材の軟化点よりも80〜150℃高い温度である請求項12〜15のいずれか1項に記載のガラス封止発光素子の製造方法。   The method for producing a glass-sealed light-emitting element according to any one of claims 12 to 15, wherein a maximum temperature reached by the light-emitting element is 80 to 150 ° C higher than a softening point of the glass member. 前記発光素子を構成する半導体基板の熱膨張係数αと前記ガラス部材の熱膨張係数αとの間に
|α−α|<20×10−7(℃−1
の関係が成立する請求項12〜16のいずれか1項に記載のガラス封止発光素子の製造方法。
| Α 1 −α 2 | <20 × 10 −7 (° C. −1 ) between the thermal expansion coefficient α 1 of the semiconductor substrate constituting the light emitting element and the thermal expansion coefficient α 2 of the glass member.
The manufacturing method of the glass-sealed light emitting element of any one of Claims 12-16 with which this relationship is materialized.
前記発光素子は、LEDおよび半導体レーザのいずれか一方である請求項12〜17のいずれか1項に記載のガラス封止発光素子の製造方法。   The said light emitting element is any one of LED and a semiconductor laser, The manufacturing method of the glass sealing light emitting element of any one of Claims 12-17. 請求項1〜10のいずれか1項に記載のガラス封止発光素子を、配線付き基板に実装する工程を有することを特徴とするガラス封止発光素子の実装方法。   A method for mounting a glass-sealed light-emitting element, comprising a step of mounting the glass-sealed light-emitting element according to claim 1 on a substrate with wiring. 前記発光素子は、半導体基板と、この半導体基板の主表面側に形成された発光部と、この発光部に給電するための端子とを備え、
前記発光素子をガラス部材により封止する工程と、
前記発光素子のp側およびn側の両端子にバンプを形成する工程と、
前記バンプと前記配線付き基板の配線とを電気的に接続する工程とをさらに有する請求項19に記載のガラス封止発光素子の実装方法。
The light emitting element includes a semiconductor substrate, a light emitting portion formed on the main surface side of the semiconductor substrate, and a terminal for supplying power to the light emitting portion,
Sealing the light emitting element with a glass member;
Forming bumps on both the p-side and n-side terminals of the light emitting element;
The method for mounting a glass-sealed light emitting element according to claim 19, further comprising a step of electrically connecting the bump and the wiring of the substrate with wiring.
JP2006111089A 2005-04-15 2006-04-13 Manufacturing method of glass-sealed light emitting device Expired - Fee Related JP4876685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111089A JP4876685B2 (en) 2005-04-15 2006-04-13 Manufacturing method of glass-sealed light emitting device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005118415 2005-04-15
JP2005118415 2005-04-15
US67468705A 2005-04-26 2005-04-26
US60/674687 2005-04-26
JP2005322943 2005-11-07
JP2005322943 2005-11-07
JP2006111089A JP4876685B2 (en) 2005-04-15 2006-04-13 Manufacturing method of glass-sealed light emitting device

Publications (2)

Publication Number Publication Date
JP2007150232A true JP2007150232A (en) 2007-06-14
JP4876685B2 JP4876685B2 (en) 2012-02-15

Family

ID=38211216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111089A Expired - Fee Related JP4876685B2 (en) 2005-04-15 2006-04-13 Manufacturing method of glass-sealed light emitting device

Country Status (1)

Country Link
JP (1) JP4876685B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031684A1 (en) * 2007-09-07 2009-03-12 Asahi Glass Company, Limited Glass coated light emitting element and glass coated light emitting device
JP2009130105A (en) * 2007-11-22 2009-06-11 Asahi Glass Co Ltd Method of manufacturing glass coat light emitting element, and method of manufacturing glass coat light emitting device
JP2015079854A (en) * 2013-10-17 2015-04-23 日亜化学工業株式会社 Light emitting device
JP2017201731A (en) * 2017-08-22 2017-11-09 日亜化学工業株式会社 Light-emitting device
US10096753B2 (en) 2013-08-07 2018-10-09 Nichia Corporation Light emitting device
WO2019038877A1 (en) 2017-08-24 2019-02-28 創光科学株式会社 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
JP2021068913A (en) * 2014-12-26 2021-04-30 日亜化学工業株式会社 Light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169994A (en) * 1993-12-16 1995-07-04 Sharp Corp Manufacture of light-emitting diode
WO2004100279A2 (en) * 2003-04-30 2004-11-18 Cree, Inc. High-power solid state light emitter package
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2005056953A (en) * 2003-07-31 2005-03-03 Toshinobu Yokoo Light emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169994A (en) * 1993-12-16 1995-07-04 Sharp Corp Manufacture of light-emitting diode
WO2004100279A2 (en) * 2003-04-30 2004-11-18 Cree, Inc. High-power solid state light emitter package
JP2005011933A (en) * 2003-06-18 2005-01-13 Asahi Glass Co Ltd Light emitting diode device
JP2005056953A (en) * 2003-07-31 2005-03-03 Toshinobu Yokoo Light emitting diode

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031684A1 (en) * 2007-09-07 2009-03-12 Asahi Glass Company, Limited Glass coated light emitting element and glass coated light emitting device
JP2009130105A (en) * 2007-11-22 2009-06-11 Asahi Glass Co Ltd Method of manufacturing glass coat light emitting element, and method of manufacturing glass coat light emitting device
US10096753B2 (en) 2013-08-07 2018-10-09 Nichia Corporation Light emitting device
JP2015079854A (en) * 2013-10-17 2015-04-23 日亜化学工業株式会社 Light emitting device
US9831402B2 (en) 2013-10-17 2017-11-28 Nichia Corporation Light emitting device
JP2021068913A (en) * 2014-12-26 2021-04-30 日亜化学工業株式会社 Light emitting device
JP7096512B2 (en) 2014-12-26 2022-07-06 日亜化学工業株式会社 Luminescent device
JP2017201731A (en) * 2017-08-22 2017-11-09 日亜化学工業株式会社 Light-emitting device
WO2019038877A1 (en) 2017-08-24 2019-02-28 創光科学株式会社 Method for manufacturing nitride semiconductor ultraviolet light emitting element, and nitride semiconductor ultraviolet light emitting element
KR20190087957A (en) 2017-08-24 2019-07-25 소코 가가쿠 가부시키가이샤 Method of manufacturing nitride semiconductor light emitting device and nitride semiconductor light emitting device
US10505087B2 (en) 2017-08-24 2019-12-10 Soko Kagaku Co., Ltd. Method for manufacturing nitride semiconductor ultraviolet light-emitting element and nitride semiconductor ultraviolet light-emitting element

Also Published As

Publication number Publication date
JP4876685B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US7872417B2 (en) Glass-sealed light emitting element, circuit board with the glass-sealed light emitting element, and methods for manufacturing those
JP4465989B2 (en) Light emitting diode element
JP3978451B2 (en) Light emitting device
KR101114305B1 (en) Light-emitting device and illuminating device
JP4876685B2 (en) Manufacturing method of glass-sealed light emitting device
JP4608294B2 (en) RESIN MOLDED BODY, SURFACE MOUNTED LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THEM
JP5391468B2 (en) LED package
WO2009128468A9 (en) White light-emitting device, backlight, liquid crystal display device and illuminating device
JP5036222B2 (en) Light emitting device
KR20020077135A (en) Light emission apparatus and method of fabricating the same
JP2006237264A (en) Light emitting device and lighting apparatus
US20120043886A1 (en) Integrated Heat Conductive Light Emitting Diode (LED) White Light Source Module
US20090059591A1 (en) Light-emitting device
JP2007194675A (en) Light emitting device
JP4847793B2 (en) Light emitting device
CN212659557U (en) Ultraviolet LED lamp bead capable of displaying visible light
JP2007214592A (en) Light emitting apparatus
JP2003008073A (en) Light emitting element
JP2005210042A (en) Light emitting apparatus and illumination apparatus
US20150354796A1 (en) Wide-angle emitting led driven by built-in power and assembly method thereof
JP4756349B2 (en) Method for manufacturing light emitting device
Annaniah et al. LED Packaging Technologies: Design, Manufacture, and Applications
JP4624069B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
KR20130077059A (en) Led package and manufacturing method for the same
JP2007080884A (en) Light emitting device, method of manufacturing the same, and intermediate part therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees