JP2007150102A - Exposure device, and cleaning method of optical element - Google Patents

Exposure device, and cleaning method of optical element Download PDF

Info

Publication number
JP2007150102A
JP2007150102A JP2005344433A JP2005344433A JP2007150102A JP 2007150102 A JP2007150102 A JP 2007150102A JP 2005344433 A JP2005344433 A JP 2005344433A JP 2005344433 A JP2005344433 A JP 2005344433A JP 2007150102 A JP2007150102 A JP 2007150102A
Authority
JP
Japan
Prior art keywords
cleaning
exposure
optical element
cleaning liquid
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005344433A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ozawa
美和 小澤
Koji Nozaki
耕司 野崎
Makoto Sasaki
真 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005344433A priority Critical patent/JP2007150102A/en
Publication of JP2007150102A publication Critical patent/JP2007150102A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposure device and the like where contaminant adhered to an optical element can be removed without damaging the optical element and also spoiling resist functions, even when the device is cleaned in situ without the disattachment of the optical element in the exposure device, in the case of the exposure device using projection exposure, especially the liquid immersion exposure method. <P>SOLUTION: The exposure device 1 comprises at least an exposure means 3 for exposing in the image itself to the surface to be exposed (surface of an object 5 to be exposed), by carrying out the exposure light emitting from an optical element 2; and a cleaning means 10 for cleaning the optical element 2 with cleaning fluid L by supplying the cleaning fluid L, so that the optical element 2 may be brought into contact with the fluid in the exposure device 1. The cleaning fluid L is at least either ultrapure water containing a surface-active agent or functional water which is obtained by dissolving at least one sort chosen from hydrogen, ozone and carbon dioxide into ultrapure water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、投影露光、特に液浸露光法を用いた露光装置において、露光装置内の光学素子を取り外すことなくin situで洗浄し、前記光学素子に付着した汚染物質を簡便に除去することができ、微細かつ高精細なレジストパターンを高効率で形成可能な露光装置及び露光方法、並びに、前記露光装置内にて前記光学素子をin situで洗浄可能な光学素子の洗浄装置及び光学素子の洗浄方法に関する。   In the exposure apparatus using the projection exposure, in particular, the immersion exposure method, the present invention is capable of cleaning in situ without removing the optical element in the exposure apparatus, and easily removing contaminants attached to the optical element. Exposure apparatus and exposure method capable of forming a fine and high-definition resist pattern with high efficiency, and an optical element cleaning apparatus and optical element cleaning capable of cleaning the optical element in situ in the exposure apparatus Regarding the method.

半導体素子や液晶表示素子等の微細な回路パターンを形成する際には、感光性のフォトレジスト膜を形成した基板に、短波長の光や電子線等を選択的に照射する露光装置が用いられている。現在、半導体集積回路の高集積化に伴って最小パターンのサイズは100nm以下の領域にまで及んでおり、このような超微細な回路パターンの形成には、ArF(フッ化アルゴン)エキシマレーザー光(波長193nm)を用いた投影露光装置が使用されている。   When forming fine circuit patterns such as semiconductor elements and liquid crystal display elements, an exposure apparatus that selectively irradiates a substrate on which a photosensitive photoresist film is formed with short-wavelength light, an electron beam, or the like is used. ing. At present, with the high integration of semiconductor integrated circuits, the size of the minimum pattern extends to an area of 100 nm or less. ArF (Argon fluoride) excimer laser light ( A projection exposure apparatus using a wavelength of 193 nm) is used.

近年、更なるパターンの微細化に向け、最新の露光技術として、液浸露光法が注目されている。該液浸露光法は、顕微鏡の分野では既知である液浸技術を応用した露光技術であり、具体的には、露光装置の投影光学系と、回路パターンを形成する基板との間を、屈折率が1(空気の屈折率)よりも大きい液体、例えば水(露光光の波長が193nmのときの屈折率は1.44)で満たすことにより、解像度の向上を実現する技術である。前記液浸露光法によれば、同一の露光光源を用いた場合、通常の投影露光に比して、より微細なパターンを形成することができる。このため、現在の露光光源であるArFエキシマレーザー光を引き続き使用することができ、露光波長の短波長化が不要となる点で、低コスト化を図ることができる。   In recent years, an immersion exposure method has attracted attention as the latest exposure technology for further pattern miniaturization. The immersion exposure method is an exposure technique that applies an immersion technique that is known in the field of microscopes. Specifically, a refraction between a projection optical system of an exposure apparatus and a substrate on which a circuit pattern is formed is refracted. This is a technique for improving the resolution by filling with a liquid having a refractive index higher than 1 (the refractive index of air), for example, water (the refractive index when the wavelength of exposure light is 193 nm is 1.44). According to the immersion exposure method, when the same exposure light source is used, a finer pattern can be formed as compared with normal projection exposure. For this reason, ArF excimer laser light, which is the current exposure light source, can be continuously used, and the cost can be reduced in that the exposure wavelength is not shortened.

しかし、以前より投影光学系への汚染物質の付着が問題となっており、特に前記液浸露光法では、該問題が顕在化している。即ち、ArFエキシマレーザー光等の短波長光は、極めて高いエネルギーを有しているため、該短波長光の照射により、レジストに含まれる有機物が化学的に分解され、ガス化したものが投影光学系における光学素子に付着する。また、液浸露光法では、レジストに含まれる酸やその他の物質が、投影光学系と回路パターンを形成する基板との間に充填された溶液中に直接溶け出し、この溶出したものが液体を介して光学素子に付着する。このため、前記短波長光の照射により生じる汚染物質に加えて、液浸露光による新たな汚染物質が付着し、光学素子に付着する汚染物質の多様化及び付着頻度の増加を招く。したがって、従来の空気を媒体とした露光法に比して、液浸露光では照射効率の低下による露光不良、光学素子の寿命の低下等の問題がより生じ易く、重要視すべき問題となっている。   However, the adhesion of contaminants to the projection optical system has been a problem for a long time, and this problem has become apparent particularly in the immersion exposure method. That is, short-wavelength light such as ArF excimer laser light has extremely high energy, and the organic substance contained in the resist is chemically decomposed and gasified by irradiation with the short-wavelength light. It adheres to the optical elements in the system. In the immersion exposure method, the acid and other substances contained in the resist are directly dissolved in the solution filled between the projection optical system and the substrate on which the circuit pattern is formed. To the optical element. For this reason, in addition to the contaminant generated by the irradiation of the short wavelength light, a new contaminant due to immersion exposure adheres, resulting in diversification of contaminants attached to the optical element and an increase in the frequency of attachment. Therefore, as compared with the conventional exposure method using air as a medium, liquid immersion exposure is more likely to cause problems such as exposure failure due to a decrease in irradiation efficiency and a decrease in the lifetime of optical elements, which should be regarded as important. Yes.

光学素子に汚染物質が付着した場合には、該光学素子を洗浄することにより、露光不良等の問題を改善することができ、従来より、投影露光装置における投影光学系の洗浄方法として、例えば、光学素子を露光装置から分解して洗浄する方法が知られている。しかし、この場合、光学素子を分解する手間が大きく、また、光学素子を洗浄した後、再度露光装置に組み込む際、光学素子の精度にズレを生じることなく再現することが極めて困難である。
そこで、光学素子を露光装置から分解することなく、装着したままの状態で洗浄する方法が種々提案されている。例えば、光学素子を不織布で直接拭き取る方法が知られている(特許文献1参照)。しかし、この場合、光学素子に直に不織布が触れることとなるため、傷や位置ズレが生じ易く、しかも露光装置停止によるスループットの低下が生じる。
また、光学素子に、プラズマや紫外線を照射して汚染物質を除去する方法が提案されている(特許文献2参照)。しかし、この場合にも、光学素子へのダメージが生じたり、装置構造が複雑化するという問題がある。特に、液浸露光では、従来の投影露光に比して、光学素子への汚染物質の付着が多いため、光学素子の洗浄頻度が高くなることが予想され、光学素子へのダメージが過大なものとなるおそれがある。
When contaminants adhere to the optical element, cleaning the optical element can improve problems such as exposure failure. Conventionally, as a method for cleaning a projection optical system in a projection exposure apparatus, for example, A method of disassembling and cleaning an optical element from an exposure apparatus is known. However, in this case, it takes a lot of time to disassemble the optical element, and it is very difficult to reproduce the optical element without causing a deviation when it is assembled into the exposure apparatus again after being cleaned.
In view of this, various methods have been proposed for cleaning the optical element while it is mounted without disassembling the optical element from the exposure apparatus. For example, a method of directly wiping an optical element with a nonwoven fabric is known (see Patent Document 1). However, in this case, since the nonwoven fabric is in direct contact with the optical element, scratches and misalignment are likely to occur, and the throughput is reduced due to stoppage of the exposure apparatus.
In addition, a method for removing contaminants by irradiating an optical element with plasma or ultraviolet rays has been proposed (see Patent Document 2). However, even in this case, there is a problem that the optical element is damaged or the structure of the apparatus is complicated. In particular, immersion exposure is expected to increase the frequency of cleaning of optical elements due to the large amount of contaminants attached to optical elements compared to conventional projection exposure, resulting in excessive damage to optical elements. There is a risk of becoming.

したがって、より簡便に、かつデバイス製造のスループットを低下させることなく、しかも光学素子にダメージを与えることなく光学素子を洗浄する方法、及びこれを用いた関連技術は開発されていないのが現状であり、かかる技術の開発が望まれている。   Therefore, the current situation is that a method of cleaning an optical element more easily and without reducing the throughput of device manufacture and without damaging the optical element, and related technology using the same have not been developed. Therefore, development of such technology is desired.

特開2002−336804号公報JP 2002-336804 A 特開2000−91207号公報JP 2000-91207 A

本発明は、従来における前記問題を解決し、以下の目的を達成することを課題とする。即ち、
本発明は、投影露光、特に液浸露光法を用いた露光装置において、露光装置内の光学素子を取り外すことなくin situで洗浄し、光学素子にダメージを与えず、しかもレジストの機能を損なわずに、前記光学素子に付着した汚染物質を簡便に除去することができ、露光不良を抑制して微細かつ高精細なレジストパターンを高効率で形成可能な露光装置及び露光方法を提供することを目的とする。
また、本発明は、投影露光、特に液浸露光法を用いた露光装置において、露光装置内の光学素子を取り外すことなくin situで洗浄し、前記光学素子にダメージを与えることなく、該光学素子に付着した汚染物質を簡便に除去することができる光学素子の洗浄装置及び光学素子の洗浄方法を提供することを目的とする。
An object of the present invention is to solve the conventional problems and achieve the following objects. That is,
In the exposure apparatus using the projection exposure, particularly the immersion exposure method, the present invention cleans in situ without removing the optical element in the exposure apparatus, does not damage the optical element, and does not impair the function of the resist. An object of the present invention is to provide an exposure apparatus and an exposure method capable of easily removing contaminants attached to the optical element and capable of forming a fine and high-definition resist pattern with high efficiency while suppressing exposure failure. And
The present invention also provides an exposure apparatus using projection exposure, particularly an immersion exposure method, in-situ cleaning without removing the optical element in the exposure apparatus, and without damaging the optical element. An object of the present invention is to provide an optical element cleaning apparatus and an optical element cleaning method capable of easily removing contaminants adhering to the surface.

前記課題を解決するための手段としては、後述の付記に記載の通りである。即ち、
本発明の露光装置は、光学素子から露光光を出射し、被露光面に対して像様に露光する露光手段と、露光装置内にて前記光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄手段とを少なくとも有してなり、前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする。
該露光装置においては、前記露光手段が、前記光学素子から前記露光光を出射し、前記被露光面に対して像様に露光する。前記洗浄手段が、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液を供給し、該洗浄液により前記光学素子を洗浄する。このとき、前記洗浄液として、超純水、機能水等が用いられる。その結果、レジストの溶解による機能の損失を発生することなく、また、前記露光装置から前記光学素子が取り外されることなくin situで洗浄され、該光学素子に付着した汚染物質が簡便に除去される。このため、前記光学素子の汚れによる露光不良が抑制され、微細かつ高精細なレジストパターンを高効率で形成することができる。
Means for solving the above-described problems are as described in the following supplementary notes. That is,
The exposure apparatus of the present invention supplies exposure liquid that emits exposure light from an optical element and exposes the surface to be exposed imagewise, and a cleaning liquid so as to contact the optical element in the exposure apparatus, Cleaning means for cleaning the optical element with a cleaning liquid, and the cleaning liquid includes ultrapure water containing a surfactant and at least one selected from hydrogen, ozone and carbon dioxide. It is at least any one of functional water obtained by dissolving in water.
In the exposure apparatus, the exposure means emits the exposure light from the optical element and exposes the surface to be exposed imagewise. The cleaning means supplies the cleaning liquid so as to contact the optical element in the exposure apparatus, and cleans the optical element with the cleaning liquid. At this time, ultrapure water, functional water, or the like is used as the cleaning liquid. As a result, it is cleaned in situ without causing loss of function due to dissolution of the resist and without removing the optical element from the exposure apparatus, and contaminants attached to the optical element are easily removed. . For this reason, exposure failure due to contamination of the optical element is suppressed, and a fine and high-definition resist pattern can be formed with high efficiency.

本発明の光学素子の洗浄方法は、被露光面に対して像様に露光する露光手段を有する露光装置内にて、前記露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄工程を少なくとも含み、前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする。
該光学素子の洗浄方法では、前記洗浄工程において、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液が供給され、該洗浄液により前記光学素子が洗浄される。このとき、前記洗浄液として、超純水、機能水等が用いられる。その結果、レジストの溶解による機能の損失を発生することなく、また、前記露光装置から前記光学素子が取り外されることなくin situで洗浄され、該光学素子に付着した汚染物質が簡便に除去される。
The cleaning method of the optical element of the present invention is such that the cleaning liquid is brought into contact with the optical element which is the exposure light exit surface of the exposure means in an exposure apparatus having an exposure means for imagewise exposure to the exposed surface. Supplying at least a cleaning step of cleaning the optical element with the cleaning liquid, wherein the cleaning liquid includes ultrapure water containing a surfactant and at least one selected from hydrogen, ozone, and carbon dioxide. It is at least any one of functional water obtained by dissolving in water.
In the optical element cleaning method, in the cleaning step, the cleaning liquid is supplied so as to contact the optical element in the exposure apparatus, and the optical element is cleaned with the cleaning liquid. At this time, ultrapure water, functional water, or the like is used as the cleaning liquid. As a result, it is cleaned in situ without causing loss of function due to dissolution of the resist and without removing the optical element from the exposure apparatus, and contaminants attached to the optical element are easily removed. .

本発明によると、従来における問題を解決することができ、前記目的を達成することができる。
また、本発明によると、投影露光、特に液浸露光法を用いた露光装置において、露光装置内の光学素子を取り外すことなくin situで洗浄し、光学素子にダメージを与えず、しかもレジストの機能を損なわずに、前記光学素子に付着した汚染物質を簡便に除去することができ、露光不良を抑制して微細かつ高精細なレジストパターンを高効率で形成可能な露光装置及び露光方法を提供することができる。
また、本発明によると、投影露光、特に液浸露光法を用いた露光装置において、露光装置内の光学素子を取り外すことなくin situで洗浄し、前記光学素子にダメージを与えることなく、該光学素子に付着した汚染物質を簡便に除去することができる光学素子の洗浄装置及び光学素子の洗浄方法を提供することができる。
According to the present invention, conventional problems can be solved, and the above object can be achieved.
Further, according to the present invention, in an exposure apparatus using projection exposure, particularly an immersion exposure method, cleaning is performed in situ without removing the optical element in the exposure apparatus, the optical element is not damaged, and the resist functions. Provided are an exposure apparatus and an exposure method that can easily remove contaminants adhering to the optical element without damaging the optical element and can form a fine and high-definition resist pattern with high efficiency by suppressing exposure failure. be able to.
Further, according to the present invention, in an exposure apparatus using projection exposure, particularly an immersion exposure method, the optical element in the exposure apparatus is cleaned in situ without removing the optical element without damaging the optical element. It is possible to provide an optical element cleaning apparatus and an optical element cleaning method capable of easily removing contaminants attached to the element.

(光学素子の洗浄方法及び光学素子の洗浄装置)
本発明の光学素子の洗浄方法は、洗浄工程を少なくとも含み、更に必要に応じて適宜選択した、その他の工程を含む。
本発明の光学素子の洗浄装置は、洗浄手段を少なくとも有してなり、更に必要に応じて適宜選択した、その他の部材を有してなる。
本発明の前記光学素子の洗浄方法は、本発明の前記光学素子の洗浄装置を使用して好適に実施することができ、本発明の前記光学素子の洗浄装置を用いて前記光学素子の洗浄を行うと、本発明の前記光学素子の洗浄方法を実施したこととなる。
(Optical element cleaning method and optical element cleaning apparatus)
The optical element cleaning method of the present invention includes at least a cleaning step, and further includes other steps appropriately selected as necessary.
The optical element cleaning apparatus of the present invention includes at least a cleaning unit, and further includes other members appropriately selected as necessary.
The optical element cleaning method of the present invention can be preferably implemented using the optical element cleaning apparatus of the present invention, and the optical element cleaning apparatus is cleaned using the optical element cleaning apparatus of the present invention. If it carries out, it will have implemented the cleaning method of the above-mentioned optical element of the present invention.

<洗浄工程及び洗浄手段>
前記洗浄工程は、露光手段を有する露光装置内にて、前記露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する工程である。
前記洗浄手段は、露光手段を有する露光装置内にて、前記露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する機能を有する。
前記洗浄工程は、前記洗浄手段により好適に実施することができる。
前記洗浄手段及び前記洗浄工程においては、「in situ」、即ち、前記光学素子を前記露光装置から取り外す等の特段の作業を要することなく、前記露光装置内部にて、前記光学素子をそのままの状態で洗浄することができる。
<Washing process and cleaning means>
The cleaning step is a step of supplying a cleaning liquid so as to contact an optical element that is an exposure light emitting surface of the exposure means in an exposure apparatus having an exposure means, and cleaning the optical element with the cleaning liquid.
The cleaning unit has a function of supplying a cleaning liquid so as to contact an optical element that is an exposure light exit surface of the exposure unit in an exposure apparatus having an exposure unit, and cleaning the optical element with the cleaning liquid.
The washing step can be preferably performed by the washing means.
In the cleaning means and the cleaning process, the optical element is left in the exposure apparatus without any special work such as “in situ”, that is, removing the optical element from the exposure apparatus. Can be washed with.

前記露光手段は、被露光面に対して像様に露光する機能を有する。
前記露光手段は、露光光出射面である前記光学素子を少なくとも有してなり、更に必要に応じて適宜選択した、その他の部材を有してなる。
前記光学素子は、前記露光手段における露光光出射面に相当し、該光学素子としては、例えば、光学レンズが挙げられる。
The exposure means has a function of exposing the surface to be exposed imagewise.
The exposure means includes at least the optical element that is an exposure light exit surface, and further includes other members that are appropriately selected as necessary.
The optical element corresponds to an exposure light exit surface in the exposure unit, and examples of the optical element include an optical lens.

前記被露光面としては、前記露光光が照射される対象(被露光対象)において露光される面である限り特に制限はなく、目的に応じて適宜選択することができるが、シリコンウェハ等の基板、各種酸化膜などの半導体基材表面に形成されたレジスト膜が好適に挙げられる。
前記露光手段により、像様に露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、一般には、所望の回路パターン等が描かれたレチクル(マスク)を通して、前記被露光面に前記露光光を照射することによりパターン像を形成する方法が挙げられる。なお、前記被露光面の全面に、例えばベタの像を形成する場合には、前記レチクル(マスク)を通さず、前記被露光面に直接前記露光光を照射することによりベタの像を形成することができる。
The surface to be exposed is not particularly limited as long as it is a surface to be exposed on the object to be exposed to the exposure light (object to be exposed), and can be appropriately selected according to the purpose. Suitable examples include resist films formed on the surface of semiconductor substrates such as various oxide films.
The method for imagewise exposure by the exposure means is not particularly limited and can be appropriately selected according to the purpose. Generally, the method is performed through a reticle (mask) on which a desired circuit pattern or the like is drawn. There is a method of forming a pattern image by irradiating the exposure surface with the exposure light. For example, when a solid image is formed on the entire surface to be exposed, the solid image is formed by directly irradiating the exposure surface with the exposure light without passing through the reticle (mask). be able to.

前記露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、公知の投影露光法により行うことができるが、より微細なパターンを形成可能な点で、また本発明の前記光学素子の洗浄効果がより顕著に現れる点で、液浸露光法による露光が好ましい。
前記液浸露光法においては、前記光学素子と前記被露光面との間に屈折率nが1(空気の屈折率)よりも大きい媒質(液体)で満たすことにより、解像度の向上を実現することができる。通常、前記露光手段の解像度は、解像度=k(係数)×λ(光源波長)/NA(開口数)、により表され、光源波長λが短く、前記光学素子の開口数NAが大きいほど、高い解像度が得られる。ここで、NAは、NA=n×sinα、で表され、nは露光光が通過する媒質の屈折率であり、αは露光光が形成する角度である。従来のパターン形成方法における露光は大気中で行われるため、屈折率nは1であるが、前記液浸露光法では、前記光学素子と前記被露光面との間に屈折率nが1より大きい液体を使用する。したがって、前記開口数NAの式において、nを拡大することとなり、同一の露光光の入射角αでは、最小解像寸法を1/nに縮小させることができる。また、同一の開口数NAでは、αを小さくさせることができ、焦点深度をn倍に拡大させることができるという利点がある。
The exposure method is not particularly limited and can be appropriately selected depending on the purpose, and can be performed by a known projection exposure method. However, it is possible to form a finer pattern. The exposure by the immersion exposure method is preferable in that the cleaning effect of the optical element appears more remarkably.
In the immersion exposure method, the resolution is improved by filling a medium (liquid) having a refractive index n larger than 1 (the refractive index of air) between the optical element and the exposed surface. Can do. Usually, the resolution of the exposure means is expressed by the following equation: resolution = k (coefficient) × λ (light source wavelength) / NA (numerical aperture). The shorter the light source wavelength λ and the larger the numerical aperture NA of the optical element, the higher the resolution. Resolution can be obtained. Here, NA is represented by NA = n × sin α, n is the refractive index of the medium through which the exposure light passes, and α is the angle formed by the exposure light. Since the exposure in the conventional pattern forming method is performed in the air, the refractive index n is 1, but in the immersion exposure method, the refractive index n is greater than 1 between the optical element and the exposed surface. Use liquid. Therefore, in the numerical aperture NA equation, n is increased, and the minimum resolution dimension can be reduced to 1 / n at the same incident light incident angle α. Further, with the same numerical aperture NA, there is an advantage that α can be reduced and the depth of focus can be increased n times.

前記光学素子と前記被露光面との間に満たされる液体としては、特に制限はなく、目的に応じて適宜選択することができるが、高解像度が得られる点で、空気の屈折率(屈折率=1)よりも大きい屈折率を有する液体であるのが好ましい。
前記液体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記屈折率が大きいほど好ましく、例えば、純水、オイル、グリセリン、アルコールなどが好適に挙げられる。これらの中でも、純水(屈折率=1.44)が好ましい。
The liquid filled between the optical element and the surface to be exposed is not particularly limited and may be appropriately selected depending on the intended purpose. However, in terms of obtaining high resolution, the refractive index of air (refractive index). = 1) A liquid having a refractive index greater than 1) is preferred.
There is no restriction | limiting in particular as said liquid, Although it can select suitably according to the objective, It is so preferable that the said refractive index is large, for example, a pure water, oil, glycerol, alcohol etc. are mentioned suitably. Among these, pure water (refractive index = 1.44) is preferable.

前記液浸露光法では、前記光学素子と前記被露光面との間に前記液体を満たすため、該液体にレジスト膜(前記被露光面)が曝されると、露光の際に該レジスト膜中に発生する酸成分が液中に染み出したり、前記レジスト膜中に液が浸透した状態にて、前記露光光を照射した場合、何らかの化学反応が起こり、前記レジスト膜からの脱ガスにより前記光学素子が汚染され易く、露光不良が生じ易いという問題がある。しかし、本発明によれば、前記露光装置内にて、前記光学素子がin situで洗浄されるので、前記光学素子の汚染が抑制され、その洗浄効果が通常の露光法に比して顕著である。   In the immersion exposure method, since the liquid is filled between the optical element and the exposed surface, when the resist film (exposed surface) is exposed to the liquid, the resist film is exposed during the exposure. When the exposure light is irradiated in the state that the acid component generated in the liquid oozes out into the liquid or the liquid penetrates into the resist film, some chemical reaction occurs, and the optical film is degassed from the resist film. There is a problem that the element is easily contaminated and exposure failure is likely to occur. However, according to the present invention, since the optical element is cleaned in situ in the exposure apparatus, contamination of the optical element is suppressed, and the cleaning effect is remarkable as compared with a normal exposure method. is there.

前記露光光としては、特に制限はなく、目的に応じて適宜選択することができるが、短波長の光であるのが好ましく、例えば、KrFエキシマレーザー光(248nm)、ArFエキシマレーザー光(193nm)、Fエキシマレーザー光(157nm)、EUV(波長5〜15nmの軟X線領域)などが好適に挙げられる。これらの中でも、高精細なレジストパターンが得られる点で、ArFエキシマレーザー光が好ましい。 There is no restriction | limiting in particular as said exposure light, Although it can select suitably according to the objective, It is preferable that it is short wavelength light, for example, KrF excimer laser light (248 nm), ArF excimer laser light (193 nm) F 2 excimer laser light (157 nm), EUV (soft X-ray region having a wavelength of 5 to 15 nm), and the like are preferable. Among these, ArF excimer laser light is preferable in that a high-definition resist pattern can be obtained.

−洗浄液−
前記洗浄液としては、界面活性剤を含む超純水、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水などを用いることが必要である。これらは1種単独で使用してもよいし、2種以上を併用してもよく、前記光学素子に付着した、レジスト由来の有機系汚染物質の特性に応じて適宜選択することができる。
-Cleaning solution-
As the cleaning liquid, it is necessary to use functional water obtained by dissolving at least one selected from ultrapure water containing a surfactant, hydrogen, ozone, and carbon dioxide in ultrapure water. These may be used individually by 1 type, may use 2 or more types together, and can be suitably selected according to the characteristic of the organic pollutant derived from the resist adhering to the said optical element.

前記界面活性剤を含む超純水としては、特に制限はなく、目的に応じて適宜選択することができ、前記界面活性剤としては、非イオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、安定性の点で、非イオン性界面活性剤が好ましい。
前記非イオン性界面活性剤としては、アルコキシレート系界面活性剤、脂肪酸エステル系界面活性剤、アミド系界面活性剤、アルコール系界面活性剤、及びエチレンジアミン系界面活性剤などが挙げられ、これらの具定例としては、例えば、ポリオキシエチレン−ポリオキシプロピレン縮合物系、ポリオキシアルキレンアルキルエーテル系、ポリオキシエチレンアルキルエーテル系、ポリオキシエチレン誘導体、ソルビタン脂肪酸エステル系、グリセリン脂肪酸エステル系、第1級アルコールエトキシレート系、フェノールエトキシレート系、ノニルフェノールエトキシレート系、オクチルフェノールエトキシレート系、ラウリルアルコールエトキシレート系、オレイルアルコールエトキシレート系、脂肪酸エステル系、アミド系、天然アルコール系、エチレンジアミン系、第2級アルコールエトキシレート系、などが挙げられる。
前記カチオン性界面活性剤としては、例えば、アルキルカチオン系界面活性剤、アミド又はエステル型4級カチオン系界面活性剤などが挙げられる。
前記両性界面活性剤としては、例えば、アミンオキサイド系界面活性剤、ベタイン系界面活性剤などが挙げられる。
The ultrapure water containing the surfactant is not particularly limited and may be appropriately selected depending on the purpose. Examples of the surfactant include a nonionic surfactant, a cationic surfactant, and an anionic property. Surfactant, amphoteric surfactant and the like can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, nonionic surfactants are preferable from the viewpoint of stability.
Examples of the nonionic surfactant include alkoxylate surfactants, fatty acid ester surfactants, amide surfactants, alcohol surfactants, and ethylenediamine surfactants. Specific examples include, for example, polyoxyethylene-polyoxypropylene condensate, polyoxyalkylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene derivative, sorbitan fatty acid ester, glycerin fatty acid ester, primary alcohol Ethoxylate, phenol ethoxylate, nonylphenol ethoxylate, octylphenol ethoxylate, lauryl alcohol ethoxylate, oleyl alcohol ethoxylate, fatty acid ester, amide, natural al Lumpur-based, ethylene diamine, secondary alcohol ethoxylate, and the like.
Examples of the cationic surfactant include alkyl cationic surfactants, amide or ester type quaternary cationic surfactants, and the like.
Examples of the amphoteric surfactant include amine oxide surfactants and betaine surfactants.

前記洗浄液の中でも、不純物の発生を防止し、前記光学素子及び露光装置の耐久性を向上させる点で、機能水が好ましく、レジスト膜から発生する有機系の汚染物質に対する洗浄効果が高い点で、オゾンを超純水に溶解させて得られる機能水が特に好ましい。
また、前記水素、前記オゾン及び前記二酸化炭素から2種以上を選択し併用して使用する場合、前記水素は、前記光学素子表面に付着した汚染物質の小片の除去に効果を発揮し、前記二酸化炭素は、前記光学素子表面に帯電防止効果を付与するため、前記水素及び前記二酸化炭素を前記オゾンと併用して使用するのが特に好ましい。
Among the cleaning liquids, in order to prevent the generation of impurities and improve the durability of the optical element and the exposure apparatus, functional water is preferable, and the cleaning effect on organic contaminants generated from the resist film is high. Functional water obtained by dissolving ozone in ultrapure water is particularly preferred.
Further, when two or more kinds are selected from the hydrogen, the ozone, and the carbon dioxide and used in combination, the hydrogen exhibits an effect in removing small pieces of contaminants attached to the surface of the optical element, and the carbon dioxide. Since carbon imparts an antistatic effect to the surface of the optical element, it is particularly preferable to use the hydrogen and the carbon dioxide in combination with the ozone.

前記超純水に対する前記水素、前記オゾン、又は前記二酸化炭素の溶解量(超純水におけるガスの溶存濃度)としては、特に制限はなく、目的に応じて適宜選択することができるが、上限値としては、400ppmが好ましい。該溶存濃度が、400ppmを超えると、前記光学素子にダメージを与えることがある。また、下限値としては、低濃度による弊害は少ないことから、特に制限はなく、目的に応じて適宜選択することができるが、洗浄処理時間の短縮化が可能な点で、1ppmが好ましい。   The amount of the hydrogen, ozone, or carbon dioxide dissolved in the ultrapure water (the dissolved concentration of the gas in the ultrapure water) is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferably 400 ppm. When the dissolved concentration exceeds 400 ppm, the optical element may be damaged. Further, the lower limit value is not particularly limited because there are few adverse effects due to the low concentration, and can be appropriately selected according to the purpose. However, 1 ppm is preferable in that the cleaning processing time can be shortened.

前記洗浄手段は、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液を供給することが必要である。この場合、前記光学素子を前記露光装置から取り外すことなく、前記露光装置内にて、in situで前記光学素子を簡便に洗浄することができる。
前記洗浄液を供給する位置としては、前記光学素子に接触させることができる限り特に制限はなく、目的に応じて適宜選択することができ、前記被露光面上であってもよいし、前記被露光面以外の部位であってもよい。なお、前記被露光面以外の部位としては、例えば、露光装置内の前記シリコンウェハ等の基板を載置するステージの一部に設けた洗浄処理領域上や、洗浄処理用に別途用意した基材(ダミーウェハ)上などが挙げられる。
The cleaning means needs to supply the cleaning liquid so as to contact the optical element in the exposure apparatus. In this case, the optical element can be easily cleaned in situ in the exposure apparatus without removing the optical element from the exposure apparatus.
The position for supplying the cleaning liquid is not particularly limited as long as it can be brought into contact with the optical element, can be appropriately selected according to the purpose, and may be on the exposed surface, or the exposed surface It may be a part other than the surface. In addition, as a part other than the surface to be exposed, for example, a substrate prepared on a cleaning processing region provided in a part of a stage on which a substrate such as the silicon wafer in the exposure apparatus is mounted or separately prepared for cleaning processing (Dummy wafer) and the like.

前記洗浄液の供給方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記洗浄手段により好適に行うことができる。
前記洗浄手段としては、前記洗浄液を前記光学素子に接触させるように噴出可能な噴出ノズルなどが好適に挙げられる。なお、該噴出ノズルは、前記液浸露光用液体を供給するためのノズルと併用してもよい。
前記洗浄手段は、前記洗浄液を貯留する容器を更に有してなるのが好ましく、該容器に前記洗浄液を貯留しておくのが好ましい。
There is no restriction | limiting in particular as a supply method of the said washing | cleaning liquid, Although it can select suitably according to the objective, It can carry out suitably with the said washing | cleaning means.
Suitable examples of the cleaning means include an ejection nozzle that can eject the cleaning liquid so as to contact the optical element. The ejection nozzle may be used in combination with a nozzle for supplying the immersion exposure liquid.
It is preferable that the cleaning means further includes a container for storing the cleaning liquid, and it is preferable to store the cleaning liquid in the container.

前記洗浄液の供給回数としては、特に制限はなく、前記光学素子の汚染の程度により適宜選択することができ、1回であってもよいし、複数回であってもよい。
また、前記洗浄液の供給量としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as the frequency | count of supply of the said washing | cleaning liquid, According to the degree of the contamination of the said optical element, it can select suitably, 1 time may be sufficient and multiple times may be sufficient.
Moreover, there is no restriction | limiting in particular as supply_amount | feed_rate of the said washing | cleaning liquid, According to the objective, it can select suitably.

前記光学素子の洗浄方法としては、前記光学素子に前記洗浄液を接触させる限り特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)前記露光光を1ショット照射する毎に洗浄する方法、(2)前記露光光を1ロット照射する毎に洗浄する方法、(3)前記露光光の照射時間や照射量に応じて洗浄する方法、(4)前記光学素子の光透過率に応じて洗浄する方法、などが好適に挙げられる。
具体的には、前記(1)に記載の洗浄方法では、前記被露光面上の一定の領域(面積)を1単位として前記露光光を1ショット照射する毎に前記洗浄液により前記光学素子を洗浄し、前記(2)に記載の洗浄方法は、例えば、前記シリコンウェハ等の基板数枚〜数十枚を1単位とした1ロットに対して前記露光光を照射する毎に前記洗浄液により前記光学素子を洗浄し、前記(3)に記載の洗浄方法は、前記露光光の一定の照射時間あるいは一定の照射量を1単位として、該単位について前記露光光を照射する毎に前記光学素子を洗浄し、前記(4)に記載の洗浄方法は、前記光学素子の汚染の程度を、例えば透過率検出器を用いて光透過率を計測することにより検出し、該透過率が特定値を超えた時点で、自動的に前記光学素子を洗浄する。
The cleaning method of the optical element is not particularly limited as long as the cleaning liquid is brought into contact with the optical element, and can be appropriately selected according to the purpose. For example, (1) each time the exposure light is irradiated by one shot (2) A method of cleaning each time one lot of the exposure light is irradiated, (3) A method of cleaning according to the exposure time and dose of the exposure light, and (4) Light transmission of the optical element A method of washing according to the rate is preferable.
Specifically, in the cleaning method according to (1), the optical element is cleaned with the cleaning liquid every time the exposure light is irradiated with one unit of a certain region (area) on the exposed surface. In the cleaning method described in (2), for example, each time the exposure light is irradiated to one lot of several substrates to several tens of substrates such as the silicon wafer as one unit, In the cleaning method according to (3), the optical element is cleaned each time the exposure light is irradiated with respect to the unit, with the constant irradiation time or the fixed irradiation amount of the exposure light as one unit. In the cleaning method according to (4), the degree of contamination of the optical element is detected, for example, by measuring the light transmittance using a transmittance detector, and the transmittance exceeds a specific value. At that point, the optical element is automatically cleaned

前記洗浄液の供給及び前記光学素子の洗浄を行う場所としては、特に制限はなく、目的に応じて適宜選択することができ、前記被露光面上で行ってもよいし、前記被露光面以外の場所で行ってもよい。通常、前記(1)から(4)に記載の洗浄方法では、前記被露光面上で洗浄を行うが、前記被露光面以外の場所で行う場合、例えば、露光装置内の前記基板を載置するステージの一部に洗浄処理用領域を設け、該洗浄処理用領域上で洗浄を行ってもよいし、洗浄処理用に別途基材(ダミーウェハ)を用意し、該ダミーウェハ上で洗浄を行ってもよい。なお、前記洗浄処理用領域にて洗浄を行う場合、前記光学素子を、該洗浄処理用領域まで移動させてから洗浄を行う。   There is no restriction | limiting in particular as a place which supplies the said washing | cleaning liquid and the said optical element, It can select suitably according to the objective, You may carry out on the to-be-exposed surface, Other than the to-be-exposed surface You may go at the place. Usually, in the cleaning methods described in (1) to (4), cleaning is performed on the exposed surface. However, when the cleaning is performed at a place other than the exposed surface, for example, the substrate in the exposure apparatus is placed. A cleaning process area may be provided in a part of the stage to be cleaned, and cleaning may be performed on the cleaning process area, or a separate substrate (dummy wafer) is prepared for the cleaning process, and cleaning is performed on the dummy wafer. Also good. When cleaning is performed in the cleaning process area, the optical element is moved to the cleaning process area before cleaning.

以上の工程により、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液が供給され、該洗浄液により前記光学素子が洗浄される。   Through the above steps, the cleaning liquid is supplied so as to contact the optical element in the exposure apparatus, and the optical element is cleaned by the cleaning liquid.

本発明の前記光学素子の洗浄方法においては、吸引工程を含んでいてもよく、本発明の前記光学素子の洗浄装置においては、吸引手段を有していてもよい。
前記吸引工程は、洗浄後の前記洗浄液を吸引する工程である。
前記吸引手段は、洗浄後の前記洗浄液を吸引する機能を有する。
前記吸引工程は、前記吸引手段により好適に実施することができる。
The optical element cleaning method of the present invention may include a suction step, and the optical element cleaning device of the present invention may include a suction means.
The suction step is a step of sucking the cleaning liquid after cleaning.
The suction means has a function of sucking the cleaning liquid after cleaning.
The suction step can be preferably performed by the suction means.

前記洗浄液の吸引方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記吸引手段により好適に行うことができる。
前記吸引手段としては、洗浄後の前記洗浄液を吸引可能な吸引ノズルなどが好適に挙げられる。なお、該吸引ノズルは、前記液浸露光用液体を吸引するノズルと併用してもよい。
以上の工程により、洗浄後の前記洗浄液が吸引される。
前記吸引工程により吸引された前記洗浄液は、例えば回収容器に回収されるのが好ましい。
There is no restriction | limiting in particular as the suction method of the said washing | cleaning liquid, Although it can select suitably according to the objective, For example, it can carry out suitably with the said suction means.
Suitable examples of the suction means include a suction nozzle that can suck the cleaning liquid after cleaning. The suction nozzle may be used in combination with a nozzle that sucks the liquid for immersion exposure.
Through the above steps, the cleaning liquid after cleaning is sucked.
It is preferable that the cleaning liquid sucked by the suction step is recovered in, for example, a recovery container.

本発明の前記光学素子の洗浄方法においては、前記洗浄工程において、前記露光装置内にて、前記光学素子に接触されるように前記洗浄液が供給され、該洗浄液により前記光学素子が洗浄される。このとき、前記洗浄液として、超純水、機能水等が用いられる。その結果、前記露光装置から前記光学素子が取り外されることなくin situで洗浄され、前記光学素子にダメージを与えず、しかもレジストの機能を損なわずに、前記光学素子に付着した汚染物質を簡便に除去することができる。   In the optical element cleaning method of the present invention, in the cleaning step, the cleaning liquid is supplied so as to be in contact with the optical element in the exposure apparatus, and the optical element is cleaned with the cleaning liquid. At this time, ultrapure water, functional water, or the like is used as the cleaning liquid. As a result, the optical element is cleaned in situ without being removed from the exposure apparatus, and the contaminants attached to the optical element can be easily removed without damaging the optical element and without impairing the function of the resist. Can be removed.

本発明の前記光学素子の洗浄装置においては、前記洗浄手段が、前記露光装置内にて、前記該光学素子に接触させるように前記洗浄液を供給し、該洗浄液により前記光学素子を洗浄する。このとき、前記洗浄液として、超純水、機能水等を用いる。その結果、前記露光装置から前記光学素子が取り外されることなくin situで洗浄され、該光学素子に付着した汚染物質が簡便に除去され、しかも、レジストの溶解による機能の損失が発生しない。
したがって、本発明の前記光学素子の洗浄装置は、一括露光型のステッパ、走査露光型のスキャンニングステッパ、液浸露光装置、その他の型式の露光装置など、あらゆる態様の露光装置に好適に使用することができ、液浸露光装置に特に好適に使用することができる。
In the optical element cleaning apparatus of the present invention, the cleaning means supplies the cleaning liquid so as to contact the optical element in the exposure apparatus, and cleans the optical element with the cleaning liquid. At this time, ultrapure water, functional water, or the like is used as the cleaning liquid. As a result, the optical element is cleaned in situ without being removed from the exposure apparatus, contaminants attached to the optical element can be easily removed, and loss of function due to dissolution of the resist does not occur.
Therefore, the optical element cleaning apparatus of the present invention is suitably used for exposure apparatuses of all aspects such as a batch exposure type stepper, a scanning exposure type scanning stepper, an immersion exposure apparatus, and other types of exposure apparatuses. And can be used particularly preferably in an immersion exposure apparatus.

(露光方法及び露光装置)
本発明の露光方法は、露光工程と、洗浄工程とを少なくとも含み、更に必要に応じて適宜選択した、その他の工程を含む。
本発明の露光装置は、露光手段と、洗浄手段とを少なくとも有してなり、更に必要に応じて適宜選択した、その他の部材を有してなる。
本発明の露光方法は、本発明の前記露光装置を使用して好適に実施することができ、本発明の前記露光装置を実施すると、本発明の前記露光方法を実施したこととなる。
前記露光装置としては、特に制限はなく、目的に応じて適宜選択することができ、一括露光型のステッパ、走査露光型のスキャンニングステッパ、液浸露光装置、その他の型式の露光装置など、あらゆる態様の露光装置が挙げられる。
(Exposure method and exposure apparatus)
The exposure method of the present invention includes at least an exposure step and a cleaning step, and further includes other steps appropriately selected as necessary.
The exposure apparatus of the present invention includes at least an exposure unit and a cleaning unit, and further includes other members appropriately selected as necessary.
The exposure method of the present invention can be suitably implemented using the exposure apparatus of the present invention. When the exposure apparatus of the present invention is implemented, the exposure method of the present invention is implemented.
The exposure apparatus is not particularly limited and may be appropriately selected according to the purpose. Any one of a batch exposure type stepper, a scanning exposure type scanning stepper, an immersion exposure apparatus, and other types of exposure apparatuses may be used. The exposure apparatus of the aspect is mentioned.

<露光工程及び露光手段>
前記露光工程は、露光手段の露光光出射面である光学素子から露光光を出射し、被露光面に対して像様に露光する工程である。
前記露光手段は、光学素子から露光光を出射し、被露光面に対して像様に露光する機能を有する。
前記露光工程は、前記露光手段により好適に実施することができる。
<Exposure process and exposure means>
The exposure step is a step in which exposure light is emitted from an optical element that is an exposure light emission surface of the exposure means, and the exposure surface is imagewise exposed.
The exposure means has a function of emitting exposure light from the optical element and exposing the exposed surface imagewise.
The exposure step can be preferably performed by the exposure means.

前記露光手段は、光学素子を少なくとも有してなり、更に必要に応じて適宜選択した、その他の部材を有してなる。
前記光学素子は、前記露光手段における露光光出射面に相当し、該光学素子としては、例えば、光学レンズが挙げられる。
なお、前記被露光面、前記像様に露光する方法、前記露光光などの詳細については、本発明の前記光学素子の洗浄方法及び前記光学素子の洗浄装置の説明において上述した通りである。
The exposure means includes at least an optical element, and further includes other members appropriately selected as necessary.
The optical element corresponds to an exposure light exit surface in the exposure unit, and examples of the optical element include an optical lens.
The details of the surface to be exposed, the imagewise exposure method, the exposure light, and the like are as described above in the description of the optical element cleaning method and the optical element cleaning apparatus of the present invention.

前記露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、公知の投影露光法により行うことができるが、より微細なパターンを形成可能な点で、また前記光学素子の洗浄効果がより顕著に現れる点で、液浸露光法による露光が好ましい。
なお、前記液浸露光法の詳細については、本発明の前記光学素子の洗浄装置及び本発明の前記光学素子の洗浄方法及び前記光学素子の洗浄装置の説明において上述した通りである。
The exposure method is not particularly limited and may be appropriately selected depending on the purpose, and can be performed by a known projection exposure method. However, the optical element is also capable of forming a finer pattern. The exposure by the liquid immersion exposure method is preferable in that the cleaning effect of (1) appears more remarkably.
The details of the immersion exposure method are as described above in the description of the optical element cleaning apparatus, the optical element cleaning method, and the optical element cleaning apparatus of the present invention.

<洗浄工程及び洗浄手段>
前記洗浄工程は、露光装置内にて、露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する工程である。
前記洗浄手段は、露光装置内にて、露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する機能を有する。
前記洗浄工程は、前記洗浄手段により好適に実施することができる。
<Washing process and cleaning means>
The cleaning step is a step of supplying a cleaning liquid so as to contact an optical element that is an exposure light emitting surface of an exposure unit in the exposure apparatus, and cleaning the optical element with the cleaning liquid.
The cleaning unit has a function of supplying a cleaning liquid so as to contact an optical element that is an exposure light exit surface of the exposure unit in the exposure apparatus, and cleaning the optical element with the cleaning liquid.
The washing step can be preferably performed by the washing means.

−洗浄液−
前記洗浄液としては、界面活性剤を含む超純水、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水などを用いることが必要である。これらは1種単独で使用してもよいし、2種以上を併用してもよく、前記光学素子に付着した、レジスト由来の有機系汚染物質の特性に応じて適宜選択することができる。
-Cleaning solution-
As the cleaning liquid, it is necessary to use functional water obtained by dissolving at least one selected from ultrapure water containing a surfactant, hydrogen, ozone, and carbon dioxide in ultrapure water. These may be used individually by 1 type, may use 2 or more types together, and can be suitably selected according to the characteristic of the organic pollutant derived from the resist adhering to the said optical element.

前記界面活性剤を含む超純水としては、特に制限はなく、目的に応じて適宜選択することができ、前記界面活性剤としては、非イオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、安定性の点で、非イオン性界面活性剤が好ましい。
前記非イオン性界面活性剤としては、アルコキシレート系界面活性剤、脂肪酸エステル系界面活性剤、アミド系界面活性剤、アルコール系界面活性剤、及びエチレンジアミン系界面活性剤などが挙げられ、これらの具定例としては、例えば、ポリオキシエチレン−ポリオキシプロピレン縮合物系、ポリオキシアルキレンアルキルエーテル系、ポリオキシエチレンアルキルエーテル系、ポリオキシエチレン誘導体、ソルビタン脂肪酸エステル系、グリセリン脂肪酸エステル系、第1級アルコールエトキシレート系、フェノールエトキシレート系、ノニルフェノールエトキシレート系、オクチルフェノールエトキシレート系、ラウリルアルコールエトキシレート系、オレイルアルコールエトキシレート系、脂肪酸エステル系、アミド系、天然アルコール系、エチレンジアミン系、第2級アルコールエトキシレート系、などが挙げられる。
前記カチオン性界面活性剤としては、例えば、アルキルカチオン系界面活性剤、アミド又はエステル型4級カチオン系界面活性剤などが挙げられる。
前記両性界面活性剤としては、例えば、アミンオキサイド系界面活性剤、ベタイン系界面活性剤などが挙げられる。
The ultrapure water containing the surfactant is not particularly limited and may be appropriately selected depending on the purpose. Examples of the surfactant include a nonionic surfactant, a cationic surfactant, and an anionic property. Surfactant, amphoteric surfactant and the like can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, nonionic surfactants are preferable from the viewpoint of stability.
Examples of the nonionic surfactant include alkoxylate surfactants, fatty acid ester surfactants, amide surfactants, alcohol surfactants, and ethylenediamine surfactants. Specific examples include, for example, polyoxyethylene-polyoxypropylene condensate, polyoxyalkylene alkyl ether, polyoxyethylene alkyl ether, polyoxyethylene derivative, sorbitan fatty acid ester, glycerin fatty acid ester, primary alcohol Ethoxylate, phenol ethoxylate, nonylphenol ethoxylate, octylphenol ethoxylate, lauryl alcohol ethoxylate, oleyl alcohol ethoxylate, fatty acid ester, amide, natural al Lumpur-based, ethylene diamine, secondary alcohol ethoxylate, and the like.
Examples of the cationic surfactant include alkyl cationic surfactants, amide or ester type quaternary cationic surfactants, and the like.
Examples of the amphoteric surfactant include amine oxide surfactants and betaine surfactants.

前記洗浄液の中でも、不純物の発生を防止し、前記光学素子及び露光装置の耐久性を向上させる点で、機能水が好ましく、レジスト膜から発生する有機系の汚染物質に対する洗浄効果が高い点で、オゾンを超純水に溶解させて得られる機能水が特に好ましい。
また、前記水素、前記オゾン及び前記二酸化炭素から2種以上を選択し併用して使用する場合、前記水素は、前記光学素子表面に付着した汚染物質の小片の除去に効果を発揮し、前記二酸化炭素は、前記光学素子表面に帯電防止効果を付与するため、前記水素及び前記二酸化炭素を前記オゾンと併用して使用するのが特に好ましい。
Among the cleaning liquids, in order to prevent the generation of impurities and improve the durability of the optical element and the exposure apparatus, functional water is preferable, and the cleaning effect on organic contaminants generated from the resist film is high. Functional water obtained by dissolving ozone in ultrapure water is particularly preferred.
Further, when two or more kinds are selected from the hydrogen, the ozone, and the carbon dioxide and used in combination, the hydrogen exhibits an effect in removing small pieces of contaminants attached to the surface of the optical element, and the carbon dioxide. Since carbon imparts an antistatic effect to the surface of the optical element, it is particularly preferable to use the hydrogen and the carbon dioxide in combination with the ozone.

前記超純水に対する前記水素、前記オゾン、又は前記二酸化炭素の溶解量(超純水におけるガスの溶存濃度)としては、特に制限はなく、目的に応じて適宜選択することができるが、上限値としては、400ppmが好ましい。該溶存濃度が、400ppmを超えると、前記光学素子にダメージを与えることがある。また、下限値としては、低濃度による弊害は少ないことから、特に制限はなく、目的に応じて適宜選択することができるが、洗浄処理時間の短縮化が可能な点で、1ppmが好ましい。   The amount of the hydrogen, ozone, or carbon dioxide dissolved in the ultrapure water (the dissolved concentration of the gas in the ultrapure water) is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferably 400 ppm. When the dissolved concentration exceeds 400 ppm, the optical element may be damaged. Further, the lower limit value is not particularly limited because there are few adverse effects due to the low concentration, and can be appropriately selected according to the purpose. However, 1 ppm is preferable in that the cleaning processing time can be shortened.

前記洗浄手段は、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液を供給することが必要である。この場合、前記光学素子を前記露光装置から取り外すことなく、前記露光装置内にて、in situで前記光学素子を簡便に洗浄することができる。
前記洗浄液を供給する位置としては、前記光学素子に接触させることができる限り特に制限はなく、目的に応じて適宜選択することができ、前記被露光面上であってもよいし、前記被露光面以外の部位であってもよい。なお、前記被露光面以外の部位としては、例えば、露光装置内の前記シリコンウェハ等の基板を載置するステージの一部に設けた洗浄処理領域上や、洗浄処理用に別途用意した基材(ダミーウェハ)上などが挙げられる。
The cleaning means needs to supply the cleaning liquid so as to contact the optical element in the exposure apparatus. In this case, the optical element can be easily cleaned in situ in the exposure apparatus without removing the optical element from the exposure apparatus.
The position for supplying the cleaning liquid is not particularly limited as long as it can be brought into contact with the optical element, can be appropriately selected according to the purpose, and may be on the exposed surface, or the exposed surface It may be a part other than the surface. In addition, as a part other than the surface to be exposed, for example, a substrate prepared on a cleaning processing region provided in a part of a stage on which a substrate such as the silicon wafer in the exposure apparatus is mounted or separately prepared for cleaning processing (Dummy wafer) and the like.

前記洗浄液の供給方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、洗浄手段により好適に行うことができる。
前記洗浄手段としては、前記洗浄液を前記光学素子に接触させるように噴出可能な噴出ノズルなどが好適に挙げられる。なお、該噴出ノズルは、前記液浸露光用液体を供給するためのノズルと併用してもよい。
前記洗浄手段は、前記洗浄液を貯留する容器を更に有してなるのが好ましく、該容器に前記洗浄液を貯留しておくのが好ましい。
There is no restriction | limiting in particular as a supply method of the said washing | cleaning liquid, Although it can select suitably according to the objective, For example, it can carry out suitably with a washing | cleaning means.
Suitable examples of the cleaning means include an ejection nozzle that can eject the cleaning liquid so as to contact the optical element. The ejection nozzle may be used in combination with a nozzle for supplying the immersion exposure liquid.
It is preferable that the cleaning means further includes a container for storing the cleaning liquid, and it is preferable to store the cleaning liquid in the container.

前記洗浄液の供給回数としては、特に制限はなく、前記光学素子の汚染の程度により適宜選択することができ、1回であってもよいし、複数回であってもよい。
また、前記洗浄液の供給量としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as the frequency | count of supply of the said washing | cleaning liquid, According to the degree of the contamination of the said optical element, it can select suitably, 1 time may be sufficient and multiple times may be sufficient.
Moreover, there is no restriction | limiting in particular as supply_amount | feed_rate of the said washing | cleaning liquid, According to the objective, it can select suitably.

前記光学素子の洗浄方法としては、前記光学素子に前記洗浄液を接触させる限り特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)前記露光光を1ショット照射する毎に洗浄する方法、(2)前記露光光を1ロット照射する毎に洗浄する方法、(3)前記露光光の照射時間や照射量に応じて洗浄する方法、(4)前記光学素子の光透過率に応じて洗浄する方法、などが好適に挙げられる。
具体的には、前記(1)に記載の洗浄方法では、前記被露光面上の一定の領域(面積)を1単位として前記露光光を1ショット照射する毎に前記洗浄液により前記光学素子を洗浄し、前記(2)に記載の洗浄方法は、例えば、前記シリコンウェハ等の基板数枚〜数十枚を1単位とした1ロットに対して前記露光光を照射する毎に前記洗浄液により前記光学素子を洗浄し、前記(3)に記載の洗浄方法は、前記露光光の一定の照射時間あるいは一定の照射量を1単位として、該単位について前記露光光を照射する毎に前記光学素子を洗浄し、前記(4)に記載の洗浄方法は、前記光学素子の汚染の程度を、例えば透過率検出器を用いて光透過率を計測することにより検出し、該透過率が特定値を超えた時点で、自動的に前記光学素子を洗浄する。
The cleaning method of the optical element is not particularly limited as long as the cleaning liquid is brought into contact with the optical element, and can be appropriately selected according to the purpose. For example, (1) each time the exposure light is irradiated by one shot (2) A method of cleaning each time one lot of the exposure light is irradiated, (3) A method of cleaning according to the exposure time and dose of the exposure light, and (4) Light transmission of the optical element A method of washing according to the rate is preferable.
Specifically, in the cleaning method according to (1), the optical element is cleaned with the cleaning liquid every time the exposure light is irradiated with one unit of a certain region (area) on the exposed surface. In the cleaning method described in (2), for example, each time the exposure light is irradiated to one lot of several substrates to several tens of substrates such as the silicon wafer as one unit, In the cleaning method according to (3), the optical element is cleaned each time the exposure light is irradiated with respect to the unit, with the constant irradiation time or the fixed irradiation amount of the exposure light as one unit. In the cleaning method according to (4), the degree of contamination of the optical element is detected, for example, by measuring the light transmittance using a transmittance detector, and the transmittance exceeds a specific value. At that point, the optical element is automatically cleaned

前記洗浄液の供給及び前記光学素子の洗浄を行う場所としては、特に制限はなく、目的に応じて適宜選択することができ、前記被露光面上で行ってもよいし、前記被露光面以外の場所で行ってもよい。通常、前記(1)から(4)に記載の洗浄方法では、前記被露光面上で洗浄を行うが、前記被露光面以外の場所で行う場合、例えば、露光装置内の前記基板を載置するステージの一部に洗浄処理用領域を設け、該洗浄処理用領域上で洗浄を行ってもよいし、洗浄処理用に別途基材(ダミーウェハ)を用意し、該ダミーウェハ上で洗浄を行ってもよい。なお、前記洗浄処理用領域にて洗浄を行う場合、前記光学素子を、該洗浄処理用領域まで移動させてから洗浄を行う。   There is no restriction | limiting in particular as a place which supplies the said washing | cleaning liquid and the said optical element, It can select suitably according to the objective, You may carry out on the to-be-exposed surface, Other than the to-be-exposed surface You may go at the place. Usually, in the cleaning methods described in (1) to (4), cleaning is performed on the exposed surface. However, when the cleaning is performed at a place other than the exposed surface, for example, the substrate in the exposure apparatus is placed. A cleaning process area may be provided in a part of the stage to be cleaned, and cleaning may be performed on the cleaning process area, or a separate substrate (dummy wafer) is prepared for the cleaning process, and cleaning is performed on the dummy wafer. Also good. When cleaning is performed in the cleaning process area, the optical element is moved to the cleaning process area before cleaning.

以上の工程により、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液が供給され、該洗浄液により前記光学素子が洗浄される。   Through the above steps, the cleaning liquid is supplied so as to contact the optical element in the exposure apparatus, and the optical element is cleaned by the cleaning liquid.

本発明の前記露光方法においては、吸引工程を含んでいてもよく、本発明の前記露光装置においては、吸引手段を有していてもよい。
前記吸引工程は、洗浄後の前記洗浄液を吸引する工程である。
前記吸引手段は、洗浄後の前記洗浄液を吸引する機能を有する。
前記吸引工程は、前記吸引手段により好適に実施することができる。
The exposure method of the present invention may include a suction step, and the exposure apparatus of the present invention may have a suction means.
The suction step is a step of sucking the cleaning liquid after cleaning.
The suction means has a function of sucking the cleaning liquid after cleaning.
The suction step can be preferably performed by the suction means.

前記洗浄液の吸引方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記吸引手段により好適に行うことができる。
前記吸引手段としては、洗浄後の前記洗浄液を吸引可能な吸引ノズルなどが好適に挙げられる。なお、該吸引ノズルは、前記液浸露光用液体を吸引するノズルと併用してもよい。
There is no restriction | limiting in particular as the suction method of the said washing | cleaning liquid, Although it can select suitably according to the objective, For example, it can carry out suitably with the said suction means.
Suitable examples of the suction means include a suction nozzle that can suck the cleaning liquid after cleaning. The suction nozzle may be used in combination with a nozzle that sucks the liquid for immersion exposure.

以上の工程により、洗浄後の前記洗浄液が吸引される。
前記吸引工程により吸引された前記洗浄液は、例えば回収容器に回収されるのが好ましい。
Through the above steps, the cleaning liquid after cleaning is sucked.
It is preferable that the cleaning liquid sucked by the suction step is recovered in, for example, a recovery container.

ここで、本発明の露光装置及び露光方法の一例を、以下に図面を参照しながら説明する。
図1は、本発明の露光装置(液浸露光方式)の一例を示す概略説明図である。該露光装置1は、前記光学素子(露光光出射面)としての投影レンズ2を有する露光手段3と、ウエハステージ4とを備えている。ウエハステージ4は、被露光対象(シリコンウェハ等の基板)5が搭載可能に設けられており、また、投影レンズ2とウエハステージ4上の被露光対象5との間には、媒質(液体)8が満たされるようになっており、露光前に、不図示の液体供給装置により、液浸露光用の液体8を投影レンズ2と被露光面との間に供給し、露光後に、不図示の液体回収装置により、前記液体8を回収するようになっている。そして、照明光学系6から露光光をレチクル7に照射すると、該レチクル7により形成されたパターン像が、露光手段3における投影レンズ2を通じて被露光対象5に投影され、該被露光面(被露光対象5)上に、例えば回路パターンが形成されるようになっている。
Here, an example of the exposure apparatus and exposure method of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic explanatory view showing an example of an exposure apparatus (immersion exposure method) according to the present invention. The exposure apparatus 1 includes an exposure means 3 having a projection lens 2 as the optical element (exposure light exit surface), and a wafer stage 4. The wafer stage 4 is provided so that an object to be exposed (substrate such as a silicon wafer) 5 can be mounted, and a medium (liquid) is provided between the projection lens 2 and the object to be exposed 5 on the wafer stage 4. The liquid 8 for immersion exposure is supplied between the projection lens 2 and the surface to be exposed by a liquid supply device (not shown) before exposure, and is not shown after exposure. The liquid 8 is recovered by a liquid recovery device. Then, when exposure light is irradiated onto the reticle 7 from the illumination optical system 6, the pattern image formed by the reticle 7 is projected onto the exposure target 5 through the projection lens 2 in the exposure means 3, and the exposure surface (exposed surface) For example, a circuit pattern is formed on the object 5).

また、露光装置1は、前記光学素子の洗浄装置を有してなる。即ち、図2に示すように、前記洗浄手段としての洗浄液噴出装置10と、前記吸引手段としての洗浄液吸引装置20とを備えている。なお、洗浄液噴出装置10及び洗浄液吸引装置20が、本発明の前記光学素子の洗浄装置に相当する。
洗浄液噴出装置10は、洗浄液Lを貯留する洗浄液収容器12と、洗浄液を噴出する噴出ノズル14とからなり、洗浄液吸引装置20は、洗浄液Lを吸引する吸引ノズル24と、吸引した洗浄液Lを回収する洗浄液回収器22とからなる。
The exposure apparatus 1 has a cleaning device for the optical element. That is, as shown in FIG. 2, a cleaning liquid ejecting apparatus 10 as the cleaning means and a cleaning liquid suction apparatus 20 as the suction means are provided. The cleaning liquid ejecting apparatus 10 and the cleaning liquid suction apparatus 20 correspond to the optical element cleaning apparatus of the present invention.
The cleaning liquid ejecting apparatus 10 includes a cleaning liquid container 12 that stores the cleaning liquid L and an ejection nozzle 14 that ejects the cleaning liquid. The cleaning liquid suction apparatus 20 collects the suction cleaning liquid L that sucks the cleaning liquid L and the suctioned cleaning liquid L. And a cleaning liquid recovery device 22.

まず、シリコンウェハ等の基板上にレジスト膜を形成して被露光対象5を作製する。なお、前記被露光面は、被露光対象5におけるレジスト膜表面に相当する。
次いで、図1に示すように、露光装置1のウエハステージ4上に、被露光対象5を載せ、照明光学系6から露光光(例えば、ArFエキシマレーザー光)をレチクル7に照射する。すると、レチクル7によりパターン像が形成され、該パターン像が露光手段3における投影レンズ2を通過し、更に屈折率が1より大きい液体8を通過することにより縮小されて被露光対象5に投影される。その結果、被露光面(被露光対象5)上に、例えば回路パターンが形成される。なお、露光前に、不図示の液体供給装置により、液浸露光用の液体8を投影レンズ2と被露光面との間に供給し、露光後に、不図示の液体回収装置により、前記液体8を回収する。以上が、前記露光工程である。
液浸露光用の液体8を回収した後、図2に示すように、洗浄液噴出装置10における、洗浄液収容器12に貯留された洗浄液Lを、噴出ノズル14から被露光面上に噴出し、投影レンズ2と被露光面との間に洗浄液Lを介在させて、該洗浄液Lを投影レンズ2に接触させる。すると、洗浄液Lにより投影レンズ2に付着した汚染物質が除去される。以上が、前記洗浄工程である。
その後、洗浄後の洗浄液Lを、洗浄液吸引装置20における、吸引ノズル24を用いて吸引し、吸引した洗浄液Lを洗浄液回収器22に回収する。以上が、前記吸引工程である。
そして、必要に応じて、液体8の供給、露光、液体8の回収、洗浄液Lの洗浄、及び洗浄液Lの回収を、この順に繰り返し行い、最後に、アルカリ現像処理を行うと、レジスト膜の内、ArFエキシマレーザー光が照射されなかった領域が溶解除去され、被露光面(被露光対象5)上にレジストパターンが形成(現像)される。
First, a to-be-exposed object 5 is produced by forming a resist film on a substrate such as a silicon wafer. The exposed surface corresponds to the resist film surface in the object 5 to be exposed.
Next, as shown in FIG. 1, the object to be exposed 5 is placed on the wafer stage 4 of the exposure apparatus 1, and exposure light (for example, ArF excimer laser light) is irradiated onto the reticle 7 from the illumination optical system 6. Then, a pattern image is formed by the reticle 7, and the pattern image passes through the projection lens 2 in the exposure unit 3, and further passes through the liquid 8 having a refractive index larger than 1, and is projected onto the exposure target 5. The As a result, for example, a circuit pattern is formed on the exposed surface (exposed object 5). Before exposure, the liquid 8 for immersion exposure is supplied between the projection lens 2 and the surface to be exposed by a liquid supply device (not shown). After the exposure, the liquid 8 is supplied by a liquid recovery device (not shown). Recover. The above is the exposure step.
After recovering the liquid 8 for immersion exposure, as shown in FIG. 2, the cleaning liquid L stored in the cleaning liquid container 12 in the cleaning liquid ejecting apparatus 10 is ejected from the ejection nozzle 14 onto the exposed surface and projected. A cleaning liquid L is interposed between the lens 2 and the exposed surface, and the cleaning liquid L is brought into contact with the projection lens 2. Then, contaminants attached to the projection lens 2 are removed by the cleaning liquid L. The above is the cleaning step.
Thereafter, the cleaning liquid L after cleaning is sucked using the suction nozzle 24 in the cleaning liquid suction device 20, and the suctioned cleaning liquid L is collected in the cleaning liquid collector 22. The above is the suction step.
If necessary, the supply of the liquid 8, exposure, the recovery of the liquid 8, the cleaning of the cleaning liquid L, and the recovery of the cleaning liquid L are repeated in this order, and finally an alkali development process is performed. The region not irradiated with ArF excimer laser light is dissolved and removed, and a resist pattern is formed (developed) on the exposed surface (exposed object 5).

図3は、本発明の露光装置の一例を示す概略説明図である。
図3に示す露光装置30は、図1及び図2に示す露光装置1において、ウエハステージ4上の被露光面(被露光対象5)以外の部位の少なくとも一部に、投影レンズ2の洗浄処理用領域Sを設け、該洗浄処理用領域Sの位置まで投影レンズ2を移動させる。そして、ウエハステージ4上の洗浄処理用領域Sに、洗浄液収容器12に貯留された洗浄液Lを噴出ノズル14から噴出し、投影レンズ2に接触させて洗浄した後、吸引ノズル24から吸引して洗浄液回収器22内に回収する。
FIG. 3 is a schematic explanatory view showing an example of the exposure apparatus of the present invention.
The exposure apparatus 30 shown in FIG. 3 is a process for cleaning the projection lens 2 on at least a part of the part other than the exposure surface (exposed object 5) on the wafer stage 4 in the exposure apparatus 1 shown in FIGS. An area S is provided, and the projection lens 2 is moved to the position of the cleaning area S. Then, the cleaning liquid L stored in the cleaning liquid container 12 is ejected from the ejection nozzle 14 into the cleaning processing area S on the wafer stage 4, cleaned by contacting the projection lens 2, and then sucked from the suction nozzle 24. It collects in the cleaning liquid collector 22.

図4は、本発明の露光装置の一例を示す概略説明図である。
図4に示す露光装置40は、液体収容器42に貯留された液体と、洗浄液収容器43に貯留された洗浄液Lとを、それぞれ同一の前記洗浄手段としての噴出ノズル44から噴出し、露光後の液体と、洗浄後の洗浄液Lとを同一の前記吸引手段としての吸引ノズル47により吸引し、それぞれ液体回収器45及び洗浄液回収器46に回収する。
FIG. 4 is a schematic explanatory view showing an example of the exposure apparatus of the present invention.
The exposure apparatus 40 shown in FIG. 4 ejects the liquid stored in the liquid container 42 and the cleaning liquid L stored in the cleaning liquid container 43 from the same ejection nozzle 44 as the cleaning means, and after exposure. And the cleaning liquid L after cleaning are sucked by the same suction nozzle 47 as the suction means, and are recovered in the liquid recovery unit 45 and the cleaning liquid recovery unit 46, respectively.

本発明の前記露光方法においては、前記洗浄工程において、前記露光装置内にて、前記光学素子に接触されるように前記洗浄液が供給され、該洗浄液により前記光学素子が洗浄される。このとき、前記洗浄液として、超純水、機能水等が用いられる。その結果、前記露光装置から前記光学素子が取り外されることなくin situで洗浄され、前記光学素子にダメージを与えず、しかもレジストの機能を損なわずに、前記光学素子に付着した汚染物質を簡便に除去することができる。   In the exposure method of the present invention, in the cleaning step, the cleaning liquid is supplied so as to be in contact with the optical element in the exposure apparatus, and the optical element is cleaned with the cleaning liquid. At this time, ultrapure water, functional water, or the like is used as the cleaning liquid. As a result, the optical element is cleaned in situ without being removed from the exposure apparatus, and the contaminants attached to the optical element can be easily removed without damaging the optical element and without impairing the function of the resist. Can be removed.

本発明の露光装置においては、前記洗浄手段が、前記露光装置内にて、前記光学素子に接触させるように前記洗浄液を供給し、該洗浄液により前記光学素子を洗浄する。このとき、前記洗浄液として、超純水、機能水等を用いる。その結果、前記露光装置から前記光学素子が取り外されることなくin situで洗浄され、該光学素子に付着した汚染物質が簡便に除去され、しかも、レジストの溶解による機能の損失が発生しない。
したがって、露光不良を抑制して微細かつ高精細なレジストパターンを簡便かつ効率的に形成することができ、該レジストパターンは、例えば、マスクパターン、レチクルパターン、磁気ヘッド、LCD(液晶ディスプレイ)、PDP(プラズマディスプレイパネル)、SAWフィルタ(弾性表面波フィルタ)等の機能部品、光配線の接続に利用される光部品、マイクロアクチュエータ等の微細部品、半導体装置などの電子デバイスの製造に好適に適用することができる。
In the exposure apparatus of the present invention, the cleaning means supplies the cleaning liquid so as to contact the optical element in the exposure apparatus, and cleans the optical element with the cleaning liquid. At this time, ultrapure water, functional water, or the like is used as the cleaning liquid. As a result, the optical element is cleaned in situ without being removed from the exposure apparatus, contaminants attached to the optical element can be easily removed, and loss of function due to dissolution of the resist does not occur.
Therefore, it is possible to easily and efficiently form a fine and high-definition resist pattern while suppressing exposure failure. For example, the resist pattern may be a mask pattern, a reticle pattern, a magnetic head, an LCD (liquid crystal display), a PDP, or the like. (Plasma display panel), SAW filter (surface acoustic wave filter) and other functional parts, optical parts used for connecting optical wiring, microactuators and other fine parts, and semiconductor devices and other electronic devices be able to.

以下に、本発明の前記露光装置を用いて行う電子デバイスの製造方法の一例について説明する。
前記電子デバイスの製造方法は、レジストパターン形成工程と、パターニング工程とを少なくとも含み、更に必要に応じて適宜選択したその他の工程を含む。
Below, an example of the manufacturing method of the electronic device performed using the said exposure apparatus of this invention is demonstrated.
The manufacturing method of the electronic device includes at least a resist pattern forming step and a patterning step, and further includes other steps appropriately selected as necessary.

<レジストパターン形成工程>
前記レジストパターン形成工程は、被加工面上にレジスト膜を形成した後、本発明の前記露光装置を用いて前記レジスト膜を露光し、現像することによりレジストパターンを形成する工程である。該レジストパターン形成工程により、前記被加工面上にレジストパターンが形成される。
<Resist pattern formation process>
The resist pattern forming step is a step of forming a resist film on the surface to be processed, and then exposing and developing the resist film using the exposure apparatus of the present invention to form a resist pattern. A resist pattern is formed on the processed surface by the resist pattern forming step.

前記レジスト膜は、前記被加工面上に形成されてなる。
前記レジスト膜の材料としては、特に制限はなく、公知のレジスト材料の中から目的に応じて適宜選択することができ、ネガ型、ポジ型のいずれであってもよく、例えば、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザーなどでパターニング可能なKrFレジスト、ArFレジスト、Fレジストなどが好適に挙げられる。これらは、化学増幅型であってもよいし、非化学増幅型であってもよい。これらの中でも、KrFレジスト、ArFレジスト、アクリル系樹脂を含んでなるレジスト、などが好ましく、より微細なパターニング、スループットの向上等の観点からは、解像限界の延伸が急務とされているArFレジスト、及びアクリル系樹脂を含んでなるレジストの少なくともいずれかがより好ましい。
前記レジスト膜形成材料の具体例としては、ノボラック系レジスト、PHS系レジスト、アクリル系レジスト、シクロオレフィン−マレイン酸無水物系(COMA系)レジスト、シクロオレフィン系レジスト、ハイブリッド系(脂環族アクリル系−COMA系共重合体)レジストなどが挙げられる。これらは、フッ素修飾等されていてもよい。
前記レジスト膜の形成方法、大きさ、厚みなどについては、特に制限はなく、目的に応じて適宜選択することができ、公知の方法、例えば塗布等により形成することができる。前記厚みについては、加工対象である被加工面、エッチング条件等により適宜決定することができるが、一般に50〜400nm程度である。
The resist film is formed on the surface to be processed.
The material of the resist film is not particularly limited and can be appropriately selected from known resist materials according to the purpose, and may be either a negative type or a positive type. For example, a KrF excimer laser, Preferable examples include KrF resist, ArF resist, and F 2 resist that can be patterned with an ArF excimer laser, an F 2 excimer laser, or the like. These may be chemically amplified or non-chemically amplified. Among these, a KrF resist, an ArF resist, a resist containing an acrylic resin, and the like are preferable. From the viewpoint of finer patterning, an improvement in throughput, and the like, an ArF resist whose extension of the resolution limit is urgently required. And at least one of resists comprising an acrylic resin is more preferable.
Specific examples of the resist film forming material include novolak resist, PHS resist, acrylic resist, cycloolefin-maleic anhydride (COMA) resist, cycloolefin resist, and hybrid (alicyclic acrylic). -COMA copolymer) resist and the like. These may be modified with fluorine.
There is no restriction | limiting in particular about the formation method of a resist film, a magnitude | size, thickness, etc., According to the objective, it can select suitably, It can form by a well-known method, for example, application | coating etc. The thickness can be appropriately determined depending on the surface to be processed, etching conditions, and the like, but is generally about 50 to 400 nm.

前記被加工面(基材)としては、特に制限はなく、目的に応じて適宜選択することができるが、前記レジスト膜が半導体装置等の電子デバイスに形成される場合には、該被加工面(基材)としては、半導体基材表面が挙げられ、具体的には、シリコンウェハ等の基板、各種酸化膜などが好適に挙げられる。   The surface to be processed (base material) is not particularly limited and may be appropriately selected according to the purpose. However, when the resist film is formed on an electronic device such as a semiconductor device, the surface to be processed Examples of (base material) include the surface of a semiconductor base material, specifically, a substrate such as a silicon wafer, various oxide films, and the like.

−露光−
前記露光は、本発明の前記露光装置を用いて行う。該露光により、前記露光光が前記レジスト膜の一部の領域に対して照射されると、該一部の領域が硬化され、後述の現像において、該硬化させた一部の領域以外の未硬化領域が除去されてレジストパターンが形成される。
前記露光の方法としては、本発明の前記露光装置を用いる限り特に制限はなく、目的に応じて適宜選択することができるが、液浸露光法により行うのが好ましい。
なお、前記露光装置、前記液浸露光法の詳細については、本発明の前記露光装置及び露光方法の説明において上述した通りである。
-Exposure-
The exposure is performed using the exposure apparatus of the present invention. When the exposure light is irradiated to a partial area of the resist film by the exposure, the partial area is cured, and uncured other than the cured partial area in development described later. The region is removed and a resist pattern is formed.
The exposure method is not particularly limited as long as the exposure apparatus of the present invention is used, and can be appropriately selected according to the purpose. However, the exposure method is preferably performed.
The details of the exposure apparatus and the immersion exposure method are as described above in the description of the exposure apparatus and exposure method of the present invention.

−現像−
前記現像は、本発明の前記露光装置を用いて前記レジスト膜を露光し、該レジスト膜の露光した領域を硬化させた後、未硬化領域を除去することにより行う。該現像により、レジストパターンが形成される。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、アルカリ現像液であるのが好ましい。該アルカリ現像液による現像を行うことにより、前記レジスト膜の前記露光光が照射されていない部分が溶解除去され、レジストパターンが形成(現像)される。
-Development-
The development is performed by exposing the resist film using the exposure apparatus of the present invention, curing the exposed area of the resist film, and then removing the uncured area. A resist pattern is formed by the development.
There is no restriction | limiting in particular as the removal method of the said unhardened area | region, According to the objective, it can select suitably, For example, the method etc. which remove using a developing solution are mentioned.
There is no restriction | limiting in particular as said developing solution, Although it can select suitably according to the objective, It is preferable that it is an alkaline developing solution. By performing development with the alkali developer, a portion of the resist film that is not irradiated with the exposure light is dissolved and removed, and a resist pattern is formed (developed).

<パターニング工程>
前記パターニング工程は、前記レジストパターンをマスクとして用いて(マスクパターンなどとして用いて)、エッチングにより前記被加工基板をパターニングする工程である。
前記エッチングの方法としては、特に制限はなく、公知の方法の中から目的に応じて適宜選択することができるが、例えば、ドライエッチングが好適に挙げられる。該エッチングの条件としては、特に制限はなく、目的に応じて適宜選択することができる。
<Patterning process>
The patterning step is a step of patterning the substrate to be processed by etching using the resist pattern as a mask (using as a mask pattern or the like).
There is no restriction | limiting in particular as the said etching method, Although it can select suitably according to the objective from well-known methods, For example, dry etching is mentioned suitably. The etching conditions are not particularly limited and can be appropriately selected depending on the purpose.

前記電子デバイスの製造方法によると、本発明の前記露光装置を用いるので、前記光学素子の汚れによる露光不良が抑制され、微細かつ高精細なレジストパターンを簡便かつ効率的に形成可能であり、該レジストパターンを用いて形成した微細な配線パターンを有する高性能な電子デバイス、例えば、フラッシュメモリ、DRAM、FRAM、薄膜磁気ヘッド等を初めとする各種半導体装置などの電子デバイスを効率的に量産することができる。   According to the manufacturing method of the electronic device, since the exposure apparatus of the present invention is used, exposure failure due to contamination of the optical element is suppressed, and a fine and high-definition resist pattern can be easily and efficiently formed. Efficient mass production of high-performance electronic devices having a fine wiring pattern formed using a resist pattern, such as various semiconductor devices such as flash memory, DRAM, FRAM, thin film magnetic head, etc. Can do.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
まず、Si基板上に、脂環族ポリマーを含むArFエキシマレーザー光用試作レジスト材料を、スピンコート法により3,500rpm、45sの条件で回転塗布し、110℃のホットプレートで60秒間ベークして、厚み300nmのレジスト膜を形成し、該レジスト膜を前記被露光面とする前記被露光対象を作製した。
次いで、ArFエキシマレーザー試作液浸露光装置のウエハステージ上に、得られた被露光対象(表面にレジスト膜が形成されたSi基板)を載せた。液体収容器に収容された屈折率が1より大きい媒体としての水を、投影レンズとレジスト膜との間に供給し、この状態で、前記露光光としてのArFエキシマレーザー光を、投影レンズから出射させて、前記被露光面としてのレジスト膜に合計で500J/cm照射した。以上が、本発明の前記露光方法における前記露光工程である。照射後、照度計(「IL1400」;International Light社製)を用いて照射効率を測定したところ、照射前に対する照度は75.0%であった。
Example 1
First, a trial resist material for ArF excimer laser light containing an alicyclic polymer is spin-coated on a Si substrate under conditions of 3,500 rpm and 45 s by spin coating, and baked on a 110 ° C. hot plate for 60 seconds. Then, a resist film having a thickness of 300 nm was formed, and the object to be exposed was prepared using the resist film as the exposed surface.
Next, the obtained object to be exposed (Si substrate with a resist film formed on the surface) was placed on the wafer stage of the ArF excimer laser prototype immersion exposure apparatus. Water as a medium having a refractive index larger than 1 contained in the liquid container is supplied between the projection lens and the resist film, and in this state, ArF excimer laser light as the exposure light is emitted from the projection lens. Then, a total of 500 J / cm 2 was irradiated to the resist film as the exposed surface. The above is the exposure step in the exposure method of the present invention. After irradiation, when the irradiation efficiency was measured using an illuminometer (“IL1400”; manufactured by International Light), the illuminance before irradiation was 75.0%.

次いで、超純水に、溶存濃度が15ppmとなるようにオゾンを溶解させた機能水を、前記洗浄液として調製した。得られた機能水(洗浄液)をテフロン製の容器に入れ、この液表面を投影レンズに接触させるように設置して投影レンズを洗浄した。以上が、本発明の前記光学素子の洗浄方法及び本発明の前記露光方法における前記洗浄工程である。このときの照度を前記照度計を用いて測定し、洗浄時間と照度との関係より、投影レンズの洗浄性を評価した。結果を表1に示す。   Subsequently, functional water in which ozone was dissolved in ultrapure water so as to have a dissolved concentration of 15 ppm was prepared as the cleaning liquid. The obtained functional water (cleaning liquid) was put in a Teflon container, and the projection lens was cleaned by placing the liquid surface in contact with the projection lens. The above is the cleaning step in the optical element cleaning method of the present invention and the exposure method of the present invention. The illuminance at this time was measured using the illuminometer, and the cleaning performance of the projection lens was evaluated from the relationship between the cleaning time and the illuminance. The results are shown in Table 1.

Figure 2007150102
表1より、洗浄液を投影レンズに3秒間接触させて洗浄すると、照度が98%以上に回復することが判った。
また、実施例1では、ArFエキシマレーザー光を合計500J/cm照射することにより、75%に照度が低下した汚染に対して、3秒間で充分な効果が得られていることが明確であり、これに対して、例えば、洗浄方法として前述した1ショット照射する毎に洗浄を行う方法を採る場合には、実施例1に比較して投影レンズに付着する汚れも軽微であると考えられるため、1〜3秒間程度洗浄を行うと、投影レンズの汚れを充分に除去することができるといえる。また、露光光を1ロット照射する毎に洗浄する場合や、露光光を一定時間照射する毎に洗浄する場合でも、30秒間程度洗浄を行えば、汚れを充分に除去することができると認められた。
Figure 2007150102
From Table 1, it was found that when the cleaning liquid was brought into contact with the projection lens for 3 seconds for cleaning, the illuminance recovered to 98% or more.
Moreover, in Example 1, it is clear that a sufficient effect is obtained in 3 seconds against contamination whose illuminance is reduced to 75% by irradiation with a total of 500 J / cm 2 of ArF excimer laser light. On the other hand, for example, in the case where the cleaning method is performed every time one shot is irradiated as described above, it is considered that the dirt adhering to the projection lens is slight compared to the first embodiment. It can be said that if the cleaning is performed for about 1 to 3 seconds, the dirt on the projection lens can be sufficiently removed. In addition, even when cleaning is performed every time one lot of exposure light is irradiated, or when cleaning is performed every time exposure light is irradiated for a certain period of time, if it is cleaned for about 30 seconds, it is recognized that dirt can be sufficiently removed. It was.

(実施例2)
−機能水の特性評価−
前記洗浄液としての機能水によるレジスト膜の溶解性を、下記方法により測定した。
まず、Si基板上に、脂環族ポリマーを含むArFエキシマレーザー光用試作レジスト材料を、スピンコート法により3,500rpm、45sの条件で回転塗布し、110℃のホットプレートで60秒間ベークしてレジスト膜を形成した。
また、超純水に、溶存濃度が15ppmとなるようにオゾンを溶解させて、前記洗浄液としての機能水を調製した。
得られたレジスト膜の表面に、機能水2mLを滴下し、滴下部分にて、機能水がレジスト膜の表面に接触した時間(洗浄時間)とレジスト膜の膜厚変化との関係を測定した。なお、レジスト膜の厚みは、接触式膜厚計(「αステップ3000」;テンコール社製)を用いて測定した。結果を表2に示す。
(Example 2)
-Characterization of functional water-
The solubility of the resist film with functional water as the cleaning liquid was measured by the following method.
First, a trial resist material for ArF excimer laser light containing an alicyclic polymer is spin-coated on a Si substrate under conditions of 3,500 rpm and 45 s by spin coating, and baked on a 110 ° C. hot plate for 60 seconds. A resist film was formed.
In addition, ozone was dissolved in ultrapure water so that the dissolved concentration was 15 ppm to prepare functional water as the cleaning liquid.
2 mL of functional water was dropped onto the surface of the obtained resist film, and the relationship between the time (washing time) when the functional water contacted the surface of the resist film at the dripping portion and the change in film thickness of the resist film was measured. The thickness of the resist film was measured using a contact-type film thickness meter (“α step 3000”; manufactured by Tencor). The results are shown in Table 2.

Figure 2007150102
Figure 2007150102

表2より、初期膜厚300.2nmに対し、接触時間が120秒間までは、膜厚変化がないことが判った。前記表1より、光学素子の洗浄時間(レジスト膜と洗浄液との接触時間)は、数秒間で充分な洗浄効果が得られており、最長でも30秒間程度の洗浄時間で充分に洗浄することができるため、該洗浄時間(接触時間)内では、機能水によりレジスト膜へダメージを与えることなく、光学素子の洗浄が可能であることが判った。   From Table 2, it was found that the film thickness did not change until the contact time was 120 seconds with respect to the initial film thickness of 300.2 nm. From Table 1 above, the cleaning time of the optical element (contact time between the resist film and the cleaning solution) has a sufficient cleaning effect within a few seconds, and can be sufficiently cleaned with a cleaning time of about 30 seconds at the longest. Therefore, it was found that the optical element can be cleaned within the cleaning time (contact time) without damaging the resist film with functional water.

(実施例3)
次に、機能水の特性のオゾン濃度依存性を評価した。
超純水に、溶存濃度が80ppmとなるようにオゾンを溶解させて、前記洗浄液としての機能水を調製した。得られた機能水を用い、実施例1のオゾン濃度15ppmの場合と同様にして、投影レンズを浸漬して洗浄し、このときの照度を測定し、機能水が投影レンズに接触した時間(洗浄時間)と照度との関係を評価した。結果を表3に示す。
(Example 3)
Next, the ozone concentration dependence of the characteristics of functional water was evaluated.
Ozone was dissolved in ultrapure water so that the dissolved concentration was 80 ppm to prepare functional water as the cleaning liquid. Using the obtained functional water, the projection lens was immersed and washed in the same manner as in Example 1 with an ozone concentration of 15 ppm, the illuminance at this time was measured, and the time when the functional water contacted the projection lens (cleaning Time) and illuminance. The results are shown in Table 3.

Figure 2007150102
Figure 2007150102

また、実施例2と同様にして機能水がレジスト膜の表面に接触した時間(洗浄時間)とレジスト膜の膜厚変化との関係を測定した。結果を表4に示す。   Further, in the same manner as in Example 2, the relationship between the time when the functional water contacted the surface of the resist film (cleaning time) and the change in the film thickness of the resist film was measured. The results are shown in Table 4.

Figure 2007150102
Figure 2007150102

表3より、オゾン濃度が80ppmでは、洗浄効果が向上し、短時間で投影レンズ(光学素子)の照度が回復することが判った。一方、表4より、長時間処理すると、レジスト膜厚が若干減少するため、このような場合には、例えば、図3に示す露光装置のように、被露光面以外の部位に洗浄処理用領域Sを設け、該洗浄処理用領域Sにて投影レンズの洗浄を行うのが好ましい。   From Table 3, it was found that when the ozone concentration was 80 ppm, the cleaning effect was improved and the illuminance of the projection lens (optical element) was recovered in a short time. On the other hand, as shown in Table 4, since the resist film thickness is slightly reduced when processed for a long time, in such a case, for example, as in the exposure apparatus shown in FIG. S is preferably provided, and the projection lens is cleaned in the cleaning region S.

(実施例4)
実施例1と同様に、まず、Si基板上に、脂環族ポリマーを含むArFエキシマレーザー光用試作レジスト材料を用いて、厚み300nmのレジスト膜を形成し、該レジスト膜を前記被露光面とする前記被露光対象を作製した。
次いで、ArFエキシマレーザー試作液浸露光装置のウエハステージ上に、得られた被露光対象(表面にレジスト膜が形成されたSi基板)を載せた。液体収容器に収容された屈折率が1より大きい媒体としての水を、投影レンズとレジスト膜との間に供給し、この状態で、前記露光光としてのArFエキシマレーザー光を、投影レンズから出射させて、前記被露光面としてのレジスト膜に合計で5,000mJ/cm照射した。
次いで、超純水に、溶存濃度が15ppmとなるようにオゾンを溶解させた機能水を前記洗浄液として調製し、これを投影レンズに接触させるように1mL/sの流速で供給すると同時に、同流速で接触後の水を吸引する洗浄方法を2秒間行い、投影レンズを洗浄した。以上が、本発明の前記光学素子の洗浄方法及び本発明の前記露光方法における前記洗浄工程である。ArFエキシマレーザー光の照射(5,000mJ/cm)と、前記機能水による光学素子の洗浄操作とを100回繰り返した後、照度を前記照度計を用いて測定したところ、照度は本実験前と変化がなかった。
Example 4
Similar to Example 1, first, a 300-nm-thick resist film was formed on a Si substrate using a prototype resist material for ArF excimer laser light containing an alicyclic polymer, and the resist film was formed as the exposed surface. The object to be exposed was prepared.
Next, the obtained object to be exposed (Si substrate with a resist film formed on the surface) was placed on the wafer stage of the ArF excimer laser prototype immersion exposure apparatus. Water as a medium having a refractive index larger than 1 contained in the liquid container is supplied between the projection lens and the resist film, and in this state, ArF excimer laser light as the exposure light is emitted from the projection lens. Then, a total of 5,000 mJ / cm 2 was applied to the resist film as the exposed surface.
Next, functional water in which ozone is dissolved in ultrapure water so as to have a dissolved concentration of 15 ppm is prepared as the cleaning liquid, and this is supplied at a flow rate of 1 mL / s so as to contact the projection lens. The projection lens was cleaned by performing a cleaning method of sucking the water after contact at 2 for 2 seconds. The above is the cleaning step in the optical element cleaning method of the present invention and the exposure method of the present invention. After irradiating ArF excimer laser light (5,000 mJ / cm 2 ) and cleaning the optical element with the functional water 100 times, the illuminance was measured using the illuminometer. There was no change.

(実施例5)
実施例4と同様に、Si基板上に、脂環族ポリマーを含むArFエキシマレーザー光用試作レジスト材料を用いて、厚み300nmのレジスト膜を形成し、該レジスト膜を前記被露光面とする前記被露光対象を作製した。
次いで、ArFエキシマレーザー試作液浸露光装置のウエハステージ上に、得られた被露光対象(表面にレジスト膜が形成されたSi基板)を載せた。液体収容器に収容された屈折率が1より大きい媒体としての水を、投影レンズとレジスト膜との間に供給し、この状態で、前記露光光としてのArFエキシマレーザー光を、レチクルを通して投影レンズから出射させ、レジスト膜に100mJ/cm照射を1ショットとして、合計50ショット露光した。その際、1ショット毎に液浸露光媒体としての水を交換すると共に、該媒体としての水を交換する間に、オゾンを15ppmの濃度で溶解した機能水を1mL/sの流速で1秒間、投影レンズに接触させるように供給し、更にこれと同時に、同流速で接触後の水を吸引する洗浄方法で、投影レンズを洗浄した。ArFエキシマレーザー光の照射(100mJ/cm×50ショット=5,000mJ/cm)後、レジスト膜を115℃/90秒間ホットプレートでベークした後、2.38質量%TMAH水溶液でアルカリ現像を行い、レジスト膜の未露光部分を溶解除去した結果、レチクルパターンと同様のレジストパターンが得られた。
(Example 5)
As in Example 4, a 300-nm-thick resist film is formed on a Si substrate using a prototype resist material for ArF excimer laser light containing an alicyclic polymer, and the resist film is used as the exposed surface. An object to be exposed was prepared.
Next, the obtained object to be exposed (Si substrate with a resist film formed on the surface) was placed on the wafer stage of the ArF excimer laser prototype immersion exposure apparatus. Water as a medium having a refractive index larger than 1 contained in the liquid container is supplied between the projection lens and the resist film, and in this state, ArF excimer laser light as the exposure light is passed through the reticle to the projection lens. The resist film was exposed to 100 mJ / cm 2 for one shot, and a total of 50 shots were exposed. At that time, the water as the immersion exposure medium is exchanged for each shot, and the functional water in which ozone is dissolved at a concentration of 15 ppm is exchanged at a flow rate of 1 mL / s for 1 second while the water as the medium is exchanged. At the same time, the projection lens was cleaned by a cleaning method of sucking water after contact at the same flow rate. After irradiation with ArF excimer laser light (100 mJ / cm 2 × 50 shots = 5,000 mJ / cm 2 ), the resist film was baked on a hot plate at 115 ° C. for 90 seconds, and then developed with 2.38 mass% TMAH aqueous solution. As a result of dissolving and removing the unexposed portion of the resist film, a resist pattern similar to the reticle pattern was obtained.

本発明の好ましい態様を付記すると、以下の通りである。
(付記1) 光学素子から露光光を出射し、被露光面に対して像様に露光する露光手段と、露光装置内にて前記光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄手段とを少なくとも有してなり、
前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする露光装置。
(付記2) 露光が、液浸露光により行われる付記1に記載の露光装置。
(付記3) 洗浄後の洗浄液を吸引する吸引手段を有する付記1から2のいずれかに記載の露光装置。
(付記4) 洗浄液が、オゾンを超純水に溶解させて得られる機能水である付記1から3のいずれかに記載の露光装置。
(付記5) 光学素子の洗浄が、露光光が1ショット照射される毎に行われる付記1から4のいずれかに記載の露光装置。
(付記6) 光学素子の洗浄が、露光光が1ロット照射される毎に行われる付記1から4のいずれかに記載の露光装置。
(付記7) 露光光が、193nmの波長を有するArFエキシマレーザー光、157nmの波長を有するFエキシマレーザー光、及び5〜15nmの波長を有するEUVの少なくともいずれかである付記1から6のいずれかに記載の露光装置。
(付記8) 露光手段の露光光出射面である光学素子から露光光を出射し、被露光面に対して像様に露光する露光工程と、露光装置内にて、前記光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄工程とを少なくとも含むことを特徴とする露光方法。
(付記9) 被露光面に対して像様に露光する露光手段を有する露光装置内にて、前記露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄工程を少なくとも含み、
前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする光学素子の洗浄方法。
(付記10) 露光が、液浸露光により行われる付記9に記載の光学素子の洗浄方法。
(付記11) 洗浄後の洗浄液を吸引する吸引工程を含む付記9から10のいずれかに記載の光学素子の洗浄方法。
(付記12) 洗浄液が、オゾンを超純水に溶解させて得られる機能水である付記9から11のいずれかに記載の光学素子の洗浄方法。
(付記13) 光学素子の洗浄が、露光光を1ショット照射する毎に行われる付記9から12のいずれかに記載の光学素子の洗浄方法。
(付記14) 光学素子の洗浄が、露光光を1ロット照射する毎に行われる付記9から12のいずれかに記載の光学素子の洗浄方法。
(付記15) 露光光が、193nmの波長を有するArFエキシマレーザー光、157nmの波長を有するFエキシマレーザー光、及び5〜15nmの波長を有するEUVの少なくともいずれかである付記9から14のいずれかに記載の光学素子の洗浄方法。
(付記16) 被露光面に対して像様に露光する露光手段を有する露光装置内にて、前記露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄手段を少なくとも有してなり、
前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする光学素子の洗浄装置。
The preferred embodiments of the present invention are as follows.
(Supplementary Note 1) An exposure unit that emits exposure light from the optical element and exposes the surface to be exposed imagewise, and a cleaning liquid is supplied so as to contact the optical element in an exposure apparatus, and the cleaning liquid supplies the cleaning liquid. And at least cleaning means for cleaning the optical element,
The cleaning liquid is at least one of ultrapure water containing a surfactant and functional water obtained by dissolving at least one selected from hydrogen, ozone and carbon dioxide in ultrapure water. Exposure equipment.
(Supplementary note 2) The exposure apparatus according to supplementary note 1, wherein the exposure is performed by immersion exposure.
(Additional remark 3) The exposure apparatus in any one of Additional remark 1 or 2 which has a suction means to attract | suck the washing | cleaning liquid after washing | cleaning.
(Supplementary note 4) The exposure apparatus according to any one of supplementary notes 1 to 3, wherein the cleaning liquid is functional water obtained by dissolving ozone in ultrapure water.
(Supplementary note 5) The exposure apparatus according to any one of supplementary notes 1 to 4, wherein cleaning of the optical element is performed each time exposure light is irradiated by one shot.
(Supplementary note 6) The exposure apparatus according to any one of supplementary notes 1 to 4, wherein cleaning of the optical element is performed every time one lot of exposure light is irradiated.
(Supplementary note 7) Any one of Supplementary notes 1 to 6, wherein the exposure light is at least one of ArF excimer laser light having a wavelength of 193 nm, F 2 excimer laser light having a wavelength of 157 nm, and EUV having a wavelength of 5 to 15 nm. An exposure apparatus according to claim 1.
(Supplementary Note 8) An exposure process in which exposure light is emitted from an optical element that is an exposure light emission surface of an exposure unit, and imagewise exposure is performed on the surface to be exposed, and the optical element is brought into contact with the exposure element in an exposure apparatus. And a cleaning step of supplying the cleaning liquid to the optical element and cleaning the optical element with the cleaning liquid.
(Supplementary Note 9) In an exposure apparatus having an exposure unit that exposes an exposed surface in an imagewise manner, a cleaning liquid is supplied so as to contact an optical element that is an exposure light emitting surface of the exposure unit, and the cleaning liquid Including at least a cleaning step of cleaning the optical element;
The cleaning liquid is at least one of ultrapure water containing a surfactant and functional water obtained by dissolving at least one selected from hydrogen, ozone and carbon dioxide in ultrapure water. Cleaning method for optical element.
(Supplementary note 10) The optical element cleaning method according to supplementary note 9, wherein the exposure is performed by immersion exposure.
(Additional remark 11) The cleaning method of the optical element in any one of Additional remark 9 to 10 including the suction process which attracts | sucks the washing | cleaning liquid after washing | cleaning.
(Supplementary note 12) The method for cleaning an optical element according to any one of supplementary notes 9 to 11, wherein the cleaning liquid is functional water obtained by dissolving ozone in ultrapure water.
(Supplementary note 13) The optical element cleaning method according to any one of supplementary notes 9 to 12, wherein the optical element is cleaned each time exposure light is irradiated by one shot.
(Supplementary note 14) The optical element cleaning method according to any one of supplementary notes 9 to 12, wherein the cleaning of the optical element is performed every time one lot of exposure light is irradiated.
(Supplementary note 15) Any of Supplementary notes 9 to 14, wherein the exposure light is at least one of ArF excimer laser light having a wavelength of 193 nm, F 2 excimer laser light having a wavelength of 157 nm, and EUV having a wavelength of 5 to 15 nm. A method for cleaning an optical element according to claim 1.
(Supplementary Note 16) In an exposure apparatus having an exposure unit that exposes an exposed surface in an imagewise manner, a cleaning liquid is supplied so as to contact an optical element that is an exposure light exit surface of the exposure unit, and the cleaning liquid Comprising at least cleaning means for cleaning the optical element;
The cleaning liquid is at least one of ultrapure water containing a surfactant and functional water obtained by dissolving at least one selected from hydrogen, ozone and carbon dioxide in ultrapure water. Cleaning device for optical elements.

本発明の露光装置は、微細かつ高精細なレジストパターンの形成に好適に使用可能であり、該レジストパターンは、例えば、マスクパターン、レチクルパターン、磁気ヘッド、LCD(液晶ディスプレイ)、PDP(プラズマディスプレイパネル)、SAWフィルタ(弾性表面波フィルタ)等の機能部品、光配線の接続に利用される光部品、マイクロアクチュエータ等の微細部品、半導体装置などの電子デバイスの製造に好適に適用することができ、該電子デバイスは、フラッシュメモリ、DRAM、FRAM、薄膜磁気ヘッド等を初めとする各種半導体装置などの分野で好適に使用可能である。
本発明の光学素子の洗浄方法は、投影露光、特に液浸露光法を用いた露光装置において、露光装置内の光学素子を取り外すことなくin situで洗浄し、前記光学素子に付着した汚染物質を除去するのに好適に使用可能である。
The exposure apparatus of the present invention can be suitably used for forming a fine and high-definition resist pattern. Examples of the resist pattern include a mask pattern, a reticle pattern, a magnetic head, an LCD (liquid crystal display), and a PDP (plasma display). Panel), functional parts such as SAW filters (surface acoustic wave filters), optical parts used for connecting optical wiring, fine parts such as microactuators, and electronic devices such as semiconductor devices. The electronic device can be suitably used in the field of various semiconductor devices including flash memory, DRAM, FRAM, thin film magnetic head, and the like.
According to the optical element cleaning method of the present invention, in an exposure apparatus using projection exposure, particularly an immersion exposure method, cleaning is performed in situ without removing the optical element in the exposure apparatus, and contaminants adhering to the optical element are removed. It can be suitably used for removal.

図1は、本発明の露光装置の一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of an exposure apparatus of the present invention. 図2は、本発明の露光装置の一例を示す概略説明図であり、洗浄手段及び吸引手段の態様を示す。FIG. 2 is a schematic explanatory view showing an example of the exposure apparatus of the present invention, and shows aspects of the cleaning means and the suction means. 図3は、本発明の露光装置の一例を示す概略説明図であり、洗浄処理用領域を設けて、該洗浄処理用領域にて洗浄を行う態様を示す。FIG. 3 is a schematic explanatory view showing an example of the exposure apparatus of the present invention, and shows a mode in which a cleaning processing area is provided and cleaning is performed in the cleaning processing area. 図4は、本発明の露光装置の一例を示す概略説明図である。FIG. 4 is a schematic explanatory view showing an example of the exposure apparatus of the present invention.

符号の説明Explanation of symbols

1 露光装置
2 投影レンズ(光学素子)
3 露光手段
4 ウエハステージ
5 被露光対象(基板)
6 照明光学系
7 レチクル
8 媒質(液体)
10 洗浄液噴出装置(洗浄手段)
12 洗浄液収容器
14 噴出ノズル
20 洗浄液吸引装置(吸引手段)
22 洗浄液回収器
24 吸引ノズル
30 露光装置
40 露光装置
42 液体収容器
43 洗浄液収容器
44 噴出ノズル(洗浄手段)
45 液体回収器
46 洗浄液回収器
47 吸引ノズル(吸引手段)
L 洗浄液
S 洗浄処理用領域
DESCRIPTION OF SYMBOLS 1 Exposure apparatus 2 Projection lens (optical element)
3 Exposure means 4 Wafer stage 5 Object to be exposed (substrate)
6 Illumination optical system 7 Reticle 8 Medium (liquid)
10 Cleaning liquid jetting device (cleaning means)
12 Washing liquid container 14 Jet nozzle 20 Washing liquid suction device (suction means)
DESCRIPTION OF SYMBOLS 22 Cleaning liquid collection device 24 Suction nozzle 30 Exposure apparatus 40 Exposure apparatus 42 Liquid container 43 Cleaning liquid container 44 Spray nozzle (cleaning means)
45 Liquid recovery device 46 Cleaning fluid recovery device 47 Suction nozzle (suction means)
L Cleaning liquid S Cleaning area

Claims (5)

光学素子から露光光を出射し、被露光面に対して像様に露光する露光手段と、露光装置内にて前記光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄手段とを少なくとも有してなり、
前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする露光装置。
An exposure unit that emits exposure light from the optical element and exposes the surface to be exposed imagewise, and a cleaning liquid is supplied so as to contact the optical element in an exposure apparatus, and the optical element is cleaned with the cleaning liquid. And at least cleaning means for
The cleaning liquid is at least one of ultrapure water containing a surfactant and functional water obtained by dissolving at least one selected from hydrogen, ozone and carbon dioxide in ultrapure water. Exposure equipment.
露光が、液浸露光により行われる請求項1に記載の露光装置。   The exposure apparatus according to claim 1, wherein the exposure is performed by immersion exposure. 洗浄後の洗浄液を吸引する吸引手段を有する請求項1から2のいずれかに記載の露光装置。   The exposure apparatus according to claim 1, further comprising a suction unit that sucks the cleaning liquid after cleaning. 洗浄液が、オゾンを超純水に溶解させて得られる機能水である請求項1から3のいずれかに記載の露光装置。   4. An exposure apparatus according to claim 1, wherein the cleaning liquid is functional water obtained by dissolving ozone in ultrapure water. 被露光面に対して像様に露光する露光手段を有する露光装置内にて、前記露光手段の露光光出射面である光学素子に接触させるように洗浄液を供給し、該洗浄液により前記光学素子を洗浄する洗浄工程を少なくとも含み、
前記洗浄液が、界面活性剤を含む超純水、並びに、水素、オゾン及び二酸化炭素から選択される少なくとも1種を超純水に溶解させて得られる機能水の少なくともいずれかであることを特徴とする光学素子の洗浄方法。
In an exposure apparatus having an exposure unit that exposes the surface to be exposed imagewise, a cleaning liquid is supplied so as to contact an optical element that is an exposure light exit surface of the exposure unit, and the optical element is moved by the cleaning liquid. Including at least a cleaning step for cleaning,
The cleaning liquid is at least one of ultrapure water containing a surfactant and functional water obtained by dissolving at least one selected from hydrogen, ozone and carbon dioxide in ultrapure water. Cleaning method for optical element.
JP2005344433A 2005-11-29 2005-11-29 Exposure device, and cleaning method of optical element Pending JP2007150102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344433A JP2007150102A (en) 2005-11-29 2005-11-29 Exposure device, and cleaning method of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344433A JP2007150102A (en) 2005-11-29 2005-11-29 Exposure device, and cleaning method of optical element

Publications (1)

Publication Number Publication Date
JP2007150102A true JP2007150102A (en) 2007-06-14

Family

ID=38211113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344433A Pending JP2007150102A (en) 2005-11-29 2005-11-29 Exposure device, and cleaning method of optical element

Country Status (1)

Country Link
JP (1) JP2007150102A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016421A (en) * 2007-07-02 2009-01-22 Nikon Corp Aligner, device manufacturing method, and cleaning method
JP2009033163A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus and contamination removal or prevention method
JP2009033161A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus and contamination removal or prevention method
WO2009072352A1 (en) * 2007-12-05 2009-06-11 Tokyo Ohka Kogyo Co., Ltd. Cleaning liquid and cleaning method
JP2009177143A (en) * 2007-12-20 2009-08-06 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus
WO2010018825A1 (en) * 2008-08-11 2010-02-18 株式会社ニコン Light exposure device, maintenance method, and device manufacturing method
JP2010103530A (en) * 2008-10-21 2010-05-06 Asml Netherlands Bv Lithographic apparatus and method of removing contamination
KR101005511B1 (en) * 2007-09-27 2011-01-04 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and method of cleaning a lithographic apparatus
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
JP2011082511A (en) * 2009-10-02 2011-04-21 Asml Netherlands Bv Lithographic apparatus and method of operating the lithography apparatus
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303209A (en) * 1992-02-10 1993-11-16 Tadahiro Omi Lithographic process
JP2002118085A (en) * 2000-10-06 2002-04-19 M Fsi Kk Substrate-treating method and apparatus therefor
JP2005079222A (en) * 2003-08-29 2005-03-24 Nikon Corp Immersion projection aligner mounting cleaning mechanism of optical component, and immersion optical component cleaning method
JP2005236047A (en) * 2004-02-19 2005-09-02 Canon Inc Exposure system and method therefor
JP2005252239A (en) * 2004-01-23 2005-09-15 Air Products & Chemicals Inc Immersion lithographic fluid
JP2006049757A (en) * 2004-08-09 2006-02-16 Tokyo Electron Ltd Substrate processing method
JP2006073951A (en) * 2004-09-06 2006-03-16 Toshiba Corp Immersion optical device and cleaning method
JP2006179909A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2006523031A (en) * 2003-04-11 2006-10-05 株式会社ニコン Optical element cleaning method in immersion lithography
WO2006137410A1 (en) * 2005-06-21 2006-12-28 Nikon Corporation Exposure apparatus, exposure method, maintenance method and device manufacturing method
JP2007114609A (en) * 2005-10-21 2007-05-10 Nikon Corp Liquid immersion microscope device
WO2007060971A1 (en) * 2005-11-22 2007-05-31 Tokyo Ohka Kogyo Co., Ltd. Washing liquid for photolithography, and method for washing exposure device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05303209A (en) * 1992-02-10 1993-11-16 Tadahiro Omi Lithographic process
JP2002118085A (en) * 2000-10-06 2002-04-19 M Fsi Kk Substrate-treating method and apparatus therefor
JP2006523031A (en) * 2003-04-11 2006-10-05 株式会社ニコン Optical element cleaning method in immersion lithography
JP2005079222A (en) * 2003-08-29 2005-03-24 Nikon Corp Immersion projection aligner mounting cleaning mechanism of optical component, and immersion optical component cleaning method
JP2005252239A (en) * 2004-01-23 2005-09-15 Air Products & Chemicals Inc Immersion lithographic fluid
JP2005236047A (en) * 2004-02-19 2005-09-02 Canon Inc Exposure system and method therefor
JP2006049757A (en) * 2004-08-09 2006-02-16 Tokyo Electron Ltd Substrate processing method
JP2006073951A (en) * 2004-09-06 2006-03-16 Toshiba Corp Immersion optical device and cleaning method
JP2006179909A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2006137410A1 (en) * 2005-06-21 2006-12-28 Nikon Corporation Exposure apparatus, exposure method, maintenance method and device manufacturing method
JP2007114609A (en) * 2005-10-21 2007-05-10 Nikon Corp Liquid immersion microscope device
WO2007060971A1 (en) * 2005-11-22 2007-05-31 Tokyo Ohka Kogyo Co., Ltd. Washing liquid for photolithography, and method for washing exposure device using the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
JP2009016421A (en) * 2007-07-02 2009-01-22 Nikon Corp Aligner, device manufacturing method, and cleaning method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
JP2009033162A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus, reflective member and method of irradiating underside of liquid supply system
JP2009033163A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus and contamination removal or prevention method
JP2011193017A (en) * 2007-07-24 2011-09-29 Asml Netherlands Bv Lithographic apparatus
JP2011199304A (en) * 2007-07-24 2011-10-06 Asml Netherlands Bv Immersion lithographic apparatus, method of preventing or reducing contamination of the apparatus, and method of manufacturing device
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
JP2009033161A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7916269B2 (en) 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US8638421B2 (en) 2007-09-27 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a lithographic apparatus
US8587762B2 (en) 2007-09-27 2013-11-19 Asml Netherlands B.V. Methods relating to immersion lithography and an immersion lithographic apparatus
KR101005511B1 (en) * 2007-09-27 2011-01-04 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and method of cleaning a lithographic apparatus
KR101059489B1 (en) * 2007-09-27 2011-08-25 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus
WO2009072352A1 (en) * 2007-12-05 2009-06-11 Tokyo Ohka Kogyo Co., Ltd. Cleaning liquid and cleaning method
US9289802B2 (en) 2007-12-18 2016-03-22 Asml Netherlands B.V. Lithographic apparatus and method of cleaning a surface of an immersion lithographic apparatus
US9036128B2 (en) 2007-12-20 2015-05-19 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
JP2009177143A (en) * 2007-12-20 2009-08-06 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus
US9785061B2 (en) 2007-12-20 2017-10-10 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US9405205B2 (en) 2007-12-20 2016-08-02 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8243255B2 (en) 2007-12-20 2012-08-14 Asml Netherlands B.V. Lithographic apparatus and in-line cleaning apparatus
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2010018825A1 (en) * 2008-08-11 2010-02-18 株式会社ニコン Light exposure device, maintenance method, and device manufacturing method
JP2010103530A (en) * 2008-10-21 2010-05-06 Asml Netherlands Bv Lithographic apparatus and method of removing contamination
US8432531B2 (en) 2009-10-02 2013-04-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
JP2011082511A (en) * 2009-10-02 2011-04-21 Asml Netherlands Bv Lithographic apparatus and method of operating the lithography apparatus

Similar Documents

Publication Publication Date Title
JP2007150102A (en) Exposure device, and cleaning method of optical element
US8174669B2 (en) Liquid immersion optical tool, method for cleaning liquid immersion optical tool, liquid immersion exposure method and method for manufacturing semiconductor device
US8564759B2 (en) Apparatus and method for immersion lithography
JP5331472B2 (en) Immersion lithography equipment
CN100573331C (en) Exposure device and pattern formation method
TWI436403B (en) A cleaning method, a substrate processing method, an exposure apparatus, and an element manufacturing method
TWI413155B (en) Cleaning liquid for photolithography and method of cleaning exposure equipment using the same
JP2007227543A (en) Immersion optical device, cleaning method, and immersion exposure method
TW200727335A (en) Method for forming resist pattern, and method for manufacturing semiconductor device
TW201804242A (en) Method for EUV pellicle glue removal
KR20130024878A (en) Photomask unit and method of manufacturing same
US8409360B2 (en) Cleaning method for a process of liquid immersion lithography
JP4531726B2 (en) Method for forming miniaturized resist pattern
JP2007123775A (en) Cleaning liquid and cleaning method
JP2007241270A (en) Solvent for removing protective film, and method of forming photoresist pattern using the same
US20060243300A1 (en) Method for cleaning lithographic apparatus
JP2006119292A (en) Resist pattern forming method
JP2007165866A (en) Cleaning liquid for chemical supply apparatus for semiconductor manufacturing
KR20070052205A (en) Cleaning liquid for cleaning apparatus for supplying chemical solutions in the production of semiconductor
WO2006104100A1 (en) Water purge agent, and method for resist pattern formation using the same
JP2009076520A (en) Exposure apparatus
KR100827507B1 (en) Apparatus for Imersion Lithography
KR20060027648A (en) Device for removing particle by static electricity &amp; exposure apparatus for manufacturing semiconductor using the same
JP2006019585A (en) Aligner, its method, and substrate processing equipment
KR20070037876A (en) Lithography apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719