JP2007149455A - 電極用基材及びその製造方法、並びに光電変換装置 - Google Patents

電極用基材及びその製造方法、並びに光電変換装置 Download PDF

Info

Publication number
JP2007149455A
JP2007149455A JP2005340801A JP2005340801A JP2007149455A JP 2007149455 A JP2007149455 A JP 2007149455A JP 2005340801 A JP2005340801 A JP 2005340801A JP 2005340801 A JP2005340801 A JP 2005340801A JP 2007149455 A JP2007149455 A JP 2007149455A
Authority
JP
Japan
Prior art keywords
target
metal material
film formation
gas
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005340801A
Other languages
English (en)
Inventor
Keisuke Aramaki
慶輔 荒巻
Masami Kawatsu
雅巳 川津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2005340801A priority Critical patent/JP2007149455A/ja
Publication of JP2007149455A publication Critical patent/JP2007149455A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】発電層の結晶性を高め、電子移動がスムースで高いエネルギー変換効率と高い開放電圧を得る。
【解決手段】光電変換装置1は、第1のガラス基板11aを有し、第1のガラス基板11aにはアノード側透明電極層12が形成されている。アノード側透明電極層12には、半導体結晶がアノード側透明電極層12から基板平面に対して垂直方向に成長した柱状結晶組織として形成された多孔質の半導体結晶層13が形成されている。半導体結晶層13は、スパッタ法によりアノード側透明電極層12上に成膜され、この成膜処理中に、成膜対象物であるアノード側透明電極層12の温度を成膜初期の温度よりも低下させる。また、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させ、成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させる。
【選択図】図1

Description

本発明は、電極用基材及びその製造方法と光電変換装置に関し、特に、色素増感型太陽電池に関する。
近年、地球温暖化などの環境問題やエネルギー問題に対する関心の高まりとともに次世代の太陽電池の開発が進められている。太陽電池の代表例であるシリコン太陽電池は、基本的に、厚さ約300μmのシリコン基板にpn半導体接台を形成したものであり、光電変換を行うことができる。シリコン太陽電池は、耐候性に優れ20年以上の耐久性を有することから急速に市場を拡大しているが、シリコン基板が厚さに応じて製造コストが高くなるという問題点を有する。
また、アモルファスシリコン太陽電池は、アモルファスシリコン基板を用いたものであり、シリコン太陽電池と比較して厚さが約0.3μm程度まで薄くできる。更に、アモルファスシリコンと微結晶シリコンとを薄膜成形し、これらを積層したハイブリッド型の薄膜太陽電池が知られている。アモルファスシリコンと微結晶シリコンとでは異なるバンドギャップをもつことから、太陽光スペクトルを広範にカバーして変換効率を向上することができるが、微結晶シリコン光電変換装置の膜厚が約2μmと厚くなり、また生産性が劣るため、アモルファスシリコン太陽電池よりも製造コストが高いという問題点がある。
これらの太陽電池に対して、色素増感型太陽電池は、高温処理や真空装置を必要としないことから低コスト化が期待され、積極的に開発が進められている。図7に、色素増感型太陽電池100の基本構成を示す。色素増感型太陽電池100は、第1のガラス基板121aと第2のガラス基板121bとを備えている。第1のガラス基板121a上には、アノード側透明電極層122が形成されている。また、アノード側透明電極層122上には更に多孔質酸化チタン層123が形成されている。
10〜20nm程度のアナターゼ型酸化チタン微粒子を分散したペーストをアノード側透明電極層122に塗布し厚みを10μm程度としたものを450℃程度で焼成する。焼成工程において、アナターゼ型酸化チタン微粒子が接合し、ラフネスファクタ(実質的な表面積/見かけ上の表面積)が1000程度の多孔質アナターゼ型酸化チタン123の層が形成される。
次に、多孔質酸化チタン123の表面に色素24を吸着させる。色素には、ルテニウム錯体を使用する。色素24を溶かした溶液に、上述した工程によりアノード側透明電極層122と多孔質酸化チタン123とが形成された第1のガラス基板121aを浸漬して色素124を吸着させる。色素124を溶かす溶媒には、エタノール、アセトニトリル等が用いられる。
次に、第2のガラス基板121b上にカソード側透明電極層125を作製する。カソード側透明電極層125の表面には、触媒として、白金、グラファイト等を有している。アノード側透明電極層122とカソード側透明電極層125との間には、電解液126が封入されている。電解液126の溶媒としては、アセトニトリル、炭酸エチレン等が用いられ、電解質としては、I/I 等が用いられる。
動作原理は、図7に示すように、アノード側透明電極層122側から光を入射させると色素124において電子が励起され、励起された電子が多孔質アナターゼ型酸化チタン123に移動する。電子を失って酸化状態となった色素124は、電解液126のヨウ素イオンから電子を受け取って還元され元の状態に戻る。電子は、多孔質アナターゼ型酸化チタン123内を移動し、アノード側透明電極層122に到達する。色素124に電子を供給して酸化状態になったヨウ素イオンはカソード側透明電極層125から電子を受け取って還元され、元の状態に戻るというものである。
このほかにも、色素増感型太陽電池に用いられる有機色素、電解液との組合せ等については、種々の研究がされている(特許文献1参照)。
特開平10−92477号公報
従来の色素増感太陽電池は、酸化チタンの微粒子が分散されたペーストを塗布、焼成して発電層を作製するわけであるが、酸化チタン微粒子よりなる発電層は、多孔質体で表面積が大きい方が太陽電池としての特性が向上するため、酸化チタン微粒子の形状をほぼ残したまま微粒子同士を結合する工夫がされている。しかし、酸化チタン微粒子の粒界部分が抵抗となって、色素から注入された電子のエネルギーが酸化チタン微粒子間を流れる段階で消費されてしまい、エネルギー変換効率が低下するという問題点があった。
発電層は、酸化チタン微粒子ペーストの塗布・焼成のほか、スパッタリング法で形成することもできる。しかし、10−1Pa〜1Pa程度の真空雰囲気中で行う一般的なスパッタリング法で酸化チタンからなるターゲットを用いてスパッタリングする場合、ターゲットの酸化物表面の金属結合が強いため、放電安定性は、極めて悪い。また、金属チタンのターゲットを用いて、真空雰囲気中に反応ガスの酸素を供給しながらスパッタリングする方法もあるが、この場合、徐々にターゲットが酸化されて放電が不安定になる。
このような問題点を解決するために、スパッタ時の雰囲気圧力を調整して成膜する方法がある。この方法で作製された膜は、柱状の微細構造を形成しており、柱状結晶組織同士の隙間により多孔質構造を有する膜になる。色素増感太陽電池に使用する酸化チタン膜では、「結晶性の良さ」と「多孔質性」が求められるが、スパッタリング法による成膜条件上では、この両課題が相反するところがあり、これらを両立することが困難である。例えば、「結晶性」を向上させるために、基板を加熱し、基板温度を上げると結晶性がよくなることが知られているが、基板に到着したスパッタ粒子に与えられるエネルギーが大きくなるため、基板上における面内方向の拡散運動が増し、多孔質膜になりにくい。逆に基板を加熱しなければ、「多孔質」な膜が生成できる代わりに結晶性が低下する。
また、光の利用効率を上げるには、可視光のみならず可視光よりも吸収特性の悪い長波長側の光をも利用することが必要不可欠である。そこで、酸化チタンに径の大きな粒子を散乱材として混在させることにより、長波長の光を散乱させて光の光路長を延ばす工夫がされている。これは、酸化チタン内の光路長が伸びると、光が酸化チタン微粒子に吸着された色素を通過する回数が増え、吸収特性の悪い長波長側の光の利用効率を上げることができるという考えからである。しかし、この方法では、散乱材を混在させた分だけ、酸化チタン微粒子の表面積が減少されるため、色素吸着量が減少し、この結果、発電量が低下するという問題点があった。
また、長波長側の光の利用効率を高めるために、酸化チタンの厚みを増やすことにより長波長側の光が色素を通過する回数を増加させようとする試みもされている。しかし、例えば、微粒子の酸化チタンを使用した場合、色素より注入された電子は、酸化チタン内を約8〜10μm移動することができるが、これ以上では、再結合等により電子が消滅してしまい、このときの損失が漏れ電流となって開放電圧を低下させるという逆効果を生んでいた。
そこで、本発明は、上述した従来の実情に鑑みて提案されたものであり、発電層の結晶性を高め、電子移動がスムースで高いエネルギー変換効率と高い開放電圧が得られる光電変換装置と、その電極用基材を提供することを目的とする。また、エネルギー変換効率を高め、高い開放電圧が得られる電極用基材を製造する方法を提供することを目的とする。
上述した目的を達成するために、本発明に係る電極用基材の製造方法は、金属材料からなるターゲット表面にスパッタガスを流しながらターゲット表面壁をスパッタし、該スパッタされたターゲットを構成する金属材料粒子とスパッタガスとを成膜対象物に到達させるとともに金属材料粒子と反応する反応ガスを成膜対象物に近い位置に放出させて、金属材料粒子と反応ガスとの反応物からなり該金属材料粒子が成膜対象物平面に対して垂直方向に成長した柱状の半導体結晶層を成膜対象物上に形成する成膜処理中に、成膜対象物の温度、スパッタガスの流量、反応ガスの流量、成膜雰囲気の圧力のうち少なくとも1つを変化させて半導体結晶層の特性及び構造を制御することを特徴とする。
金属材料でなるターゲットは、円筒状であってもよく、2枚の金属平板を所定の隙間を設けて対向配置したものであってもよい。円筒状のターゲットを用いる場合、該円筒状のターゲットの一方の開口と成膜対象物とを対向配置し、ターゲットの内部にスパッタガスを流しながらターゲット内壁をスパッタし、該スパッタされたターゲットを構成する金属材料粒子とスパッタガスとを開口から放出させて成膜対象物に到達させるとともに金属材料粒子と反応する反応ガスを成膜対象物に近い位置に放出することにより、半導体結晶層を成膜対象物上に形成する。また、金属材料でなるターゲットが2枚の金属平板を所定の隙間を設けて対向配置したものである場合、隙間の一端をガス導入口として、ガス導入口から隙間にスパッタガスを供給し、2枚のターゲットをスパッタし、隙間の他端を放出口とし、放出口から、スパッタされた金属材料粒子と、スパッタガスとを放出させ、成膜対象物に到達させるとともに金属材料粒子と反応する反応ガスを成膜対象物に近い位置に放出することにより、半導体結晶層を成膜対象物上に形成する。
そして、更に、成膜中の成膜対象物の温度を成膜初期よりも低下させる、例えば成膜対象物の温度を成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させる、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させる、或いは成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させるなどして半導体結晶層の特性及び構造を制御する。また、半導体結晶層が金属酸化物であり、酸化チタンを用いることが好ましい。
また、上述した目的を達成するために、本発明に係る電極用基材は、透明基板と、多孔質半導体層とを備え、多孔質半導体層は、金属材料からなるターゲット表面にスパッタガスを流しながらターゲット表面壁をスパッタし、該スパッタされたターゲットを構成する金属材料粒子とスパッタガスとを透明基板に到達させるとともに金属材料粒子と反応する反応ガスを透明基板に近い位置に放出させて、金属材料粒子と反応ガスとの反応物からなり該金属材料粒子が透明基板平面に対して垂直方向に成長した柱状の半導体結晶層を透明基板上に形成する成膜処理中に、透明基板の温度、スパッタガスの流量、反応ガスの流量、成膜雰囲気の圧力のうち少なくとも1つを変化させて該多孔質半導体層の特性及び構造を制御して形成されたものであることを特徴とする。
金属材料でなるターゲットは、円筒状であってもよく、2枚の金属平板を所定の隙間を設けて対向配置したものであってもよい。円筒状のターゲットを用いる場合、該円筒状のターゲットの一方の開口と透明基板とを対向配置し、ターゲットの内部にスパッタガスを流しながらターゲット内壁をスパッタし、該スパッタされたターゲットを構成する金属材料粒子とスパッタガスとを開口から放出させて透明基板に到達させるとともに金属材料粒子と反応する反応ガスを透明基板に近い位置に放出することにより、多孔質半導体層を透明基板上に形成する。また、金属材料でなるターゲットが2枚の金属平板を所定の隙間を設けて対向配置したものである場合、隙間の一端をガス導入口として、ガス導入口から隙間にスパッタガスを供給し、2枚のターゲットをスパッタし、隙間の他端を放出口とし、放出口から、スパッタされた金属材料粒子と、スパッタガスとを放出させ、透明基板に到達させるとともに金属材料粒子と反応する反応ガスを透明基板に近い位置に放出することにより、多孔質半導体層を透明基板上に形成する。
そして、更に、成膜中の透明基板の温度を成膜初期よりも低下させる、例えば透明基板の温度を成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させる、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させる、或いは成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させるなどして多孔質半導体層の特性及び構造を制御する。また、半導体結晶層が金属酸化物であり、酸化チタンを用いることが好ましい。
更にまた、上述した目的を達成するために、本発明に係る光電変換装置は、少なくとも透明基板、透明電極、色素を吸着した多孔質半導体層、電荷移動層、及び対極を有する光電変換装置において、多孔質半導体層は、金属材料からなるターゲット表面にスパッタガスを流しながらターゲット表面壁をスパッタし、該スパッタされたターゲットを構成する金属材料粒子とスパッタガスとを透明基板に到達させるとともに金属材料粒子と反応する反応ガスを透明基板に近い位置に放出させて、金属材料粒子と反応ガスとの反応物からなり該金属材料粒子が透明基板平面に対して垂直方向に成長した柱状の半導体結晶層を透明基板上に形成する成膜処理中に、透明基板の温度、スパッタガスの流量、反応ガスの流量、成膜雰囲気の圧力のうち少なくとも1つを変化させて該多孔質半導体層の特性及び構造を制御して形成されたものであることを特徴とする。
金属材料でなるターゲットは、円筒状であってもよく、2枚の金属平板を所定の隙間を設けて対向配置したものであってもよい。円筒状のターゲットを用いる場合、該円筒状のターゲットの一方の開口と透明基板とを対向配置し、ターゲットの内部にスパッタガスを流しながらターゲット内壁をスパッタし、該スパッタされたターゲットを構成する金属材料粒子とスパッタガスとを開口から放出させて透明基板に到達させるとともに金属材料粒子と反応する反応ガスを透明基板に近い位置に放出することにより、多孔質半導体層を透明基板上に形成する。また、金属材料でなるターゲットが2枚の金属平板を所定の隙間を設けて対向配置したものである場合、隙間の一端をガス導入口として、ガス導入口から隙間にスパッタガスを供給し、2枚のターゲットをスパッタし、隙間の他端を放出口とし、放出口から、スパッタされた金属材料粒子と、スパッタガスとを放出させ、透明基板に到達させるとともに金属材料粒子と反応する反応ガスを透明基板に近い位置に放出することにより、多孔質半導体層を透明基板上に形成する。
そして、更に、成膜中の透明基板の温度を成膜初期よりも低下させる、例えば透明基板の温度を成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させる、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させる、或いは成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させるなどして多孔質半導体層の特性及び構造を制御する。また、半導体結晶層が金属酸化物であり、酸化チタンを用いることが好ましい。
本発明によれば、発電層の結晶性を高め、電子移動がスムースで高いエネルギー変換効率と高い開放電圧が得られる。また、本発明による方法で作製された基材は、エレクトロクロミック素子、センサ等、多孔質酸化チタンを用いるデバイスに幅広く応用することができる。
以下、図面を参照して本発明に係る光電変換装置の実施の形態の一例について説明する。図1を用いて、本発明に係る光電変換装置の一実施の形態として示す色素増感型太陽電池について説明する。
光電変換装置1は、第1のガラス基板11aを有する。第1のガラス基板11aにはアノード側透明電極層12が形成されている。更に、アノード側透明電極層12には、半導体結晶層13が形成されている。半導体結晶層13は、半導体結晶がアノード側透明電極層12から基板平面に対して垂直方向に成長した柱状結晶組織として形成された多孔質半導体層であり、後述するスパッタリング装置30によってスパッタ法によりアノード側透明電極層12上に成膜される。そして、この半導体結晶層13に色素14が吸着されている。
また、色素増感太陽電池1は、対極17として、第2のガラス基板11bを有する。第2のガラス基板11bにはカソード側透明電極層15が形成されている。そして、柱状に成長した半導体結晶層13を有するアノード側透明電極層12が形成された第1のガラス基板11aと対極17は、互いに数十μm〜数mm間隔をおいて対向配置されている。アノード側透明電極層12とカソード側透明電極層15の間には、電荷移動層16が設けられ、エポキシ樹脂系封止剤等により側壁を形成して封止し、電池セルを構成している。
第1のガラス基板11aとしては、ガラス基板、可撓性を有するPETフィルム等を用いることができる。第1のガラス基板11aの材質、厚さ等は、太陽電池に要求される特性に応じて設計することができる。光入射側にあたるアノード側透明電極層12が形成された第1のガラス基板11aは、透光性材料であればよい。
また、光入射側とならない対極17に用いられる第2のガラス基板11bとしては、ガラス基板、金属基板、可撓性を有するPETフィルム等を用いることができる。対極17を構成する材料としては、このほかに、触媒となるPt、カーボン等を用いることができる。対極17は、触媒の形成後に焼成してもよい。また、サンドブラスト法、リアクティブイオンエッチング(RIE)法、物理的方法、エッチング等のウェットプロセスを用いて、ガラス基板表面や金属基板表面を粗面化するといった光の散乱効果を向上させる処理を施してもよい。
カソード側透明電極層15の表面には、Ptやカーボン等の層を形成して用いることができる。この層を電解質である電荷移動層16側に向けて配置する。更に、上述したように、形成したPtやカーボン等の層には、熱処理を施してもよい。
透明電極層としては、特に限定されず、例えば、フッ素ドープSnO、ITO、ZnO等があげられる。また、酸化スズや酸化インジウムに原子価の異なる陽イオン、若しくは陰イオンをドープした透明電極を使用してもよい。また、メッシュ状、ストライプ状など光が透過できる構造にした金属電極をガラス基板等の基板上に設けたものでもよい。特に、カソード側透明電極層15は、フッ素ドープSnO、ITOを積層して形成してもよい。カソード側透明電極層15の形成方法としては、スプレー法、スパッタ法等があげられる。
半導体結晶層13は、第1のガラス基板11aである透明基板上に所定のスパッタ条件で成膜されたものである。この半導体結晶層13は、半導体結晶が基板平面に対して垂直方向に成長した柱状結晶組織として形成され、隣接する柱状結晶組織同士の隙間により多孔質構造になる。半導体結晶層13は、酸化物半導体を構成材料とする酸化物半導体層からなる。酸化物半導体は、金属酸化物であり、例えば、酸化チタン、ZnO、SnO、Nb、In、WO、ZrO、La、Ta、SrTiO、BaTiO等の公知の酸化物半導体等を限定なく使用できる。本実施の形態では、金属酸化物として酸化チタンを用いる。この酸化チタンの半導体結晶層13がアノード側透明電極層12から柱状に成長している。
このように構成された色素増感太陽電池1は、透明な第1のガラス基板11aを透過してアノード側透明電極層12に形成された半導体結晶層13に太陽光が照射されると、この太陽光によって半導体結晶層13に吸着された色素14が励起され、この増感色素14から半導体結晶層13へ電子が注入される。そして、半導体結晶層13に注入された電子は、対極17に集められた外部に取り出される。
次に、本発明の実施の形態で適用したスパッタ法について説明する。図2は、本発明の第1の実施の形態であるスパッタリング装置を示している。スパッタリング装置30は、真空槽31と、スパッタ源32とを有している。スパッタ源32は、金属チタンからなる円形筒状のターゲット33を有している。ターゲット33は、該ターゲット33の2個の開口のうち、一方の開口が真空槽31の内部に向けられた状態で真空槽31に取り付けられ、他方の開口は配管34を介してスパッタリングガス供給源35に接続されている。スパッタガス供給源35には、アルゴンガスが充填されており、マスフローコントローラ(MFC)36によってガス流量が調整可能になっている。MFC36を制御することによって、流量が適切に制御されたスパッタガスがターゲット33内に供給されるように構成されている。
真空槽31内には、後述する成膜対象物を載置する基板ホルダ37がターゲット33の真空槽31内側の開口38と対向する位置に配設されている。また、基板ホルダ37には、成膜温度を制御するためのヒータ40が設けられており、成膜中の成膜対象物の温度を変化させることができる。また、このほか、スパッタガスの流量、反応ガスの流量、成膜雰囲気の圧力を変化させることができる。
真空槽31の壁面からは、反応ガス供給源41の配管42が延長されており、その先端は反応ガス放出口44になっている。反応ガス放出口44は、ターゲット33の真空槽31内部に向けられた開口38よりも基板ホルダ37に近い位置に配置されており、配管42の反応ガス放出口44の逆側端部は、真空槽31外へ導出されて、反応ガス供給源41に接続されている。反応ガス供給源41には、反応ガス(本実施の形態では酸素ガス)が充填されており、マスフローコントローラ(MFC)43により流量制御されて反応ガス放出口44から放出される構成になっている。
ターゲット33の外周には、図示しないカソード電極が設置されている。該カソード電極とターゲット33は、真空槽31や配管34,42から絶縁されており、直流電源48を起動すると、ターゲット33と真空槽31との間に電圧が印加されるように構成されている。真空槽31には真空排気系45が接続されており、真空排気系45によって真空槽31内が真空排気されるようになっている。
このスパッタリング装置30を用いて薄膜を形成する際、本実施の形態では、真空槽31内の雰囲気圧力を、真空排気系45を用いて、1.333×10Pa程度の低真空雰囲気とすることを特徴としている。
そして、該真空雰囲気を維持したまま成膜対象物である基板11を真空槽31内に搬入し、該基板11を基板ホルダ37に載置する。真空排気を続け、流量制御されたスパッタリングガスをターゲット33内に供給するとともに、流量制御された反応ガスを基板ホルダ37に近い位置に供給し、真空槽31内の圧力を所定圧力に維持した状態で直流電源を起動するとターゲット33内にスパッタガスのプラズマが発生して、ターゲット33の内壁がスパッタリングされ、チタンからなる金属材料粒子46が放出される。
スパッタガスは、配管34が接続された開口39から他端の開口38に向かって流れるので、金属材料粒子46は、スパッタガスの流れに乗り、真空槽31の内部に向けられた他端の開口38から放出される。スパッタリング装置30は、該開口38と基板ホルダ37上に載置された基板11との間に、シャッタ47を備えている。スパッタリング装置30は、ターゲット33内のプラズマが安定状態になったところで、シャッタ47を開放することで金属材料粒子46がスパッタガスとともに基板11の表面に到着する。
上述したように、基板ホルダ37に近い位置には反応ガス放出口45から反応ガスが供給されている。金属材料粒子46は、基板11の表面において反応ガスと反応し、基板表面に反応ガスと金属材料粒子46との反応物である薄膜が形成される。このとき、反応ガスがターゲット33に向かって拡散したとしても、反応ガスは、ターゲット33内を流れるスパッタガスに押し戻され、ターゲット33内に進入することがないので、ターゲット33の内壁表面に酸化物のような絶縁物が形成されることなく、安定したスパッタリング処理が維持される。基板表面に所定膜厚の薄膜が形成されたところで、シャッタ47を閉じ、基板11を開口38を通って放出される金属材料粒子46から遮断した後、基板11を真空槽31の外部へ搬出する。
このスパッタリング装置30を用いて基板11表面上に形成された薄膜は、柱状の半導体結晶13を有する。柱状の半導体結晶13は、その各結晶柱の径が小さく、隣り合う柱状結晶組織の隙間が大きいほど比表面積を大きくすることができ、単位面積当たりの発電量が微小でも大きな発電量を得ることができる。柱状結晶組織の断面形状は、スパッタリングの圧力、温度、ガスの流量によって、略円形、略四角形、或いは両方が混在するように製造することができる。また、柱状結晶組織の先端形状は、基板11に対して平行にすることも可能であるし凸状にすることも可能である。また、基板上の実質的な表面を形成する柱状結晶組織の末端部の径と、透明電極層12との接合部分である柱状結晶組織の根本部分の径とが異なるようにすることも可能である。
実施の形態では、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させる、或いは成膜処理中に成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させて柱状結晶組織でなる薄膜の膜特性及び膜構造を制御する。
従来のスパッタリング法は、1.33×10−1Pa〜1.33Pa、又はそれ以下の高真空状態で成膜を行うため、ターゲットから放出される金属材料粒子(以下、スパッタ粒子ともいう)の平均自由行程が数十cm以上と大きく、スパッタ粒子は、その運動エネルギー(10eV程度)をあまり損失しないまま基板に入射する。基板に入射するスパッタ粒子の運動エネルギーが大きすぎると、成膜対象である基板が粒子の衝突によりダメージを受けるだけでなく、非晶質膜が形成されるという問題がある。また、この程度の運動エネルギーをもった粒子は、基板へ入射した後に拡散運動をするため、膜面内方向において連続した膜の構造になりやすい。
これに対し、上述したスパッタリング装置30では、1.33×10(1torr)〜2.66×10(2torr)Pa程度の低真空状態で成膜する。そのため、ターゲット33の開口38から放出された金属材料粒子46は、平均自由行程0.05mm程度の距離でスパッタガス原子と衝突し、この金属材料粒子46の運動エネルギーはすぐに失われ、数eV以下と小さくなる。運動エネルギーが減少した金属材料粒子46は、移動性が低く、その状態では成膜対象物に到達しないが、スパッタリング装置30では、ターゲット33の内部にスパッタガスが流れているため、運動エネルギーの小さい金属材料粒子46は、スパッタガスの流れに乗って成膜対象物である基板11に到達する。
スパッタリング装置30では、成膜中に成膜条件を変化させることで酸化チタン薄膜の構造及び膜特性を制御することができる。特に、上述したように、成膜初期とその後において、成膜対象物(第1のガラス基板11a及びアノード側透明電極層12)の温度、スパッタガス流量、酸素ガス流量、成膜雰囲気圧力を変化させる。こうすると、成膜初期段階に形成される層の配向性や結晶性が、その後に成膜される層に影響を与え、成膜条件を終始一定として作製した膜と異なる有益な特性を有する膜を得ることができる。
本実施の形態では、成膜中の成膜対象物の温度を成膜初期よりも低下させる。また、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させる。更に、成膜処理中に成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させる。
成膜中に、成膜対象であるアノード側透明電極層12が形成された第1のガラス基板11aの基板温度を高温から低温に変化させると、基板に到達したスパッタ粒子(チタン粒子等の金属粒子)が基板から受け取るエネルギーが減少する。このとき、スパッタ粒子自身のエネルギーは小さくなり、運動エネルギーも減少するため、基板上に到着してからスパッタ粒子が拡散運動する距離も短くなり、スパッタ粒子が集合して成長しにくくなるため、膜を形成する各柱状結晶は直径が細く、柱状結晶組織間隔が狭い、より微細化した構造にすることができる。このように、柱状結晶組織の構造を微細化することにより、柱状結晶組織への色素分子の吸着量を多くすることができるため、良好な変換効率を得ることができるようになる。
ここで、基板温度としては、成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させることが好ましい。成膜初期温度を550℃よりも高くすると酸化チタンの結晶がルチル型となってしまう。一方、成膜初期温度を200℃未満とすると、さらに温度を低下させたとしても膜形状が殆ど変化せず、温度を変化させた効果が小さくなる。また、成膜中の基板温度を150℃よりも高くすると、膜形状が殆ど変化せず、温度を変化させた効果が小さくなる。一方、成膜中の基板温度を25℃未満とすると、アモルファス的な部分が多くなり、変換効率が低下してしまう。
一方、成膜中に、成膜対象であるアノード側透明電極層12が形成された第1のガラス基板11aの基板温度を低温から高温に変化させると、基板に到達したスパッタ粒子が基板から受け取るエネルギーが上昇する。このとき、スパッタ粒子自身のエネルギーが増加するため、運動エネルギーが増加し、基板上に到着してからスパッタ粒子が拡散運動する距離が長くなる。スパッタ粒子は、集合して成長しやすくなるため、膜を形成する各柱状結晶は直径が太く、柱状結晶組織間隔の広い構造となる。また、結晶性が向上する。
また、成膜中に反応ガスのスパッタガスに対する流量比を減少させると、生成された酸化チタン中の酸素が減少し、結晶中に酸素欠陥が発生した酸化チタンができる。通常の酸化チタンでは、紫外線領域の波長の光しか吸収することができないが、酸素欠陥を起こした酸化チタン膜は、バンドギャップの縮退が原因となって可視光側の波長を吸収できるようになる。このため、可視光帯域の光も吸収可能な2層の膜構造ができ、光の利用効率をあげることができる。一方、成膜中に反応ガスのスパッタガスに対する流量比を増加させると、上述したものと順番が逆の2層の膜構造が得られ、同様に光の利用効率をあげることができる。
また、成膜中に、成膜雰囲気圧力を高圧から低圧に変化させると、真空槽内のスパッタガス原子の密度が減少するため、スパッタ粒子(チタン粒子等の金属粒子)がスパッタガスと衝突する確率が減少し、エネルギー損失が少ないまま成膜対象物に到達する。このとき、スパッタ粒子自身のエネルギーが失われていないため、運動エネルギーも保持され、基板上に到着してからスパッタ粒子が拡散運動する距離が長くなる。スパッタ粒子は、集合して成長しやすくなるため、膜を形成する各柱状結晶は直径が太く、柱状結晶組織間隔の広い構造となる。また、結晶性が向上する。
一方、成膜中に成膜雰囲気圧力を低圧から高圧に変化させると、真空槽内のスパッタガス原子の密度が増加するため、スパッタ粒子がスパッタガスと衝突する確率が上がり、スパッタガス原子との衝突によってエネルギーが奪われて成膜対象物に到達する。このとき、スパッタ粒子が成膜対象物上で拡散移動する距離も短くなる。これにより、スパッタ粒子が集合し、成長しにくくなるため、膜を形成する各柱状結晶は直径が細く、柱状結晶組織間隔が狭い、より微細化した構造にすることができる。このように、柱状結晶組織の構造を微細化することにより、柱状結晶組織への色素分子の吸着量を多くすることができるため、良好な変換効率を得ることができるようになる。
なお、ガス流量、雰囲気ガス圧力を変化させると、放電が不安定になるが、直流電源の電流電圧を追従性よく制御することが必要である。
また、基板温度、ガス流量、雰囲気ガス圧力を成膜処理中のどの時点で変化させるかは、結晶の成長度合いに応じて適宜調整することが必要である。
上述したスパッタリング装置30によれば、運動エネルギーが小さい金属材料粒子46を基板11上に堆積させて半導体結晶層13を形成することができる。したがって、金属チタンからなるターゲット33と反応ガスである酸素を用いて、スパッタリング装置30により成膜を行えば、加熱をすることにより、従来の酸化チタンペーストを塗布、焼成するプロセスと比べて、より結晶性のよい薄膜を形成できる。運動エネルギーが小さい金属材料粒子46では、基板11に到達した後の拡散運動も従来方法に比べてわずかであるため、膜面内方向が不連続な膜になり、膜垂直方向に粒界が明確に現れ、垂直方向に成長する柱状結晶を形成することができる。
続いて、スパッタリング装置30で得られた柱状の半導体結晶13に色素14を吸着させる。柱状の半導体結晶13に吸着させる色素14としては、可視光領域及び/又は赤外光領域に吸収をもつ色素であれば特に限定されるものではないが、200nm〜10pmの波長の光により励起されて電子を放出する色素であることが望ましい。このような色素としては、金属錯体や有機色素等を用いることができる。金属錯体としては、銅フタロシアニン、チタニルフタロシアニン等の金属フタロシアニン、クロロフィル又はその誘導体、ヘミン、ルテニウム、オスミウムなどの錯体があげられる。有機色素としては、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン系色素等を使用することができる。
上述した条件でスパッタリングすることにより、色素分子を半導体結晶層13に最適に吸着させることができる多孔質構造を形成することができる。柱状結晶組織の直径、柱状結晶組織同士の隙間、本数等が適正範囲にあるとき、透明電極層との接合部分である柱状結晶組織の根本部付近まで色素分子が吸着できるため、良好な変換効率を得ることができる。
本発明の実施の形態として示す光電変換装置1の電荷移動層16として用いる電解質としては、酸化還元系電解質があげられる。特に、ハロゲン酸化還元系電解質が好ましい。ハロゲン化合物−ハロゲン分子からなるハロゲン酸化還元系電解質のハロゲン分子としては、例えば、ヨウ素分子、臭素分子等があげられ、特にヨウ素分子が好ましい。また、ハロゲンイオンを対イオンとするハロゲン化合物としては、例えば、LiI、NaI、KI、CsI、CaI、CuI等のハロゲン化金属塩、或いはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、1−メチル−3−アルキルイミダゾリウムヨーダイド、ピリジニウムヨーダイド等のハロゲンの有機4級アンモニウム塩等があげられるが、特に、ヨウ素イオンを対イオンとする塩類化合物が好ましい。ヨウ素イオンを対イオンとする塩類化合物としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化トリメチルアンモニウム塩等があげられる。
これらを電解質溶液として用いるときの溶媒には電気化学的に不活性な化合物を用いることができる。例えば、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1,3−ジオキソラン、メチルフォルメート、2−メチルテトラヒドロフラン、3−メトキシ−オキサジリジン−2−オン、γ−ブチロラクトン、スルフォラン、テトラヒドロフラン、水等があげられる。これらのなかでも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3−メトキシオキサジリジン−2−オン、γ−ブチロラクトン等が好ましい。これらは単独若しくは2種以上組み合わせて用いてもよい。
更に、電荷移動層16には、電子の受け渡しを効率よく行うために、4−t−ブチルピリジンのようなヘテロ環状化合物等を添加してもよい。また、電荷移動層16として常温溶融塩(いわゆるイオン性液体)を用いてもよい。常温溶融塩の例としては、例えば、1−メチル−3−アルキルイミダゾリウムヨーダイド、ビニルイミダゾリウムテトラフルオライド、1−エチルイミダゾールスロフォネート、アルキルイミダゾリウムトリフルオロメチルスルホニルイミド、1−メチルピロリンジニウムアイオダイド等があげられる。
また、光電変換装置1の耐久性を向上する目的で、電荷移動層16としてゲル電解質を用いてもよい。また、電荷移動層16は、完全固体型とすることも可能であり、酸化還元系電解質の代わりにポリエチレンジオキシチオフェン(PEDOT)等の正孔輸送材料やP型半導体を用いることもできる。正孔輸送材料の一例であるP型半導体としては、CuI、CuSCN等があげられる。また、P型半導体としては、アミン誘導体、ポリアセチレン、ポリアニリン、ボリテオフェン等の導電性高分子、ディスコティック液晶等があげられる。完全固体型とした場合には、電荷移動層16を形成する導電性支持体を、例えば、エポキシ系接着剤等を用いて結着する。また、熱可塑フィルム等を加熱溶解させて貼り合わせてもよい。このほか、導電性支持体同士を結着できる材料であれば、特に限定されることなく使用可能である。
電解質を注入する方法としては、シール材に予め注入口を設け、この注入口を利用して行う方法がある。この注入口は、電解質の注入を完了した後に所定の部材、樹脂等を用いて塞ぐ。また、電解質がゲル状の場合には、ゲル電解質を加熱により液化させ、液体である間に注入する。一方、電解質が固体電解質の場合には、例えば、固体電解質を溶解可能な溶媒を用いて溶解させ、色素を吸着させた後の積層体、すなわち柱状の半導体結晶層13が形成されたアノード側透明電極層12を有する第1のガラス基板11aをこの溶液に含浸させ、その後溶媒を除去する等の方法で固体電解質層を形成する。
以上は、ターゲットが円筒状の場合について説明したが、一例であって、本発明におけるターゲット形状はこれに限定されるものではない。図3に、本発明の第2の実施の形態であるスパッタリング装置50を示す。スパッタリング装置50は、真空槽51と、真空槽51内に配置されたスパッタ源52とを有している。上述した第1の実施の形態では円筒状のターゲットであったのに対して、このスパッタ源52は、2枚の金属平板からなり、この金属平板であるターゲット53aとターゲット53bとが所定の隙間54を設けて対向されており、長手方向を装置に対する鉛直方向にして配置されている。金属材料としては、金属チタンを用いる。
ターゲット53a,53bは、隙間54の一方の端部がガス放出口として真空槽31の内部に向けられた状態で真空槽31に取り付けられており、他端はガス導入口55として配管56を介してスパッタリングガス供給源57に接続されている。スパッタガス供給源57には、アルゴンガスが充填されており、マスフローコントローラ(MFC)58によってガス流量が調整可能になっている。MFC58を制御することによって、流量が適切に制御されたスパッタガスがターゲット53a,53bに対してガス放出口59より供給されるように構成されている。
真空槽51内には、スパッタリング装置30と同様、成膜対象物を載置する基板ホルダ37がガス放出口59と対向する位置に配設されている。また、基板ホルダ37には、成膜温度を制御するためのヒータ40が設けられており、成膜中の成膜対象物の温度を変化させることができる。また、このほか、スパッタガスの流量、反応ガスの流量、成膜雰囲気の圧力を変化させることができる。
真空槽51の壁面からは、反応ガス供給源41の配管42が延長されており、その先端は反応ガス放出口44になっている。反応ガス放出口44は、ガス放出口59よりも基板ホルダ37に近い位置に配置されており、配管42の反応ガス放出口44の逆側端部は、真空槽51外へ導出されて、反応ガス供給源41に接続されている。反応ガス供給源41には、反応ガスである酸素ガスが充填されており、マスフローコントローラ(MFC)43により流量制御されて反応ガス放出口44から放出される。
図4は、図3に示すスパッタリング装置50のガス導入口55付近から、基板11の表面を眺めた平面図である。図4に示すように、ターゲット53a,53bの側面には、絶縁体60a,60bが配置されており、この絶縁体60a,60bによってターゲット53aとターゲット53bとの隙間の側面部分が閉塞されている。したがって、ターゲット53a,53bの隙間54の導入口55から供給されたアルゴンガスは、隙間の側面から流出することなく隙間54を装置鉛直下方に向かって流れるようになっており、2枚のターゲット53a,53bをスパッタリングし、隙間54の他端にあたるガス放出口59からスパッタリングされた金属材料の粒子46とともに放出される。
スパッタリング装置30と同様、ターゲット53a,53bには、カソード電極が接続されている。スパッタリング装置50は、図4に示すように、各ターゲット53a,53bが対向する面とは逆の面に、それぞれカソード電極61a,61bが設置され、該カソード電極61a,61bとターゲット53a,53bは、真空槽51や配管56,42から絶縁されており、直流電源62を起動するとターゲット53a,53bと真空槽51との間に電圧が印加される。真空槽51には真空排気系45が接続され、真空槽内部が真空排気される。また、このスパッタリング装置50を用いる場合も、上述の例と同様に、雰囲気圧力を1.333×10Pa程度の低真空雰囲気に維持する。
スパッタリング装置50によれば、第1の実施の形態のスパッタリング装置30と同様、基板11表面上に形成された薄膜は、柱状の半導体結晶層13を有する。柱状の半導体結晶層13は、その各結晶柱の径が小さく、隣り合う柱状結晶組織の隙間が大きいほど比表面積を大きくすることができ、単位面積当たりの発電量が微小でも大きな発電量を得ることができる。柱状結晶組織の断面形状は、スパッタリングの圧力、温度、ガスの流量によって、略円形、略四角形、或いは両方が混在するように製造することができる。なお、実施の形態では、成膜処理中に反応ガス流量をスパッタガス流量の1/750〜1/250の間で変化させる、或いは成膜処理中に成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させることによって、最適な特性及び構造を有する半導体結晶層13を有する電極用基材を製造することができる。
このように、ターゲットの形状は、円筒形状であっても平行平板状であっても好適に用いることができるが、ターゲット表面をスパッタリングできる形状であればよく、これらに限定されるものではない。例えば、角柱筒状であってもよい。
[実施例1]
表面抵抗率が10Ω/sqのITOガラスを透明電極として用い、上述したスパッタリング装置30を用いて、この透明電極上にスパッタリングにより層厚が10μmの酸化チタンの柱状結晶組織を形成した。実施例では、スパッタリング装置30におけるターゲット33として、チタン純度99.99%のパイプ状のチタンを用いた。
成膜条件は、真空槽内圧力を1.33×10Pa(1Torr)、アルゴンガス流量を300sccm、酸素ガス流量を0.8sccm(酸素ガス流量比:1/375)とした。また、基板ホルダ37に設置されているヒータ40の発熱量を制御することにより基板温度を成膜初期に300℃とし、成膜中に100℃へと変化させた。増感色素(Ru(2,2’−ビピリジル−4,4’−ジカルボキシレート)(NCS))のエタノール溶液を作製し、この条件でスパッタリング後の基板11をこの溶液に浸漬し、1時間還流を行って酸化チタンの半導体結晶層13に色素分子を吸着させた。こうして得られた積層体をアノード電極とした。このアノード電極と、ガラス基板上にPt電極層を設けたカソード電極とを対向配置し、エポキシ樹脂で側壁を形成し、これらカソード電極、アノード電極及び側壁によって形成される空間部をセルとした。両電極の間隔は40μmであった。このセル内に、電荷移動層16としてI、LiI、ジメチルプロピルイミダゾリウムヨージド等をアセトニトリル等の溶媒に溶かした電解質溶液を封入し、実施例1の光電変換装置を作製した。
[実施例2]
上述したスパッタリング装置30を用いて、アルゴンガス流量を300sccm、酸素ガス流量を0.8sccm(酸素ガス流量比1/375)とし、成膜初期に真空槽(成膜雰囲気)の圧力を1.33×10Pa(1Torr)とし、成膜中に2.66×10Pa(2Torr)に変化させた。また、基板ホルダ37に設置されているヒータ40の発熱量を制御して基板温度を300℃に固定した以外は、上述の実施例1と同一の条件及び操作により実施例2の光電変換装置を作製した。
[実施例3]
スパッタリング装置30を用いて、真空槽内圧力を1.33×10Pa(1Torr)、基板ホルダ37に設置されているヒータ40の発熱量を制御して基板温度を300℃に固定し、アルゴンガス流量を300sccm、酸素ガス流量を成膜初期に1.2sccmとし、成膜中に0.4sccmまで変化させた、すなわち酸素ガス流量比で1/250から1/750まで変化させたこと以外は、上述の実施例1と同一条件及び操作により実施例3の光電変換装置を作製した。
[比較例1〜比較例5]
表面抵抗率が10Ω/sqのITOガラスを透明電極として用い、上述したスパッタリング装置30を用いて、この透明電極上にスパッタリングにより、層厚が10μmになるように酸化チタンの柱状結晶組織を形成した。比較例1〜5では、真空槽内の圧力を1.33×10Pa(1Torr)とし、基板ホルダ37に設置されているヒータ40の発熱量を制御して基板温度を100℃に固定した。アルゴンガス流量300sccm、酸素ガス流量0.4sccm(酸素ガス流量比1/750)として成膜したこと以外は、上述の実施例1と同一の条件及び操作により比較例1の光電変換装置を作製した。また、酸素ガス流量0.5sccmとしたものを比較例2、酸素ガス流量0.8sccmとしたものを比較例3、酸素ガス流量1.0sccmとしたものを比較例4、酸素ガス流量1.2sccmとしたものを比較例4とした。
[比較例6〜比較例10]
スパッタリング装置30を用いて、ヒータ40の発熱量を制御して基板温度を200℃に固定し、アルゴンガス流量300sccm、酸素ガス流量0.4sccm(酸素ガス流量比1/750)として成膜したこと以外は、上述の実施例1と同一の条件及び操作により比較例6の光電変換装置を作製した。また、酸素ガス流量0.5sccm(酸素ガス流量比1/600)としたものを比較例7、酸素ガス流量0.8sccm(酸素ガス流量比1/375)としたものを比較例8、酸素ガス流量1.0sccm(酸素ガス流量比1/300)としたものを比較例9、酸素ガス流量1.2sccm(酸素ガス流量比1/250)としたものを比較例10とした。
[比較例11〜比較例15]
スパッタリング装置30を用いて、ヒータ40の発熱量を制御して基板温度を300℃に固定し、アルゴンガス流量300sccm、酸素ガス流量0.4sccm(酸素ガス流量比1/750)として成膜したこと以外は、上述の実施例1と同一の条件及び操作により比較例11の光電変換装置を作製した。また、酸素ガス流量0.5sccm(酸素ガス流量比1/600)としたものを比較例12、酸素ガス流量0.8sccm(酸素ガス流量比1/375)としたものを比較例13、酸素ガス流量1.0sccm(酸素ガス流量比1/300)としたものを比較例14、酸素ガス流量1.2sccm(酸素ガス流量比1/250)としたものを比較例16とした。
[比較例16]
スパッタリング装置30に代えて、高周波マグネトロンスパッタ装置(周波数:13.56MHz)を用い、真空槽内の雰囲気圧力0.83Paで、アルゴンガスと酸素ガスの混合ガス(アルゴン90%,酸素10%)を真空槽内に供給しながら、ターゲットに150Wの電力を供給し、膜厚10μmの酸化チタン薄膜を形成した。ターゲットとして、直径10cmの円盤状の金属チタンターゲット(途端純度99.99%)を用いた。増感色素(Ru(2,2’−ビピリジル−4,4’−ジカルボキシレート)(NCS))のエタノール溶液に、スパッタリング後の基板を浸漬し、色素を吸着させた。実施例1と同様にして比較例16の光電変換装置を作製した。
[測定]
上述した実施例1〜3、比較例1〜16の各光電変換装置に対して、AM1.5フィルタを通して、100mW/cmとして、短絡電流、開放電圧、フィルファクタ、変換効率を測定した。また、上述した実施例及び比較例のなかから代表的な2例については、柱状結晶組織からなる層構造をX線回折法により観測した。
なお、柱状結晶組織の直径、層厚等の層構造は、電極用基材の表面を電子顕微鏡で撮影し、電子顕微鏡写真から柱状結晶の形状、柱状結晶本数(本/μm)等を観測した。
[結果]
スパッタリング装置30を用いて成膜条件を変化させたとき、基板加熱の有無と酸素ガス流量比の違いによる柱状組織の結晶性をX線回折法により観測した結果を図5に示す。図5(a)は、ヒータ40を加熱しないで、アルゴンガス流量300sccm、酸素ガス流量0.0sccm、0.2sccm、0.4sccm、1.0sccm、3.0sccm、10sccmの条件でそれぞれ成膜してできる柱状結晶構造のX線回折結果を示し、図5(b)は、ヒータ40を制御して基板温度を300℃に保って、アルゴンガス流量300sccm、酸素ガス流量0.0sccm、0.2sccm、0.4sccm、1.0sccm、3.0sccm、10sccmの条件でそれぞれ成膜してできる柱状結晶構造のX線回折結果を示す。
図5では、基板を加熱した方がシャープなピークが観測されており、より結晶性が高いことがわかった。特に、基板温度を300℃としたとき、酸素ガス流量比が0.4sccm〜1.2sccmの間で、アナターゼ構造であることを示すピークが鮮明に観測されているが、0.2sccm又は10sccmでは殆どピークが現れていないことから、酸素ガス流量比の値にも適正範囲があることがわかった。
以上より、スパッタリング装置30により成膜を行えば、成膜対象物である基板を加熱するとともに酸素ガス流量比を変化させることによって、成膜される層の結晶性を制御することができる。
また、各光電変換装置の特性を下記表1に示す。
Figure 2007149455
実施例1では、成膜初期には、基板温度300℃として結晶性のよい層を成長させ、その後、基板温度を100℃まで下げている。このように成膜中に温度を下げても、初期温度により、柱状結晶が適度な結晶性を保持したまま、多孔質化が促進されていると考えることができる。また、成膜中に基板温度を低くしたため、柱状結晶は、初期層に影響されて比較的よい結晶性を保ったまま、微細構造をとって成長しており、比表面積が大きい膜が得られていると考えることができる。例えば、成膜中の基板温度を変化させた実施例1と、同じ条件で基板温度を各温度に固定して成膜した比較例3,8,13とでは、実施例1の変換効率が最も高いことが表1からわかる。
また、実施例2では、成膜初期に形成される層では、雰囲気圧力を1.33×10Pa(1Torr)とし、成膜中に2.66×10Pa(2Torr)に変化させている。雰囲気圧力を初期層の形成時よりも高くすることで、膜の微細構造の多孔質化が促進されるため、比表面積が大きい膜が得られていると考えることができる。実際に、表1によれば、実施例2と同じ条件で雰囲気圧力を固定して成膜した比較例13と比べ、実施例2の変換効率が、より高くなっていることがわかる。
また、実施例3では、酸素ガスの流量を成膜初期に形成される層では、1.2sccmとし、成膜中に0.4sccmへと変化させている。スパッタガスに対する酸素ガス流量を少なくした場合、酸化チタン半導体としてのバンドギャップが広がる効果があり、光の利用効率が向上する。この効果により、酸化チタン層での光吸収幅が広がり、より広い帯域の光を吸収できる構造になっていると考えることができる。表1によれば、実施例3と同じ条件で酸素ガス流量を0.4、0.5、0.8、1.0、1.2sccmのそれぞれに固定して成膜した比較例11〜15と比べて、実施例3の変換効率が最も高くなっていることがわかる。
実施例1〜3,比較例1〜15で用いたスパッタリング装置30に代えて、従来の高周波マグネトロンスパッタ装置を用いて電極用基材を作製した比較例16では、何れの色素増感太陽電池よりも変換効率が劣っていた。
以上説明した表1では、実施例1〜3として、基板温度、雰囲気ガス圧力、酸素ガス流量を個別に変更させたケースについて光電変換装置を作製したが、各パラメータを相互に変化させた場合の膜構造の変化についても検討した。結果を図6に纏める。図6に示すように、成膜処理中に基板温度を低温から高温へ、例えば100℃から300℃へ温度変化させるとともに雰囲気圧力を高圧から低圧へ、例えば2.66×10Paから1.33×10Paへ変化させた場合、柱状結晶の直径が最も太くなり結晶性も良くなった。基板温度を高温から低温へ(例えば300℃から100℃へ)温度変化させるとともに雰囲気圧力を低圧から高圧へ(例えば1.33×10Paから2.66×10Paへ)変化させた場合には、柱状結晶の直径が最も微細な形状に変化した。なお、基板温度を高温から低温に温度変化させるとともに雰囲気圧力を高圧から低圧にした場合、及び基板温度を低温から高温に温度変化させるとともに雰囲気圧力を低圧から高圧にした場合には、両パラメータの変化による効果が相殺され、変化が現れにくかった。
また、成膜処理中に酸素ガス流量比を多から少へ、例えば流量比1/250から1/750からへ変化させるとともに基板温度を高温から低温(例えば300℃から100℃)へ温度変化させた場合、結晶構造内に酸素欠陥が発生し、可視光帯域の光も吸収可能な2層の膜構造ができ、かつ柱状結晶の構造が微細化された。同じ酸素ガス流量変化で基板温度を高温から低温(例えば300℃から100℃)へ温度変化させた場合には、同様に結晶構造内に酸素欠陥が発生し、可視光帯域の光も吸収可能な2層の膜構造ができたが、柱状結晶の構造は太く変化し結晶性もよくなった。また、それぞれの基板温度変化に対して、酸素ガス流量を少から多へ、例えば流量比1/750から1/250からへ変化させた場合も同様の膜構造変化が観測された。
また、成膜処理中に酸素ガス流量比を多から少へ、例えば流量比1/250から1/750からへ変化させるとともに雰囲気圧力を高圧から低圧へ、例えば2.66×10Paから1.33×10Paへ変化させた場合、結晶構造内に酸素欠陥が発生し、可視光帯域の光も吸収可能な2層の膜構造ができ、かつ柱状結晶の構造が太く変化した。結晶性もよくなった。同じ酸素ガス流量変化で雰囲気圧力を1.33×10Paから2.66×10Paへ変化させた場合には、結晶構造内に酸素欠陥が発生し、可視光帯域の光も吸収可能な2層の膜構造ができたが、柱状結晶の構造は微細化された。また、それぞれの雰囲気圧力変化に対して、酸素ガス流量比を少から多へ、例えば流量比1/750から1/250からへ変化させた場合も同様の膜構造変化が観測された。
以上の結果から、スパッタリング装置30を用いたスパッタ法により作製した電極用基材を用いると、光電変換効率が良好な色素増感太陽電池を作製することができ、なおかつ、実施例1〜3のように、成膜中の成膜条件変化が色素増感太陽電池の性能向上に寄与していることがわかった。
したがって、スパッタ法により電極用基材を作製する際に、基板温度、雰囲気ガス圧力、酸素ガス流量等の成膜条件を制御することにより、半導体結晶層の層構造を制御でき、光電変換効率を上昇することができる。
以上、本発明の実施形態の一例について説明したが、本発明は、上述した実施の形態及び実施例に限定されるものでなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
本発明の実施の形態として示す光電変換装置の構造を説明する断面図である。 上記光電変換装置の電極基板を製造するための第1の実施の形態として示すスパッタリング装置を説明する構成図である。 第2の実施の形態として示すスパッタリング装置を説明する構成図である。 上記図3に示すスパッタリング装置内に配置される成膜対象の電極基板を示す模式図である。 (a)は、加熱なしで各酸素ガス流量比条件で成膜されてできた柱状結晶組織の層構造をX線回折法により観測した結果を示す図であり、(b)は、基板温度を300℃に保って、各酸素ガス流量比条件で成膜されてできた柱状結晶組織の層構造をX線回折法により観測した結果を示す図である。 実施例1〜3の成膜条件変化を同時に行ったときの膜構造の変化を説明する図である。 一般的な色素増感型太陽電池の基本構造を説明する断面図である。
符号の説明
1 光電変換装置、 11a 第1のガラス基板、 11b 第2のガラス基板、 12 アノード側透明電極層、 13 半導体結晶層、 14 色素、 15 カソード側透明電極層、 16 電荷移動層、 30 スパッタリング装置、 31 真空槽、 32 スパッタ源、 33 ターゲット、 34 配管、 35 スパッタリングガス供給源、 36 マスフローコントローラ(MFC)、 37 基板ホルダ、 38 開口、 39 開口、 40 ヒータ、 41 反応ガス供給源、 42 配管、 43 MFC、 44 反応ガス放出口、 45 真空排気系、 46 金属材料粒子、 50 スパッタリング装置、 51 真空槽、 52 スパッタ源、 53a,53b ターゲット、 54 隙間、 55 ガス導入口、 56 配管、 57 スパッタガス供給源、 58 MFC、 59 ガス放出口

Claims (27)

  1. 金属材料からなるターゲット表面にスパッタガスを流しながらターゲット表面壁をスパッタし、該スパッタされた上記ターゲットを構成する金属材料粒子と上記スパッタガスとを成膜対象物に到達させるとともに上記金属材料粒子と反応する反応ガスを上記成膜対象物に近い位置に放出させて、上記金属材料粒子と上記反応ガスとの反応物からなり該金属材料粒子が成膜対象物平面に対して垂直方向に成長した柱状の半導体結晶層を上記成膜対象物上に形成する成膜処理中に、
    上記成膜対象物の温度、上記スパッタガスの流量、上記反応ガスの流量、上記成膜雰囲気の圧力のうち少なくとも1つを変化させて上記半導体結晶層の特性及び構造を制御することを特徴とする電極用基材の製造方法。
  2. 上記金属材料でなるターゲットは、円筒状であり、該円筒状のターゲットの一方の開口と上記成膜対象物とを対向配置し、上記ターゲットの内部に上記スパッタガスを流しながらターゲット内壁をスパッタし、該スパッタされた上記金属材料粒子と上記スパッタガスとを上記開口から放出させて上記成膜対象物に到達させるとともに上記金属材料粒子と反応する上記反応ガスを上記成膜対象物に近い位置に放出することにより、上記半導体結晶層を上記成膜対象物上に形成する成膜処理であることを特徴とする請求項1記載の電極用基材の製造方法。
  3. 上記金属材料でなるターゲットは、2枚の金属平板を所定の隙間を設けて対向配置してなり、上記隙間の一端をガス導入口として、上記ガス導入口から上記隙間に上記スパッタガスを供給し、上記2枚のターゲットをスパッタし、上記隙間の他端を放出口とし、上記放出口から、スパッタされた上記金属材料粒子と、上記スパッタガスとを放出させ、上記成膜対象物に到達させるとともに上記金属材料粒子と反応する上記反応ガスを上記成膜対象物に近い位置に放出することにより、上記半導体結晶層を上記成膜対象物上に形成する成膜処理であることを特徴とする請求項1記載の電極用基材の製造方法。
  4. 成膜中の上記成膜対象物の温度を成膜初期よりも低下させて上記半導体結晶層の特性及び構造を制御することを特徴とする請求項1記載の電極用基材の製造方法。
  5. 上記成膜対象物の温度を成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させて上記半導体結晶層の特性及び構造を制御することを特徴とする請求項4記載の電極用基材の製造方法。
  6. 上記成膜処理中に上記反応ガス流量を上記スパッタガス流量の1/750〜1/250の間で変化させて上記半導体結晶層の特性及び構造を制御することを特徴とする請求項1記載の電極用基材の製造方法。
  7. 上記成膜処理中に上記成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させて上記半導体結晶層の特性及び構造を制御することを特徴とする請求項1記載の電極用基材の製造方法。
  8. 上記半導体結晶層が金属酸化物であることを特徴とする請求項1記載の電極用基材の製造方法。
  9. 上記金属酸化物が酸化チタンであることを特徴とする請求項8記載の電極用基材の製造方法。
  10. 透明基板と、
    多孔質半導体層とを備え、
    上記多孔質半導体層は、金属材料からなるターゲット表面にスパッタガスを流しながらターゲット表面壁をスパッタし、該スパッタされた上記ターゲットを構成する金属材料粒子と上記スパッタガスとを上記透明基板に到達させるとともに上記金属材料粒子と反応する反応ガスを上記透明基板に近い位置に放出させて、上記金属材料粒子と上記反応ガスとの反応物からなり該金属材料粒子が透明基板平面に対して垂直方向に成長した柱状の半導体結晶層を上記透明基板上に形成する成膜処理中に、上記透明基板の温度、上記スパッタガスの流量、上記反応ガスの流量、上記成膜雰囲気の圧力のうち少なくとも1つを変化させて該多孔質半導体層の特性及び構造を制御して形成されたものであることを特徴とする電極用基材。
  11. 上記金属材料でなるターゲットは、円筒状であり、該円筒状のターゲットの一方の開口と上記透明基板とを対向配置し、上記ターゲットの内部に上記スパッタガスを流しながらターゲット内壁をスパッタし、該スパッタされた上記金属材料粒子と上記スパッタガスとを上記開口から放出させて上記透明基板に到達させるとともに上記金属材料粒子と反応する上記反応ガスを上記透明基板に近い位置に放出することにより、上記多孔質半導体層が上記透明基板上に形成されていることを特徴とする請求項10記載の電極用基材。
  12. 上記金属材料でなるターゲットは、2枚の金属平板を所定の隙間を設けて対向配置してなり、上記隙間の一端をガス導入口として、上記ガス導入口から上記隙間に上記スパッタガスを供給し、上記2枚のターゲットをスパッタし、上記隙間の他端を放出口とし、上記放出口から、スパッタされた上記金属材料粒子と、上記スパッタガスとを放出させ、上記透明基板に到達させるとともに上記金属材料粒子と反応する上記反応ガスを上記透明基板に近い位置に放出することにより、上記多孔質半導体層が上記透明基板上に形成されていることを特徴とする請求項10記載の電極用基材。
  13. 成膜中の上記透明基板の温度を成膜初期よりも低下させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項10記載の電極用基材。
  14. 上記成膜対象物の温度を成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項13記載の電極用基材。
  15. 上記成膜処理中に上記反応ガス流量を上記スパッタガス流量の1/750〜1/250の間で変化させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項10記載の電極用基材。
  16. 上記成膜処理中に上記成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項10記載の電極用基材。
  17. 上記半導体結晶層が金属酸化物であることを特徴とする請求項10記載の電極用基材。
  18. 上記金属酸化物が酸化チタンであることを特徴とする請求項17記載の電極用基材。
  19. 少なくとも透明基板、透明電極、色素を吸着した多孔質半導体層、電荷移動層、及び対極を有する光電変換装置において、
    上記多孔質半導体層は、金属材料からなるターゲット表面にスパッタガスを流しながらターゲット表面壁をスパッタし、該スパッタされた上記ターゲットを構成する金属材料粒子と上記スパッタガスとを上記透明基板に到達させるとともに上記金属材料粒子と反応する反応ガスを上記透明基板に近い位置に放出させて、上記金属材料粒子と上記反応ガスとの反応物からなり該金属材料粒子が透明基板平面に対して垂直方向に成長した柱状の半導体結晶層を上記透明基板上に形成する成膜処理中に、上記透明基板の温度、上記スパッタガスの流量、上記反応ガスの流量、上記成膜雰囲気の圧力のうち少なくとも1つを変化させて該多孔質半導体層の特性及び構造を制御して形成されたものであることを特徴とする光電変換装置。
  20. 上記金属材料でなるターゲットは、円筒状であり、該円筒状のターゲットの一方の開口と上記透明基板とを対向配置し、上記ターゲットの内部に上記スパッタガスを流しながらターゲット内壁をスパッタし、該スパッタされた上記金属材料粒子と上記スパッタガスとを上記開口から放出させて上記透明基板に到達させるとともに上記金属材料粒子と反応する上記反応ガスを上記透明基板に近い位置に放出することにより、上記多孔質半導体層が上記透明基板上に形成されることを特徴とする請求項19記載の光電変換装置。
  21. 上記金属材料でなるターゲットは、2枚の金属平板を所定の隙間を設けて対向配置してなり、上記隙間の一端をガス導入口として、上記ガス導入口から上記隙間に上記スパッタガスを供給し、上記2枚のターゲットをスパッタし、上記隙間の他端を放出口とし、上記放出口から、スパッタされた上記金属材料粒子と、上記スパッタガスとを放出させ、上記透明基板に到達させるとともに上記金属材料粒子と反応する上記反応ガスを上記透明基板に近い位置に放出することにより、上記多孔質半導体層が上記透明基板上に形成されることを特徴とする請求項19記載の光電変換装置。
  22. 成膜中の上記透明基板の温度を成膜初期よりも低下させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項19記載の光電変換装置。
  23. 上記透明基板の温度を成膜初期に550℃〜200℃の間に設定し、成膜中に150℃〜25℃の間まで低下させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項22記載の光電変換装置。
  24. 上記成膜処理中に上記反応ガス流量を上記スパッタガス流量の1/750〜1/250の間で変化させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項19記載の光電変換装置。
  25. 上記成膜処理中に上記成膜雰囲気の圧力を2.66×10Pa〜1.33×10Paの間で変化させて上記多孔質半導体層の特性及び構造が制御されたことを特徴とする請求項19記載の光電変換装置。
  26. 上記半導体結晶層が金属酸化物であることを特徴とする請求項19記載の光電変換装置。
  27. 上記金属酸化物が酸化チタンであることを特徴とする請求項26記載の光電変換装置。
JP2005340801A 2005-11-25 2005-11-25 電極用基材及びその製造方法、並びに光電変換装置 Withdrawn JP2007149455A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340801A JP2007149455A (ja) 2005-11-25 2005-11-25 電極用基材及びその製造方法、並びに光電変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340801A JP2007149455A (ja) 2005-11-25 2005-11-25 電極用基材及びその製造方法、並びに光電変換装置

Publications (1)

Publication Number Publication Date
JP2007149455A true JP2007149455A (ja) 2007-06-14

Family

ID=38210621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340801A Withdrawn JP2007149455A (ja) 2005-11-25 2005-11-25 電極用基材及びその製造方法、並びに光電変換装置

Country Status (1)

Country Link
JP (1) JP2007149455A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072472B1 (ko) 2009-07-03 2011-10-11 한국철강 주식회사 광기전력 장치의 제조 방법
JP2013122987A (ja) * 2011-12-12 2013-06-20 Honda Motor Co Ltd 太陽電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072472B1 (ko) 2009-07-03 2011-10-11 한국철강 주식회사 광기전력 장치의 제조 방법
JP2013122987A (ja) * 2011-12-12 2013-06-20 Honda Motor Co Ltd 太陽電池の製造方法

Similar Documents

Publication Publication Date Title
Qin et al. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers
KR101430139B1 (ko) 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
EP2296216B1 (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
Cao et al. Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells
US20100248418A1 (en) Photoelectric converter, and transparent conductive substrate for the same
Xia et al. Sputtered Nb 2 O 5 as an effective blocking layer at conducting glass and TiO 2 interfaces in ionic liquid-based dye-sensitized solar cells
Gu et al. Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films
JP4197637B2 (ja) 光増感型太陽電池及びその製造方法
EP1667275A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010098088A1 (ja) 光増感色素の色素吸着方法及び吸着装置、色素増感太陽電池の製造方法及び製造装置、並びに色素増感太陽電池
Wang et al. Planar heterojunction perovskite solar cells with TiO2 scaffold in perovskite film
Chen et al. Growth of compact CH3NH3PbI3 thin films governed by the crystallization in PbI2 matrix for efficient planar perovskite solar cells
Ye et al. Effective and reproducible method for preparing low defects perovskite film toward highly photoelectric properties with large fill factor by shaping capping layer
US20130255761A1 (en) Electrode and dye-sensitized solar cell
JP2004039286A (ja) 光半導体電極の作製方法及び光電変換素子
Zhang et al. In situ growth of mirror-like platinum as highly-efficient counter electrode with light harvesting function for dye-sensitized solar cells
KR101628952B1 (ko) 탠덤 태양전지 및 그 제조방법
TWI492442B (zh) 基板及二次電池
JP2001345124A (ja) 化学修飾半導体電極、並びに、その製造方法及びそれを用いた光電池
JP2007149455A (ja) 電極用基材及びその製造方法、並びに光電変換装置
EP2442326A2 (en) Method for enhancing the conversion efficiency of CdSe-quantum dot sensitized solar cells
Ri et al. Effect of Polyethylene Glycol as Additive for Fully Screen-Printable Perovskite Solar Cells
KR20170106531A (ko) 티오시안산구리(CuSCN) 정공수송체 층 및 이의 제조방법
KR101406969B1 (ko) 고체 전해질 염료감응형 태양전지의 제조 방법 및 이에 이용되는 전해질 충진 장치
JP2002184477A (ja) 光半導体電極、その製造方法、及びそれを用いた光電変換素子

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203