JP2007149433A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2007149433A
JP2007149433A JP2005340290A JP2005340290A JP2007149433A JP 2007149433 A JP2007149433 A JP 2007149433A JP 2005340290 A JP2005340290 A JP 2005340290A JP 2005340290 A JP2005340290 A JP 2005340290A JP 2007149433 A JP2007149433 A JP 2007149433A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
internal pressure
state
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005340290A
Other languages
Japanese (ja)
Other versions
JP4958428B2 (en
Inventor
Shusuke Tsuzuki
秀典 都築
Shigeyuki Kuniya
繁之 國谷
Yuji Tsuchida
雄治 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2005340290A priority Critical patent/JP4958428B2/en
Publication of JP2007149433A publication Critical patent/JP2007149433A/en
Application granted granted Critical
Publication of JP4958428B2 publication Critical patent/JP4958428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery which can prevent burst of the battery and discharge of an electrolytic liquid due to misuse certainly, and can restore battery function when the misuse state is eliminated. <P>SOLUTION: The battery is provided with a reversible current flow shut-off means (41) of pressure operation type which, when the battery internal pressure increases, is operated by the internal pressure and forms a current flow shut-off state, and when the battery internal pressure decreases to a normal pressure, can release manually or automatically the current flow shut-off state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解液を含む発電要素が密閉状態で収容された密閉型電池に関し、たとえば防爆機能を有するアルカリ電池とくに一次電池に適用してとくに有効である。   The present invention relates to a sealed battery in which a power generation element including an electrolytic solution is housed in a sealed state, and is particularly effective when applied to, for example, an alkaline battery having an explosion-proof function, particularly a primary battery.

アルカリ電池は、アルカリ電解液を含む発電要素が封口ガスケットを用いて密閉封止されているが、充電やショート等により電池内圧が異常上昇して電池が破裂するのを防ぐために、封口ガスケットの一部を先行破断させて電池内のガスを外部へ逃がすようにした防爆機能が通常備えられている(たとえば、特許文献1)。   In an alkaline battery, a power generation element containing an alkaline electrolyte is hermetically sealed using a sealing gasket. However, in order to prevent an abnormal increase in the internal pressure of the battery due to charging, short-circuiting, or the like, the battery is prevented from bursting. An explosion-proof function is usually provided that allows the gas in the battery to escape to the outside by preliminarily breaking the part (for example, Patent Document 1).

図4は、従来のアルカリ乾電池の構成例を示す。同図に示すアルカリ乾電池101は、正極集電体と正極端子を兼ねる有底筒状の金属製正極缶15内に、アルカリ電解液を含む発電要素20が収容されている。   FIG. 4 shows a configuration example of a conventional alkaline battery. In an alkaline dry battery 101 shown in the figure, a power generation element 20 containing an alkaline electrolyte is accommodated in a bottomed cylindrical metal positive electrode can 15 that also serves as a positive electrode current collector and a positive electrode terminal.

発電要素20は、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともに環状または管状に成形した正極合剤21と、この正極合剤21の内側に装填された筒状セパレータ22と、このセパレータ22の内側に充填されたゲル状負極亜鉛23により形成されている。   The power generation element 20 includes a positive electrode mixture 21 in which a positive electrode active material such as manganese dioxide is formed into a ring shape or a tubular shape together with a conductive additive such as graphite, a cylindrical separator 22 loaded inside the positive electrode mixture 21, A gelled negative electrode zinc 23 filled inside the separator 22 is formed.

正極缶15の開口部は、負極端子板26や電気絶縁性の樹脂製封口ガスケット30などからなる封口部品によって気密封口されている。負極端子板26には負極集電子25がスポット溶接等により固定接続されている。   The opening of the positive electrode can 15 is hermetically sealed by a sealing component including the negative electrode terminal plate 26 and an electrically insulating resin sealing gasket 30. A negative electrode current collector 25 is fixedly connected to the negative electrode terminal plate 26 by spot welding or the like.

封口ガスケット30は、中央ボス部31、環状パッキング部32、中間隔壁部33、および薄肉部34を一体的に有する。中央ボス部31には負極集電子25を気密状態で貫通させる透孔が形成されている。   The sealing gasket 30 integrally includes a central boss portion 31, an annular packing portion 32, an intermediate partition wall portion 33, and a thin portion 34. The central boss portion 31 is formed with a through hole through which the negative electrode current collector 25 passes in an airtight state.

環状パッキング部32は、正極缶15の開口端部を内方にカシメ加工することにより、その開口端部と負極端子板26の周縁部との間に被圧状態で介在して気密シール状態を形成する。中間隔壁部33は、電池内圧が高くなったときに変形可能なように形成されている。薄肉部34は、電池内圧が異常上昇したときに先行破断して電池内のガスを外部へ逃がすように形成されている。このため、負極端子板26には、図示を省略するが、ガス抜き孔が設けられている。   The annular packing part 32 is interposed between the open end part and the peripheral part of the negative terminal plate 26 in a pressurized state by crimping the open end part of the positive electrode can 15 inward. Form. The intermediate partition wall 33 is formed so as to be deformable when the battery internal pressure increases. The thin-walled portion 34 is formed so that when the internal pressure of the battery abnormally increases, the thin-walled portion 34 is preliminarily broken to release the gas in the battery to the outside. For this reason, the negative electrode terminal plate 26 is provided with a gas vent hole (not shown).

上記のように、アルカリ乾電池等の密閉型電池では、電池内圧が異常上昇したときに作動して電池内のガスを逃がすことにより、電池の破裂を防止するようにした防爆機能が通常備えられている。
特開2001−126694
As described above, a sealed battery such as an alkaline battery normally has an explosion-proof function that prevents the battery from bursting by operating when the internal pressure of the battery abnormally increases and releasing the gas in the battery. Yes.
JP 2001-126694 A

上述した従来の密閉型電池には次のような問題のあることが判明した。すなわち、たとえばアルカリ乾電池の内圧が高くなって防爆機能が作動した場合、電池内のガスを外部へ逃がすことにより電池の破裂を防止することはできるが、そのガスが逃げるのと同時に高濃度のアルカリ電解液も外部へ逃がしてしまう。外部に出た電解液は機器を損傷させる。人体に付着した場合は火傷を起こす可能性がある。   It has been found that the above-described conventional sealed battery has the following problems. That is, for example, when the explosion-proof function is activated when the internal pressure of an alkaline battery increases, it is possible to prevent the battery from bursting by letting the gas in the battery escape to the outside, but at the same time the gas escapes, The electrolyte also escapes to the outside. Electrolyte that comes out will damage the equipment. Contact with the human body may cause burns.

一方、たとえばアルカリ乾電池の内圧が高くなる原因としては、機器に複数本の電池を直列に装填する際に1本だけ逆方向に誤装填してしまった場合、充電が禁止されている一次電池を誤って充電器に装填してしまった場合などがある。また、負極をリッチ(正極電気量よりも多く)にした電池では、過放電によってガス発生が起こり、内圧が高くなる。   On the other hand, for example, the internal pressure of an alkaline battery is increased because a primary battery whose charging is prohibited is charged when only one battery is erroneously loaded in the reverse direction. In some cases, the charger is accidentally loaded. Further, in a battery in which the negative electrode is rich (more than the amount of positive electrode electricity), gas is generated due to overdischarge, and the internal pressure increases.

このように、密閉型電池では単純な誤使用でも内圧が高くなる。誤使用状態が続いて内圧が一定限度を超えると、防爆機能が作動してガス抜きが行われるが、このガス抜きにともなって放出される電解液が、機器等に害を及ぼすという問題があった。   Thus, the internal pressure of the sealed battery increases even with simple misuse. If the internal pressure exceeds a certain limit due to continued misuse, the explosion-proof function is activated and the gas is vented.However, there is a problem that the electrolyte released when the gas is vented harms the equipment. It was.

本発明は上記のような問題を解決するものであって、その目的は、誤使用による電池の破裂および電解液の放出を確実に防止することができ、さらに、誤使用状態が解消されれば電池機能を復活させることができる密閉型電池を提供することにある。   The present invention solves the above problems, and its purpose is to reliably prevent battery rupture and electrolyte discharge due to misuse, and if the misuse state is eliminated. It is an object of the present invention to provide a sealed battery that can restore the battery function.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面からあきらかになるであろう。   Other objects and configurations of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明が提供する解決手段は以下のとおりである。   The solution provided by the present invention is as follows.

(1)電解液を含む発電要素が密閉状態で収容された密閉型電池において、電池内圧が高まった場合に、その内圧で作動して通電遮断状態を形成する一方、電池内圧が正常圧に低下した場合に、上記通電遮断状態の手動または自動による解除が可能な圧力作動式の可逆通電遮断手段を備えたことを特徴とする密閉型電池。   (1) In a sealed battery in which a power generation element including an electrolytic solution is housed in a sealed state, when the internal pressure of the battery increases, it operates at the internal pressure to form a cut-off state, while the internal pressure of the battery decreases to a normal pressure A sealed battery comprising pressure-actuated reversible energization interrupting means capable of releasing the energization interrupted state manually or automatically.

(2)上記手段(1)において、定常状態で負極集電子と接触させられている負極端子を有し、電池内圧が高まった場合に、上記負極端子が可逆変形することにより通電遮断状態が形成される一方、電池内圧が正常圧に低下した場合に、上記負極端子が元の形状に復帰することにより負極端子と負極集電子が再度接触して上記通電遮断状態の解除が可能な圧力作動式の可逆通電遮断手段を備えたことを特徴とする密閉型電池。   (2) The above means (1) has a negative electrode terminal brought into contact with the negative electrode current collector in a steady state, and when the internal pressure of the battery is increased, the negative electrode terminal is reversibly deformed to form an energization cut-off state. On the other hand, when the internal pressure of the battery is reduced to a normal pressure, the negative electrode terminal is restored to its original shape, so that the negative electrode terminal and the negative electrode current collector are brought into contact again to release the energization cut-off state. A sealed battery comprising a reversible energization interruption means.

(3)上記手段(1)において、電池内圧が高まった場合に、その内圧を受けて電池内部から電池外部の負極端子面よりも高い位置に突出する電気絶縁性の可動部材を備え、この可動部材によって上記圧力作動式の可逆通電遮断手段が形成されていることを備えたことを特徴とする密閉型電池。   (3) The above means (1) includes an electrically insulating movable member that protrudes from the inside of the battery to a position higher than the negative electrode terminal surface outside the battery when the internal pressure of the battery is increased. A sealed battery characterized in that the pressure-actuated reversible energization interruption means is formed by a member.

(4)上記手段(1)〜(3)のいずれかにおいて、電池内圧が異常上昇したときに部分的に破断されて電池内のガスを外部へ逃がす防爆機能を備えるとともに、上記圧力作動式の可逆通電遮断手段の作動圧力が上記の防爆機能の作動圧力よりも低いことを特徴とする密閉型電池。   (4) In any one of the above means (1) to (3), when the internal pressure of the battery is abnormally increased, the battery is partially broken and has an explosion-proof function for releasing the gas in the battery to the outside. A sealed battery characterized in that the operating pressure of the reversible energization interrupting means is lower than the operating pressure of the explosion-proof function.

誤使用による電池の破裂および電解液の放出を確実に防止することができ、さらに、誤使用状態が解消されれば電池機能を復活させることができる密閉型電池を提供することができる。   It is possible to provide a sealed battery that can reliably prevent battery rupture and electrolyte discharge due to misuse, and that can restore the battery function if the misuse state is resolved.

上記以外の作用/効果については、本明細書の記述および添付図面からあきらかになるであろう。   Operations / effects other than those described above will be apparent from the description of the present specification and the accompanying drawings.

図1は、本発明による密閉形電池の第1実施形態を示す。同図に示す密閉型電池10はLR型のアルカリ乾電池であって、正極集電体と正極端子を兼ねる有底筒状の金属製正極缶15内に、アルカリ電解液を含む発電要素20が収容されている。   FIG. 1 shows a first embodiment of a sealed battery according to the present invention. The sealed battery 10 shown in the figure is an LR type alkaline dry battery, and a power generation element 20 containing an alkaline electrolyte is accommodated in a bottomed cylindrical metal positive electrode can 15 which also serves as a positive electrode current collector and a positive electrode terminal. Has been.

発電要素20は、図示を省略するが、従来のアルカリ乾電池と同様、二酸化マンガン等の正極活物質を黒鉛等の導電助剤とともに環状または管状に成形した正極合剤と、この正極合剤の内側に装填された筒状セパレータと、このセパレータの内側に充填されたゲル状負極亜鉛により形成されている。   Although not shown in the figure, the power generation element 20 has a positive electrode mixture in which a positive electrode active material such as manganese dioxide is formed into a ring shape or a tubular shape together with a conductive auxiliary agent such as graphite, as in the case of a conventional alkaline battery, and the inside of the positive electrode mixture. And a gelled negative electrode zinc filled inside the separator.

負極亜鉛には棒状の金属製負極集電子25が挿入されている。正極缶15の開口部は、負極端子板26、補強板28、電気絶縁性の樹脂製封口ガスケット30などからなる封口部品によって気密封口されている。   A rod-shaped metal negative electrode current collector 25 is inserted into the negative electrode zinc. The opening of the positive electrode can 15 is hermetically sealed by a sealing component including a negative electrode terminal plate 26, a reinforcing plate 28, an electrically insulating resin sealing gasket 30, and the like.

封口ガスケット30は、中央ボス部31、環状パッキング部32、中間隔壁部33、および薄肉部34を一体的に有する。中央ボス部31には負極集電子25を気密状態で貫通させる透孔が形成されている。   The sealing gasket 30 integrally includes a central boss portion 31, an annular packing portion 32, an intermediate partition wall portion 33, and a thin portion 34. The central boss portion 31 is formed with a through hole through which the negative electrode current collector 25 passes in an airtight state.

環状パッキング部32は、正極缶15の開口端部を内方にカシメ加工することにより、その開口端部と負極端子板26の周縁部との間に被圧状態で介在して気密シール状態を形成する。中間隔壁部33は、電池内圧が高くなったときに変形可能なように形成されている。   The annular packing part 32 is interposed between the open end part and the peripheral part of the negative terminal plate 26 in a pressurized state by crimping the open end part of the positive electrode can 15 inward. Form. The intermediate partition wall 33 is formed so as to be deformable when the battery internal pressure increases.

薄肉部34は、電池内圧が異常上昇したときに先行破断して電池内のガスを外部へ逃がすように形成されている。このため、負極端子板26には、図示を省略するが、ガス抜き孔が設けられている。   The thin-walled portion 34 is formed so that when the internal pressure of the battery abnormally increases, the thin-walled portion 34 is preliminarily broken to release the gas in the battery to the outside. For this reason, the negative electrode terminal plate 26 is provided with a gas vent hole (not shown).

上記のように、実施形態の密閉型電池では、電池内圧が異常上昇したときに作動して電池内のガスを逃がすことにより、電池の破裂を防止するようにした防爆機能が通常備えられている。   As described above, the sealed battery according to the embodiment is normally provided with an explosion-proof function that prevents the battery from bursting by operating when the internal pressure of the battery abnormally increases and releasing the gas in the battery. .

さらに、実施形態の電池10では、同図の(a)に示すように、定常状態において、負極端子板26の内側中央面が負極集電子25の頭部に圧接触するように形成および設置されている。つまり、負極端子板26と負極集電子25は溶接ではなく、離反可能に接触する状態となっている。   Furthermore, in the battery 10 of the embodiment, as shown in FIG. 5A, the inner center surface of the negative electrode terminal plate 26 is formed and installed so as to be in pressure contact with the head of the negative electrode current collector 25 in a steady state. ing. That is, the negative electrode terminal plate 26 and the negative electrode current collector 25 are in contact with each other in a detachable manner, not by welding.

これとともに、封口ガスケット30の中間隔壁部33と負極端子板26の間にアクチェータ41が介在させられている。アクチェータ41は剛性を有するロッド状で、その基端部が中間隔壁部33に支持されるとともに、その先端部が負極端子板26の内側面に当接させられている。このアクチェータ41は独立の部品として形成してもよいが、ガスケット30と一体に形成してもよい。   At the same time, an actuator 41 is interposed between the intermediate partition wall 33 of the sealing gasket 30 and the negative terminal plate 26. The actuator 41 has a rigid rod shape, a base end portion of which is supported by the intermediate partition wall portion 33, and a distal end portion of which is in contact with the inner surface of the negative electrode terminal plate 26. The actuator 41 may be formed as an independent part, but may be formed integrally with the gasket 30.

上記密閉型電池10は、正常な保存状態あるいは使用状態にあって電池内圧が高くなっていない場合、同図の(a)に示すように、負極端子板26が負極集電子25に接触して両者間に通電状態が形成される。この状態のとき、電池10は正常使用可能である。   When the sealed battery 10 is in a normal storage state or use state and the internal pressure of the battery is not high, the negative electrode terminal plate 26 is in contact with the negative electrode current collector 25 as shown in FIG. An energized state is formed between them. In this state, the battery 10 can be used normally.

ところが、誤使用によって電池内圧が高くなると、同図の(b)に示すように、その高くなった内圧によってガスケット30の中間隔壁部33が上方すなわち負極端子板26側へ押圧されて変形する。この変形にともない、アクチェータ41が上方へ移動付勢されて、その先端部が負極端子板26を上方へ押圧する。この結果、負極端子板26が弾性変形させられて負極集電子25から離反する。   However, if the battery internal pressure increases due to misuse, the intermediate partition wall 33 of the gasket 30 is pressed upward, that is, toward the negative electrode terminal plate 26 by the increased internal pressure, as shown in FIG. Accompanying this deformation, the actuator 41 is urged to move upward, and its tip presses the negative terminal plate 26 upward. As a result, the negative electrode terminal plate 26 is elastically deformed and separated from the negative electrode current collector 25.

このように、誤使用によって電池内圧が高まって来ると、負極端子板が変形することにより通電遮断状態が形成される。つまり、電池内圧による作動で通電遮断状態を形成する。通電が遮断されると電池10内のガス発生は治まる。   In this way, when the battery internal pressure increases due to misuse, the negative electrode terminal plate is deformed to form an energization cut-off state. That is, the energization cut-off state is formed by the operation by the battery internal pressure. When energization is interrupted, gas generation in the battery 10 is stopped.

これにより、電池内圧が高くなると、ガスケット30の防爆機能を作動させる前に、その電池内圧が高くなる原因を自動的に解除させることができる。したがって、誤使用による電池10の破裂はもちろん、防爆機能の作動による電解液の漏出も確実に防止することができる。   As a result, when the battery internal pressure increases, the cause of the increase of the battery internal pressure can be automatically released before the explosion-proof function of the gasket 30 is activated. Therefore, not only the battery 10 can be ruptured due to misuse, but also leakage of the electrolyte due to the operation of the explosion-proof function can be reliably prevented.

この後、電池内圧を高くするような誤使用状態が是正されると、電池内圧は徐々に低下するが、電池内圧が正常範囲まで低下すると、同図の(a)に示すように、負極端子板26が元の形状に弾性復帰することにより、負極端子板26と負極集電子25が再度接触して上記通電遮断状態の解除がされ、電池10は最初の可使用状態に復帰する。   Thereafter, when the misuse state in which the battery internal pressure is increased is corrected, the battery internal pressure gradually decreases. However, when the battery internal pressure decreases to the normal range, as shown in FIG. When the plate 26 is elastically restored to its original shape, the negative electrode terminal plate 26 and the negative electrode current collector 25 come into contact again to release the energization cut-off state, and the battery 10 returns to the initial usable state.

以上のように、上述した密閉型電池10には、電池内圧が高まった場合に、その内圧で作動して通電遮断状態を形成する一方、電池内圧が正常圧に低下した場合に、上記通電遮断状態が自動解除される圧力作動式の可逆通電遮断手段が形成されている。これにより、誤使用による電池の破裂および電解液の放出を確実に防止することができ、さらに、誤使用状態が解消されれば電池機能を復活させることができる。   As described above, when the internal pressure of the battery increases, the sealed battery 10 described above operates at the internal pressure to form an energization cut-off state, while the energization cut-off occurs when the battery internal pressure decreases to a normal pressure. A pressure-actuated reversible energization shut-off means for automatically releasing the state is formed. As a result, battery rupture and electrolyte discharge due to misuse can be reliably prevented, and the battery function can be restored if the misuse state is resolved.

ここで、上記負極端子板26の弾性変形状態について、上記説明では、電池内圧の上昇によって弾性変形させられた負極端子板26が、電池内圧の低下によって自動的に元の形状に弾性復帰する構成とすることにより、上記通電遮断が自動解除されるようになっていたが、負極端子板26が図1の(a)と(b)の2通りの形状状態を保持するように形成されていれば、上記通電遮断を手動で解除させるようにすることができる。   Here, regarding the elastic deformation state of the negative electrode terminal plate 26, in the above description, the negative electrode terminal plate 26 elastically deformed by the increase in battery internal pressure automatically returns to its original shape when the battery internal pressure decreases. By doing so, the above-mentioned current interruption is automatically released, but the negative terminal plate 26 is formed so as to maintain the two shape states of FIG. 1 (a) and (b). In this case, the energization cutoff can be manually released.

すなわち、負極端子板26を、同図(a)に示すように、その中央面が電池内側(図では下方)に反りかえった第1の安定状態と、同図(b)に示すように、その中央面が電池外側(図では上方)へ反りかえった第2の安定状態とをとることができるように構成する。   That is, the negative electrode terminal plate 26 has a first stable state in which the center surface is warped toward the inside of the battery (downward in the drawing) as shown in FIG. The center surface of the battery is configured to be in a second stable state in which the battery is warped outward (upward in the drawing).

この場合、同図(a)に示す通電状態にある電池10が、誤使用によって電池内圧が高くなると、その内圧が一定限度に達したところで負極端子板26が上方へ反りかえって、同図(b)に示す通電遮断状態になる。   In this case, when the internal pressure of the battery 10 in the energized state shown in FIG. 5A is increased due to misuse, the negative electrode terminal plate 26 warps upward when the internal pressure reaches a certain limit, and FIG. ) Is turned off.

この通電遮断状態は電池内圧が低下した後も保持されるが、負極端子板26の中央面を外側から指等で押圧することにより、負極端子板26を下方へ反りかえらせて、同図(a)に示す通常状態に手動復帰させることができる。   Although this energization cut-off state is maintained even after the internal pressure of the battery is lowered, the negative electrode terminal plate 26 is warped downward by pressing the center surface of the negative electrode terminal plate 26 with a finger or the like from the outside. It is possible to manually return to the normal state shown in a).

このとき、電池内圧が高いままだと、負極端子板26は指等で押圧しても下方へ反りかえることができない。これにより、使用者は、電池が誤使用によって使用不可になったことを知ることができるとともに、誤使用状態を解消させた電池が使用可能な状態になったか否かも簡単に確認することができる。   At this time, if the battery internal pressure remains high, the negative electrode terminal plate 26 cannot be warped downward even when pressed with a finger or the like. Thus, the user can know that the battery has become unusable due to misuse, and can easily check whether the battery that has been misused can be used or not. .

図2は、本発明による密閉形電池の第2実施形態を示す。同図に示す密閉型電池10はLR型のアルカリ乾電池であって、電池としての基本構成は上記第1実施形態と同様である。したがって、以下の説明では、要部の特徴事項のみ示す。   FIG. 2 shows a second embodiment of a sealed battery according to the present invention. The sealed battery 10 shown in the figure is an LR type alkaline dry battery, and the basic configuration of the battery is the same as that of the first embodiment. Therefore, in the following description, only the features of the main part are shown.

この第2実施形態では、負極端子板26と負極集電子25がスポット溶接により固定接続されているとともに、その負極端子板26の中央面付近に複数(3箇所以上)の透孔27が等角間隔で設けられている。   In the second embodiment, the negative electrode terminal plate 26 and the negative electrode current collector 25 are fixedly connected by spot welding, and a plurality of (three or more) through holes 27 are equiangular near the center surface of the negative electrode terminal plate 26. It is provided at intervals.

封口ガスケット30は、同図の(a)と(b)に示すように、中央ボス部31、環状パッキング部32、中間隔壁部33、薄肉部34に加えて、上記透孔27から負極端子板26の外側(図では上方)へ突出移動可能な突軸部35が一体に形成されている。   As shown in FIGS. 5A and 5B, the sealing gasket 30 includes a central boss portion 31, an annular packing portion 32, an intermediate partition wall portion 33, and a thin portion 34, as well as from the through hole 27 to the negative electrode terminal plate. A projecting shaft portion 35 that can project and move to the outside (upward in the figure) of 26 is integrally formed.

この実施形態の密閉型電池10では、電池内が正常圧のときは、同図(a)に示すように、突軸部35が負極端子板26の外側端子面から突出しない定常位置に後退している。   In the sealed battery 10 of this embodiment, when the inside of the battery is at normal pressure, the protruding shaft portion 35 is retracted to a steady position where it does not protrude from the outer terminal surface of the negative electrode terminal plate 26, as shown in FIG. ing.

一方、誤使用等によって電池内圧が正常範囲を超えて高くなると、同図(b)に示すように、その内圧によって、ガスケット30の中央ボス部31が上方へ押されて移動する。この移動により、突軸部35が負極端子板26の外側端子面よりも高い位置まで押し出される。この動作は、ガスケット30の薄肉部34による防爆機能が作動する圧力よりも低い電池内圧で開始される。   On the other hand, when the battery internal pressure increases beyond the normal range due to misuse or the like, the central boss portion 31 of the gasket 30 is pushed upward and moved by the internal pressure, as shown in FIG. By this movement, the protruding shaft portion 35 is pushed out to a position higher than the outer terminal surface of the negative electrode terminal plate 26. This operation is started at a battery internal pressure lower than the pressure at which the explosion-proof function by the thin portion 34 of the gasket 30 is activated.

これにより、たとえば図3の(a)に示すように、機器の電池ホルダ部110に直列に装填された複数本の電池10,10,・・・のうち、1本だけが逆方向に装填されるという誤使用が行われたとしても、同図の(b)に示すように、上記突軸部35が電池外部へ突出して電池10,10間に絶縁セパレータとして介在することにより、その電池間の導通を自動的に遮断するようになる。   Thus, for example, as shown in FIG. 3A, only one of the plurality of batteries 10, 10,... Loaded in series in the battery holder 110 of the device is loaded in the reverse direction. As shown in FIG. 5B, the projecting shaft portion 35 protrudes outside the battery and is interposed between the batteries 10 and 10 as an insulating separator. The continuity is automatically cut off.

誤使用状態が解消されて、電池内圧が正常に戻った場合は、端子面から突出した突軸部35を手動で押し込むことにより、元の定常位置に復帰させることができる。   When the misuse state is resolved and the battery internal pressure returns to normal, the projecting shaft portion 35 protruding from the terminal surface can be manually pushed to return to the original steady position.

このように、第2の実施形態では、電池内圧が高まった場合に、その内圧を受けて電池10内部から電池外部の負極端子面よりも高い位置に突出する電気絶縁性の可動部材が形成され、この可動部材によって圧力作動式の可逆通電遮断手段が形成されている。   Thus, in the second embodiment, when the battery internal pressure increases, an electrically insulating movable member that protrudes from the inside of the battery 10 to a position higher than the negative electrode terminal surface outside the battery when the internal pressure increases is formed. The movable member forms a pressure actuated reversible energization interruption means.

第2の実施形態では、電池内圧が高くなったときに、ガスケット30の中央ボス部31が負極集電子25に対して摺動移動させられるが、電池内圧によって中央ボス部31に作用する押圧力すなわち移動駆動力はかなり強いので、ボス部31と負極集電子25間の圧迫力を減じる必要はない。したがって、中央ボス部31を摺動移動させても、それによって電池内の気密状態が阻害される懸念はない。   In the second embodiment, when the battery internal pressure becomes high, the central boss portion 31 of the gasket 30 is slid and moved with respect to the negative electrode current collector 25, but the pressing force acting on the central boss portion 31 by the battery internal pressure. That is, since the moving driving force is quite strong, it is not necessary to reduce the pressing force between the boss portion 31 and the negative electrode current collector 25. Therefore, even if the central boss portion 31 is slid and moved, there is no concern that the airtight state in the battery will be hindered.

図4に示した従来の構成を有するLR型アルカリ乾電池(従来例)と、図2に示した第1実施形態の構成を有するLR型アルカリ乾電池(実施例1)と、図2に示した第1実施形態の構成を有するLR型アルカリ乾電池(実施例2)をそれぞれ作製し、次のような漏液発生試験A〜Dを行った。   The LR type alkaline dry battery (conventional example) having the conventional configuration shown in FIG. 4, the LR type alkaline dry battery (Example 1) having the configuration of the first embodiment shown in FIG. 2, and the first type shown in FIG. LR type alkaline batteries (Example 2) having the configuration of one embodiment were respectively produced, and the following liquid leakage generation tests A to D were performed.

試験A:試験電池4本を電池ホルダに直列装填するとともに、その中の1本だけ、極性を逆に装填した。この状態で、4本直列の両端を24時間ショートさせて、漏液発生状況(漏液発生個数/試験個数)を調べた。
試験B:試験電池4本を電池ホルダに4本共正しい極性方向で直列装填した。この状態で、4本直列の両端を24時間ショートさせて、漏液発生状況(漏液発生個数/試験個数)を調べた。
試験C:従来例と実施例1の電池について、単体電池の正極端子と負極端子を2時間ショートさせた。この場合、実施例1の電池は通電遮断状態にさせた。このあと、その2種類の電池を1ヶ月置いた後の漏液発生状況(漏液発生個数/試験個数)を調べた。
試験D:従来例と実施例1の電池について、単体電池を10Ωで72時間放電させた場合の漏液の発生状況(漏液発生個数/試験個数)を調べた。
Test A: Four test batteries were loaded in series in the battery holder, and only one of them was loaded in reverse polarity. In this state, both ends of the four series were short-circuited for 24 hours, and the leakage occurrence state (number of leakage occurrence / number of tests) was examined.
Test B: Four test batteries were loaded in series in the correct polarity direction into the battery holder. In this state, both ends of the four series were short-circuited for 24 hours, and the leakage occurrence state (number of leakage occurrence / number of tests) was examined.
Test C: For the battery of the conventional example and Example 1, the positive electrode terminal and the negative electrode terminal of the single battery were short-circuited for 2 hours. In this case, the battery of Example 1 was turned off. Thereafter, the leakage occurrence situation (the number of leaks / the number of tests) after the two types of batteries had been placed for one month was examined.
Test D: Regarding the batteries of the conventional example and Example 1, the occurrence of leakage (the number of leaks / the number of tests) was examined when the unit cells were discharged at 10Ω for 72 hours.

表1は、上記試験A〜Dの結果を示す。

Figure 2007149433
Table 1 shows the results of the tests A to D.
Figure 2007149433

なお、試験C,Dについては、単体電池の試験なので、実施例2の電池については試験を行っていない。
表1からもあきらかなように、実施例1,2の電池は、典型的な誤使用を想定した試験でも、漏液発生の防止に非常に有効であることが判明した。
Since tests C and D are single battery tests, the battery of Example 2 is not tested.
As is clear from Table 1, the batteries of Examples 1 and 2 were found to be very effective in preventing leakage even in a test assuming typical misuse.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above.

誤使用による電池の破裂および電解液の放出を確実に防止することができ、さらに、誤使用状態が解消されれば電池機能を復活させることができる密閉型電池を提供することができる。   It is possible to provide a sealed battery that can reliably prevent battery rupture and electrolyte discharge due to misuse, and that can restore the battery function if the misuse state is resolved.

本発明による密閉形電池の第1実施形態を示す要部断面図である。It is principal part sectional drawing which shows 1st Embodiment of the sealed battery by this invention. 本発明による密閉形電池の第2実施形態を示す要部断面図である。It is principal part sectional drawing which shows 2nd Embodiment of the sealed battery by this invention. 図2に示した密閉型電池の動作例を示す要部側面図である。FIG. 3 is a side view of an essential part showing an operation example of the sealed battery shown in FIG. 2. 従来の密閉形電池の構成例を示す断面図である。It is sectional drawing which shows the structural example of the conventional sealed battery.

符号の説明Explanation of symbols

10 密閉型電池(アルカリ乾電池)
15 正極缶
20 発電要素
25 負極集電子
26 負極端子板
27 透孔
28 補強板
30 ガスケット
31 中央ボス部
32 環状パッキング部
33 中間隔壁部
34 薄肉部
35 突軸部
41 アクチェータ
10 Sealed battery (alkaline battery)
DESCRIPTION OF SYMBOLS 15 Positive electrode can 20 Power generation element 25 Negative electrode current collector 26 Negative electrode terminal board 27 Through hole 28 Reinforcement board 30 Gasket 31 Central boss part 32 Annular packing part 33 Intermediate partition part 34 Thin part 35 Projection shaft part 41 Actuator

Claims (4)

電解液を含む発電要素が密閉状態で収容された密閉型電池において、電池内圧が高まった場合に、その内圧で作動して通電遮断状態を形成する一方、電池内圧が正常圧に低下した場合に、上記通電遮断状態の手動または自動による解除が可能な圧力作動式の可逆通電遮断手段を備えたことを特徴とする密閉型電池。   In a sealed battery in which a power generation element containing an electrolytic solution is housed in a sealed state, when the battery internal pressure increases, it operates at that internal pressure to form a cut-off state, while the battery internal pressure decreases to a normal pressure A sealed battery comprising pressure-actuated reversible energization interruption means capable of manually or automatically releasing the energization interruption state. 請求項1において、定常状態で負極集電子と接触させられている負極端子を有し、電池内圧が高まった場合に、上記負極端子が可逆変形することにより通電遮断状態が形成される一方、電池内圧が正常圧に低下した場合に、上記負極端子が元の形状に復帰することにより負極端子と負極集電子が再度接触して上記通電遮断状態の解除が可能な圧力作動式の可逆通電遮断手段を備えたことを特徴とする密閉型電池。   2. The battery according to claim 1, wherein the battery has a negative electrode terminal that is in contact with the negative electrode current collector in a steady state, and when the internal pressure of the battery increases, the negative electrode terminal is reversibly deformed to form an energization cut-off state. When the internal pressure is reduced to normal pressure, the negative electrode terminal is restored to its original shape, so that the negative electrode terminal and the negative electrode current collector come into contact again to release the energization cut-off state. A sealed battery comprising: 請求項1において、電池内圧が高まった場合に、その内圧を受けて電池内部から電池外部の負極端子面よりも高い位置に突出する電気絶縁性の可動部材を備え、この可動部材によって上記圧力作動式の可逆通電遮断手段が形成されていることを備えたことを特徴とする密閉型電池。   The battery according to claim 1, further comprising an electrically insulating movable member that protrudes from the inside of the battery to a position higher than the negative electrode terminal surface outside the battery when the internal pressure of the battery increases, and the pressure operation is performed by the movable member. A sealed battery characterized in that a reversible energization interruption means of the type is formed. 請求項1〜3のいずれかにおいて、電池内圧が異常したときに部分的に破断されて電池内のガスを外部へ逃がす防爆機能を備えるとともに、上記圧力作動式の可逆通電遮断手段の作動圧力が上記の防爆機能の作動圧力よりも低いことを特徴とする密閉型電池。

4. The pressure-reversible reversal energizing means according to any one of claims 1 to 3, having an explosion-proof function of partially breaking when the battery internal pressure is abnormal and allowing the gas in the battery to escape to the outside. A sealed battery characterized by being lower than the operating pressure of the explosion-proof function.

JP2005340290A 2005-11-25 2005-11-25 Alkaline battery Active JP4958428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340290A JP4958428B2 (en) 2005-11-25 2005-11-25 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340290A JP4958428B2 (en) 2005-11-25 2005-11-25 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2007149433A true JP2007149433A (en) 2007-06-14
JP4958428B2 JP4958428B2 (en) 2012-06-20

Family

ID=38210604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340290A Active JP4958428B2 (en) 2005-11-25 2005-11-25 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4958428B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041791A (en) * 2012-08-23 2014-03-06 Toyota Motor Corp Sealed battery
JP2016521445A (en) * 2013-05-08 2016-07-21 ファオヴェー−ファオエム フォルシュングスゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Batteries with safety devices that can be reset and suitable pole studs for said batteries
WO2018159068A1 (en) * 2017-02-28 2018-09-07 株式会社カーメイト Battery unit
WO2020149350A1 (en) * 2019-01-18 2020-07-23 三洋電機株式会社 Sealed battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4423618Y1 (en) * 1966-06-24 1969-10-06
JPS4426009Y1 (en) * 1966-06-15 1969-10-31
JPS537622A (en) * 1976-07-07 1978-01-24 Shell Int Research Derivatives of 22cyanohexanic acid and method of its manufacturing
JP2002500415A (en) * 1997-12-26 2002-01-08 デュラセル インコーポレイテッド Pressure-responsive current breaker for electrochemical cells
JP2002124236A (en) * 2000-10-12 2002-04-26 Toyota Motor Corp Sealed battery
JP2005093203A (en) * 2003-09-17 2005-04-07 Fdk Energy Co Ltd Sealed alkaline battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4426009Y1 (en) * 1966-06-15 1969-10-31
JPS4423618Y1 (en) * 1966-06-24 1969-10-06
JPS537622A (en) * 1976-07-07 1978-01-24 Shell Int Research Derivatives of 22cyanohexanic acid and method of its manufacturing
JP2002500415A (en) * 1997-12-26 2002-01-08 デュラセル インコーポレイテッド Pressure-responsive current breaker for electrochemical cells
JP2002124236A (en) * 2000-10-12 2002-04-26 Toyota Motor Corp Sealed battery
JP2005093203A (en) * 2003-09-17 2005-04-07 Fdk Energy Co Ltd Sealed alkaline battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041791A (en) * 2012-08-23 2014-03-06 Toyota Motor Corp Sealed battery
JP2016521445A (en) * 2013-05-08 2016-07-21 ファオヴェー−ファオエム フォルシュングスゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Batteries with safety devices that can be reset and suitable pole studs for said batteries
US10615400B2 (en) 2013-05-08 2020-04-07 Vw Kraftwerk Gmbh Battery with a safety device which can be reset, and also suitable pole stud for the battery
EP2994949B1 (en) * 2013-05-08 2020-10-14 VW Kraftwerk GmbH Battery with a safety device which can be reset, and also suitable pole stud for said battery
WO2018159068A1 (en) * 2017-02-28 2018-09-07 株式会社カーメイト Battery unit
JP2018143040A (en) * 2017-02-28 2018-09-13 株式会社カーメイト Battery unit
WO2020149350A1 (en) * 2019-01-18 2020-07-23 三洋電機株式会社 Sealed battery
CN113302786A (en) * 2019-01-18 2021-08-24 三洋电机株式会社 Sealed battery
US11699834B2 (en) 2019-01-18 2023-07-11 Sanyo Electric Co., Ltd. Sealed battery
JP7410886B2 (en) 2019-01-18 2024-01-10 パナソニックエナジー株式会社 sealed battery

Also Published As

Publication number Publication date
JP4958428B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US3617386A (en) Sealed cell construction
KR100351608B1 (en) Explosion-proof nonaqueous electrolyte secondary cell and rupture pressure setting method therefor
JP2008530757A (en) End cap assembly and ventilation for high power batteries
JPH06196150A (en) Battery and manufacture of battery
JP2000504479A (en) Sealed electrochemical cell with circuit break terminal
JP4958428B2 (en) Alkaline battery
JP4806936B2 (en) Sealed battery
JPH07254402A (en) Sealed battery
US20130309529A1 (en) Cylindrical battery
CA2313796A1 (en) Pressure activated current interrupter for electrochemical cells
US3096216A (en) Valve for venting fluid
WO2015079672A1 (en) Cylindrical battery
JPH05205727A (en) Safety device for sealed battery
JP2006521678A (en) Seal for pressurized container
JP2007035447A (en) Sealed primary cell
WO2018116567A1 (en) Alkaline secondary battery
JP2008108603A (en) Cylindrical alkaline battery
JP2825868B2 (en) Cylindrical alkaline battery
JP2006202637A (en) Alkaline battery
JPH02117063A (en) Cylindrical alkaline battery
JP2006066175A (en) Sealed storage battery
JP2004063254A (en) Sealed type battery
JP2005216776A (en) Sealed storage battery and charger for the same
WO2022091862A1 (en) Power storage device, and method for manufacturing power storage device
JP4929563B2 (en) Overcharge protection method for lithium ion secondary battery pack

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250