JP2007147371A - Optical element measuring tool, optical element shape measuring device, and method - Google Patents

Optical element measuring tool, optical element shape measuring device, and method Download PDF

Info

Publication number
JP2007147371A
JP2007147371A JP2005340339A JP2005340339A JP2007147371A JP 2007147371 A JP2007147371 A JP 2007147371A JP 2005340339 A JP2005340339 A JP 2005340339A JP 2005340339 A JP2005340339 A JP 2005340339A JP 2007147371 A JP2007147371 A JP 2007147371A
Authority
JP
Japan
Prior art keywords
optical element
shape
measuring
jig
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005340339A
Other languages
Japanese (ja)
Other versions
JP4839798B2 (en
Inventor
Masayoshi Kamihira
真嘉 上平
Tadaharu Otsuka
忠晴 大塚
Hiromichi Nose
弘道 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005340339A priority Critical patent/JP4839798B2/en
Publication of JP2007147371A publication Critical patent/JP2007147371A/en
Application granted granted Critical
Publication of JP4839798B2 publication Critical patent/JP4839798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element measuring tool capable of holding highly accurately an optical element which is a measuring object, and performing decentering measurement in a shape measuring device. <P>SOLUTION: In this optical element measuring tool 10, since three spherical parts 30 are biased onto a fringe part PA of the optical element OE on a substrate 20 and allowed to abut thereon by an outer shape reference detection means 40, the outer shape reference of the optical element OE can be measured accurately. In this case, since the abutting portion which is constituted of the spherical parts has a shape processable easily with high accuracy, measurement accuracy can be heightened furthermore. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学素子の面形状を測定する際に用いる光学素子測定用治具に関し、かかる光学素子測定用治具を利用しての光学素子形状測定装置及び方法に関するものである。   The present invention relates to an optical element measurement jig used when measuring the surface shape of an optical element, and relates to an optical element shape measurement apparatus and method using such an optical element measurement jig.

光学素子の3次元的な表面形状を高精度に測定するための技術として、ワークに触針を接触させて、その変位量を測定する接触式測定法がある。   As a technique for measuring the three-dimensional surface shape of an optical element with high accuracy, there is a contact measurement method in which a stylus is brought into contact with a workpiece and the amount of displacement is measured.

この種の接触式測定法おいては、光学素子の表面形状を測定するばかりでなく、光学素子の外形基準に対する光学面の位置ずれ、すなわち偏芯を測定することが必要となる場合がある。このような偏心の測定を可能にするものとして、例えば、治具上に位置決め治具を配置して光学素子の位置決めを行なうことにより外形を基準とする光軸ずれを測定する形状測定装置が開発されている(特許文献1参照)。
特開2002−71344号公報
In this type of contact measurement method, it is sometimes necessary not only to measure the surface shape of the optical element, but also to measure the positional deviation of the optical surface relative to the external reference of the optical element, that is, the eccentricity. As a device that can measure such eccentricity, for example, a shape measuring device has been developed that measures the optical axis misalignment with respect to the outer shape by positioning the optical element by placing a positioning jig on the jig. (See Patent Document 1).
JP 2002-71344 A

しかし、上述のような形状測定装置では、位置決め治具が治具ホルダ上に固定的に取り付けられているだけであり、位置決め治具が安定して光学素子の外形に接触しない。そのため位置決め治具接触により算出される光学素子の外形基準、すなわち当該光学素子の外形形状から算出される当該光学素子の中心の測定精度が低下する可能性がある。また、この位置決め治具は柱状の外形を有するため、加工精度を高めること困難な形状であり精度良い測定には不向きである。さらに、柱状の位置決め治具によって光学素子の横方向の移動を制限するだけであるので、治具を反転して光学素子の両面を測定するような構成を行う場合に光学素子が脱落する恐れがある。   However, in the shape measuring apparatus as described above, the positioning jig is fixedly mounted on the jig holder, and the positioning jig does not stably contact the outer shape of the optical element. Therefore, there is a possibility that the measurement accuracy of the center of the optical element calculated from the outer shape reference of the optical element calculated by the positioning jig contact, that is, the outer shape of the optical element may be lowered. In addition, since this positioning jig has a columnar outer shape, it is difficult to increase the processing accuracy and is not suitable for accurate measurement. Furthermore, since the horizontal movement of the optical element is only limited by the columnar positioning jig, there is a risk that the optical element may fall off when the jig is reversed to measure both sides of the optical element. is there.

そのため、光学素子両面を測定するためには、その都度光学素子をはずして表裏を反転、計測する工程が必要となり、効率的な測定ができない。更に光学素子自体を一旦外すため、当該光学素子の両光学面の偏芯を精度よく測定できない可能性がある。   For this reason, in order to measure both sides of the optical element, a step of removing the optical element and inverting and measuring each time is necessary, and efficient measurement cannot be performed. Furthermore, since the optical element itself is once removed, the eccentricity of both optical surfaces of the optical element may not be accurately measured.

そこで、本発明は、形状測定装置において被測定物である光学素子の外形基準を高精度に測定可能であり、かつ加工精度にも優れた光学素子測定用治具を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical element measuring jig that can measure an outer shape reference of an optical element, which is an object to be measured, in a shape measuring apparatus with high accuracy and is excellent in processing accuracy. .

また、本発明は、反転させた場合にも光学素子の脱落が生じない光学素子測定用治具を提供することを目的とする。   Another object of the present invention is to provide an optical element measuring jig that does not drop off even when inverted.

また、本発明は、上記のような光学素子測定用治具を用いた光学素子の面形状測定装置及び方法を提供することを目的とする。   It is another object of the present invention to provide an optical element surface shape measuring apparatus and method using the optical element measuring jig as described above.

上記課題を解決するため、(a)測定対象となる光学素子を載置する、第一面及び該第一面の裏面に相当する第二面とを有する基板と、(b)一部が前記基板に支持され、既知の球面形状を有する球面部を前記光学素子側面部に光軸と垂直な方向から当接可能に備えた外形基準検知手段と、を有する光学素子測定用治具であって、(c)前記外形基準検知手段は、当接した球面部を測定することにより前記光学素子の外形基準が把握できるよう前記基板の複数位置に配置され、複数の外形基準検知手段内の少なくとも一つは、前記光学素子を押圧するような付勢力を以って当接可能に構成されている。ここで、球面部について「既知の球面形状」とは、球面であること、つまり形状測定により曲率中心が求められることが予め把握可能な形状であることを意味する。   In order to solve the above problems, (a) a substrate having a first surface on which an optical element to be measured is placed and a second surface corresponding to the back surface of the first surface; An optical element measurement jig comprising: an external reference detecting means supported on a substrate and provided with a spherical surface portion having a known spherical shape so as to be able to contact the side surface portion of the optical element from a direction perpendicular to the optical axis. (C) The outer shape reference detection means is arranged at a plurality of positions of the substrate so that the outer shape reference of the optical element can be grasped by measuring the spherical surface portion in contact, and at least one of the plurality of outer shape reference detection means. One is configured to be able to come into contact with an urging force that presses the optical element. Here, the “known spherical shape” for the spherical surface means that it is a spherical surface, that is, a shape in which it is possible to grasp in advance that the center of curvature is obtained by shape measurement.

上記光学素子測定用治具では、複数の外形基準検知手段接手段の少なくとも1つを基板上の光学素子の外縁部に対して付勢力を以って当接することができるので、光学素子の外縁部に対して外形基準検知手段の球面部を安定して保持又は配置することができる。よって、光学素子の外縁部から精度よく外形基準、すなわち光学素子の中心を求めることができる。また当接する部位は球面部で構成されているため、その他の形状に比べて高精度で加工し易いというメリットがある。   In the optical element measuring jig, at least one of the plurality of external reference detecting means contact means can be brought into contact with the outer edge portion of the optical element on the substrate with a biasing force. The spherical surface portion of the outer shape reference detection means can be stably held or arranged with respect to the portion. Therefore, it is possible to accurately obtain the outer shape reference, that is, the center of the optical element from the outer edge portion of the optical element. Further, since the abutting portion is constituted by a spherical portion, there is a merit that it is easy to process with high accuracy compared to other shapes.

本発明の具体的な態様又は観点では、前記複数の外形基準検知手段の各球面部は、前記光学素子に対し、前記光学素子の外周を等分割する位置でそれぞれ当接するように配置されている。この場合、球面部による光学素子のより安定な支持が可能になり、球面部を利用した偏芯計測の精度をより高めることができる。   In a specific aspect or aspect of the present invention, each spherical surface portion of the plurality of outer shape reference detection means is disposed so as to abut on the optical element at a position where the outer periphery of the optical element is equally divided. . In this case, the optical element can be more stably supported by the spherical portion, and the accuracy of the eccentricity measurement using the spherical portion can be further increased.

本発明の更に別の態様では、前記複数の外形基準検知手段の内、前記光学素子を押圧するような付勢力を以って当接する外形基準検知手段は、前記基板に支持された支持部と前記球面部との間に弾性部材を有するとともに、前記弾性部材と球面部との間(弾性部材の一部と球面部との間を含む)であって前記弾性部材による前記光学素子に対する付勢力を調整可能な調整手段を有する。この場合、外縁部の輪郭のサイズや形状が異なる光学素子の計測も高精度で行うことができる。なお、「弾性部材と球面部との間」の調整手段とは、実施形態に示されるようなバネ端部に調整手段を設ける場合の他、バネの一部の固定箇所を変えることで弾性力による付勢力を調整する調整手段であってもよい。   In still another aspect of the present invention, of the plurality of outer shape reference detection means, the outer shape reference detection means that contacts with an urging force that presses the optical element includes a support portion supported by the substrate. An elastic member is provided between the spherical portion and the biasing force between the elastic member and the spherical portion (including between the part of the elastic member and the spherical portion) against the optical element by the elastic member. It has an adjustment means which can adjust. In this case, measurement of optical elements having different outline sizes and shapes of the outer edge portions can be performed with high accuracy. Note that the adjustment means “between the elastic member and the spherical surface portion” is not limited to the case where the adjustment means is provided at the end of the spring as shown in the embodiment. Adjustment means for adjusting the urging force by may be used.

本発明の更に別の態様では、前記光学素子の光軸と垂直な面に複数箇所で当接し、前記光学素子を前記基板との間に挟持して前記光学素子の光軸方向の位置規制を行う複数の挟持手段を備える。この場合、光学素子を光軸方向に関しても基板上に確実に固定することができ、基板を上下反転させた計測も可能になる。なお、「光軸と垂直な面に当接」とは、実施形態に示されるような光学素子のフランジに相当する外縁部のような平坦面は勿論のこと、多少の光軸と垂直な面から傾きを持って形成された面であってもよく、要は実質的に光軸方向への押圧力が最大又はこれに準じて効率的となるような面に当接するものであればよい。   In still another aspect of the present invention, the optical element is in contact with a surface perpendicular to the optical axis at a plurality of locations, and the optical element is sandwiched between the substrate and the optical element in the optical axis direction is regulated. A plurality of clamping means are provided. In this case, the optical element can be reliably fixed on the substrate also in the optical axis direction, and measurement with the substrate turned upside down is also possible. “Abutting on a surface perpendicular to the optical axis” means not only a flat surface corresponding to the flange of the optical element as shown in the embodiment but also a surface perpendicular to some optical axis. In other words, the surface may be formed so as to be inclined with respect to the surface. In short, it may be any surface as long as it is in contact with a surface that has a maximum or substantially equivalent pressing force in the optical axis direction.

本発明の更に別の態様では、前記複数の外形基準検知手段のうち2つの外形基準検知手段の球面部は、前記基板に載置される光学素子の光軸方向からみた外形形状の一辺に対応する位置の側面部に当接するよう構成されている。この場合、矩形の輪郭を有する光学素子のように、光学素子を光軸方向からみた場合に少なくとも1辺を有するような外形形状を有する光学素子であっても、安定的に保持して精度よい外形基準測定が可能となる。   In still another aspect of the invention, the spherical portion of two of the plurality of outer shape reference detection means corresponds to one side of the outer shape of the optical element placed on the substrate viewed from the optical axis direction. It is comprised so that it may contact | abut to the side part of the position to perform. In this case, even an optical element having an outer shape having at least one side when the optical element is viewed from the optical axis direction, such as an optical element having a rectangular outline, is stably held and accurate. External reference measurement is possible.

本発明の更に別の態様では、前記複数の外形基準検知手段のうち2つの外形基準検知手段の球面部は、当接する側面部の当接箇所間に、前記光学素子の突起部が配置されるよう構成されている。この場合、成形時に形成されるゲートの切断跡等の突起物を避けた計測が可能となる。   In still another aspect of the present invention, the projection of the optical element is arranged between the contact portions of the side surface portions of the spherical surface portions of the two outer shape reference detection devices of the plurality of outer shape reference detection devices. It is configured as follows. In this case, it is possible to perform measurement while avoiding protrusions such as gate cut marks formed during molding.

本発明の更に別の態様では、前記光学素子を押圧するよう付勢力を以って挟持する前記挟持手段は、前記光学素子を押圧する押圧力をF(N)とするとき、以下の範囲
0.1<F<10
を満足する。下限を下回ると光学素子の外縁部を基板に十分な力で押し付けることができないため、光学素子が不用意に移動してしまうこととなる。また、上限を上回ると、光学素子の外縁部を過剰な力で押し付けるため、光学素子が歪んで計測結果に悪影響を与えることになる。
In still another aspect of the present invention, the clamping means that clamps the optical element with an urging force to press the optical element has the following range when the pressing force pressing the optical element is F (N): .1 <F <10
Satisfied. If the lower limit is not reached, the outer edge portion of the optical element cannot be pressed against the substrate with a sufficient force, so that the optical element is moved carelessly. If the upper limit is exceeded, the outer edge of the optical element is pressed with an excessive force, so that the optical element is distorted and the measurement result is adversely affected.

本発明の更に別の態様では、光学素子を押圧するよう付勢力を以って当接する前記外形基準検知は、前記光学素子を押圧する押圧力をF’(N)とするとき、
以下の範囲
0.01<F’<1
を満足する。下限値を下回ると、外形基準検知手段と光学素子の外周部との密着度が十分に確保できず、外形を正確に測定することができない。 また、上限値を上回ると、光学素子を歪ませてしまい、同様に外形を正確に測定することができない。
In still another aspect of the present invention, when the outer shape reference detection that abuts with an urging force to press the optical element is F ′ (N) as a pressing force for pressing the optical element,
The following range: 0.01 <F ′ <1
Satisfied. If the lower limit is not reached, the degree of adhesion between the outer shape reference detecting means and the outer peripheral portion of the optical element cannot be sufficiently secured, and the outer shape cannot be measured accurately. If the upper limit value is exceeded, the optical element is distorted, and the outer shape cannot be measured accurately.

本発明の更に別の態様では、前記基板は、載置された光学素子を前記第一及び第二面のいずれの方からも測定可能な開口部を備えている。この場合、光学素子を基板に載置したまま表面側からだけでなく開口を介して裏面側からも計測することができる。このことにより、表面形状の中心と裏面形状の中心とのずれ、すなわち、表面と裏面との相対偏芯を測定することが可能となる。。   In still another aspect of the present invention, the substrate includes an opening capable of measuring the placed optical element from either the first surface or the second surface. In this case, measurement can be performed not only from the front surface side but also from the back surface side through the opening while the optical element is placed on the substrate. This makes it possible to measure the deviation between the center of the surface shape and the center of the back surface shape, that is, the relative eccentricity between the front surface and the back surface. .

本発明の更に別の態様では、前記挟持手段は、少なくとも3つ以上備えている。この場合、光学素子を基板上に安定して確実に固定することができる。   In still another aspect of the present invention, the clamping means includes at least three. In this case, the optical element can be stably and reliably fixed on the substrate.

本発明の更に別の態様では、前記挟持手段が前記光学素子と当接する接触部は、球状に構成されている。接触部が球状であるとは、半球等の凸の曲面で接触可能な形状を有することを意味する。この場合、当接箇所が点接触に近い状態となるため、複数箇所の当接でも面的な接触と比較して光学素子の傾きが防止でき、より測定の精度を高めることができる。   In still another aspect of the present invention, the contact portion where the clamping means comes into contact with the optical element is formed in a spherical shape. That the contact portion is spherical means having a shape that can be contacted by a convex curved surface such as a hemisphere. In this case, since the contact portion is in a state close to a point contact, the tilt of the optical element can be prevented as compared with the planar contact even at a plurality of contact points, and the measurement accuracy can be further improved.

本発明の更に別の態様では、前記光学素子に対して、前記外形基準検知手段と前記挟持手段とが当接する各位置は、前記光学素子の光軸方向から見て互いに異なる位置に交互に配置されるよう構成している。この場合、外形基準検知手段と前記挟持手段とがともに外周を略均等に分割した位置で外周の当接又は挟持を行うことができるので、外形基準検知手段による計測を容易かつ高精度にしつつ、光学素子の固定を確実にすることができる。   In still another aspect of the invention, the positions where the outer shape reference detection unit and the clamping unit abut on the optical element are alternately arranged at different positions when viewed from the optical axis direction of the optical element. It is configured to be. In this case, both the outer shape reference detection means and the sandwiching means can perform contact or clamping of the outer periphery at a position where the outer periphery is substantially equally divided, so that the measurement by the outer shape reference detection means is easy and highly accurate. The fixing of the optical element can be ensured.

また本発明では、上述した様な光学素子測定用治具を備えた光学素子形状測定装置を提供できる。この場合、精度の出しやすい治具を用いて、精度の高い外形基準を測定できる測定装置を提供できる。   Moreover, in this invention, the optical element shape measuring apparatus provided with the jig | tool for optical element measurement as mentioned above can be provided. In this case, it is possible to provide a measuring apparatus capable of measuring a highly accurate external reference using a highly accurate jig.

また上述した光学素子測定用治具を用いた光学素子形状測定方法により、精度の高い外形基準測定が可能となる。   In addition, by the optical element shape measuring method using the optical element measuring jig described above, it is possible to perform highly accurate external reference measurement.

また上述した本発明の光学素子形状測定方法において別の態様では、ゲートカット部を有する外形を有する光学素子は、前記光学素子の光軸方向からみて前記挟持手段の当接位置と前記ゲートカット部とがオーバーラップする位置に配置される。この場合、光学素子の周囲を挟んで確実に固定することができるだけでなく、光学素子成形時に生ずるゲート跡等の突起部を用いて挟持部材で挟持でき、外形基準検知手段は当該突起部を避けた配置が可能となる。   Further, in another aspect of the optical element shape measuring method of the present invention described above, the optical element having an outer shape having a gate cut portion includes the contact position of the clamping means and the gate cut portion as viewed from the optical axis direction of the optical element. And are arranged at positions where they overlap. In this case, not only can the periphery of the optical element be securely fixed, but also a pinching member such as a gate mark generated during molding of the optical element can be used to hold the pin, and the outer shape reference detection means can avoid the protrusion. Placement is possible.

また上記形状測定装置の別態様では、前記基板の第一面と第二面とを反転可能に保持する保持部を備えており、これにより光学素子を載置したままで表面及び裏面の測定が可能となり、表面形状の中心と裏面形状の中心とのずれ、すなわち、表面と裏面との相対偏芯を測定することが可能となる。   In another form of the shape measuring apparatus, the first and second surfaces of the substrate are provided with a holding unit that can be reversed so that the front and back surfaces can be measured while the optical element is placed. This makes it possible to measure the deviation between the center of the surface shape and the center of the back surface shape, that is, the relative eccentricity between the front surface and the back surface.

またこのような保持部を備えた形状測定装置を用いた光学素子形状測定方法により、光学素子を載置したままで表面及び裏面の測定が可能となり、表面形状の中心と裏面形状の中心とのずれ、すなわち、表面と裏面との相対偏芯を測定することが可能となる。   Further, the optical element shape measuring method using the shape measuring apparatus having such a holding unit enables measurement of the front surface and the back surface while the optical element is placed, and the center of the front surface shape and the center of the back surface shape can be measured. Deviation, that is, relative eccentricity between the front surface and the back surface can be measured.

〔第1実施形態〕
以下、本発明の第1実施形態に係る光学素子測定用治具を図面を用いて説明する。図1(a)は、面形状測定用の光学素子測定用治具の平面図であり、図1(b)は、図1(a)の光学素子測定用治具のAA矢視断面図である。また、図2(a)は、図1(a)に示す治具の中央部の部分拡大平面図であり、図2(b)は、図2(a)に対応する部分拡大断面図である。
[First Embodiment]
Hereinafter, an optical element measuring jig according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a plan view of an optical element measurement jig for measuring a surface shape, and FIG. 1B is a cross-sectional view of the optical element measurement jig of FIG. is there. 2 (a) is a partially enlarged plan view of the central portion of the jig shown in FIG. 1 (a), and FIG. 2 (b) is a partially enlarged sectional view corresponding to FIG. 2 (a). .

光学素子測定用治具10は、被測定対象である光学素子OEを保持して不図示の面形状測定装置の保持部にセットするためのものであり、かかる面形状測定装置において、光学素子OEの光学面の形状を表側と裏側から計測できるようにするとともに、光学素子OEの偏芯を計測することができるようにしている。光学素子測定用治具10は、以上の目的で、以下に詳述する、基板20と、球面部30を有する外形基準検知手段40と、挟持装置50と、球状被計測部材60と、回転制限部材70とを備える。   The optical element measuring jig 10 is for holding the optical element OE to be measured and setting it on a holding part of a surface shape measuring device (not shown). In such a surface shape measuring device, the optical element OE is used. The shape of the optical surface can be measured from the front side and the back side, and the eccentricity of the optical element OE can be measured. For the above purpose, the optical element measuring jig 10 is described in detail below, and includes a substrate 20, an outer shape reference detecting means 40 having a spherical surface portion 30, a clamping device 50, a spherical measured member 60, and a rotation limiter. Member 70.

基板20は、四角形の厚板上の外観を有し、第一面とその裏面に第二面を有している。中央には光学素子OEを載置するための円形ステージ21を有している。円形ステージ21は、中央に開口22を有しており、開口22の縁部分で光学素子OEの外縁部PAを支持する。これにより、円形ステージ21すなわち基板20上に支持された光学素子OEを図1(a)に示す表側と反対の裏側と両側から観察することができ、面形状測定装置(後述)の計測用の触針を、図2(a)、2(b)に示す光学素子OEの両光学面OS1,OS2に下ろすことができる。なお、基板20は、外形基準検知手段40、挟持装置50、及び球状被計測部材60を、光学素子OEの保持位置の周囲の適所に支持する際の支持体としても機能する。   The substrate 20 has an appearance on a rectangular thick plate, and has a first surface and a second surface on the back surface. A circular stage 21 for mounting the optical element OE is provided at the center. The circular stage 21 has an opening 22 at the center, and supports the outer edge PA of the optical element OE at the edge of the opening 22. Thereby, the optical element OE supported on the circular stage 21, that is, the substrate 20 can be observed from the back side and both sides opposite to the front side shown in FIG. 1A, and is used for measurement by a surface shape measuring apparatus (described later). The stylus can be lowered onto both optical surfaces OS1 and OS2 of the optical element OE shown in FIGS. 2 (a) and 2 (b). The substrate 20 also functions as a support for supporting the outer shape reference detection means 40, the clamping device 50, and the spherical member to be measured 60 at appropriate positions around the holding position of the optical element OE.

球面部30は、基板20上に3つ配置された略同一形状の球体であり、後述する外形基準検知手段40の一部として、先端にそれぞれ固定されている。各球面部30は、既知の球面形状を有しており、図2に示すように、光学素子OEの外縁部PAの側面に当接する。各球面部30が光学素子OEの側面に当接する位置は、外縁部PAを3等分した均等な位置に対応しており、光学素子OEの中心から120°異なる3方向(光軸OAのまわりに等分割された方向)に配置されている。なおここでの等分した位置には、厳密に等分された位置だけでなく、ほぼ等分となる位置も含む。各球面部30は、付勢されて、光学素子OEの外縁部PAの側面に当接するとともに、外縁部PAの側面をこれに対して垂直な方向から適当な大きさの押圧力で押圧する。各球面部30に付与する押圧力は、光学素子OEの材料やサイズにも依存するが、光学素子OEの形状に歪みを与えない程度とするものとし、かつ、球面部30と外縁部PA側面との密着度が十分に確保できる程度とする。具体的には、この押圧力をF’(N)とするとき、0.01<F’<1程度となるようにする。このようにして、既知の球面形状を有する3つの球面部30を外縁部PAの適所に適度の密着させることにより、外縁部PAの中心を求めることができ、光学素子OEの光軸OAとの位置ずれ量である偏芯を算出することもできる。   The spherical portion 30 is a sphere having substantially the same shape arranged on the substrate 20 and is fixed to the tip as a part of an outer shape reference detection means 40 described later. Each spherical portion 30 has a known spherical shape, and comes into contact with the side surface of the outer edge portion PA of the optical element OE as shown in FIG. The position where each spherical portion 30 abuts on the side surface of the optical element OE corresponds to an equal position obtained by dividing the outer edge PA into three equal parts, and is in three directions (around the optical axis OA) that are 120 ° different from the center of the optical element OE. Are arranged in the same direction. Here, the equally divided positions include not only strictly equal positions but also substantially equal positions. Each spherical portion 30 is urged to abut against the side surface of the outer edge portion PA of the optical element OE, and presses the side surface of the outer edge portion PA from a direction perpendicular thereto with a pressing force having an appropriate magnitude. The pressing force applied to each spherical portion 30 depends on the material and size of the optical element OE, but is set to such an extent that the shape of the optical element OE is not distorted, and the side surface of the spherical portion 30 and the outer edge PA. The degree of close contact with can be secured sufficiently. Specifically, when this pressing force is F ′ (N), the relationship is about 0.01 <F ′ <1. In this way, the three spherical portions 30 having a known spherical shape are appropriately brought into close contact with the appropriate position of the outer edge portion PA, whereby the center of the outer edge portion PA can be obtained, and the optical axis OA of the optical element OE can be obtained. It is also possible to calculate the eccentricity that is the amount of displacement.

なおここで複数の外形基準検知手段における各球面部30は、全て付勢力を以って光学素子側面に押圧するよう当接するよう構成されている必要はなく、いずれか少なくとも一つがそのように当接するものであればよい。この場合、他の外形基準検知手段40は基板に対して固定的に配置されているものであってよい。 Here, it is not necessary for each spherical surface portion 30 in the plurality of outer shape reference detection means to be configured to abut against the side surface of the optical element with an urging force, and at least one of them is applied as such. It only has to be in contact. In this case, the other external shape reference detection means 40 may be fixedly arranged with respect to the substrate.

外形基準検知手段40は、先端に球面部30を固定したロッド41と、ロッド41を軸方向に滑らかに移動させる摺動機構42と、ロッド41を先端側に付勢するバネ43aを内蔵するとともにばねの根元位置を調節する付勢部材43とを備える。ロッド41は、図2(a)に示すように、円形ステージ21に刻設された溝21aに案内された状態で溝21aに沿って往復移動する。摺動機構42は、基板20上面に固設されたガイドであり、ロッド41の根元側が嵌合しており、ロッド41の軸方向に沿った滑らかな移動を可能にしている。付勢部材43は、基板20上面に着脱可能に取り付けられた機構であり、弾性部材であるバネ43aに付勢されて突出しようとするピン43bによって、ロッド41を先端方向に付勢することができるとともに、光学素子OEの外縁部PA側面に球面部30を所定の力で押し付けることができる。ここで、付勢部材43は、バネ43aやピン43bを収納し外周にネジを形成したアジャスタ部43cを調整手段として備えており、アジャスタ部43cのねじ込み量の調整によって、バネ43aの根元位置を微調整することができる。このアジャスタ部43cにより、ロッド41の標準的な位置やロッド41に対する付勢力を適宜調整することができる。また、アジャスタ部43cの調節により、被測定対象である光学素子OEのサイズを変更した場合にも一定範囲で対応することができる。   The external reference detecting means 40 incorporates a rod 41 having a spherical portion 30 fixed to the tip, a sliding mechanism 42 that smoothly moves the rod 41 in the axial direction, and a spring 43a that biases the rod 41 toward the tip. And an urging member 43 that adjusts the root position of the spring. As shown in FIG. 2A, the rod 41 reciprocates along the groove 21 a while being guided by the groove 21 a carved in the circular stage 21. The sliding mechanism 42 is a guide fixedly provided on the upper surface of the substrate 20, and the base side of the rod 41 is fitted therein, and enables smooth movement along the axial direction of the rod 41. The urging member 43 is a mechanism that is detachably attached to the upper surface of the substrate 20. The urging member 43 urges the rod 41 in the distal direction by a pin 43 b that is urged by a spring 43 a that is an elastic member. In addition, the spherical portion 30 can be pressed against the side surface of the outer edge PA of the optical element OE with a predetermined force. Here, the urging member 43 is provided with an adjuster 43c that houses the spring 43a and the pin 43b and has a screw formed on the outer periphery as an adjusting means, and the base position of the spring 43a is adjusted by adjusting the screwing amount of the adjuster 43c. Fine adjustments can be made. With this adjuster portion 43c, the standard position of the rod 41 and the urging force against the rod 41 can be adjusted as appropriate. Further, even when the size of the optical element OE to be measured is changed by adjusting the adjuster 43c, it is possible to cope with a certain range.

挟持装置50は、3つの板バネ状の挟持部材51と、各挟持部材51を支持する支持枠52とを備える。各挟持部材51の先端部の裏面には、図2(b)等に示すように、光学素子OEの外縁部PAの上面に当接する接触部51aが形成されている。各接触部51aは、外形が半球状で、外縁部PAに当接して光学素子OEを基板20の板面に垂直な光軸OA方向に付勢しつつ、外縁部PAを基板20との間に挟持する。各接触部51aに付与する押圧力は、光学素子OEの材料やサイズにも依存するが、光学素子OEの形状に歪みを与えない程度とするものとし、かつ、接触部51aの付勢力に起因する摩擦力によって光学素子OEの移動が妨げられる程度とする。具体的には、この押圧力をF(N)とするとき、0.1<F<10程度となるようにする。接触部51aは、支持枠52の先端部を半球状に加工したり、円弧状の先端を有する板状にしたり、支持枠52の先端部に鋼球を取り付けたりすることによって形成できる。一方、支持枠52は、光学素子OEの周囲から挟持部材51の根元側を支持しており、各挟持部材51は、光学素子OEの中心に向けて120°異なる方向から延びている。つまり、3つの挟持部材51の先端に設けた3つの接触部51aの位置は、外縁部PAを3等分した均等な位置に対応している。このように、3つの接触部51aによって外縁部PAを点接触で均等に支持することにより、光学素子OEを高精度で安定して支持することができる。   The clamping device 50 includes three leaf spring-shaped clamping members 51 and a support frame 52 that supports each clamping member 51. As shown in FIG. 2B and the like, a contact portion 51a that contacts the upper surface of the outer edge portion PA of the optical element OE is formed on the back surface of the front end portion of each clamping member 51. Each contact portion 51 a has a hemispherical outer shape, abuts against the outer edge portion PA and urges the optical element OE in the direction of the optical axis OA perpendicular to the plate surface of the substrate 20, and the outer edge portion PA between the substrate 20 and the contact portion 51 a. Pinch. The pressing force to be applied to each contact portion 51a depends on the material and size of the optical element OE, but should not be distorted in the shape of the optical element OE, and is caused by the biasing force of the contact portion 51a. The movement of the optical element OE is hindered by the frictional force. Specifically, when this pressing force is F (N), the condition is about 0.1 <F <10. The contact portion 51 a can be formed by processing the tip of the support frame 52 into a hemispherical shape, forming a plate having an arcuate tip, or attaching a steel ball to the tip of the support frame 52. On the other hand, the support frame 52 supports the base side of the clamping member 51 from the periphery of the optical element OE, and each clamping member 51 extends from a direction different by 120 ° toward the center of the optical element OE. That is, the positions of the three contact portions 51a provided at the tips of the three clamping members 51 correspond to an equal position obtained by dividing the outer edge portion PA into three equal parts. In this way, by uniformly supporting the outer edge PA by point contact by the three contact portions 51a, the optical element OE can be stably supported with high accuracy.

なお、各挟持部材51は、支持枠52に対して着脱可能になっており、光学素子OEの形状のサイズや形状に合わせて交換できる。挟持部材51を交換する際には、光学素子OEの形状に合わせて反り具合等を調節することにより、各接触部51aに付与する付勢力を調整できる。また、挟持部材51を形成するバネ材料としては、ベリリウム合金、リン青銅、ステンレス等を用いることができる。   Each clamping member 51 is detachable from the support frame 52 and can be exchanged according to the size and shape of the optical element OE. When the clamping member 51 is replaced, the urging force applied to each contact portion 51a can be adjusted by adjusting the degree of warpage according to the shape of the optical element OE. Further, as a spring material for forming the holding member 51, beryllium alloy, phosphor bronze, stainless steel, or the like can be used.

球状被計測部材60は、基板20上に3つ配置された略同一形状の球体であり、基板20上に設けた固定部材25によって基板20に位置ずれしないようにしっかりと固定されている。なお、基板20上において球状被計測部材60を固定した位置には、開口23が形成されており、固定部材25に固定された球状被計測部材60を図1(a)に示す表側と反対の裏側との両側から観察することができ、面形状測定装置(後述)の触針を球状被計測部材60の上下面に接触させて当該上下面をなぞるように移動させることができる。   The spherical member 60 to be measured is a spherical body having substantially the same shape arranged on the substrate 20, and is firmly fixed to the substrate 20 by a fixing member 25 provided on the substrate 20. In addition, the opening 23 is formed in the position which fixed the spherical to-be-measured member 60 on the board | substrate 20, and the spherical to-be-measured member 60 fixed to the fixing member 25 is opposite to the front side shown to Fig.1 (a). It can be observed from both sides of the back side, and the stylus of a surface shape measuring device (described later) can be moved so that it touches the upper and lower surfaces of the spherical member 60 and traces the upper and lower surfaces.

回転制限部材70は、全体として扇状の外形を有し、基板20中央に取り付けられた円形ステージ21の一部であって、1つの挟持部材51の下方に固定されている。回転制限部材70は、光学素子OE側に凹部71を有しており、この凹部71と光学素子OEに形成された主に平坦部FPとが係合することによって光学素子OEの光軸OAのまわりの回転位置が調節される。以上の平坦部FP及び突起部PPは、外縁部PAの輪郭に関して隣接部と異なる不規則部であり、光学素子OEの射出成形時によって不可避的に形成され、このうち突起部PPの先端は、ゲートカット部と呼ばれる。凹部71の位置は、1つの挟持部材51の下側となっており、平坦部FPや突起部PPが3つの球面部30が接することを回避している。このように、球面部30が平坦部FPや突起部PPに接することを防止することによって、外縁部PAの検出精度が低下することを防止できる。なお、以上において、不規則部とは、光学素子のゲートカット部のように曲面の一部に存在する凹凸状の部分や、円形の一部をカットしたDカット形状の光学素子における当該直線状の外形部分などを含み、輪郭形状の大部分とは異なる外形形状部分をいう。   The rotation limiting member 70 has a fan-shaped outer shape as a whole, is a part of the circular stage 21 attached to the center of the substrate 20, and is fixed below one clamping member 51. The rotation limiting member 70 has a concave portion 71 on the optical element OE side, and the concave portion 71 and the flat portion FP formed in the optical element OE engage with each other to engage the optical axis OA of the optical element OE. The rotation position around is adjusted. The flat part FP and the protrusion part PP described above are irregular parts different from the adjacent part with respect to the outline of the outer edge part PA, and are inevitably formed by the injection molding of the optical element OE. It is called a gate cut part. The position of the concave portion 71 is below the one clamping member 51, and the flat portion FP and the projecting portion PP are prevented from contacting the three spherical surface portions 30. Thus, by preventing the spherical portion 30 from coming into contact with the flat portion FP and the protrusion PP, it is possible to prevent the detection accuracy of the outer edge portion PA from being lowered. In the above description, the irregular portion is an uneven portion present on a part of a curved surface, such as a gate cut portion of an optical element, or a linear shape in a D-cut optical element obtained by cutting a part of a circle. This means an outer shape portion that is different from most of the contour shape.

図3(a)は、回転制限部材70の部分拡大図であり、図3(b)は、図3(a)の回転制限部材70の変形例を示す。図3(a)に示すように、光学素子OEの外周に直線状の平坦部FPと矩形の突起部PPとが形成されている場合、回転制限部材70に設けた凹部71は、平坦部FPに対応する形状の直線部分71aと突起部PPと嵌り合う溝部分71bとを有する。なお、図3(b)に示すように、光学素子OEの外周にゲートカット部を先端に有する単なる突起部PPが形成されている場合、回転制限部材170に設けた凹部171は、このような突起部PPと嵌り合う溝部分171aを有する。   3A is a partially enlarged view of the rotation limiting member 70, and FIG. 3B shows a modification of the rotation limiting member 70 of FIG. 3A. As shown in FIG. 3A, when the linear flat part FP and the rectangular protrusion part PP are formed on the outer periphery of the optical element OE, the concave part 71 provided in the rotation restricting member 70 has the flat part FP. And a groove portion 71b that fits with the protrusion PP. As shown in FIG. 3B, when a simple protrusion PP having a gate cut portion at the tip is formed on the outer periphery of the optical element OE, the recess 171 provided in the rotation limiting member 170 is It has a groove portion 171a that fits into the protrusion PP.

以上説明した光学素子測定用治具10において、3つの球面部30と、3つの接触部51aとは、光学素子OEの外縁部PAに沿って等間隔で互い違いに配置されている。この結果、球面部30と接触部51aとの干渉を防止しつつ両者を効率的に配置でき、球面部30や光学素子OEの光学面OS1の計測を確実にすることができ、その作業性を高めることができる。   In the optical element measurement jig 10 described above, the three spherical surface portions 30 and the three contact portions 51a are alternately arranged at equal intervals along the outer edge portion PA of the optical element OE. As a result, both can be efficiently arranged while preventing interference between the spherical portion 30 and the contact portion 51a, and the measurement of the optical surface OS1 of the spherical portion 30 and the optical element OE can be ensured. Can be increased.

図4(a)及び4(b)は、図1に示す光学素子測定用治具10を用いた面形状測定装置100の構造を説明する正面図及び側面図である。この面形状測定装置100は、定盤81上に、XYステージ装置82と、Z駆動装置84とを固定した構造を有する。XYステージ装置82やZ駆動装置84の動作は、制御装置99によって制御されている。   FIGS. 4A and 4B are a front view and a side view for explaining the structure of the surface shape measuring apparatus 100 using the optical element measuring jig 10 shown in FIG. The surface shape measuring apparatus 100 has a structure in which an XY stage device 82 and a Z driving device 84 are fixed on a surface plate 81. The operations of the XY stage device 82 and the Z drive device 84 are controlled by the control device 99.

XYステージ装置82は、説明を省略する駆動機構に駆動されて動作し、XYステージ装置82の上部に設けた載置台82a上に着脱可能に固定された光学素子測定用治具10を、XY面内で2次元的に任意の位置に滑らかに移動させることができる。光学素子測定用治具10の位置は、載置台82aに設けたXミラー83aとYミラー83bとを利用して検出される。すなわち、Xミラー83aに対向して定盤81上に取り付けたレーザ干渉計83dを利用して載置台82aのX軸方向の位置が分かる。また、Yミラー83bに対向して定盤81上に取り付けたレーザ干渉計83eを利用して載置台82aのY軸方向の位置が分かる。   The XY stage device 82 operates by being driven by a driving mechanism that is not described, and the optical element measuring jig 10 that is detachably fixed on a mounting table 82 a provided on the XY stage device 82 is attached to the XY plane. Can be smoothly moved to an arbitrary position two-dimensionally. The position of the optical element measurement jig 10 is detected using an X mirror 83a and a Y mirror 83b provided on the mounting table 82a. That is, the position of the mounting table 82a in the X-axis direction can be determined by using the laser interferometer 83d mounted on the surface plate 81 so as to face the X mirror 83a. Further, the position of the mounting table 82a in the Y-axis direction can be determined using a laser interferometer 83e mounted on the surface plate 81 so as to face the Y mirror 83b.

Z駆動装置84は、フレーム85上に昇降機構86を固定したものであり、昇降機構86は、フレーム85上部に固定されZ方向に伸びる支持軸86aと、支持軸86aに支持されてZ軸方向に移動する昇降部材86bと、昇降部材86bを昇降させる昇降駆動手段(不図示)と、昇降部材86bに支持された触針保持部86dと、触針保持部86dに昇降可能に支持された触針PRとを備える。   The Z drive device 84 has a lifting mechanism 86 fixed on a frame 85. The lifting mechanism 86 is fixed to the upper portion of the frame 85 and extends in the Z direction, and is supported by the support shaft 86a to be in the Z axis direction. Elevating member 86b that moves up and down, elevating drive means (not shown) that elevates and lowers elevating member 86b, stylus holding portion 86d supported by elevating member 86b, and touch supported by elevating member holding portion 86d so that it can be raised and lowered A needle PR.

昇降機構86は、昇降部材86bが支持軸86aに非接触に支持されて滑らかに昇降運動する。昇降保持部86dは触針PRを保持しており、これに伴って滑らかに昇降運動する。なお触針PRは、先端に一定の負荷を掛けた状態で高精度で滑らかに昇降することができるようにフィードバックをかけて不図示の昇降駆動手段を動作させている。結果的に、触針PRを低応力で昇降させつつ、XYステージ装置82を適宜動作させて光学素子測定用治具載置した光学素子OEを2次元的に走査するように移動させるならば、触針PRの先端を光学素子測定用治具10に固定した光学素子OEの光学面等に沿って2次元的に移動させることができる。この際、触針PRの先端位置は、触針PRとともに昇降する部材の上端に設けたZミラー91aを利用して検出される。すなわち、Zミラー91aに対向してフレーム85上に取り付けたレーザ干渉計91bを利用して触針PR下端のZ軸方向の位置が分かる。   The elevating mechanism 86 moves up and down smoothly with the elevating member 86b supported by the support shaft 86a in a non-contact manner. The elevating / lowering holding portion 86d holds the stylus PR, and smoothly moves up and down accordingly. The stylus PR operates feedback driving means (not shown) by applying feedback so that the tip can be smoothly moved up and down with high accuracy in a state where a constant load is applied to the tip. As a result, if the XY stage device 82 is appropriately operated while moving the stylus PR up and down with low stress to move the optical element OE placed on the optical element measurement jig so as to scan two-dimensionally, The tip of the stylus PR can be moved two-dimensionally along the optical surface of the optical element OE fixed to the optical element measuring jig 10. At this time, the tip position of the stylus PR is detected by using a Z mirror 91a provided at the upper end of a member that moves up and down together with the stylus PR. That is, the position of the lower end of the stylus PR in the Z-axis direction can be determined using the laser interferometer 91b mounted on the frame 85 so as to face the Z mirror 91a.

図5は、図4に示す面形状測定装置を用いた測定方法の手順を説明するフローチャートである。   FIG. 5 is a flowchart for explaining the procedure of the measuring method using the surface shape measuring apparatus shown in FIG.

最初に、光学素子OEを図4の面形状測定装置100にセットする(ステップS10)。この工程は、ロボットに行わせることもできるが通常オペレータが行う。内容を具体的に説明すると、光学素子OEの表側の光学面OS1を上側にして、光学素子測定用治具10上に取り付ける(図1参照)。つまり、3つの板バネ状の挟持部材51を取り除いた状態で、3つの外形基準検知手段40を解除状態として、光学素子OEを円形ステージ21上に載置する。その後、3つの外形基準検知手段40を係止状態となるように取り付けて、光学素子OEの周囲から3つの球面部30保持を付勢するとともに、3つの板バネ状の挟持部材51を固定位置に取り付ける。これにより、光学素子OEの固定が完了する。この場合も、光学素子OEの外縁部PAが、3つの球面部30によって周囲から保持され、3つの板バネ状の挟持部材51によって基板20との間に挟持されて固定される。この際、光学素子OEの外縁部PAが、3つの球面部30によって周囲から適当な力で付勢され、3つの板バネ状の挟持部材51によって基板20の表側に付勢されて固定される。その後、このように光学素子OEを固定した光学素子測定用治具10をXYステージ装置82上の載置台82aに固定する。   First, the optical element OE is set in the surface shape measuring apparatus 100 of FIG. 4 (step S10). This step can be performed by a robot, but is usually performed by an operator. More specifically, the optical element OS is mounted on the optical element measuring jig 10 with the optical surface OS1 on the front side of the optical element OE facing upward (see FIG. 1). That is, the optical element OE is placed on the circular stage 21 with the three outer reference detecting means 40 in the released state with the three leaf spring-like holding members 51 removed. Thereafter, the three external reference detecting means 40 are attached so as to be locked, and the three spherical surface portions 30 are held from the periphery of the optical element OE, and the three leaf spring-like holding members 51 are fixed. Attach to. Thereby, fixation of the optical element OE is completed. Also in this case, the outer edge portion PA of the optical element OE is held from the periphery by the three spherical surface portions 30 and is sandwiched and fixed between the substrate 20 by the three leaf spring-like sandwiching members 51. At this time, the outer edge portion PA of the optical element OE is urged from the periphery by the three spherical surface portions 30 with an appropriate force, and is urged and fixed to the front side of the substrate 20 by the three leaf spring-like holding members 51. . Thereafter, the optical element measuring jig 10 to which the optical element OE is thus fixed is fixed to the mounting table 82 a on the XY stage device 82.

次に、基板20の周辺部に配置された3つの球状被計測部材60の表面形状を計測することによって、表側の面頂点座標系を測定する(ステップS11)。具体的には、各球状被計測部材60の頂点近傍に触針PRを配置した状態で、XYステージ装置82を動作させて球状被計測部材60の表面に対して触針PRを例えば十字に移動させつつ、駆動装置84を動作させて触針PR先端を球面部30の表面から離れないように移動させる。これにより、各球状被計測部材60の中心が算出される。   Next, the surface vertex coordinate system on the front side is measured by measuring the surface shapes of the three spherical members 60 arranged on the periphery of the substrate 20 (step S11). Specifically, in a state where the stylus PR is arranged near the apex of each spherical member to be measured 60, the XY stage device 82 is operated to move the stylus PR to the surface of the spherical member to be measured 60, for example, in a cross shape. Then, the drive device 84 is operated to move the tip of the stylus PR so as not to leave the surface of the spherical portion 30. Thereby, the center of each spherical measured member 60 is calculated.

次に、光学素子OEの周囲に配置された3つの球面部30の表面形状を計測することによって、面頂点座標を測定する(ステップS12)。具体的には、各球面部30の頂点近傍に触針PRを配置した状態で、XYステージ装置82を動作させて球面部30の表面に対して触針PRを十字移動を行わせつつ、駆動装置84を動作させて触針PR先端を球面部30の表面から離れないように移動させる。これにより、各球面部30の中心が算出される。   Next, the surface vertex coordinates are measured by measuring the surface shapes of the three spherical portions 30 arranged around the optical element OE (step S12). Specifically, in a state where the stylus PR is disposed in the vicinity of the apex of each spherical surface portion 30, the XY stage device 82 is operated to drive the stylus PR while performing a cross movement with respect to the surface of the spherical surface portion 30. The device 84 is operated to move the tip of the stylus PR so as not to leave the surface of the spherical portion 30. Thereby, the center of each spherical part 30 is calculated.

次に、光学素子OEの外縁部PAの中心に対応する表面外形基準位置を算出する(ステップS13)。ここで、表面外形基準位置は、外縁部PAの側面が真円であると仮定して、3つの球面部30の中心が通る円の中心を算出して得られた座標とする。なお、外形基準位置の計算方法は、3つの球面部30の中心が通る円を求めるものに限らず、様々な幾何的計算方法を用いることができる。   Next, a surface contour reference position corresponding to the center of the outer edge PA of the optical element OE is calculated (step S13). Here, the surface contour reference position is a coordinate obtained by calculating the center of a circle through which the centers of the three spherical portions 30 pass, assuming that the side surface of the outer edge PA is a perfect circle. Note that the calculation method of the outer shape reference position is not limited to a method for obtaining a circle through which the centers of the three spherical portions 30 pass, and various geometric calculation methods can be used.

次に、光学素子OEの表側の光学面OS1の表面形状を測定する(ステップS14)。具体的には、光学素子OEの光学面OS1上方に触針PRを配置した状態で、XYステージ装置82を動作させて光学素子OEに対して触針PRを2次元的に走査移動させつつ、駆動装置84を動作させて触針PR先端を光学面OS1から離れないように移動させる。これにより、2次元的な表面形状データが得られる。   Next, the surface shape of the optical surface OS1 on the front side of the optical element OE is measured (step S14). Specifically, while the stylus PR is disposed above the optical surface OS1 of the optical element OE, the XY stage device 82 is operated to scan and move the stylus PR two-dimensionally with respect to the optical element OE. The drive device 84 is operated to move the tip of the stylus PR so as not to leave the optical surface OS1. Thereby, two-dimensional surface shape data is obtained.

次に、ステップS14で得た表面形状データを設計値でフィッティングする座標変換を行う(ステップS15)。具体的には、表面形状データをZとし、設計値をZ0とし、これらの差分であるZd=Z0−Zの最小2乗平均値(RMS)が最小になるように座標変換を行う。この際、座標変換に必要なデータが座標変換データとして保管される。   Next, coordinate transformation for fitting the surface shape data obtained in step S14 with design values is performed (step S15). Specifically, the surface shape data is Z, the design value is Z0, and coordinate conversion is performed so that the least mean square value (RMS) of Zd = Z0−Z that is the difference between these is minimized. At this time, data necessary for coordinate conversion is stored as coordinate conversion data.

次に、光学素子OEの表面外形偏芯を算出する(ステップS16)。ここで、光学素子OEの表面外形偏芯は、外縁部PAの中心に相当する外形基準位置が光学素子OEに関する光学面OS1の表面形状の計測値から得た光軸OAからずれている量とする。なお、光学素子OEの表面形状は、ステップS15で得た座標変換後の表面形状データに対応するものとなっている。   Next, the surface contour eccentricity of the optical element OE is calculated (step S16). Here, the surface outer shape eccentricity of the optical element OE is the amount by which the outer shape reference position corresponding to the center of the outer edge PA is shifted from the optical axis OA obtained from the measured value of the surface shape of the optical surface OS1 related to the optical element OE. To do. The surface shape of the optical element OE corresponds to the surface shape data after coordinate conversion obtained in step S15.

次に、光学素子測定用治具10を裏返して不図示の面形状測定装置の保持部にセットする(ステップS17)。この工程は、ロボットに行わせることもできるが通常オペレータが行ってもよい又は行うことが好ましい。内容を具体的に説明すると、光学素子OEを固定した光学素子測定用治具10をXYステージ装置82上の載置台82aから取り外し、光学素子測定用治具10をそのままにして上下反転させて再度載置台82aに固定する。   Next, the optical element measuring jig 10 is turned upside down and set in a holding part of a surface shape measuring apparatus (not shown) (step S17). This step can be performed by a robot, but may or may preferably be performed by an ordinary operator. More specifically, the optical element measurement jig 10 to which the optical element OE is fixed is removed from the mounting table 82a on the XY stage device 82, and the optical element measurement jig 10 is turned upside down and left again. It fixes to the mounting base 82a.

次に、基板20の周辺部に配置された3つの球状被計測部材60の表面形状を計測することによって、裏側の面頂点座標を測定する(ステップS18)。具体的には、各球状被計測部材60の頂点近傍に触針PRを配置した状態で、XYステージ装置82を動作させて球状被計測部材60の裏面に対して触針PRを例えば十字に移動させつつ、駆動装置84を動作させて触針PR先端を球面部30の表面から離れないように移動させる。これにより、各球状被計測部材60の中心が算出される。
次に、ステップS11で得た表側の面頂点座標系と、ステップS18で得た表側の面頂点座標系とを比較して、表側座標系と裏側座標系との関係を算出する(ステップS19)。球状被計測部材60の計測結果を利用すると、基板20の表側座標系と裏側座標系との関係が得られる。
次に、光学素子OEの外縁部PAの中心に対応する裏面外形基準位置を算出する(ステップS20)。ここで、裏面外形基準位置は、ステップS13で得た表面外形基準位置をステップS19で得た表側座標系と裏側座標系との関係を利用して座標変換することによって得られる。
Next, the surface vertex coordinates on the back side are measured by measuring the surface shapes of the three spherical members to be measured 60 arranged in the peripheral portion of the substrate 20 (step S18). Specifically, in a state where the stylus PR is arranged in the vicinity of the apex of each spherical member to be measured 60, the XY stage device 82 is operated to move the stylus PR to, for example, a cross with respect to the back surface of the spherical member to be measured 60. Then, the drive device 84 is operated to move the tip of the stylus PR so as not to leave the surface of the spherical portion 30. Thereby, the center of each spherical measured member 60 is calculated.
Next, the front side surface vertex coordinate system obtained in step S11 and the front side surface vertex coordinate system obtained in step S18 are compared to calculate the relationship between the front side coordinate system and the back side coordinate system (step S19). . When the measurement result of the spherical member 60 is used, the relationship between the front side coordinate system and the back side coordinate system of the substrate 20 is obtained.
Next, a back surface outer shape reference position corresponding to the center of the outer edge PA of the optical element OE is calculated (step S20). Here, the back surface external reference position is obtained by coordinate-transforming the front surface external reference position obtained in step S13 using the relationship between the front side coordinate system and the back side coordinate system obtained in step S19.

次に、光学素子OEの裏側の光学面OS2の表面形状を測定する(ステップS21)。具体的には、光学素子OEの光学面OS2上方に触針PRを配置した状態で、XYステージ装置82を動作させて光学素子OEに対して触針PRを2次元的に走査移動させつつ、駆動装置84を動作させて触針PR先端を光学面OS2から離れないように移動させる。これにより、2次元的な裏面形状データが得られえる。   Next, the surface shape of the optical surface OS2 on the back side of the optical element OE is measured (step S21). Specifically, while the stylus PR is disposed above the optical surface OS2 of the optical element OE, the XY stage device 82 is operated to scan the stylus PR two-dimensionally with respect to the optical element OE. The drive device 84 is operated to move the tip of the stylus PR so as not to leave the optical surface OS2. Thereby, two-dimensional back surface shape data can be obtained.

次に、ステップS21で得た表面形状データを設計値でフィッティングする座標変換を行う(ステップS22)。具体的な手法は、表側のステップS15と同様であるので説明を省略する。   Next, coordinate transformation for fitting the surface shape data obtained in step S21 with design values is performed (step S22). Since the specific method is the same as that in step S15 on the front side, description thereof is omitted.

次に、ステップS15で得た座標変換データと、ステップS22で得た座標変換データとを、ステップS19で得た関係を利用して比較して、光学素子OEの両光学面OS1,OS2の相対的偏芯を算出する(ステップS23)。   Next, the coordinate transformation data obtained in step S15 and the coordinate transformation data obtained in step S22 are compared using the relationship obtained in step S19, and the relative of both optical surfaces OS1 and OS2 of the optical element OE is compared. The eccentricity is calculated (step S23).

次に、光学素子OEの裏面外形偏芯を算出する(ステップS24)。ここで、光学素子OEの裏面外形偏芯は、外縁部PAの中心に相当する外形基準位置が光学素子OEの光学面OS2に関する表面形状の計測値から得た光軸OAからずれている量とする。   Next, the back surface outer shape eccentricity of the optical element OE is calculated (step S24). Here, the back surface outer shape eccentricity of the optical element OE is the amount by which the outer shape reference position corresponding to the center of the outer edge PA is shifted from the optical axis OA obtained from the measured value of the surface shape of the optical surface OS2 of the optical element OE. To do.

なお、以上説明した測定方法は単なる例示であり、種々の変形が可能である。例えばステップS11,S12,S14,S18,S21の計測を最初に行って、残った計算を一括して行うことも可能である。   The measurement method described above is merely an example, and various modifications can be made. For example, the measurement of steps S11, S12, S14, S18, and S21 can be performed first, and the remaining calculations can be performed collectively.

〔第2実施形態〕
以下、第2実施形態に係る光学素子測定用治具について説明する。第2実施形態の光学素子測定用治具は、第1実施形態の治具を一部変更したものであり、特に説明しない部分は、第1実施形態の装置と共通しており、図面において共通する部分には同一の符号を付して重複説明を省略する。
[Second Embodiment]
The optical element measuring jig according to the second embodiment will be described below. The optical element measuring jig of the second embodiment is a modification of the jig of the first embodiment, and parts not specifically described are common to the apparatus of the first embodiment and are common in the drawings. The same reference numerals are given to the parts to be described, and the duplicate description will be omitted.

図6(a)は、第2実施形態の光学素子測定用治具の平面図であり、図6(b)は、図6(a)の光学素子測定用治具のAA矢視断面図である。また、図7は、図6(a)に示す治具の中央部の部分拡大平面図である。   6A is a plan view of the optical element measurement jig according to the second embodiment, and FIG. 6B is a cross-sectional view taken along the line AA of the optical element measurement jig in FIG. 6A. is there. FIG. 7 is a partially enlarged plan view of the central portion of the jig shown in FIG.

本実施形態の光学素子測定用治具210も、光学素子OEを保持して面形状測定装置(図4参照)にセットすることにより、光学素子OEの光学面の形状を表側と裏側とから計測することができ、光学素子OEの偏芯を計測することができるようにしている。このため、基板220上に、球面部30と、第1外形基準検知手段240と、第2外形基準検知手段246と、挟持装置250と、球状被計測部材60とを設けている。なお、この光学素子測定用治具210に固定される光学素子OEは、輪郭が矩形になっている。   The optical element measuring jig 210 of the present embodiment also measures the shape of the optical surface of the optical element OE from the front side and the back side by holding the optical element OE and setting it in the surface shape measuring device (see FIG. 4). The eccentricity of the optical element OE can be measured. For this reason, the spherical portion 30, the first outer shape reference detection means 240, the second outer shape reference detection means 246, the clamping device 250, and the spherical measured member 60 are provided on the substrate 220. The optical element OE fixed to the optical element measuring jig 210 has a rectangular outline.

基板220は、四角形の厚板上の外観を有し、中央に開口22を有しており、開口22の縁部分で光学素子OEの外縁部PAを支持する。これにより、基板220上に支持された光学素子OEを表と裏の両側から計測することができる。   The substrate 220 has an appearance on a rectangular thick plate, has an opening 22 in the center, and supports the outer edge PA of the optical element OE at the edge of the opening 22. Thereby, the optical element OE supported on the substrate 220 can be measured from both the front and back sides.

3つの第1外形基準検知手段240は、それぞれ球面部30を光学素子OEの外縁部PAの側面に当接させるとともに、各球面部30を介して外縁部PAの側面を適当な力で押圧する役割を有する。ここで、第1外形基準検知手段240は、球面部30を先端に固定したロッド41を軸方向に滑らかに移動させる摺動機構242と、ロッド41を先端側に付勢する板バネ状の付勢部材243とを備える。   The three first outer shape reference detection means 240 respectively bring the spherical surface portion 30 into contact with the side surface of the outer edge portion PA of the optical element OE and press the side surface of the outer edge portion PA with an appropriate force through each spherical surface portion 30. Have a role. Here, the first outer shape reference detection means 240 includes a sliding mechanism 242 that smoothly moves the rod 41 with the spherical portion 30 fixed to the tip in the axial direction, and a leaf spring-like attachment that biases the rod 41 toward the tip. A biasing member 243.

第2外形基準検知手段246は、3つの球面部30を基板220上に適当な配置で固定する板状の部材であり、複数の輪郭段差部分246a,246bの隅に球面部30を接着剤等によって固定している。この際、第2外形基準検知手段246の形状は、光学素子OEの外縁部PAとの干渉を避け得るものとなっている。   The second outer shape reference detection means 246 is a plate-like member that fixes the three spherical portions 30 on the substrate 220 in an appropriate arrangement, and the spherical portions 30 are bonded to the corners of the plurality of contour step portions 246a and 246b. It is fixed by. At this time, the shape of the second outer shape reference detection means 246 can avoid interference with the outer edge PA of the optical element OE.

以上説明した第1外形基準検知手段240と第2外形基準検知手段246とにより、偏芯計測用の計6つの球面部30を光学素子OEの外縁部PAの側面に略間隔で配置することができ、外縁部PAの側面に与える力を略均等で所望の大きさにすることができる。   By the first outer shape reference detection means 240 and the second outer shape reference detection means 246 described above, a total of six spherical surface portions 30 for eccentricity measurement can be arranged on the side surface of the outer edge portion PA of the optical element OE at substantially intervals. The force applied to the side surface of the outer edge PA can be made substantially uniform and in a desired size.

各挟持装置250は、2つの板バネ状の挟持部材51と、両挟持部材51を支持する支持体252とを備える。各挟持部材51の先端部の裏面には、図7に示すように、光学素子OEの外縁部PAの上面に当接する接触部51aが形成されている。各挟持部材51によって、光学素子OEの外縁部PAを点接触で均等に支持することができ、光学素子OEを高精度で安定して支持することができる。   Each clamping device 250 includes two leaf spring-shaped clamping members 51 and a support body 252 that supports both the clamping members 51. As shown in FIG. 7, a contact portion 51 a that abuts on the upper surface of the outer edge portion PA of the optical element OE is formed on the back surface of the front end portion of each clamping member 51. By each clamping member 51, the outer edge PA of the optical element OE can be uniformly supported by point contact, and the optical element OE can be stably supported with high accuracy.

なお、光学素子OEの外縁部PAは、矩形の輪郭を有しており、その一辺には、ゲートカット部として突起部PPが形成されている。突起部PPに球面部30を当接させると、偏芯の計測精度が得られないので、隣接する2つの球面部30のちょうど中央に突起部PPが配置されるように、基板220上における第1外形基準検知手段240の配置を調整する。   The outer edge PA of the optical element OE has a rectangular outline, and a protrusion PP is formed on one side as a gate cut. If the spherical portion 30 is brought into contact with the protruding portion PP, the eccentricity measurement accuracy cannot be obtained. Therefore, the second portion on the substrate 220 is arranged so that the protruding portion PP is arranged at the exact center of the two adjacent spherical portions 30. 1 The arrangement of the outer shape reference detection means 240 is adjusted.

以上説明した第2実施形態の光学素子測定用治具も、図4(a),4(b)に示す面形状測定装置100にセットすることができ、矩形の輪郭を有する光学素子OEの表面及び裏面の形状を計測することができるとともに、光学素子OE偏芯を計測することができる。   The optical element measuring jig of the second embodiment described above can also be set in the surface shape measuring apparatus 100 shown in FIGS. 4A and 4B, and the surface of the optical element OE having a rectangular outline. In addition, the shape of the back surface can be measured, and the eccentricity of the optical element OE can be measured.

以上、実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。例えば、第1実施形態では、3つの球面部30をすべて外形基準検知手段40によって可動としているが、1又は2つの球面部30を図6に示す第2外形基準検知手段246と同様のもので固定し、残った球面部30を外形基準検知手段40によって可動に支持し光学素子OEの外縁部PAに付勢することもできる。
また、上記実施形態では、既知の球面形状を有する複数の球面部30を光学素子OEの外縁部PAの側面に当接させ、触針を当該球面部に接触させることによって光学素子OEの外形基準を計測しているが、特に接触による測定には限定されず、光学素子OEや球面部30を撮影し、光学的な解析によって光学素子OEの偏芯を補助的に決定することもできる。
As described above, the present invention has been described according to the embodiment, but the present invention is not limited to the above embodiment. For example, in the first embodiment, all three spherical portions 30 are movable by the outer shape reference detection means 40, but one or two spherical portions 30 are the same as the second outer shape reference detection means 246 shown in FIG. The remaining spherical portion 30 can be fixedly supported by the outer shape reference detection means 40 and urged toward the outer edge PA of the optical element OE.
Further, in the above-described embodiment, a plurality of spherical portions 30 having a known spherical shape are brought into contact with the side surface of the outer edge portion PA of the optical element OE, and a stylus is brought into contact with the spherical portion, thereby making the outer shape reference of the optical element OE. However, the measurement is not particularly limited to contact measurement, and the optical element OE and the spherical portion 30 can be photographed and the eccentricity of the optical element OE can be determined auxiliary by optical analysis.

(a)、(b)は、第1実施形態の光学素子測定用治具の平面図及び断面図である。(A), (b) is the top view and sectional drawing of the jig | tool for optical element measurement of 1st Embodiment. (a)、(b)は、図1の光学素子測定用治具の拡大平面図及び拡大断面図である。(A), (b) is the enlarged plan view and expanded sectional view of the optical element measurement jig | tool of FIG. (a)は、回転制限部材の部分拡大図であり、(b)は、回転制限部材の変形例を示す。(A) is the elements on larger scale of a rotation limiting member, (b) shows the modification of a rotation limiting member. (a)、(b)は、面形状測定装置の構造を説明する正面図及び側面図である。(A), (b) is the front view and side view explaining the structure of a surface shape measuring apparatus. 図4に示す面形状測定装置を用いた測定方法を説明するフローチャートである。It is a flowchart explaining the measuring method using the surface shape measuring apparatus shown in FIG. (a)、(b)は、第2実施形態の光学素子測定用治具の平面図及び断面図である。(A), (b) is the top view and sectional drawing of the jig | tool for optical element measurement of 2nd Embodiment. 図6の光学素子測定用治具の拡大平面図である。FIG. 7 is an enlarged plan view of the optical element measurement jig of FIG. 6.

符号の説明Explanation of symbols

10…光学素子測定用治具、 20…基板、 22…開口、 30…球面部、 40…外形基準検知手段、 41…ロッド、 43…付勢部材、 43a…バネ、 43c…アジャスタ部、 50…挟持装置、 51…挟持部材、 51a…接触部、 60…球状被計測部材、 70…回転制限部材、 81…定盤、 82…XYステージ装置、 83a,83b,91a…ミラー、 83d,83e,91b…レーザ干渉計、 84…Z駆動装置、 86…昇降機構、 99…制御装置、100…面形状測定装置、 OA…光軸、 OE…光学素子、 OS1,OS2…両光学面、 PA…外縁部、 PR…触針、
DESCRIPTION OF SYMBOLS 10 ... Optical element measurement jig | tool, 20 ... Board | substrate, 22 ... Opening, 30 ... Spherical surface part, 40 ... External shape reference | standard detection means, 41 ... Rod, 43 ... Biasing member, 43a ... Spring, 43c ... Adjuster part, 50 ... Holding device, 51 ... Holding member, 51a ... Contact part, 60 ... Spherical member to be measured, 70 ... Rotation limiting member, 81 ... Surface plate, 82 ... XY stage device, 83a, 83b, 91a ... Mirror, 83d, 83e, 91b DESCRIPTION OF SYMBOLS ... Laser interferometer, 84 ... Z drive device, 86 ... Elevating mechanism, 99 ... Control device, 100 ... Surface shape measuring device, OA ... Optical axis, OE ... Optical element, OS1, OS2 ... Both optical surfaces, PA ... Outer edge part , PR ... Stylus,

Claims (18)

測定対象となる光学素子を載置する、第一面及び該第一面の裏面に相当する第二面とを有する基板と、
一部が前記基板に支持され、既知の球面形状を有する球面部を前記光学素子側面部に光軸と垂直な方向から当接可能に備えた外形基準検知手段と、
を有する光学素子測定用治具であって、
前記外形基準検知手段は、当接した球面部を測定することにより前記光学素子の外形基準が把握できるよう前記基板の複数位置に配置され、その内の少なくとも一つは、前記光学素子を押圧するような付勢力を以って当接可能に構成されていることを特徴とする光学素子測定用治具。
A substrate having a first surface on which an optical element to be measured is placed and a second surface corresponding to the back surface of the first surface;
An external reference detecting means, a part of which is supported by the substrate and has a spherical surface portion having a known spherical shape so as to be able to contact the side surface portion of the optical element from a direction perpendicular to the optical axis;
An optical element measuring jig having
The external reference detecting means is arranged at a plurality of positions of the substrate so that the external reference of the optical element can be grasped by measuring the abutting spherical surface portion, at least one of which presses the optical element An optical element measuring jig configured to be able to contact with such an urging force.
前記複数の外形基準検知手段の各球面部は、前記光学素子に対し、前記光学素子の外周を等分割する位置でそれぞれ当接するように配置されていることを特徴とする請求項1記載の光学素子測定用治具。   2. The optical device according to claim 1, wherein each of the spherical surface portions of the plurality of outer shape reference detection means is disposed so as to abut on the optical element at a position where the outer periphery of the optical element is equally divided. Element measurement jig. 前記複数の外形基準検知手段の内、前記光学素子を押圧するような付勢力を以って当接する外形基準検知手段は、
前記基板に支持された支持部と前記球面部との間に弾性部材を有するとともに、前記弾性部材と球面部との間であって前記弾性部材による前記光学素子に対する付勢力を調整可能な調整手段
を有することを特徴とする請求項1又は2記載の光学素子測定用治具。
Of the plurality of outer shape reference detection means, the outer shape reference detection means that comes into contact with an urging force that presses the optical element,
An adjusting means having an elastic member between the support portion supported by the substrate and the spherical portion, and capable of adjusting a biasing force of the elastic member against the optical element between the elastic member and the spherical portion. The optical element measuring jig according to claim 1, wherein the optical element measuring jig is provided.
前記光学素子の光軸と垂直な面に複数箇所で当接し、前記光学素子を前記基板との間に挟持して前記光学素子の光軸方向の位置規制を行う複数の挟持手段を備えることを特徴とする請求項1〜3のいずれか一つに記載の光学素子測定用治具。   A plurality of clamping means that abut on the surface perpendicular to the optical axis of the optical element at a plurality of locations and clamp the optical element between the substrate and the optical element in the optical axis direction; The optical element measuring jig according to claim 1, wherein the optical element measuring jig is a jig. 前記複数の外形基準検知手段のうち2つの外形基準検知手段の球面部は、前記基板に載置される光学素子の光軸方向からみた外形形状の一辺に対応する位置の側面部に当接するよう構成されていることを特徴とする請求項1〜4のいずれか一つに記載の光学素子測定用治具。   The spherical surface portions of two of the plurality of outer shape reference detection means are in contact with the side surface portion at a position corresponding to one side of the outer shape viewed from the optical axis direction of the optical element placed on the substrate. It is comprised, The optical element measurement jig | tool as described in any one of Claims 1-4 characterized by the above-mentioned. 前記複数の外形基準検知手段のうち2つの外形基準検知手段の球面部は、当接する側面部の当接箇所間に、前記光学素子の突起部が配置されるよう構成されていることを特徴とする請求項1〜5のいずれか一つに記載の光学素子測定用治具。   Of the plurality of outer shape reference detection means, the spherical surface portions of two of the outer shape reference detection means are configured such that the protrusions of the optical element are arranged between the contact portions of the side surface portions that contact each other. The jig for measuring an optical element according to any one of claims 1 to 5. 前記光学素子を押圧するよう付勢力を以って挟持する前記挟持手段は、前記光学素子を押圧する押圧力をF(N)とするとき、
以下の範囲
0.1<F<10
を満足する事を特徴とする請求項4記載の光学素子測定用治具。
When the pressing force for pressing the optical element is F (N), the clamping means that clamps the optical element with an urging force to press the optical element,
The following range 0.1 <F <10
The optical element measuring jig according to claim 4, wherein:
前記光学素子を押圧するよう付勢力を以って当接する前記外形基準検知は、前記光学素子を押圧する押圧力をF’(N)とするとき、
以下の範囲
0.01<F’<1
を満足する事を特徴とする請求項1〜7のいずれか一つに記載の光学素子測定用治具。
In the outer shape reference detection that abuts with an urging force to press the optical element, when the pressing force pressing the optical element is F ′ (N),
The following range: 0.01 <F ′ <1
The optical element measuring jig according to claim 1, wherein the optical element measuring jig is satisfied.
前記基板は、載置された光学素子を前記第一及び第二面のいずれの方からも測定可能な開口部を備えたことを特徴とする請求項1〜8のいずれか一つに記載の光学素子測定用治具。   The said board | substrate was equipped with the opening part which can measure the mounted optical element from any one of said 1st and 2nd surfaces, The any one of Claims 1-8 characterized by the above-mentioned. Optical element measurement jig. 前記挟持手段は、少なくとも3つ以上備えることを特徴とする請求項4又は7記載の光学素子測定用治具。   The optical element measuring jig according to claim 4, wherein at least three clamping means are provided. 前記挟持手段が前記光学素子と当接する接触部は、球状に構成されていることを特徴とする請求項4,7,又は10に記載の光学素子測定用治具。   The optical element measuring jig according to claim 4, 7 or 10, wherein the contact portion where the clamping means comes into contact with the optical element is formed in a spherical shape. 前記光学素子に対して、前記外形基準検知手段と前記挟持手段とが当接する各位置は、前記光学素子の光軸方向から見て互いに異なる位置に交互に配置されるよう構成したことを特徴とする請求項4,7,10又は11に記載の光学素子測定用治具。   The positions where the outer shape reference detection means and the clamping means come into contact with the optical element are alternately arranged at different positions when viewed from the optical axis direction of the optical element. The jig for measuring an optical element according to claim 4, 7, 10, or 11. 請求項1〜12のいずれか一つに記載の光学素子測定用治具を備えた光学素子形状測定装置。   An optical element shape measuring apparatus comprising the optical element measuring jig according to claim 1. 前記光学素子形状測定装置は、前記基板の第一面と第二面とを反転可能に保持する保持部を備えることを特徴とする請求項13記載の光学素子形状測定装置。   The optical element shape measuring apparatus according to claim 13, further comprising a holding unit that holds the first surface and the second surface of the substrate in a reversible manner. 請求項1〜12のいずれか一つに記載の光学素子測定用治具を用いた光学素子形状測定方法。   The optical element shape measuring method using the jig | tool for optical element measurement as described in any one of Claims 1-12. 請求項13記載の光学素子形状測定装置を用いた光学素子形状測定方法。   An optical element shape measuring method using the optical element shape measuring apparatus according to claim 13. 請求項14記載の光学素子形状測定装置を用い、前記基板の第一面側から載置された光学素子の面形状を測定した後、前記基板を反転させ、前記基板の第2面側から前記光学素子の面形状を測定することを特徴とする光学素子形状測定方法。   The optical element shape measuring apparatus according to claim 14, wherein after measuring the surface shape of the optical element placed from the first surface side of the substrate, the substrate is inverted, and the second surface side of the substrate is An optical element shape measuring method, comprising measuring a surface shape of an optical element. 請求項15記載の光学素子形状測定方法であって、ゲートカット部を有する外形を有する光学素子は、前記光学素子の光軸方向からみて前記挟持手段の当接位置と前記ゲートカット部とがオーバーラップする位置に配置されることを特徴とする光学素子形状測定方法。   16. The optical element shape measuring method according to claim 15, wherein an optical element having an outer shape having a gate cut portion is such that an abutting position of the clamping means and the gate cut portion are over when viewed from an optical axis direction of the optical element. An optical element shape measuring method, wherein the optical element shape measuring method is arranged at a lapping position.
JP2005340339A 2005-11-25 2005-11-25 Optical element shape measurement method Active JP4839798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340339A JP4839798B2 (en) 2005-11-25 2005-11-25 Optical element shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340339A JP4839798B2 (en) 2005-11-25 2005-11-25 Optical element shape measurement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011152758A Division JP5333531B2 (en) 2011-07-11 2011-07-11 Optical element measuring jig, and optical element shape measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2007147371A true JP2007147371A (en) 2007-06-14
JP4839798B2 JP4839798B2 (en) 2011-12-21

Family

ID=38208951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340339A Active JP4839798B2 (en) 2005-11-25 2005-11-25 Optical element shape measurement method

Country Status (1)

Country Link
JP (1) JP4839798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560365B1 (en) * 2013-09-30 2014-07-23 株式会社免震テクノサービス Ruled board and recording device for recording device of displacement trajectory of structure
RU2534815C1 (en) * 2013-10-28 2014-12-10 Открытое акционерное общество "Лыткаринский завод оптического стекла" Method of measurement of decentring of optical axis of aspherical surface and spherometer for method implementation
CN110146726A (en) * 2019-05-22 2019-08-20 季华实验室 Method for controlling probe temperature

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268433A (en) * 1991-02-22 1992-09-24 Olympus Optical Co Ltd Measuring apparatus for aspherical lens eccentricity
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2002205622A (en) * 2001-01-11 2002-07-23 Yuhshin Co Ltd Motor-driven steering lock device
JP2002303502A (en) * 2001-04-04 2002-10-18 Canon Inc Uneven thickness measurement tool for chipped sphere and its method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268433A (en) * 1991-02-22 1992-09-24 Olympus Optical Co Ltd Measuring apparatus for aspherical lens eccentricity
JP2002071344A (en) * 2000-08-28 2002-03-08 Matsushita Electric Ind Co Ltd Method and instrument for measuring shape
JP2002205622A (en) * 2001-01-11 2002-07-23 Yuhshin Co Ltd Motor-driven steering lock device
JP2002303502A (en) * 2001-04-04 2002-10-18 Canon Inc Uneven thickness measurement tool for chipped sphere and its method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560365B1 (en) * 2013-09-30 2014-07-23 株式会社免震テクノサービス Ruled board and recording device for recording device of displacement trajectory of structure
RU2534815C1 (en) * 2013-10-28 2014-12-10 Открытое акционерное общество "Лыткаринский завод оптического стекла" Method of measurement of decentring of optical axis of aspherical surface and spherometer for method implementation
CN110146726A (en) * 2019-05-22 2019-08-20 季华实验室 Method for controlling probe temperature
CN110146726B (en) * 2019-05-22 2022-06-14 季华实验室 Method for controlling temperature of probe

Also Published As

Publication number Publication date
JP4839798B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP6358327B2 (en) Jig for measuring optical element, eccentricity measuring device and eccentricity measuring method
JP4835149B2 (en) Optical element measuring jig, and optical element shape measuring apparatus and method
US20060080852A1 (en) Surface roughness/contour shape measuring apparatus
JP2007078635A (en) Calibration fixture, and offset calculation method of image measuring machine
JP4839798B2 (en) Optical element shape measurement method
JP2019035639A (en) Screw shaft measuring device, screw shaft measuring method and adjustment jig
CN110954016A (en) Clamping device in interference detection of high-precision optical element
JP6361729B2 (en) Aspherical eccentricity measurement method and shape analysis method
JP5333531B2 (en) Optical element measuring jig, and optical element shape measuring apparatus and method
JP3689585B2 (en) Work holding jig
JP2007170930A (en) Fixture for measuring optical element, and apparatus and method for measuring surface profile of optical element
JP2019045312A (en) Stylus and surface shape measurement device
KR20180123467A (en) Polishing apparatus
US11255652B2 (en) Methods and apparatus for determining a height of an edge portion of a product
JP5383258B2 (en) Machine tool posture control device
KR20080062229A (en) Jig for hardness measuring device
US20210252664A1 (en) Method and polishing apparatus for machining a plate-shaped component, and plate-shaped component, in particular electrostatic holding apparatus or immersion wafer panel
KR20190016440A (en) Jig for measuring height
JP2015027768A (en) Production method of molding die, mark processing device, and optical element
JP6492702B2 (en) Optical element measuring apparatus and measuring method
JP7467003B2 (en) Method for processing workpiece
JP4614279B2 (en) Calibration jig for eyeglass frame shape measuring device
JPH0422248Y2 (en)
JP3635324B2 (en) Method for setting and adjusting a single crystal polishing processed surface to a predetermined azimuth angle, and polishing jig used for carrying out this method
TWI375139B (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350