JP2007146919A - Sliding bearing - Google Patents

Sliding bearing Download PDF

Info

Publication number
JP2007146919A
JP2007146919A JP2005340244A JP2005340244A JP2007146919A JP 2007146919 A JP2007146919 A JP 2007146919A JP 2005340244 A JP2005340244 A JP 2005340244A JP 2005340244 A JP2005340244 A JP 2005340244A JP 2007146919 A JP2007146919 A JP 2007146919A
Authority
JP
Japan
Prior art keywords
width
bearing
friction
projecting
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005340244A
Other languages
Japanese (ja)
Inventor
Toshihiro Ozasa
俊博 小笹
Katsuhiro Ashihara
克宏 芦原
Kenji Watanabe
賢治 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP2005340244A priority Critical patent/JP2007146919A/en
Publication of JP2007146919A publication Critical patent/JP2007146919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved sliding bearing capable of further reducing friction compared with a conventional bearing. <P>SOLUTION: A plurality of narrow projecting reinforcements 2 are provided on the bearing surface of the sliding bearing 1 along a circumferential direction. When a pitch between the projecting reinforcements is (a), a bottom surface width between the projecting reinforcements is (b) and the width of the projecting reinforcement is (c), a ratio between the bottom surface width (b) and the projecting reinforcement width (c) is set to be b/c>14. The narrow projecting reinforcements formed along the circumferential direction make lubricating oil flowing between the surface of a rotating shaft and the surface of the bearing easy flow in the circumferential direction and make it difficult to flow in the axial direction, and the thickness of the oil film is increased. Further, the projecting reinforcements make the thickness of the main lubrication surface on the side where a gap between the shaft and the bearing is reduced by the act of a load to be thick, and friction is reduced, and oil film pressure is raised, and thus, the projecting reinforcements contribute to the effective increase of a load capacity to the load. By setting the ratio between the bottom surface width (b) and the projecting width (c) to be b/c>14, the friction of the sliding bearing can be further reduced compared with the conventional bearing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、断面円形の回転軸を回転自在に支持する円筒状のすべり軸受に関する。   The present invention relates to a cylindrical slide bearing that rotatably supports a rotary shaft having a circular cross section.

エンジンなどの動力機械のすべり軸受は、一般に軸受表面の円周方向に対して直角となる軸方向(軸受幅方向)に切削痕を持つことが多く、これが油の流れをさまたげ、摩擦の向上となじみの悪さの要因であった。
これを解決する目的で、軸受表面に潤滑油を供給するために、円周方向に狭いピッチで小さな溝を多く形成し、円周方向への潤滑油の流れを促進するようにしたものがある(特許文献1)。
また、すべり軸受の軸受表面の円周方向に細い突状の突筋を複数設け、各突筋の間の潤滑油通路を台形形状として、潤滑油量の増大を図ったものも提案されている(特許文献2の図7)。
特公昭63−11530号公報 特開平7−259858号公報
In general, plain bearings for power machines such as engines often have cutting marks in the axial direction (bearing width direction) perpendicular to the circumferential direction of the bearing surface, which prevents oil flow and improves friction. It was a factor of unfamiliarity.
In order to solve this problem, in order to supply the lubricating oil to the bearing surface, there are ones in which many small grooves are formed at a narrow pitch in the circumferential direction to promote the flow of the lubricating oil in the circumferential direction. (Patent Document 1).
There has also been proposed a structure in which a plurality of thin protruding bars are provided in the circumferential direction of the bearing surface of the slide bearing and the lubricating oil passage between each protruding bar is trapezoidal to increase the amount of lubricating oil (patent) Fig. 7 in Literature 2.
Japanese Examined Patent Publication No. 63-11530 JP-A-7-259858

特許文献1のすべり軸受の場合、荷重を主に溝の突部の頂上面で受け持つことを前提としており、突部の頂上面の幅が比較的広く、溝に対して突部の頂上面の面積の割合が高い。溝の無い従来一般のすべり軸受より摩擦の低減を図ることができるが、摩耗の無い使用初期では、溝を挟む突部と回転軸との距離が近く、ここでの摩擦が主体であるため、比較的摩擦は大きい。
回転軸と軸受表面とのなじみによって突部の頂上面がけずれ、頂上面の幅が初期よりやや広くなると摩擦はさらに大きくなる。しかし、回転軸と軸受表面とのなじみがすすみ突部頂上面が摩耗して、頂上面の幅がさらに広くなると摩擦は徐々に低減する。摩耗の進行によって、滑らかな平面に漸近すると、摩擦は平面の状態にまで低減する可能性を有している。
In the case of the sliding bearing of Patent Document 1, it is assumed that the load is mainly handled by the top surface of the projection of the groove, and the width of the top surface of the projection is relatively wide, and the top surface of the projection is relatively wide with respect to the groove. The area ratio is high. Friction can be reduced compared to conventional plain bearings without grooves, but at the initial stage of use without wear, the distance between the protrusions sandwiching the grooves and the rotating shaft is close, and the friction here is the main component. The friction is relatively large.
Friction is further increased when the top surface of the protrusion is displaced due to the familiarity between the rotating shaft and the bearing surface, and the width of the top surface is slightly larger than the initial width. However, if the familiarity between the rotating shaft and the bearing surface is worn out and the top surface of the protruding portion is worn and the width of the top surface is further increased, the friction is gradually reduced. As wear progresses asymptotically to a smooth plane, the friction has the potential to reduce to a flat state.

特許文献2の図7に記載されているすべり軸受においては、後の実験結果に示すように、溝の無い従来一般のすべり軸受や特許文献1に記載されたすべり軸受よりも摩擦の低減を図ることができる。
しかしながら特許文献2には、突筋と突筋間の底面幅と、各突筋の幅との比をどのように設定すべきかについては一切記載されておらず、上記底面幅と突筋幅との比をどの範囲に設定したら低い摩擦を得られるかは不明となっている。
エンジンなどの動力機械では、効率向上のためにすべり軸受の摩擦低減がさらに重要な課題となっている。本発明は、このために、従来に比較して摩擦をさらに低減できるように改良したすべり軸受を提供するものである。
In the slide bearing described in FIG. 7 of Patent Document 2, the friction is reduced as compared with a conventional general slide bearing without a groove and a slide bearing described in Patent Document 1 as shown in the later experimental results. be able to.
However, Patent Document 2 does not describe at all how to set the ratio of the bottom surface width between the protruding muscles and the protruding muscles, and the width of each protruding muscle. It is unclear whether low friction can be obtained when the range is set.
In power machines such as engines, reducing friction of sliding bearings has become an even more important issue in order to improve efficiency. For this reason, the present invention provides a sliding bearing improved so that the friction can be further reduced as compared with the prior art.

本発明は、すべり軸受の軸受表面の円周方向に細い突状の突筋を複数設け、突筋と突筋間のピッチをa、突筋と突筋間の底面幅をb、各突筋の幅をcとしたときに、上記底面幅bと突筋幅cとの比が、b/c>14となるように設定したことを特徴とするものである。   In the present invention, a plurality of thin projecting protrusions are provided in the circumferential direction of the bearing surface of the slide bearing, the pitch between the protrusions and the protrusions is a, the bottom width between the protrusions and the protrusions is b, and the width of each protrusion is c. In some cases, the ratio between the bottom surface width b and the protruding bar width c is set so that b / c> 14.

上記円周方向に形成した細い突状の突筋は、回転軸の表面と軸受表面との間を流れる潤滑油を円周方向に流れやすく、軸方向に流れにくくして、油膜を厚くする。また上記突筋は、荷重が作用して軸と軸受間のすき間が薄くなる側の主体となる潤滑面の油膜厚さを厚くして摩擦を低減し、かつ油膜圧力を高くして荷重に対する負荷容量を効果的に増すことに寄与する。
これは特許文献1のように流れを制御する溝の突部の頂上面を潤滑面として荷重を支えるものとは異なり、溝の底面を著しく広くして、この広く厚い油膜を利用して低摩擦と高荷重に対する負荷容量を達成するものである。
そして上記底面幅bと突筋幅cとの比を、b/c>14となるように設定することによって、従来に比較して、極めて低い摩擦を実現することができる。
The thin protruding bar formed in the circumferential direction makes the lubricating oil flowing between the surface of the rotating shaft and the bearing surface easy to flow in the circumferential direction, makes it difficult to flow in the axial direction, and thickens the oil film. In addition, the above-mentioned protruding bar increases the oil film thickness of the lubricating surface, which is the main part on the side where the gap between the shaft and the bearing becomes thin due to the load acting, thereby reducing friction and increasing the oil film pressure to increase the load capacity against the load. Contributes to effectively increasing.
Unlike the case of supporting the load by using the top surface of the protrusion of the groove for controlling the flow as a lubricating surface as in Patent Document 1, the bottom surface of the groove is remarkably wide, and this wide and thick oil film is used to reduce the friction. And achieve a load capacity for high loads.
By setting the ratio between the bottom surface width b and the protruding bar width c so as to satisfy b / c> 14, extremely low friction can be realized as compared with the conventional case.

以下図示実施例について本発明を説明すると、図1は本発明に係る半割すべり軸受1の斜視図で、すべり軸受1の軸受表面の円周方向に細い突状の突筋2を複数設けてある。同図においてLは軸受幅を示している。また、図示しない他方の半割すべり軸受も上記半割すべり軸受1と同一の構成を有している。   Hereinafter, the present invention will be described with reference to the illustrated embodiment. FIG. 1 is a perspective view of a half slide bearing 1 according to the present invention. . In the figure, L indicates the bearing width. The other half-slide bearing (not shown) has the same configuration as the half-slide bearing 1 described above.

図2、図3はそれぞれ図1のII−II線に沿った要部の拡大断面図で、図2は各部の寸法が分かりやすいように各突筋2を誇張して示してあり、また図3は実際の寸法に近い状態で表示してある。
各図において、aは突筋と突筋間のピッチ、bは突筋と突筋間の底面幅、cは各突筋の幅を示しており、突筋幅cは、ピッチa−底面幅bに相当する(c=a−b)。またhは突筋の高さを示している。
図2、図3から理解されるように、各突筋2は断面三角形状に形成してあり、特に図3から理解されるように、その頂部はかなりの鈍角となっている。上記各突筋2の頂上面の幅はできるだけ狭いほうが良く、これは突筋2の頂上面の幅が広くなると該頂上面に大きなせん断力が発生して摩擦を増大させるためである。
2 and 3 are enlarged cross-sectional views of the main part taken along the line II-II in FIG. 1, respectively, and FIG. 2 exaggerates each protruding bar 2 so that the dimensions of each part can be easily understood. Is displayed in a state close to the actual size.
In each figure, a is the pitch between the projecting muscles, b is the bottom surface width between the projecting muscles, and c is the width of each projecting muscle, and the projecting muscle width c corresponds to pitch a−bottom surface width b (c = Ab). H represents the height of the protruding muscle.
As can be understood from FIGS. 2 and 3, each protruding bar 2 is formed in a triangular shape in cross section, and as can be understood from FIG. 3 in particular, its apex has a considerably obtuse angle. The width of the top surface of each protruding bar 2 should be as narrow as possible. This is because when the width of the top surface of the protruding bar 2 is increased, a large shearing force is generated on the top surface to increase friction.

図4は、上記突筋2を軸受表面に形成し、上記底面幅bと突筋幅cとの比(b/c)を変化させて、エンジンのコンロッドに作用する変動荷重下の摩擦(パワーロスW)の変化を調べたものである。
同図において、○は上記構成を有する本発明品のすべり軸受についての試験結果を示しており、本試験においては突筋2の高さhは3μmに設定してある。また同図における点線は、軸受表面を完全に平坦に形成したすべり軸受の試験結果を示している。なお、一般に軸受表面の粗さを無くして完全に平坦に形成したすべり軸受を量産することは困難であるが、試験のために軸受表面を完全に平坦に形成したすべり軸受を製造した。
上記試験は、1000cc、直列4気筒エンジンを用い、5000rpm、全負荷で行なった。各すべり軸受は半径14mm、軸受幅12mmの大きさとした。またパワーロスは仕事率(W)で示してあり、各コンロッドの大端部1個当たりのパワーロスを示してある。
図4に示すように、上記○で示す本発明品のすべり軸受では、上記底面幅bと突筋幅cとの比(b/c)が5となると軸受表面が完全に平坦なすべり軸受の摩擦よりも低くなり、5を超えるに従って上記平坦なすべり軸受の摩擦よりも一層低い摩擦となり、14倍以上で安定した摩擦低減が図れる。
FIG. 4 shows the friction (power loss W) under variable load acting on the connecting rod of the engine by forming the protrusion 2 on the bearing surface and changing the ratio (b / c) of the bottom surface width b to the protrusion width c. It is what investigated the change of.
In the figure, ◯ indicates the test result of the slide bearing of the present invention having the above-described configuration. In this test, the height h of the protrusion 2 is set to 3 μm. In addition, the dotted line in the figure shows the test result of the sliding bearing in which the bearing surface is formed completely flat. In general, it is difficult to mass-produce plain bearings having a completely flat surface without roughness of the bearing surface, but for the purpose of testing, a plain bearing having a completely flat bearing surface was manufactured.
The test was conducted using a 1000 cc, in-line 4-cylinder engine at 5000 rpm and full load. Each plain bearing had a radius of 14 mm and a bearing width of 12 mm. Further, the power loss is indicated by the power (W), and the power loss per one large end of each connecting rod is indicated.
As shown in FIG. 4, in the sliding bearing of the present invention indicated by the above-mentioned circle, when the ratio (b / c) between the bottom surface width b and the protruding bar width c is 5, the friction of the sliding bearing with a completely flat bearing surface is obtained. As the value exceeds 5, the friction becomes lower than that of the flat sliding bearing, and stable friction reduction can be achieved at 14 times or more.

図5は比較のために、従来のすべり軸受について図4と同一の試験条件で行なった試験結果を示したものである。
同図における△は、軸受表面をブローチ加工によって加工した一般のすべり軸受における試験結果を、□は特許文献1の範疇に属するすべり軸受における試験結果をそれぞれ示している。また同図における点線は、図4と同様に、軸受表面を完全に平坦に形成したすべり軸受の試験結果を示している。
但し図5における突筋頂上幅eとは、図6に示すように、突筋2’の頂部を平坦に形成した場合のその平端部の幅を意味しており、また溝幅fとは、平坦部を含まない突筋2’と突筋2’との間の溝部の幅を示している。
上記△で示した一般のすべり軸受は、回転軸の円周方向と概ね直角の方向に削って表面加工するので、軸方向に突状の筋がつくことが多い。軸方向の筋は摩擦が大きく、摩耗やなじみによって頂上幅eが増大するとやや摩擦が低減する。
他方、上記□で示した特許文献1のすべり軸受では、突筋が円周方向の時、摩擦は軸方向の筋に比べて著しく低い。しかしながら摩耗やなじみによって頂上幅eが広がると、軸受表面を完全に平坦に形成したすべり軸受の摩擦に近づく。
このように、従来のすべり軸受では、頂上幅eを広げることによって摩擦が低減する傾向が示されている。
For comparison, FIG. 5 shows the test results of a conventional plain bearing performed under the same test conditions as those in FIG.
In the figure, Δ indicates a test result in a general slide bearing in which the bearing surface is processed by broaching, and □ indicates a test result in a slide bearing belonging to the category of Patent Document 1. Also, the dotted line in the figure shows the test result of the slide bearing in which the bearing surface is formed completely flat, as in FIG.
However, the protrusion top width e in FIG. 5 means the width of the flat end when the top of the protrusion 2 'is formed flat as shown in FIG. 6, and the groove width f is the flat section. The width of the groove portion between the protruding muscle 2 ′ and the protruding muscle 2 ′ is shown.
The general sliding bearing indicated by Δ is surface-treated by cutting in a direction substantially perpendicular to the circumferential direction of the rotating shaft, and thus has a protruding streak in the axial direction in many cases. The axial streak has a large amount of friction, and when the top width e increases due to wear or familiarity, the friction slightly decreases.
On the other hand, in the plain bearing of Patent Document 1 indicated by the above-mentioned □, when the protruding bar is in the circumferential direction, the friction is significantly lower than that in the axial direction. However, when the apex width e increases due to wear or familiarity, the friction approaches that of a plain bearing having a completely flat bearing surface.
Thus, in the conventional slide bearing, the tendency for friction to reduce is shown by expanding the top width e.

図7は、上記底面幅bを変化させることによって該底面幅bと突筋幅cとの比(b/c)を大きく変化させた際の特性を調べたものである。同図において、○は本発明品を、点線は軸受表面を完全に平坦に形成したすべり軸受の試験結果を示している。
図7に示されているように、上記比が14以上となればかなりの摩擦低減となり、40から50で最小となり、それ以上では徐々に増える。
この試験結果から、本発明のすべり軸受における底面幅bと突筋幅cとの比(b/c)は、b/c>14の範囲となるように設定すると良好な低摩擦のすべり軸受を得ることができる。
FIG. 7 shows the characteristics when the ratio (b / c) between the bottom surface width b and the protruding bar width c is greatly changed by changing the bottom surface width b. In the figure, ○ indicates the product of the present invention, and the dotted line indicates the test result of the slide bearing in which the bearing surface is completely flat.
As shown in FIG. 7, if the ratio is 14 or more, there is a considerable friction reduction, minimum at 40 to 50, and gradually increase above that.
From this test result, when the ratio (b / c) between the bottom face width b and the protrusion width c in the slide bearing of the present invention is set to be in the range of b / c> 14, a good low friction slide bearing is obtained. be able to.

図8は、完全に平坦なすべり軸受の摩擦の大きさを基準として、これに対する各種のすべり軸受における摩擦の大きさの差を示したものである。
同図において、Aは軸受表面が完全に平坦なすべり軸受の摩擦の大きさを基準として示したもので、Bは従来一般のブローチ加工によって製造したすべり軸受の摩擦の大きさを、上記すべり軸受Aの摩擦の大きさからの差として示してある。同様に、Cは特許文献1に記載された条溝付きすべり軸受を、Dは特許文献2の図7に記載されたすべり軸受を、Eは底面幅bと突筋幅cとの比(b/c)を40に設定した本発明品のすべり軸受をそれぞれ示している。
なお、特許文献2の図7に関しては摩擦低減の効果についての定量的な記載はなく、底面幅bと突筋幅cとの比についての記載もない。そこで同図の寸法を実測したところ、その比は8であった。したがって上記符号Dは、底面幅bと突筋幅cとの比を8とした試験結果を示している。また、特許文献2の図7における突筋は鋭角となっており、特許文献2の本文中にも鋭角である旨の記載がある。これは本発明の図3の形状とは異なっている。
上記試験結果から理解されるように、一般のすべり軸受Bに対し、条溝付きすべり軸受Cは摩擦低減に効果があるが、完全に平坦なすべり軸受Aには及ばない。これに対し、底面幅bを大きくしたすべり軸受D、Eは摩擦低減に効果があり、なかでも上記比を40とした本発明品のすべり軸受Eは、その比を8としたすべり軸受Dに対しても2倍ほどの低減効果がある。
FIG. 8 shows the difference in the magnitude of friction in various sliding bearings with respect to the magnitude of friction in a completely flat sliding bearing.
In the figure, A shows the friction level of a plain bearing with a completely flat bearing surface, and B shows the friction level of a plain bearing manufactured by a conventional broaching process. It is shown as the difference from the magnitude of friction of A. Similarly, C is a sliding bearing with a groove described in Patent Document 1, D is a sliding bearing described in FIG. 7 of Patent Document 2, and E is a ratio of the bottom surface width b to the protruding bar width c (b / Each of the plain bearings of the present invention with c) set to 40 is shown.
In addition, regarding FIG. 7 of patent document 2, there is no quantitative description about the effect of friction reduction, and there is no description about the ratio of the bottom face width b and the protrusion width c. Therefore, when the dimensions in the figure were measured, the ratio was 8. Accordingly, the symbol D indicates a test result in which the ratio of the bottom surface width b and the protruding bar width c is 8. Further, the protruding muscle in FIG. 7 of Patent Document 2 has an acute angle, and the text of Patent Document 2 also describes that it is an acute angle. This is different from the shape of FIG. 3 of the present invention.
As understood from the above test results, the grooved slide bearing C is effective for reducing friction with respect to the general slide bearing B, but it does not reach the completely flat slide bearing A. On the other hand, the slide bearings D and E having a larger bottom width b are effective in reducing friction, and the slide bearing E of the present invention having the above ratio of 40 is particularly suitable for the slide bearing D having the ratio of 8. In contrast, there is a reduction effect of about twice.

図9は、摩擦低減の要因を示した図である。本発明の底面幅bが広いすべり軸受を太線で、完全に平坦なすべり軸受を細線で示してある。同図から理解されるように、本発明品は完全に平坦なすべり軸受に対して、約二倍の最小油膜厚さとなる潤滑期間がエンジンのサイクルに多くあり、これによって摩擦が下がる。
最小油膜厚さの増大は、突筋2により円周方向流れが主体となり、横方向の流れが抑制されることにより油の圧力上昇効果が生じるためである。
FIG. 9 is a diagram showing the factor of friction reduction. In the present invention, the plain bearing having a wide bottom width b is indicated by a thick line, and the completely flat slide bearing is indicated by a thin line. As understood from the figure, the product of the present invention has a lubrication period in which the minimum oil film thickness is about twice that of a completely flat plain bearing in the engine cycle, and this reduces friction.
The increase in the minimum oil film thickness is due to the fact that the circumferential flow is mainly caused by the protrusion 2 and the effect of increasing the oil pressure is produced by suppressing the lateral flow.

次に、上記突筋2の高さhや幅c、並びにピッチaの大きさについて述べる。
先ず上記突筋2の高さhについて述べると、各突筋の高さは、基準すき間幅(クリアランス)より低く、実働時の各位置の最小油膜厚さよりも小さくする必要がある。エンジンなどの変動荷重軸受では軸受の位置により異なり、だいたい軸受直径dの1/10000〜2/10000くらいであることが数値計算によりわかっている。
そこで、上記突筋2の高さhは、すべり軸受の直径をdとして、突筋2の高さh<軸受直径d×2/10000=2d/10000mm(h<2d/10000)とするのが望ましい。
Next, the height h, the width c, and the size of the pitch a will be described.
First, the height h of the projecting muscle 2 will be described. The height of each projecting muscle must be lower than the reference gap width (clearance) and smaller than the minimum oil film thickness at each position during actual operation. It is known from numerical calculations that the load bearing of an engine or the like varies depending on the position of the bearing and is about 1/10000 to 2/10000 of the bearing diameter d.
Therefore, it is desirable that the height h of the protruding bar 2 is such that the diameter of the sliding bearing is d, and the height h of the protruding bar 2 <the bearing diameter d × 2/10000 = 2d / 10000 mm (h <2d / 10000).

次に、上記突筋2の高さhを考慮して、突筋2の幅cを設定することができる。
すべり軸受は表面に軟質材料を用いることが多く、最近では樹脂を用いる場合もある。よって、許容せん断力を基準に突筋2の最小幅を決めることになる。
エンジン用のすべり軸受などでは、油膜の圧力pは局所的には500MPa(剛体軸受の潤滑理論より)に到達することも十分想定しなければならない。許容せん断応力をτとして、軸受として安心して使用するためには、許容せん断応力τ×突筋幅c>油膜の圧力p×突筋の高さh(τc>ph)でなければならない。つまり、突筋幅c>油膜の圧力p×突筋の高さh/許容せん断応力τ(c>ph/τ)となる。
これに曲げによる応力、すなわち最大主応力=突筋2の根元のモーメント/突筋の根元の断面係数(=p×(h/c)2/12も作用する。
この最大主応力は、許容せん断応力τに比べ十分小さいが、多少余裕を持った突筋幅cとしなければならない。ここでは軸受材の降伏点応力を基準に、許容せん断応力を降伏点応力の半分と想定する。軸受表面材の引張り強さは300から370MPa、降伏点応力は100から150MPaである。
許容せん断応力を降伏点応力の半分で50から75MPaとすれば、低い方の値50MPaを用いて、かつh=d/10000、p=500MPaを用いると、c>ph/τであるから、
突筋幅c>500MPa×d/10000/50MPa=d/1000mm(c>d/1000)となる。
Next, the width c of the protruding muscle 2 can be set in consideration of the height h of the protruding muscle 2.
A plain bearing often uses a soft material for the surface, and recently, a resin may be used. Therefore, the minimum width of the protruding bar 2 is determined based on the allowable shear force.
In a sliding bearing for an engine or the like, it must be sufficiently assumed that the oil film pressure p locally reaches 500 MPa (from the lubrication theory of a rigid bearing). In order to use the bearing with an allowable shear stress τ, the allowable shear stress τ × the protrusion width c> the oil film pressure p × the protrusion height h (τc> ph) must be satisfied. That is, the protrusion width c> the pressure p of the oil film × the protrusion height h / the allowable shear stress τ (c> ph / τ).
Stress due to bending in this, that is, the maximum principal stress = root section modulus at the root of the moment /突筋of突筋2 (= p × (h / c) 2/12 also acts.
This maximum principal stress is sufficiently smaller than the allowable shear stress τ, but it must be a protruding bar width c with some margin. Here, based on the yield point stress of the bearing material, the allowable shear stress is assumed to be half of the yield point stress. The tensile strength of the bearing surface material is 300 to 370 MPa, and the yield point stress is 100 to 150 MPa.
If the allowable shear stress is 50 to 75 MPa, which is half of the yield point stress, then using the lower value of 50 MPa and h = d / 10000, p = 500 MPa, c> ph / τ,
The ridge width c> 500 MPa × d / 10000/50 MPa = d / 1000 mm (c> d / 1000).

ところで、実際上、すべり軸受の直径dが小さいときに突筋2の幅cを狭くすることは、加工上難しい。
切削加工では切削抵抗によるせん断応力が発生し、これが加工可能な形状にも影響する。切削抵抗は加工の速度を落とすなどによって低くできるが、せん断応力は純アルミで130MPaと紹介されている(機械工学便覧B2偏加工学・加工機器)。純アルミの降伏点応力は約180MPaで、許容応力の決定では許容せん断応力は許容応力の80%とすることが多い。
突筋2を三角形状とすれば、切削抵抗による突筋を三角形の底面のせん断応力が材料の許容せん断応力以下でなければならない。これは傾斜角δ(図3参照)の余弦(cosδ)<切削抵抗によるせん断応力/許容せん断応力となり、純アルミの場合角度δは25°以下(頂角130°以上)。さらに切削抵抗のエネルギーの95%は温度の上昇になる(機械工学便覧B2偏加工学・加工機器)と考えられていて熱の伝導のためにはδは25°よりかなり小さい値にして切削面から材料内部への熱の移動を容易にしなければならない。
また、切削加工を旋盤などで行う場合。送りの精度から加工できる最小幅すなわち突筋2の最小幅を決めなければならない。JIS B6202に精度検査について記されていて、精密旋盤でも精度の許容値は回転する主軸の主軸方向の動きと振れ10μm、親ねじの軸方向の動きに10μm、JIS B6331に刃物台の位置精度の許容値は5μmと記されている。
これらを合わせると精密旋盤の送り許容精度は25μm。精度記号Gの精密級のスローアウェイチップでも±25μmの寸法容差を持つ(機械工学便覧B2偏加工学・加工機器)。スローアウェイチップの精度は相対的なもので除外できるとしても、切削抵抗や精密旋盤の送り精度25μm以上の突筋2の幅cでないと切削加工上、突筋2の加工を保証できないと考えられる。
よって、上記突筋2の幅cは、25μm以上で、かつc>d/1000となるように設定するのが望ましい。
By the way, it is practically difficult to reduce the width c of the protrusion 2 when the diameter d of the slide bearing is small.
In cutting, shear stress is generated by cutting resistance, which affects the shape that can be processed. The cutting resistance can be lowered by reducing the processing speed, etc., but the shear stress is introduced as 130 MPa in pure aluminum (Mechanical Engineering Handbook B2 Bias Processing and Processing Equipment). The yield point stress of pure aluminum is about 180 MPa, and in determining the allowable stress, the allowable shear stress is often 80% of the allowable stress.
If the protrusion 2 is triangular, the shear stress of the bottom surface of the protrusion due to cutting resistance must be less than the allowable shear stress of the material. This is cosine (cos δ) of inclination angle δ (see FIG. 3) <shear stress due to cutting resistance / allowable shear stress. In the case of pure aluminum, angle δ is 25 ° or less (vertical angle 130 ° or more). Furthermore, it is thought that 95% of the energy of the cutting force is increased in temperature (Mechanical Engineering Handbook B2: Partial Machining / Machining Equipment). For heat conduction, δ is set to a value considerably smaller than 25 °. Heat transfer from the inside to the inside of the material must be facilitated.
When cutting with a lathe. The minimum width that can be machined, that is, the minimum width of the protrusion 2 must be determined from the feed accuracy. The accuracy inspection is described in JIS B6202, and the allowable value of accuracy in the precision lathe is 10 μm for the movement and runout of the main spindle in the main axis direction, 10 μm for the axial movement of the lead screw, and the position accuracy of the tool post in JIS B6331. The allowable value is marked as 5 μm.
Together these, the precision lathe feed tolerance is 25 μm. Even the precision grade throw-away tip with accuracy symbol G has a dimensional difference of ± 25 μm (Mechanical Engineering Handbook B2: Partial Machining and Processing Equipment). Even if the accuracy of the throw-away tip is relative and can be excluded, it is considered that the machining of the protruding bar 2 cannot be guaranteed in terms of cutting unless the cutting resistance or the width c of the protruding bar 2 has a feed accuracy of a precision lathe of 25 μm or more.
Therefore, it is desirable to set the width c of the ridge 2 so that it is 25 μm or more and c> d / 1000.

さらに、突筋2のピッチaの好ましい最小値について述べる。
ピッチa=突筋幅c+底面幅bであり、底面幅bと突筋幅cとの比はb/c>14、すなわち底面幅b>14×突筋幅cなので、結局、ピッチa>突筋幅c+底面幅b=突筋幅c+14×突筋幅c=15×突筋幅cとなる(a>15c)。
上述したように、突筋2の幅cは25μm以上必要なので、ピッチaは、15×25=375μm以上必要となる。
他方、ピッチa>15×突筋幅c>15×軸受直径d×10-3なので、a>15d/1000となる。
Furthermore, a preferable minimum value of the pitch a of the protrusion 2 will be described.
The pitch a = the protruding bar width c + the bottom surface width b, and the ratio of the bottom surface width b and the protruding bar width c is b / c> 14, that is, the bottom surface width b> 14 × the protruding bar width c. The width b = the protrusion width c + 14 × the protrusion width c = 15 × the protrusion width c (a> 15c).
As described above, since the width c of the protrusion 2 is required to be 25 μm or more, the pitch a is required to be 15 × 25 = 375 μm or more.
On the other hand, since pitch a> 15 × barrel width c> 15 × bearing diameter d × 10 −3 , a> 15d / 1000.

図10、図11はそれぞれピッチaと軸受直径dとの関係を図示したもので、図10は軸受直径dが小さい領域を示しており、図11は軸受直径dがそれよりも大きな領域を示している。
同図において、符号Xは特許文献1に記載された領域を示しており、線Yは上述した本発明に係る最小ピッチaを示している。本発明の領域は、その線Yよりも上側の領域である。また線Zは、本発明において底面幅b/突筋幅c=19となる線を示しており、その比が19以上であればより優れた摩擦低減効果が得られている。なお、図10の線Zにおいて、b/c=19としたときの最小のピッチaは、500μmである。すなわち、b=19c、かつa=b+cなので、a=20cとなり、またcは25μm以上必要なので、最小のピッチaは20×25=500μmとなる。
FIGS. 10 and 11 illustrate the relationship between the pitch a and the bearing diameter d, respectively. FIG. 10 shows a region where the bearing diameter d is small, and FIG. 11 shows a region where the bearing diameter d is larger than that. ing.
In the same figure, the code | symbol X has shown the area | region described in patent document 1, and the line Y has shown the minimum pitch a based on this invention mentioned above. The region of the present invention is a region above the line Y. A line Z indicates a line in which the bottom width b / the protrusion width c = 19 in the present invention. If the ratio is 19 or more, a more excellent friction reducing effect is obtained. In the line Z of FIG. 10, the minimum pitch a when b / c = 19 is 500 μm. That is, since b = 19c and a = b + c, a = 20c, and since c is required to be 25 μm or more, the minimum pitch a is 20 × 25 = 500 μm.

さらに、すべり軸受外への軸方向の脇漏れを少なくし、荷重を支える軸受表面の油膜圧力を向上させて、油膜厚さを厚くし、摩擦低減と潤滑の性能改善をするためには、すべり軸受の軸方向両端部に突筋2を形成することが望ましい。そして、両端部の突筋に加え、軸受表面に最低2つの突筋2を形成すると、中央の油膜圧力を高くして油の流れを制御することができる。
よって本発明のピッチaの最大値は軸受幅をLとして、ピッチa<L/3に設定することが望ましい。
Furthermore, in order to reduce axial side leakage to the outside of the slide bearing, improve the oil film pressure on the bearing surface that supports the load, increase the oil film thickness, reduce friction and improve lubrication performance, It is desirable to form the protruding bars 2 at both axial ends of the bearing. If at least two protruding bars 2 are formed on the bearing surface in addition to the protruding bars at both ends, the oil film pressure at the center can be increased to control the flow of oil.
Therefore, it is desirable that the maximum value of the pitch a of the present invention is set such that the bearing width is L and the pitch a <L / 3.

また、上記各突筋2は、すべり軸受の正確に円周方向に形成しても、螺旋状に所要の角度θだけ傾けて形成してもよい。突筋2を傾けて形成する場合には、軸受幅と軸受傾直径が等しい場合を想定すれば、tanθ<1/(3π)から6度以下となる。よって、本発明の突筋2の傾きの角度θは、軸受の円周方向に対して±6度以下に設定することが望ましい。   Further, each protruding bar 2 may be formed in the circumferential direction of the slide bearing accurately, or may be formed in a spiral shape by being inclined at a required angle θ. When the protrusion 2 is formed to be inclined, assuming that the bearing width is equal to the bearing inclined diameter, tan θ <1 / (3π) is 6 degrees or less. Therefore, it is desirable to set the inclination angle θ of the protrusion 2 of the present invention to be ± 6 degrees or less with respect to the circumferential direction of the bearing.

本発明のすべり軸受は、上記のピッチaの範囲内であれば均等なピッチでなくても良い。突筋2と直角方向の断面は概ね台形によって近似できるが、突筋2の斜面や頂上面や底面は多少曲がったり、ゆがんでいても良い。
また突筋の高さhは上記範囲内であれば、場所によって異なっても良い。特に大きな荷重がかかる方向に高さを低く、逆に荷重が小さいか軸受ハウジングがやわらかい方向は、突筋の高さを高くすると効果的である。
The plain bearing of the present invention may not have a uniform pitch as long as it is within the range of the pitch a. The cross section perpendicular to the projecting muscle 2 can be approximated by a trapezoid, but the slope, top surface, and bottom surface of the projecting muscle 2 may be slightly bent or distorted.
Further, the height h of the protruding muscle may be different depending on the location as long as it is within the above range. In particular, when the height is low in the direction in which a large load is applied and the load is small or the bearing housing is soft, it is effective to increase the protrusion height.

本発明の一実施例を示す斜視図。The perspective view which shows one Example of this invention. 図1のII−II線に沿う要部の拡大断面図で、突筋2を誇張して示した断面図。FIG. 2 is an enlarged cross-sectional view of a main part taken along line II-II in FIG. 図1のII−II線に沿う要部の拡大断面図で、図2よりも実際の寸法に近い断面図。2. It is an expanded sectional view of the principal part in alignment with the II-II line | wire of FIG. 1, and sectional drawing nearer to an actual dimension than FIG. 本発明品における底面幅bと突筋幅cとの比(b/c)を変化させて、エンジンのコンロッドに作用する変動荷重下の摩擦(パワーロスW)の変化を調べた試験結果図。The test result figure which changed the ratio (b / c) of the bottom face width b and the protrusion width c in this-article product, and investigated the change of the friction (power loss W) under the variable load which acts on the connecting rod of an engine. 従来のすべり軸受について図4と同一の試験条件で行なった試験結果。FIG. 5 is a test result of a conventional plain bearing performed under the same test conditions as FIG. 図5の試験における突筋頂上幅eと溝幅fとを説明するための断面図。Sectional drawing for demonstrating the ridge top width e and groove width f in the test of FIG. 底面幅bと突筋幅cとの比(b/c)が摩擦に与える影響を調べた試験結果図。The test result figure which investigated the influence which ratio (b / c) of the bottom face width b and the protrusion width | variety width c has on friction. 軸受表面を完全に平坦に製造したすべり軸受の摩擦の大きさを基準として、通常の加工(ブローチ加工)のすべり軸受と、特許文献1に記載された条溝付きすべり軸受と、特許文献2の図7に記載されたすべり軸受と、底面幅bと突筋幅cとの比(b/c)を40に設定した本発明品のすべり軸受とにおける摩擦の大きさの差をそれぞれ示した試験結果図。With reference to the magnitude of friction of a plain bearing manufactured with a completely flat bearing surface, a plain bearing having a normal process (broaching), a grooved slide bearing described in Patent Document 1, and a patent document 2 Test results showing the difference in the magnitude of friction between the sliding bearing shown in FIG. 7 and the sliding bearing of the present invention in which the ratio (b / c) of the bottom surface width b to the protruding bar width c is set to 40 Figure. 本発明の底面幅bを広くしたすべり軸受の摩擦低減の理由を、最小油膜厚さを用いて説明する図。The figure explaining the reason of the friction reduction of the slide bearing which widened the bottom face width b of this invention using minimum oil film thickness. ピッチaと軸受直径dとの関係を示した図。The figure which showed the relationship between the pitch a and the bearing diameter d. 図10よりも軸受直径dが大きな領域におけるピッチaと軸受直径dとの関係を示した図。The figure which showed the relationship between the pitch a and the bearing diameter d in the area | region where the bearing diameter d is larger than FIG.

符号の説明Explanation of symbols

1 すべり軸受 2 突筋
a ピッチ b 底面幅
c 突筋幅 d 軸受直径
h 突筋の高さ
1 Sliding bearing 2 Reinforcement a pitch b Bottom width c Reinforcement width d Bearing diameter h Height of protrusion

Claims (7)

すべり軸受の軸受表面の円周方向に細い突状の突筋を複数設け、突筋と突筋間のピッチをa、突筋と突筋間の底面幅をb、各突筋の幅をcとしたときに、上記底面幅bと突筋幅cとの比が、b/c>14となるように設定したことを特徴とするすべり軸受。   When a plurality of thin protruding protrusions are provided in the circumferential direction of the bearing surface of the sliding bearing, the pitch between the protruding bars and the protruding bars is a, the bottom width between the protruding bars and the protruding bars is b, and the width of each protruding bar is c. A plain bearing, characterized in that the ratio of the bottom surface width b to the protruding bar width c is set so that b / c> 14. すべり軸受の軸受幅をLとしたときに、上記ピッチaを、a<L/3となるように設定したことを特徴とする請求項1に記載のすべり軸受。   2. The plain bearing according to claim 1, wherein the pitch a is set to satisfy a <L / 3 when the bearing width of the plain bearing is L. すべり軸受の直径をdとしたときに、上記ピッチaを、a≧375μmで、かつa>15d/1000となるように設定したことを特徴とする請求項1又は請求項2に記載のすべり軸受。   3. The plain bearing according to claim 1, wherein when the diameter of the plain bearing is d, the pitch a is set such that a ≧ 375 μm and a> 15d / 1000. . 上記突筋の高さをh、すべり軸受の直径をdとしたときに、突筋の高さhを、h<2d/10000となるように設定したことを特徴とする請求項1ないし請求項3のいずれかに記載のすべり軸受。   4. The height h of the protrusion is set so that h <2d / 10000, where h is the height of the protrusion and d is the diameter of the plain bearing. A plain bearing according to any of the above. 上記突筋幅cを、c≧25μmで、かつc>d/1000となるように設定したことを特徴とする請求項1ないし請求項4のいずれかに記載のすべり軸受。   5. The plain bearing according to claim 1, wherein the protruding bar width c is set such that c ≧ 25 μm and c> d / 1000. 上記突筋は上記軸受表面の円周方向に対して傾いて形成されており、その傾き角度が±6度以下であることを特徴とする請求項1ないし請求項5のいずれかに記載のすべり軸受。   The sliding bearing according to any one of claims 1 to 5, wherein the protruding bars are formed to be inclined with respect to a circumferential direction of the bearing surface, and an inclination angle thereof is ± 6 degrees or less. . 上記突筋のピッチaは、不等ピッチであることを特徴とする請求項1ないし請求項6のいずれかに記載のすべり軸受。   The sliding bearing according to any one of claims 1 to 6, wherein pitches a of the protruding bars are unequal pitches.
JP2005340244A 2005-11-04 2005-11-25 Sliding bearing Pending JP2007146919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340244A JP2007146919A (en) 2005-11-04 2005-11-25 Sliding bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005320959 2005-11-04
JP2005340244A JP2007146919A (en) 2005-11-04 2005-11-25 Sliding bearing

Publications (1)

Publication Number Publication Date
JP2007146919A true JP2007146919A (en) 2007-06-14

Family

ID=38208563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340244A Pending JP2007146919A (en) 2005-11-04 2005-11-25 Sliding bearing

Country Status (1)

Country Link
JP (1) JP2007146919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010675A (en) * 2013-06-28 2015-01-19 本田技研工業株式会社 Balancer metal
CN107061501A (en) * 2017-06-06 2017-08-18 袁虹娣 The miniature ladder bearing of abnormity
WO2022223794A1 (en) * 2021-04-22 2022-10-27 Rolls-Royce Solutions GmbH Bearing part for a plain bearing, bearing shell, plain bearing, machine, and method for manufacturing a bearing part for a plain bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973620A (en) * 1982-09-20 1984-04-25 ミバ・グライトラ−ゲル・アクチエンゲゼルシヤフト Dynamic and hydraulic pressure slide bearing
JPS6353922U (en) * 1986-09-29 1988-04-11
JPH07259859A (en) * 1994-03-18 1995-10-09 Taiho Kogyo Co Ltd Bearing device
JPH07293567A (en) * 1994-04-22 1995-11-07 Taiho Kogyo Co Ltd Slide bearing
JP2003269454A (en) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd Bearing metal and slide bearing using bearing metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973620A (en) * 1982-09-20 1984-04-25 ミバ・グライトラ−ゲル・アクチエンゲゼルシヤフト Dynamic and hydraulic pressure slide bearing
JPS6353922U (en) * 1986-09-29 1988-04-11
JPH07259859A (en) * 1994-03-18 1995-10-09 Taiho Kogyo Co Ltd Bearing device
JPH07293567A (en) * 1994-04-22 1995-11-07 Taiho Kogyo Co Ltd Slide bearing
JP2003269454A (en) * 2002-03-13 2003-09-25 Mitsubishi Heavy Ind Ltd Bearing metal and slide bearing using bearing metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010675A (en) * 2013-06-28 2015-01-19 本田技研工業株式会社 Balancer metal
CN107061501A (en) * 2017-06-06 2017-08-18 袁虹娣 The miniature ladder bearing of abnormity
WO2022223794A1 (en) * 2021-04-22 2022-10-27 Rolls-Royce Solutions GmbH Bearing part for a plain bearing, bearing shell, plain bearing, machine, and method for manufacturing a bearing part for a plain bearing

Similar Documents

Publication Publication Date Title
KR101879475B1 (en) Plain bearing shell with slide face surface geometry which is profiled in the axial direction
US8240917B2 (en) Fluid dynamic bearing pattern and fluid dynamic bearing
JP6962398B2 (en) Ball screw device
CN100425849C (en) Fluid dynamic bearing device
US7150565B1 (en) Cylindrical roller bearing
CN108884867B (en) Double-row self-aligning roller bearing
JP2007177808A (en) Hydrodynamic bearing unit
JP2008261474A (en) Thrust washer
JP2007225079A (en) Sliding bearing for diagonal split type connecting rod
JP2007146919A (en) Sliding bearing
EP2787225A1 (en) Roller bearing
US10024358B2 (en) Crank-drive with bearings having micro-ramp structures of asymmetric form
KR20130031821A (en) Sliding bearing shell
JP4884886B2 (en) Roller bearing
JP5912413B2 (en) Solid lubricant embedded bearing and manufacturing method thereof
US9188157B2 (en) Axial sliding bearing
JP4483803B2 (en) Thrust cylindrical roller bearing
JPWO2004081400A1 (en) Hydrodynamic bearing device
JP2007192320A (en) Shaft member for hydrodynamic bearing unit
JP4933081B2 (en) Manufacturing method of meshing element of rotation / linear motion conversion mechanism
JP2001116046A (en) Dynamic pressure bearing device
JP5356361B2 (en) Roller bearing
US11821505B2 (en) Sun gear for use in a planetary gear system, counter bearing part, bearing arrangement and planetary gear system
WO2016072305A1 (en) Rotational sliding bearing
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005