JP2007146222A - Method for producing steel sheet - Google Patents

Method for producing steel sheet Download PDF

Info

Publication number
JP2007146222A
JP2007146222A JP2005341778A JP2005341778A JP2007146222A JP 2007146222 A JP2007146222 A JP 2007146222A JP 2005341778 A JP2005341778 A JP 2005341778A JP 2005341778 A JP2005341778 A JP 2005341778A JP 2007146222 A JP2007146222 A JP 2007146222A
Authority
JP
Japan
Prior art keywords
rolling
temperature
steel
processing
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005341778A
Other languages
Japanese (ja)
Inventor
Takashi Kuroki
高志 黒木
Masaru Miyake
勝 三宅
Yasuhiro Sotani
保博 曽谷
Toshiki Hiruta
敏樹 蛭田
Yukihiro Matsubara
行宏 松原
Michio Yamashita
道雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005341778A priority Critical patent/JP2007146222A/en
Publication of JP2007146222A publication Critical patent/JP2007146222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high strength steel sheet having fine ferrite structure without a work under large pressure. <P>SOLUTION: The method for producing the steel sheet is performed as the followings: when producing the steel sheet by hot-rolling the steel heated at Ae<SB>3</SB>transformation point, or higher, in the finish pass of this hot-rolling, the elastic-working is applied while cooling this steel so that the working steel temperature becomes (Ae<SB>3</SB>transformation point - 60°C) or higher and the working finish temperature becomes (Ae<SB>3</SB>transformation point - 200°C) or lower. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高強度な鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength steel sheet.

近年、自動車の軽量化、建築物の高層化等のニーズに対応し鋼材の高強度化が求められている。一般的に鋼材の強度を上げると靭性が低下するが、結晶粒微細化による強化の場合、一般に延性を低下させずに強度、とくに降伏点を向上させることが可能であり、さらに靭性も向上する。従って、種々の結晶粒微細化技術が提案されている。   In recent years, there has been a demand for increasing the strength of steel materials in response to needs such as weight reduction of automobiles and high-rise buildings. Generally, increasing the strength of a steel material reduces toughness, but in the case of strengthening by grain refinement, it is generally possible to improve strength, particularly the yield point, without reducing ductility, and toughness is also improved. . Therefore, various crystal grain refining techniques have been proposed.

従来の結晶粒微細化手段としては、大歪加工が多く研究されている。Ae点以上に加熱されオーステナイト相になった鋼を急冷すると、通常、Ae点以下となっても直ちに変態は生じず、過冷された状態のオーステナイト相となる。その温度に保持するか、またはさらに冷却を続ければ変態を生じるが、組成や冷却条件によって、フェライト相、マルテンサイト相あるいはベイナイト相に変態する。そして、この変態直前の過冷状態にて加工を加えると、フェライトを主体とする組織に急速に変化する。これは加工により変態が誘起され促進されるためと考えられる。その際に、加工温度および加工率を変えることにより、歪みが解放されたフェライト相で、しかも結晶粒径の小さい組織が得られることは知られている。 As a conventional means for refining crystal grains, large strain processing has been studied a lot. When steel heated to Ae 3 points or more and turned into an austenite phase is rapidly cooled, normally, even when the temperature is 3 points Ae or less, transformation does not occur immediately, and an austenite phase in a supercooled state is obtained. If the temperature is maintained or further cooling is continued, transformation occurs, but depending on the composition and cooling conditions, transformation occurs to a ferrite phase, a martensite phase, or a bainite phase. When processing is performed in a supercooled state immediately before the transformation, the structure rapidly changes to a structure mainly composed of ferrite. This is presumably because transformation is induced and promoted by processing. At that time, it is known that by changing the processing temperature and the processing rate, a ferrite phase in which the strain is released and a structure having a small crystal grain size can be obtained.

例えば、Ar変態点近傍で合計圧下率80%以上の圧延を行うことで、微細フェライト組織を有する高強度熱延鋼板を製造する方法が示されているものや、650℃以下の過冷オーステナイト域で、加工開始に対する加工終了の断面積減少率が60%以上の加工を施し、高強度鋼を製造する方法が示されているものがある(例えば、特許文献1、特許文献2、特許文献3参照)。
特開昭58−123823号公報 特開平11−323481号公報 特開2001−98322号公報
For example, a method for producing a high-strength hot-rolled steel sheet having a fine ferrite structure by rolling at a total rolling reduction of 80% or more in the vicinity of the Ar 3 transformation point, or supercooled austenite at 650 ° C. or lower is shown. In the region, there is shown a method of manufacturing a high-strength steel by performing processing in which the cross-sectional area reduction rate at the end of processing relative to the start of processing is 60% or more (for example, Patent Document 1, Patent Document 2, Patent Document) 3).
JP 58-123823 A JP 11-334881 A JP 2001-98322 A

上記特許文献1〜3などに記載のAr変態点近傍や650℃以下という低温域での大圧下加工(圧延)では、駆動系を含め、大圧延荷重に耐える圧延機が必要であり、一般的な仕様の圧延設備での実施は困難である。 In the large reduction processing (rolling) in the vicinity of the Ar 3 transformation point and in the low temperature range of 650 ° C. or less described in Patent Documents 1 to 3 and the like, a rolling mill that can withstand a large rolling load, including the drive system, is necessary. It is difficult to carry out with rolling equipment with specific specifications.

本発明は、上記のような従来技術の問題点を解決し、大圧下加工によらない、微細フェライト組織を有する高強度な鋼板の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art and to provide a method for producing a high-strength steel sheet having a fine ferrite structure that does not depend on a large rolling process.

上記課題を解決すべく、本発明者等は、鋼の微細粒化をより一層促進させる手段として、加工中の動的な変態による結晶粒の細分化と粒成長抑止方法について鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have intensively studied a method for suppressing grain growth and grain growth by means of dynamic transformation during processing as means for further promoting the refinement of steel. .

その際に、Ar変態点近傍や650℃以下という低温域まで冷却してから加工するのではなく、(Ae変態点−60℃)以上の温度から加工を加えつつ冷却することにより、従来技術より小さな圧延荷重で、極めて結晶粒径の小さいフェライト組織を製造可能なことを見出した。 At that time, the processing is not performed after cooling to the vicinity of the Ar 3 transformation point or to a low temperature range of 650 ° C. or lower, but by cooling from the temperature of (Ae 3 transformation point−60 ° C.) or higher, by conventional cooling. It has been found that a ferrite structure having a very small crystal grain size can be produced with a rolling load smaller than that of the technology.

これはAr点より高い温度から加工を開始することでオーステナイトの再結晶が生じる温度域(以下、単に「再結晶域」と記す)での加工および/或いはオーステナイトの再結晶が生じない温度域(以下、単に「未再結晶域」と記す)での加工となる効果に加えて、加工中の急激な温度変化(温度低下)により加工中に変態が進行し、この変態したフェライトが加工中或いは加工後に再結晶したために生じたものと考えられる。 This is a temperature range in which austenite recrystallization occurs when processing starts at a temperature higher than the Ar 3 point (hereinafter simply referred to as “recrystallization region”) and / or austenite recrystallization does not occur. (Hereinafter, simply referred to as “non-recrystallized region”) In addition to the effect of processing in the process, the transformation progresses during processing due to a rapid temperature change (temperature decrease) during processing, and this transformed ferrite is being processed. Or it is thought to be caused by recrystallization after processing.

また、圧延も鋼板が高温の状態から開始するため、圧延終了時には低温になるにしても、鋼板をAr変態点近傍や650℃以下の温度域に冷却してから圧延開始するよりも荷重が低減できる。 In addition, since rolling starts from a state in which the steel plate is at a high temperature, even if the temperature is lowered at the end of rolling, the load is higher than when the rolling starts after the steel plate is cooled to the vicinity of the Ar 3 transformation point or to a temperature range of 650 ° C. or lower. Can be reduced.

なお、加工を施すと同時に、冷却を施す方法としては、水冷などの手段の他、圧延や鍛造などの加工法では工具との接触における伝熱現象を利用することが可能である。   In addition, as a method of cooling at the same time as performing processing, in addition to means such as water cooling, a processing method such as rolling or forging can utilize a heat transfer phenomenon in contact with a tool.

本発明はこれらの知見に基づきなされたもので、以下のような特徴を有する。   The present invention has been made based on these findings and has the following characteristics.

[1]Ae変態点以上に加熱した鋼を熱間圧延して鋼板を製造するに際し、前記熱間圧延の最終パスにおいて、加工開始温度が(Ae変態点−60℃)以上かつ加工終了温度が(Ae変態点−200℃)以下となるように、鋼を冷却しながら塑性加工することを特徴とする鋼板の製造方法。 [1] When a steel sheet is manufactured by hot rolling steel heated to the Ae 3 transformation point or higher, in the final pass of the hot rolling, the processing start temperature is (Ae 3 transformation point −60 ° C.) or more and the processing is completed. A method for producing a steel sheet, comprising subjecting the steel to plastic working while cooling so that the temperature is not higher than (Ae 3 transformation point -200 ° C).

[2]前記熱間圧延の最終パスにおける塑性加工に要する時間を2秒以内とすることを特徴とする前記[1]に記載の鋼板の製造方法。   [2] The method for producing a steel sheet according to [1], wherein a time required for plastic working in the final pass of the hot rolling is set to be within 2 seconds.

[3]前記熱間圧延の最終パスにおける断面積の減少率を40%以上とすることを特徴とする前記[1]または[2]に記載の鋼板の製造方法。   [3] The method for manufacturing a steel sheet according to [1] or [2], wherein a reduction rate of the cross-sectional area in the final pass of the hot rolling is 40% or more.

本発明によれば、微細フェライト組織を有する高強度な鋼板を製造することが可能である。   According to the present invention, it is possible to manufacture a high-strength steel sheet having a fine ferrite structure.

本発明においては、鋼を熱間圧延して鋼板を製造するに際し、素材とする鋼はAe変態点以上に加熱して、オーステナイト単相としておく必要がある。これは本発明がオーステナイトからフェライトへの変態を利用し、結晶粒を微細化し、鋼の高強度化を図ろうとしているからである。 In the present invention, when a steel producing steel by hot rolling, the steel according to the material is heated above Ae 3 transformation point, it is necessary to the austenite single phase. This is because the present invention uses the transformation from austenite to ferrite to refine the crystal grains and increase the strength of the steel.

そして、本発明の鋼板の製造方法は、熱間圧延の最終パスにおいて、加工開始温度が(Ae変態点−60℃)以上かつ加工終了温度が(Ae変態点−200℃)以下となるように、鋼を冷却しながら塑性加工(以下、本発明の塑性加工と称する)を行う。ここで、熱間圧延の最終パスとは、素材となる鋼に対して複数回の熱間加工を加える場合には最終パスを、1回のみの熱間加工を加える場合にはその1回の加工を指すものとする。そして、前記本発明の塑性加工開始前の鋼は、素材となる鋼を常温から加熱炉にてAe変態点以上の温度に加熱したものでもよいし、素材となる鋼をAe変態点以上の温度で加熱した後、粗鍛造、粗圧延などにより所要形状に加工された状態であってもよい。なお、本発明の塑性加工前のオーステナイト粒径は微細なほうが効果的に微細フェライト組織を有する鋼を得られるため、本発明の塑性加工前のオーステナイト粒径は50μm以下がより好ましい。 The manufacturing method of the steel sheet of the present invention, in the final pass of hot rolling, machining start temperature (Ae 3 transformation point -60 ° C.) or higher and working end temperature is equal to or less than (Ae 3 transformation point -200 ° C.) Thus, plastic working (hereinafter referred to as plastic working of the present invention) is performed while cooling the steel. Here, the final pass of hot rolling refers to the final pass when multiple hot workings are applied to the steel material, and the single pass when only one hot working is applied. It shall refer to processing. The steel before the start of the plastic working of the present invention may be one in which the raw steel is heated from room temperature to a temperature equal to or higher than the Ae 3 transformation point in a heating furnace, or the raw steel is higher than the Ae 3 transformation point. After heating at this temperature, it may be processed into a required shape by rough forging, rough rolling or the like. In addition, since the steel with a fine ferrite structure can be obtained more effectively if the austenite grain size before plastic working of the present invention is fine, the austenite grain size before plastic working of the present invention is more preferably 50 μm or less.

本発明の塑性加工を(Ae変態点−60℃)以上の温度から行うのは、塑性加工前の時点でフェライト組織が存在すると、オーステナイトからフェライトへの変態を利用し、結晶粒を微細化するという本発明の趣旨からはずれてしまうからである。さらに、加工しながら冷却を行い微細粒を得るという観点および加工開始温度が低すぎると多大な圧延荷重が必要なことからも、(Ae変態点−60℃)以上で加工を開始する。 The plastic working of the present invention is performed at a temperature of (Ae 3 transformation point −60 ° C.) or higher if there is a ferrite structure before the plastic working, the transformation from austenite to ferrite is used to refine the crystal grains. This is because it deviates from the spirit of the present invention. Further, since the cooling is performed while processing to obtain fine grains and the processing start temperature is too low, a large rolling load is required. Therefore, the processing is started at (Ae 3 transformation point −60 ° C.) or more.

本発明の塑性加工終了時の温度は、加工中に鋼を冷却することにより(Ae変態点−200℃)以下とする。なぜなら、(Ae変態点−200℃)より高い温度にて加工を終えると、未再結晶域加工度が低下することで、圧延による加工歪みを有効に導入し蓄積できなくなり、十分微細な組織が得られない、加工終了時に生じるフェライト分率が低下する、加工変形時の変態・再結晶により十分微細な組織が得られなくなるという問題があるからである。また、(Ae変態点−350℃)より低い温度まで加工を加えると、均質な微細組織が得られなくなり、加工歪みが残存してしまう。よって、(Ae変態点−200℃)以下かつ(Ae変態点−350℃)以上の温度範囲で加工を終了することが好ましい。 The temperature at the end of the plastic working of the present invention is set to not more than (Ae 3 transformation point-200 ° C.) by cooling the steel during the working. Because, when the processing is finished at a temperature higher than (Ae 3 transformation point −200 ° C.), the degree of non-recrystallized region processing is reduced, so that processing strain due to rolling cannot be effectively introduced and accumulated, and a sufficiently fine structure This is because there is a problem that the fraction of ferrite generated at the end of processing is reduced, and a sufficiently fine structure cannot be obtained due to transformation and recrystallization during processing deformation. Moreover, when processing is performed to a temperature lower than (Ae 3 transformation point−350 ° C.), a homogeneous microstructure cannot be obtained, and processing strain remains. Therefore, it is preferable to finish the processing in a temperature range of (Ae 3 transformation point−200 ° C.) or less and (Ae 3 transformation point−350 ° C.) or more.

ここで、本発明の塑性加工中に同時に行う鋼の冷却手段としては、圧延や鍛造などの加工法では工具との接触における伝熱現象を利用することができる。例えば圧延の場合、圧延中の圧延材の平均温度変化は一般に加工発熱、摩擦発熱、ロール抜熱による温度変化量の和により求められるが、ロール抜熱が大きくなる条件で圧延することにより、鋼を冷却しながら塑性加工を行うことができる。   Here, as a steel cooling means performed simultaneously with the plastic working of the present invention, a heat transfer phenomenon in contact with a tool can be used in a processing method such as rolling or forging. For example, in the case of rolling, the average temperature change of the rolled material during rolling is generally determined by the sum of the amount of temperature change due to heat generated by processing, heat generated by friction, and heat extracted from the roll. Plastic working can be performed while cooling.

ロール抜熱により加工終了時の冷却温度を制御するには圧延速度を制御すればよい。例えば図1に示すように、加工開始温度830℃、ロール径200mm、ロール温度50℃、板厚5mmから2.5mmに50%の圧下率で圧延する場合、Ae変態点が850℃である鋼については、圧延速度6mpm以下で圧延すれば圧延終了時の温度が(Ae変態点−200℃)以下の650℃以下となる。なお、この時の加工時間は0.16秒である。 In order to control the cooling temperature at the end of processing by heat removal from the roll, the rolling speed may be controlled. For example, as shown in FIG. 1, when rolling at a processing start temperature of 830 ° C., a roll diameter of 200 mm, a roll temperature of 50 ° C., and a sheet thickness of 5 mm to 2.5 mm at a reduction rate of 50%, the Ae 3 transformation point is 850 ° C. If steel is rolled at a rolling speed of 6 mpm or less, the temperature at the end of rolling will be 650 ° C. or lower (Ae 3 transformation point−200 ° C.) or lower. The processing time at this time is 0.16 seconds.

例えば、Ae変態点が850℃である鋼を用いて厚鋼板を製造する場合には、最終圧延パスにおける加工開始温度830℃、ロール径1200mm、ロール温度50℃、板厚12mmから6mmに50%の圧下率で圧延する場合、図2に示す関係から、圧延速度を5mpmとすれば加工終了時の温度が(Ae変態点−200℃)以下の650℃以下となり、微細フェライト組織を有する高強度厚鋼板を製造することができる。この時の加工時間は0.72秒である。 For example, when manufacturing a thick steel plate using steel having an Ae 3 transformation point of 850 ° C., the processing start temperature in the final rolling pass is 830 ° C., the roll diameter is 1200 mm, the roll temperature is 50 ° C., and the plate thickness is from 12 mm to 6 mm. When rolling at a rolling reduction of 5%, from the relationship shown in FIG. 2, if the rolling speed is 5 mpm, the temperature at the end of processing becomes 650 ° C. or lower (Ae 3 transformation point−200 ° C.) and has a fine ferrite structure. A high strength thick steel plate can be manufactured. The processing time at this time is 0.72 seconds.

なお、加工中の冷却を工具との接触伝熱により行う場合、工具の温度変動は小さいことが望ましい。例えば加工中の冷却にロール抜熱を利用する場合、ロール温度の変動は圧延後の鋼板の温度変動の要因となるため、ロール温度の変動は小さいほどよい。従って、圧延機のロールを冷却して一定温度に保つために、圧延機にロール冷却装置を備えることが望ましい。鍛造のような板厚圧下プレス装置でも同様である。また、単純圧縮の場合は、加工中に周囲から水冷することも考えられるが、その場合でも冷却水の温度変動は小さいほどよい。   In addition, when cooling during processing is performed by contact heat transfer with the tool, it is desirable that the temperature variation of the tool is small. For example, when roll heat removal is used for cooling during processing, fluctuations in roll temperature cause fluctuations in the temperature of the steel sheet after rolling, and therefore fluctuations in roll temperature are preferably as small as possible. Therefore, in order to cool the roll of the rolling mill and keep it at a constant temperature, it is desirable to provide the rolling mill with a roll cooling device. The same applies to a plate thickness reduction press device such as forging. In the case of simple compression, water cooling from the surroundings may be considered during processing, but even in that case, the temperature fluctuation of cooling water is preferably as small as possible.

また、鋼を冷却しながら行う本発明の塑性加工に要する時間は2秒以内とすることが好ましい。時間が長すぎると加工中の粒成長が無視できなくなるためである。ここで、塑性加工に要する時間とは、対象とする鋼全体の加工に要する時間ではなく、鋼のある特定位置が加工開始されてから加工終了するまでの時間、すなわち、鋼のある特定位置が圧延ロール等の工具と接触している時間のことを指す。   The time required for the plastic working of the present invention performed while cooling the steel is preferably within 2 seconds. This is because if the time is too long, grain growth during processing cannot be ignored. Here, the time required for plastic processing is not the time required for processing the entire target steel, but the time from the start of processing a specific position of steel to the end of processing, that is, the specific position of steel. It refers to the time in contact with a tool such as a rolling roll.

さらに、本発明の塑性加工は、塑性変形を伴えば良く、歪分布に応じた微細組織を得ることができる。ただし、板厚方向に分布をもたない組織を得るには、断面積の減少率にて40%以上であることが好ましい。40%を下回る変形量では、変形が不十分で板厚方向に均一な微細粒組織とはならず、しかも、変態による加工歪みの放出が不十分になる傾向がある。ここで、断面積の減少率は板圧延の場合は圧下率と実質的に同じである。   Furthermore, the plastic working of the present invention may be accompanied by plastic deformation, and a fine structure corresponding to the strain distribution can be obtained. However, in order to obtain a structure having no distribution in the plate thickness direction, the reduction rate of the cross-sectional area is preferably 40% or more. If the amount of deformation is less than 40%, the deformation is insufficient and the fine grain structure is not uniform in the thickness direction, and the release of processing strain due to transformation tends to be insufficient. Here, the reduction rate of the cross-sectional area is substantially the same as the reduction rate in the case of plate rolling.

次に、本発明の実施に供する鋼板の製造設備の一例について説明する。
本発明において用いる鋼板の製造設備は、連続鋳造装置により鋳造された後、直送または加熱炉にて再加熱された熱間スラブを所定の板厚まで減厚する圧延機を備えている。圧延機としては粗圧延機、仕上圧延機をそれぞれ1台以上、あるいはどちらか1台以上備えていても良い。なお、粗圧延機や仕上圧延機の下流に、あるいは圧延機のかわりに、圧延後の熱間スラブに対して板厚方向の圧下を加えることのできる板厚圧下プレス装置を備えていても良い。そして、このような製造設備による加工の最終パスにおいて、前述した本発明の塑性加工を行う。
Next, an example of the manufacturing equipment of the steel plate used for implementation of this invention is demonstrated.
The steel sheet manufacturing facility used in the present invention includes a rolling mill for reducing the thickness of a hot slab directly cast or reheated in a heating furnace to a predetermined thickness after being cast by a continuous casting apparatus. As the rolling mill, one or more rough rolling mills and finishing mills may be provided, or one or more of them may be provided. In addition, it may be provided with a plate thickness reduction press device that can apply a reduction in the plate thickness direction to the hot slab after rolling downstream of the rough rolling mill and the finish rolling mill or instead of the rolling mill. . Then, in the final pass of processing by such a manufacturing facility, the plastic processing of the present invention described above is performed.

ここで、板厚圧下プレス装置は、熱間スラブを上下に挟んだ金型で圧下する鍛造型圧下装置であり、熱間スラブを順次送り出しながら金型を開閉するプレス動作を繰返し行い、熱間スラブの全長を所望の厚さへ加工する装置である。このような板厚圧下プレス装置によれば、圧延ロールを用いた従来の粗圧延とは異なり噛み込み限界がないため、1回当たりの圧下率が制約されず任意の大圧下も可能である。このような大圧下が可能な板厚圧下プレス装置を複数台設けてもよいし、粗圧延機あるいは仕上圧延機を用いずに板厚圧下プレス装置のみとしてもよい。   Here, the plate thickness reduction press device is a forging die reduction device that uses a die sandwiched between hot slabs, and repeatedly performs a pressing operation to open and close the die while sequentially feeding the hot slab. It is an apparatus that processes the entire length of the slab to a desired thickness. According to such a plate thickness reduction press apparatus, unlike the conventional rough rolling using a rolling roll, there is no biting limit, so that the reduction rate per one time is not restricted and arbitrary large reduction is possible. A plurality of plate thickness reduction press devices capable of such large reduction may be provided, or only the plate thickness reduction press device may be used without using a rough rolling mill or a finish rolling mill.

また、圧延前の被圧延材を誘導加熱装置等の加熱/保熱手段により被圧延材の長手方向の温度が均一となるよう制御することで本発明の効果をより発揮させることができる。この効果は加熱や保温の有無やその手法にはよらず得ることができる。従って、特に被圧延材尾端部の温度低下を防止するための保熱カバーを設置してもよいし、コイルボックスを用いてもよい。   Moreover, the effect of this invention can be exhibited more by controlling the to-be-rolled material before rolling so that the temperature of the to-be-rolled material may become uniform by heating / heat retaining means such as an induction heating device. This effect can be obtained regardless of the presence or absence of heating and heat retention and the method thereof. Therefore, in particular, a heat insulating cover for preventing a temperature drop at the tail end of the material to be rolled may be installed, or a coil box may be used.

本発明の鋼板の製造方法において用いる鋼の好ましい化学成分については次のとおりである。なお、本明細書において、鋼の成分を示す%はすべて質量%である。   The preferable chemical components of the steel used in the method for producing a steel sheet of the present invention are as follows. In addition, in this specification, all% which shows the component of steel is the mass%.

Cは、主に熱延鋼板の強度を確保するために必要な元素であり、本発明の目的とする高強度な鋼を製造するためには最低0.06%必要である。一方、0.3%を超えるCは、鋼材の靭性、加工性および溶接性を劣化させる。従って、Cを0.06〜0.3%の範囲内とすることが好ましい。   C is an element mainly required to ensure the strength of the hot-rolled steel sheet, and is required to be at least 0.06% in order to produce the high-strength steel targeted by the present invention. On the other hand, C exceeding 0.3% deteriorates the toughness, workability and weldability of the steel material. Therefore, it is preferable that C is in the range of 0.06 to 0.3%.

Siは、固溶強化に寄与する元素であり、目標とする強度レベルに合わせて添加することができる。但し、Siが1%を超えると微細フェライトを有する熱延鋼板としての靭性や、溶接性および表面性状を劣化させる。従って、Siを1%以下とすることが好ましい。   Si is an element contributing to solid solution strengthening, and can be added in accordance with a target strength level. However, if Si exceeds 1%, the toughness, weldability and surface properties as a hot-rolled steel sheet having fine ferrite are deteriorated. Therefore, it is preferable that Si is 1% or less.

Mnは、焼入れ性を高める元素であり、鋼板の強度を確保するためには、0.5%は必要である。一方、Mnが3%を超えると、その効果が飽和するばかりか、凝固偏析によるバンド状組織を形成して加工性並びに耐遅れ破壊特性を劣化させる。従って、Mnを0.5〜3%の範囲内とすることが好ましい。   Mn is an element that enhances hardenability, and 0.5% is necessary to ensure the strength of the steel sheet. On the other hand, if Mn exceeds 3%, not only the effect is saturated, but also a band-like structure is formed due to solidification segregation, and workability and delayed fracture resistance are deteriorated. Therefore, it is preferable to set Mn within the range of 0.5 to 3%.

Alは、脱酸剤として使用されると同時に、不可避的不純物として含有されるNを固定して、加工性を向上させる効果を有する。しかし、0.1%を超えてAlを添加しても、その効果が飽和すると共に、清浄度を悪化させて加工性を劣化させる。従って、Alをsol.Alで0.1%以下とすることが好ましい。   Al is used as a deoxidizer and at the same time has an effect of fixing N contained as an inevitable impurity and improving workability. However, even if Al is added in excess of 0.1%, the effect is saturated, and the cleanliness is deteriorated and the workability is deteriorated. Therefore, it is preferable that Al is 0.1% or less with sol.Al.

さらに、超微細な細粒組織を安定して得るのに寄与するNb、Ti、V、CrおよびMoの各元素を以下に示す範囲で含有してもよい。   Furthermore, you may contain each element of Nb, Ti, V, Cr, and Mo which contributes to obtaining an ultrafine fine grain structure stably in the range shown below.

NbまたはTiを含有させると、低温相が析出を開始する温度から多少離れた高めの温度で加工を加えても、十分安定して微細組織にすることができる。これは微細な炭窒化物の析出により変態後の結晶粒の成長が抑止されるためと考えられる。この効果を十分得るためには、Nbでは0.005%以上、Tiでは0.005%以上含有させることが望ましい。ただし、これらの元素が過剰になると靱性が低下してくるので、Nbでは0.05%以下、Tiも0.05%以下とすべきである。すなわち含有させる場合、Nbは0.005〜0.05%、Tiは0.005〜0.05%の範囲とすることが好ましい。   When Nb or Ti is contained, the microstructure can be made sufficiently stable even when processing is performed at a temperature slightly higher than the temperature at which the low temperature phase starts to precipitate. This is presumably because the growth of crystal grains after transformation is suppressed by the precipitation of fine carbonitrides. In order to obtain this effect sufficiently, it is desirable to contain 0.005% or more of Nb and 0.005% or more of Ti. However, if these elements are excessive, the toughness is lowered, so Nb should be 0.05% or less and Ti should be 0.05% or less. That is, when contained, Nb is preferably in the range of 0.005 to 0.05% and Ti is preferably in the range of 0.005 to 0.05%.

V、CrおよびMoも含有させることにより、微細粒組織を安定して得ることができるようになる。これらの元素は炭化物を形成し、その析出物は、NbまたはTiの場合と同様結晶粒の成長を抑止する作用があるが、その効果は大きくない。それよりは、これらの元素は変態を遅らせる作用が強く、低温相の析出をより低温にするとともに、その析出時期を遅くし、過冷状態の低温でのオーステナイトとなる範囲を拡大できるので、微細粒組織の生成を容易にする効果がある。このような効果を得るためには、それぞれVでは0.008%以上、Crでは0.05%以上、Moでは0.05%以上含有していることが望ましい。しかし、これらの元素は、変態を遅らせる傾向があり、必要以上に含有量を多くするとフェライトを主体とする組織が得にくくなる。したがって、Vでは0.08%以下、CrとMoではそれぞれ1%以下とすることが好ましい。すなわち含有させる場合の含有量は、Vでは0.008〜0.08%、Crでは0.05〜1%、Moでは0.05〜1%とすることが好ましい。   By containing V, Cr and Mo, a fine grain structure can be obtained stably. These elements form carbides, and the precipitates act to suppress the growth of crystal grains as in the case of Nb or Ti, but the effect is not great. Rather, these elements have a strong effect of delaying transformation, lowering the precipitation of the low-temperature phase at a lower temperature, delaying the precipitation time, and expanding the range of austenite at low temperatures in the supercooled state. There is an effect of facilitating generation of a grain structure. In order to obtain such an effect, it is desirable to contain 0.008% or more for V, 0.05% or more for Cr, and 0.05% or more for Mo, respectively. However, these elements tend to delay transformation, and if the content is increased more than necessary, it becomes difficult to obtain a structure mainly composed of ferrite. Therefore, it is preferable that V is 0.08% or less, and Cr and Mo are each 1% or less. That is, when V is contained, the content is preferably 0.008 to 0.08% for V, 0.05 to 1% for Cr, and 0.05 to 1% for Mo.

その他の元素については、本発明の効果を妨げない範囲で含まれていてもよい、即ち残部が実質的に鉄であればよい。なお、P、S、O、N等の不可避的不純物については、できるだけ低い方が好ましいが、通常の高強度熱延鋼板の範囲内であれば含まれていてもよい。   Other elements may be contained within a range that does not hinder the effects of the present invention, that is, the remainder may be substantially iron. Note that inevitable impurities such as P, S, O, and N are preferably as low as possible, but may be included as long as they are within the range of a normal high-strength hot-rolled steel sheet.

化学成分として質量%で、C:0.14%、Si:0.02%、Mn:0.64%、Sol.Al:0.02%を含有する鋼AとC:0.1%、Si:0.4%、Mn:0.15%、Sol.Al:0.02%、Nb:0.03%を含有する鋼Bを溶製した。これらの鋼を1300℃に加熱して圧延し、幅100mm、長さ550mm、厚さ5mmの供試材とした。これらの供試材を表1に示す温度まで加熱した後、所定温度まで空冷し熱間圧延を行い、圧延後は空冷した。これらの圧延に供した番号とそれぞれの圧延加工条件とフェライト平均粒径、分率、圧延荷重などを表1に示す。   As chemical components in terms of mass%, C: 0.14%, Si: 0.02%, Mn: 0.64%, Sol. Steels A and C containing Al: 0.02%: 0.1%, Si: 0.4%, Mn: 0.15%, Sol. Steel B containing Al: 0.02% and Nb: 0.03% was melted. These steels were heated to 1300 ° C. and rolled to obtain test materials having a width of 100 mm, a length of 550 mm, and a thickness of 5 mm. These test materials were heated to the temperatures shown in Table 1, then air-cooled to a predetermined temperature, hot-rolled, and air-cooled after rolling. Table 1 shows the numbers used for the rolling, the respective rolling processing conditions, the ferrite average particle diameter, the fraction, the rolling load, and the like.

なお、これらの鋼A、BのAe変態点はそれぞれ約875℃、約880℃であり、(Ae変態点−60℃)はそれぞれ約815℃、約820℃、(Ae変態点−200℃)はそれぞれ約675℃、約680℃となる。したがって、表1に示す本発明例における鋼Aでの圧延開始前温度830℃、鋼Bでの圧延開始前温度1050℃はどちらも(Ae変態点−60℃)以上であり、鋼Aでの圧延終了温度650℃、600℃、550℃、500℃、鋼Bでの圧延終了温度650℃はいずれも(Ae変態点−200℃)以下である。また、熱間圧延時のロール温度変動が100℃以内となるようロール温度制御を行った。 The Ae 3 transformation points of these steels A and B are about 875 ° C. and about 880 ° C., respectively, (Ae 3 transformation point−60 ° C.) are about 815 ° C., about 820 ° C., and (Ae 3 transformation point−), respectively. 200 ° C.) is approximately 675 ° C. and 680 ° C., respectively. Therefore, both the pre-rolling temperature 830 ° C. for steel A and the pre-rolling temperature 1050 ° C. for steel B in the examples of the present invention shown in Table 1 are both (Ae 3 transformation point−60 ° C.) or higher. The rolling end temperatures of 650 ° C., 600 ° C., 550 ° C., 500 ° C., and the rolling end temperature 650 ° C. of steel B are all (Ae 3 transformation point−200 ° C.) or less. Moreover, roll temperature control was performed so that the roll temperature fluctuation | variation at the time of hot rolling might be less than 100 degreeC.

Figure 2007146222
Figure 2007146222

本発明の製造方法による例(本発明例)においては、フェライト平均粒径が2μm以下の微細組織を有する鋼板が得られ高い降伏強さを示している。   In the example according to the production method of the present invention (example of the present invention), a steel sheet having a microstructure with an average ferrite grain size of 2 μm or less is obtained, which shows high yield strength.

比較例1では、圧延後の温度が(Ae変態点−200℃)より高い700℃であるため、加工変形時の変態・再結晶が不十分で超微細組織が得られなかった。 In Comparative Example 1, since the temperature after rolling was 700 ° C. higher than (Ae 3 transformation point−200 ° C.), transformation / recrystallization at the time of work deformation was insufficient and an ultrafine structure was not obtained.

比較例2では、熱間圧延を(Ae変態点−60℃)より低い600℃まで冷却した後に実施した。その結果、本発明例と比べ約2.3倍の圧延荷重が必要となった。 In Comparative Example 2, hot rolling was performed after cooling to 600 ° C. lower than (Ae 3 transformation point−60 ° C.). As a result, a rolling load about 2.3 times that of the inventive example was required.

比較例3では、加工中の冷却がほとんどなされなかったため、微細組織が得られなかった。   In Comparative Example 3, since the cooling during the processing was hardly performed, a fine structure was not obtained.

また、上記圧延機に代えて、板厚圧下プレス装置を用いて同様の試験を実施した。その際、プレス金型温度変動が100℃以内となるよう温度制御を行った。   Moreover, it replaced with the said rolling mill and implemented the same test using the plate thickness reduction press apparatus. At that time, temperature control was performed so that the temperature variation of the press mold was within 100 ° C.

鋼Aを900℃まで加熱し、プレス速度を50cpm(サイクル/分)とし加工を施したところ、プレス金型による冷却が効力を発揮し、プレス前830℃、プレス後600℃となり、フェライト平均粒径が1.2μmの微細組織を有する鋼板が得られ高い降伏強さを示した。   When steel A was heated to 900 ° C and processed at a press speed of 50 cpm (cycles / min), cooling by the press mold was effective, and the temperature reached 830 ° C before pressing and 600 ° C after pressing, and the ferrite average grain size A steel sheet having a microstructure with a diameter of 1.2 μm was obtained and exhibited high yield strength.

一方、プレス速度を100cpmとした場合、プレス前830℃、プレス後800℃となり、フェライト平均粒径が10μmであった。つまり、加工中の冷却がほとんどなされなかったため、微細組織が得られなかった。   On the other hand, when the pressing speed was 100 cpm, the temperature was 830 ° C. before pressing and 800 ° C. after pressing, and the average ferrite particle size was 10 μm. That is, since the cooling during processing was hardly performed, a fine structure was not obtained.

なお、上記では1パス加工(圧延、プレス)のみを実施例としたが、加工(圧延、プレス)は最終パスのみ加工中の冷却を施せばよく、圧延にステッケル圧延機を用い、複数パスで実施してもよいし、多パス加工(圧延、プレス)を実施してもよい。例えば、多パス圧延を実施した場合の例を以下に示す。   In the above, only one-pass processing (rolling and pressing) is used as an example. However, the processing (rolling and pressing) only needs to be cooled during processing of only the final pass. You may implement, and you may implement multipass processing (rolling, press). For example, the example at the time of implementing multipass rolling is shown below.

前記鋼Aの厚さ250mmのスラブを加熱炉にて1100℃に加熱し、このスラブを圧延機による8パスの圧下を加えて5mmまで減厚した。そして、圧延の最終パスにて板厚2.5mmまで減厚した。この時の最終圧延前温度は830℃、加工終了温度は600℃であった。なお、熱間圧延時のロール温度変動が100℃以内となるようロール温度制御を行った。本発明の範囲である上記条件で実施した結果、フェライト平均粒径が1.2μmの微細組織を有する鋼板が得られ高い降伏強さを示した。   A 250 mm thick slab of Steel A was heated to 1100 ° C. in a heating furnace, and the slab was reduced to 5 mm by applying 8 passes of rolling by a rolling mill. Then, the thickness was reduced to 2.5 mm in the final pass of rolling. At this time, the temperature before final rolling was 830 ° C., and the finishing temperature was 600 ° C. In addition, roll temperature control was performed so that the roll temperature fluctuation | variation at the time of hot rolling might be less than 100 degreeC. As a result of carrying out under the above-mentioned conditions, which are within the scope of the present invention, a steel sheet having a fine structure with an average ferrite grain size of 1.2 μm was obtained, indicating a high yield strength.

以上説明したように、本発明によれば、微細フェライト組織を有する高強度な鋼板を従来に比べ低荷重の条件にて製造することが可能である。   As described above, according to the present invention, it is possible to manufacture a high-strength steel sheet having a fine ferrite structure under conditions of a lower load than conventional.

圧延加工後温度と圧延速度の関係を表す図(ロール径200mm)A diagram showing the relationship between the rolling temperature and the rolling speed (roll diameter 200 mm) 圧延加工後温度と圧延速度の関係を表す図(ロール径1200mm)The figure which shows the relationship between the temperature after rolling and the rolling speed (roll diameter 1200mm)

Claims (3)

Ae変態点以上に加熱した鋼を熱間圧延して鋼板を製造するに際し、前記熱間圧延の最終パスにおいて、加工開始温度が(Ae変態点−60℃)以上かつ加工終了温度が(Ae変態点−200℃)以下となるように、鋼を冷却しながら塑性加工することを特徴とする鋼板の製造方法。 When the steel heated to the Ae 3 transformation point or higher is hot-rolled to produce a steel plate, the processing start temperature is (Ae 3 transformation point -60 ° C) or more and the processing end temperature is (at the final pass of the hot rolling) ( Ae 3 transformation point−200 ° C.) The steel plate is plastically processed while being cooled so that the temperature is equal to or lower than Ae 3 transformation point−200 ° C. 前記熱間圧延の最終パスにおける塑性加工に要する時間を2秒以内とすることを特徴とする請求項1に記載の鋼板の製造方法。   The method for producing a steel sheet according to claim 1, wherein a time required for plastic working in a final pass of the hot rolling is set to 2 seconds or less. 前記熱間圧延の最終パスにおける断面積の減少率を40%以上とすることを特徴とする請求項1または請求項2に記載の鋼板の製造方法。   The method for manufacturing a steel sheet according to claim 1 or 2, wherein a reduction rate of a cross-sectional area in the final pass of the hot rolling is 40% or more.
JP2005341778A 2005-11-28 2005-11-28 Method for producing steel sheet Pending JP2007146222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341778A JP2007146222A (en) 2005-11-28 2005-11-28 Method for producing steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341778A JP2007146222A (en) 2005-11-28 2005-11-28 Method for producing steel sheet

Publications (1)

Publication Number Publication Date
JP2007146222A true JP2007146222A (en) 2007-06-14

Family

ID=38207982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341778A Pending JP2007146222A (en) 2005-11-28 2005-11-28 Method for producing steel sheet

Country Status (1)

Country Link
JP (1) JP2007146222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172089A (en) * 2021-03-31 2021-07-27 甘肃酒钢集团宏兴钢铁股份有限公司 Production method of high-carbon martensitic stainless steel steckel mill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172089A (en) * 2021-03-31 2021-07-27 甘肃酒钢集团宏兴钢铁股份有限公司 Production method of high-carbon martensitic stainless steel steckel mill

Similar Documents

Publication Publication Date Title
JP5252128B2 (en) Steel sheet and manufacturing method thereof
JP5350253B2 (en) Method for producing flat steel products from boron microalloyed multiphase steels
JP2014505172A (en) Manufacturing method of hot rolled flat steel products
JP4304473B2 (en) Manufacturing method of ultra fine grain hot rolled steel sheet
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2013505365A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP4539484B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP2016516590A (en) Method for manufacturing a metal strip
JPH0247524B2 (en) KAKOYONETSUENKOHANNOSEIZOHOHO
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP4412418B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure, and hot-rolled steel sheet
WO2012011598A1 (en) High-carbon hot-rolled steel sheet having excellent fine blanking properties and process for production thereof
JP2010090480A (en) Method for producing high-carbon hot-rolled steel sheet
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP4687255B2 (en) Steel plate manufacturing method
JP5350254B2 (en) Process for producing flat steel products from aluminum alloyed multiphase steels
JP2007046128A (en) Method for manufacturing hot-rolled steel sheet having fine ferrite structure
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP2007146222A (en) Method for producing steel sheet
JP2005226081A (en) Method of producing high strength hot rolled steel sheet having uniform mechanical property
JP2008189958A (en) Hot rolled steel sheet with uniform and fine ferritic structure, and its manufacturing method
JP3596509B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP2007246985A (en) Manufacturing method of high-toughness and high-tensile thick steel plate