JP2007146138A - Photocatalyst-applying agent and method for forming coated film - Google Patents

Photocatalyst-applying agent and method for forming coated film Download PDF

Info

Publication number
JP2007146138A
JP2007146138A JP2006289443A JP2006289443A JP2007146138A JP 2007146138 A JP2007146138 A JP 2007146138A JP 2006289443 A JP2006289443 A JP 2006289443A JP 2006289443 A JP2006289443 A JP 2006289443A JP 2007146138 A JP2007146138 A JP 2007146138A
Authority
JP
Japan
Prior art keywords
titanium oxide
photocatalyst
titanium
oxide photocatalyst
photocatalyst powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006289443A
Other languages
Japanese (ja)
Other versions
JP4613154B2 (en
Inventor
Tatsuhiko Ihara
辰彦 井原
Masahiro Miyoshi
正大 三好
Teruo Kuroda
照夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MAINTENANCE ENGINEERING
NIPPON MAINTENANCE ENGINEERING KK
Kinki University
Original Assignee
NIPPON MAINTENANCE ENGINEERING
NIPPON MAINTENANCE ENGINEERING KK
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MAINTENANCE ENGINEERING, NIPPON MAINTENANCE ENGINEERING KK, Kinki University filed Critical NIPPON MAINTENANCE ENGINEERING
Priority to JP2006289443A priority Critical patent/JP4613154B2/en
Publication of JP2007146138A publication Critical patent/JP2007146138A/en
Application granted granted Critical
Publication of JP4613154B2 publication Critical patent/JP4613154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for immobilizing powdery titanium oxide photocatalyst on the surface of a substrate without inhibiting its catalytic activity. <P>SOLUTION: This method for producing the photocatalyst-applying agent is provided by including to obtain a partially dissolved solution by dispersing the titanium oxide photocatalyst powder in a solution containing an alkaline compound and hydrogen peroxide, and partially dissolving the titanium oxide photocatalyst powder. The method for producing the photocatalyst film is provided by applying the photocatalyst-applying agent produced by the above method on a substrate material and drying. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光触媒塗布剤および塗膜の製造方法に関する。   The present invention relates to a photocatalyst coating agent and a method for producing a coating film.

光触媒は、粉末状で用いられる場合もあるが、ほとんどの場合は、何らかの基材上に固定した形で使用するのが一般的である。光触媒活性という見地から、その比表面積の大きさから一般に前者の方がより高い活性を発揮できるが、実用的には、前者より後者の方を採用せざるを得ない場合が多い。   The photocatalyst may be used in the form of a powder, but in most cases, the photocatalyst is generally used in a form fixed on some substrate. From the viewpoint of photocatalytic activity, the former can generally exhibit higher activity due to the size of its specific surface area, but the latter is often more practical than the former.

光触媒の固定化の方法を分類すると、(1)バインダーと混合し、塗膜を形成する方法、(2)酸化チタンの塩類やアルコキシドを加水分解することでチタニアゾルあるいはペルオキソチタニアゾルとし、ゾルゲル法を利用した方法で基材に固定する方法、(3)スパッタリングによる方法、(4)CVD法による方法、(5) プラズマ溶射を利用する方法に大別できる。   The photocatalyst immobilization methods are classified as follows: (1) A method of mixing with a binder to form a coating film, (2) Titanium sol or peroxo titania sol by hydrolyzing titanium oxide salts and alkoxides, and using the sol-gel method The method can be roughly classified into a method of fixing to a substrate by the above-described method, (3) a method by sputtering, (4) a method by CVD method, and (5) a method using plasma spraying.

バインダーを使用する塗布法では、バインダーによって光触媒表面が全く被覆されることなく固定化することは不可能であるので、被覆の程度に応じて光触媒性能は低下してしまう。したがって、高い光触媒性能を発揮させるためには、照射される光をバインダーによって遮られることなく、バインダーと光触媒表面との接触を最小限にし、光触媒粒子の露出度を最大限にし、基材との密着力を高くする工夫がキーとなる。   In the coating method using a binder, it is impossible to fix the surface of the photocatalyst without being completely covered with the binder, so that the photocatalytic performance is lowered depending on the degree of coating. Therefore, in order to exert high photocatalytic performance, the irradiated light is not blocked by the binder, the contact between the binder and the photocatalyst surface is minimized, the degree of exposure of the photocatalyst particles is maximized, and The key is to improve the adhesion.

プラズマ溶射法では、一旦高温度で金属酸化物を溶融出来るので、バインダーを使用することなく緻密な膜を得ることは可能であるが、高温度の熱履歴は、元の光触媒の構造変化をもたらせるので、活性が失われてしまうなど、性能を維持させるのは難しい。   In the plasma spraying method, the metal oxide can be melted once at a high temperature, so that it is possible to obtain a dense film without using a binder. However, the high temperature thermal history also changes the structure of the original photocatalyst. It is difficult to maintain the performance because the activity is lost.

また、スパッタ法やCVD法などは減圧下でなければ良好な膜が得られず、真空排気できる反応容器が必要であり、一般に成膜速度が遅く、光触媒としての活性が高い緻密な膜を得るためには数百度以上に基材を加熱しなければならない欠点がある。   In addition, a sputtering method, a CVD method, or the like cannot obtain a good film unless it is under reduced pressure, and a reaction vessel that can be evacuated is necessary. For this purpose, there is a drawback that the substrate must be heated to several hundred degrees or more.

また、ゾルゲル法によるコーティング膜は均一で薄い点では優れているが、比表面積を稼ぐことができないので、粉末状の光触媒との酸化分解能力の比較では遙かに劣ってしまうことが欠点である。したがって、高い光触媒活性を維持するための光触媒の固定化の考え方としては、バインダーの使用量を必要最小限に抑え、基材表面に直接強固に固定する考え方が理想的といえる。   In addition, the coating film by the sol-gel method is excellent in terms of being uniform and thin, but since the specific surface area cannot be obtained, it is a disadvantage that it is far inferior in comparison with the oxidative decomposition ability with the powdered photocatalyst. . Therefore, the idea of immobilizing the photocatalyst for maintaining high photocatalytic activity is ideally the idea of directly and firmly fixing to the substrate surface while minimizing the amount of binder used.

酸化チタン粒子をアンモニアと過酸化水素とで溶解する技術については、日本特許第2875993号(特許文献1)にペルオキソ基で修飾したアナターゼ分散液の製造方法が記載されている。この手法は金属チタンあるいは酸化チタンを含むチタン化合物を過酸化水素水とアンモニアを反応させ、80℃以上において2時間以上の加熱処理を行うもので、この場合、酸化チタン粒子は完全に溶解し、ゾルの状態になっていることから、本発明とは区別される。   Regarding a technique for dissolving titanium oxide particles with ammonia and hydrogen peroxide, Japanese Patent No. 2875993 (Patent Document 1) describes a method for producing an anatase dispersion modified with a peroxo group. In this method, titanium compound containing titanium metal or titanium oxide is reacted with hydrogen peroxide solution and ammonia, and heat treatment is performed at 80 ° C. or more for 2 hours or more. In this case, titanium oxide particles are completely dissolved, Since it is in a sol state, it is distinguished from the present invention.

また、日本特許第3122658号(特許文献2)には固体状のチタン化合物に塩基性物質を加え、さらに過酸化水素水を加えて精製し、チタンイオン、チタン含有イオンおよび水素イオン以外の陽イオンの除去により、長期にわたっても安定なペルオキソチタン酸溶液の製造方法が記載されている。これは、用いるチタン化合物は金属チタンあるいは水素化チタン、酸化チタンとさまざまであるが、一度完全に溶解させる工程を経るため、本発明とは区別される。
日本特許第2875993号 日本特許第3122658号
In Japanese Patent No. 312658 (Patent Document 2), a basic substance is added to a solid titanium compound and further purified by adding hydrogen peroxide water, and a cation other than titanium ion, titanium-containing ion and hydrogen ion is obtained. A process for producing a peroxotitanic acid solution which is stable over a long period of time by removal of is described. There are various titanium compounds such as metal titanium, titanium hydride, and titanium oxide. However, the titanium compound is distinguished from the present invention because it is once completely dissolved.
Japanese Patent No. 2875993 Japanese Patent No. 312658

酸化チタンは物品の表面に固定して使用されるが、バインダーを使った固定方法では光触媒活性が著しく低下してしまう。また、ゾルゲル法を用いた方法では、成分は100%が酸化チタンであっても、比表面積が著しく小さくなり、単位面積当たりの触媒性能は極端に低くなる。   Titanium oxide is used by being fixed to the surface of the article, but the photocatalytic activity is significantly lowered by the fixing method using a binder. In the method using the sol-gel method, even if the component is 100% titanium oxide, the specific surface area is remarkably reduced, and the catalyst performance per unit area is extremely low.

したがって、活性が阻害されることなく基材表面に固定化できる技術の開発が望まれている。さらには熱処理工程を必要としない固定化技術が開発されれば多様な製品開発が可能となる。   Therefore, it is desired to develop a technique that can be immobilized on the surface of a substrate without inhibiting the activity. Furthermore, if an immobilization technique that does not require a heat treatment process is developed, a variety of product development becomes possible.

そこで本発明は、粉末状酸化チタン光触媒を、その触媒活性を阻害することなく基材表面に固定化できる手段を提供することを目的とする。   Then, an object of this invention is to provide the means which can fix a powdery titanium oxide photocatalyst to the base-material surface, without inhibiting the catalyst activity.

上記課題を解決するための本発明は以下の通りである。
[1]酸化チタン光触媒粉末をアルカリ化合物および過酸化水素を含有する溶液に分散して、酸化チタン光触媒粉末粒子を部分的に溶解し、部分溶解液を得ることを含む、光触媒塗布剤の製造方法。
[2]酸化チタン光触媒粉末が、アナタース型、ルチル型、ブルッカイト型またはこれらの混晶型である[1]に記載の製造方法。
[3]アルカリ化合物がアンモニアである[1]または[2]に記載の製造方法。
[4]酸化チタン光触媒粉末に含まれるチタンに対して等モル量以上のアンモニアを用いる[3]に記載の製造方法。
[5]アルカリ化合物がアルカリ金属水酸化物である[1]または[2]に記載の製造方法。
[6]酸化チタン光触媒粉末に含まれるチタンに対して0.05モル倍〜等モル倍のアルカリ金属水酸化物を用いる[5]に記載の製造方法。
[7]アルカリ化合物が炭酸水素アンモニウムである[1]または[2]に記載の製造方法。
[8]酸化チタン光触媒粉末に含まれるチタンに対して0.05モル倍〜等モル倍の炭酸水素アンモニウムを用いる[7]に記載の製造方法。
[9]アルカリ化合物がアンモニア、アルカリ金属水酸化物および炭酸水素アンモニウムから成る群から選ばれる少なくとも2種の化合物である[1]または[2]に記載の製造方法。
[10]酸化チタン光触媒粉末に含まれるチタンに対して0.2モル倍以上の過酸化水素を用いる[1]〜[9]に記載の製造方法。
[11]部分的溶解は、酸化チタン光触媒粉末の各粒子の1〜99%を溶解する[1]〜[10]のいずれか1項に記載の製造方法。
[12]部分溶解剤に酸化チタン光触媒粉末をさらに添加する[1]〜[11]のいずれか1項に記載の製造方法。
[13] [1]〜[12]のいずれか1項に記載の製造方法により製造された光触媒塗布剤を基材に塗布し、乾燥することを含む光触媒塗膜の製造方法。
The present invention for solving the above problems is as follows.
[1] A method for producing a photocatalyst coating agent, comprising dispersing titanium oxide photocatalyst powder in a solution containing an alkali compound and hydrogen peroxide, partially dissolving titanium oxide photocatalyst powder particles, and obtaining a partially dissolved solution. .
[2] The production method according to [1], wherein the titanium oxide photocatalyst powder is an anatase type, a rutile type, a brookite type, or a mixed crystal type thereof.
[3] The production method according to [1] or [2], wherein the alkali compound is ammonia.
[4] The production method according to [3], wherein ammonia is used in an equimolar amount or more with respect to titanium contained in the titanium oxide photocatalyst powder.
[5] The production method according to [1] or [2], wherein the alkali compound is an alkali metal hydroxide.
[6] The production method according to [5], wherein an alkali metal hydroxide is used in an amount of 0.05 mol times to equimolar times with respect to titanium contained in the titanium oxide photocatalyst powder.
[7] The production method according to [1] or [2], wherein the alkali compound is ammonium hydrogen carbonate.
[8] The production method according to [7], wherein 0.05 mole times to equimolar times ammonium hydrogen carbonate is used with respect to titanium contained in the titanium oxide photocatalyst powder.
[9] The production method according to [1] or [2], wherein the alkali compound is at least two compounds selected from the group consisting of ammonia, alkali metal hydroxides and ammonium hydrogen carbonate.
[10] The production method according to [1] to [9], wherein hydrogen peroxide is used in an amount of 0.2 mol times or more based on titanium contained in the titanium oxide photocatalyst powder.
[11] The method according to any one of [1] to [10], wherein the partial dissolution is performed by dissolving 1 to 99% of each particle of the titanium oxide photocatalyst powder.
[12] The production method according to any one of [1] to [11], wherein the titanium oxide photocatalyst powder is further added to the partial solubilizer.
[13] A method for producing a photocatalyst coating film, which comprises applying a photocatalyst coating agent produced by the production method according to any one of [1] to [12] to a substrate and drying the substrate.

本発明の光触媒の固定化方法は、原料として高い触媒性能を発揮する酸化チタン結晶粉末を用い、その結晶中のアモルファス部分を優先的にペルオキソチタン酸として溶出させ、これを母体の光触媒結晶粒子と基材との強固な接合のためのバインダーとして利用することを特徴としている。この方法では、光触媒粒子が、その高い比表面積を維持しながら、最小限のバインダーで基材表面に固定化されるので、バインダーによる触媒活性の損失が非常に少ない。さらに、選択的に溶出されるアモルファス部分は光触媒活性を示さない部分であるので、これを取り除くことは母体の結晶成分の比率を増し、光触媒性能を高めることにつながる。また、バインダーは母体の光触媒結晶と全く同じ成分であるので、接着性能も高い。本固定化方法は常温乾燥により実施することができる。また、母体から溶出されたバインダー成分は、光触媒作用による基材の劣化を防ぐ有効なバリアとなるので、基材が有機物であっても光触媒の基材への影響を低減出来る。このため、建築物、自動車、家電、有機塗膜、及び加熱が不可能であった熱可塑性樹脂、構築物に塗布が可能であり、プライマを用いない一液型のコーティング剤として極めて有用なものである。   The photocatalyst immobilization method of the present invention uses a titanium oxide crystal powder exhibiting high catalytic performance as a raw material, and preferentially elutes an amorphous portion in the crystal as peroxotitanic acid, which is used as a base photocatalytic crystal particle. It is characterized by being used as a binder for strong bonding with a substrate. In this method, since the photocatalyst particles are immobilized on the substrate surface with a minimum amount of binder while maintaining the high specific surface area, the loss of catalytic activity by the binder is very small. Furthermore, since the selectively eluted amorphous portion is a portion that does not exhibit photocatalytic activity, removing this increases the ratio of the crystalline component of the matrix and leads to improved photocatalytic performance. Further, since the binder is the same component as the base photocatalytic crystal, the adhesive performance is also high. This immobilization method can be carried out by drying at room temperature. In addition, the binder component eluted from the matrix serves as an effective barrier for preventing deterioration of the base material due to photocatalytic action, so that the influence of the photocatalyst on the base material can be reduced even if the base material is an organic substance. For this reason, it can be applied to buildings, automobiles, home appliances, organic coatings, thermoplastic resins that could not be heated, and construction, and it is extremely useful as a one-pack type coating agent that does not use a primer. is there.

[光触媒塗布剤の製造方法]
本発明の光触媒塗布剤の製造方法は、酸化チタン光触媒粉末をアルカリ化合物および過酸化水素を含有する溶液に分散して、光触媒粒子を触媒性能が高まる範囲で適度に部分溶解し、部分溶解液を得ることを含む。
[Method for producing photocatalyst coating agent]
In the method for producing a photocatalyst coating agent of the present invention, a titanium oxide photocatalyst powder is dispersed in a solution containing an alkali compound and hydrogen peroxide, and the photocatalyst particles are partially partially dissolved within a range where the catalyst performance is enhanced. Including getting.

本発明に用いられる酸化チタン光触媒粉末は、光触媒活性が高い粉末状の酸化チタンであれば特に制限はなく、安価で取り扱いが容易な市販の酸化チタン粉末であることが望ましい。結晶系は光触媒活性が高いとされるアナタース型が好ましいが、ルチル型、ブルッカイト型、あるいはこれらの混晶型でも良い。   The titanium oxide photocatalyst powder used in the present invention is not particularly limited as long as it is powdered titanium oxide having high photocatalytic activity, and is preferably a commercially available titanium oxide powder that is inexpensive and easy to handle. The crystal system is preferably an anatase type that has a high photocatalytic activity, but may be a rutile type, a brookite type, or a mixed crystal type thereof.

アルカリ化合物は、特に制限はないが、アンモニア化合物(例えば、アンモニアまたは炭酸水素アンモニウム)、アルカリ金属水酸化物等、あるいはこれらを混合して使用することができる。   Although there is no restriction | limiting in particular in an alkali compound, An ammonia compound (for example, ammonia or ammonium hydrogencarbonate), an alkali metal hydroxide, etc., or these can be mixed and used.

アルカリ化合物がアンモニアである場合、酸化チタン光触媒粉末に含まれるチタンに対して等モル量以上のアンモニアを用いることが、良好な接着性を有する塗布剤を得るという観点から好ましい。より好ましくは、酸化チタン光触媒粉末に含まれるチタンに対してモル比で1〜4倍のアンモニアを用いる。   When the alkali compound is ammonia, it is preferable to use an equimolar amount or more of ammonia with respect to titanium contained in the titanium oxide photocatalyst powder from the viewpoint of obtaining a coating agent having good adhesiveness. More preferably, ammonia is used in a molar ratio of 1 to 4 times that of titanium contained in the titanium oxide photocatalyst powder.

アルカリ化合物が炭酸水素アンモニウムである場合、酸化チタン光触媒粉末に含まれるチタンに対して0.05モル倍〜等モル倍の炭酸水素アンモニウムを用いることが好ましい。より好ましくは、酸化チタン光触媒粉末に含まれるチタンに対してモル比で0.05〜0.2倍の炭酸水素アンモニウムを用いる。   When the alkali compound is ammonium hydrogen carbonate, it is preferable to use 0.05 mol to 1 mol of ammonium hydrogen carbonate with respect to titanium contained in the titanium oxide photocatalyst powder. More preferably, ammonium hydrogen carbonate having a molar ratio of 0.05 to 0.2 times that of titanium contained in the titanium oxide photocatalyst powder is used.

アルカリ化合物がアルカリ金属水酸化物である場合、アルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等を挙げることができる。酸化チタン光触媒粉末に含まれるチタンに対して0.05〜等モル倍のアルカリ金属水酸化物を用いることが好ましい。より好ましくは、酸化チタン光触媒粉末に含まれるチタンに対してモル比で0.05〜0.2倍のアルカリ金属水酸化物を用いる。   When the alkali compound is an alkali metal hydroxide, examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, and lithium hydroxide. It is preferable to use an alkali metal hydroxide in an amount of 0.05 to equimolar to the titanium contained in the titanium oxide photocatalyst powder. More preferably, an alkali metal hydroxide having a molar ratio of 0.05 to 0.2 times with respect to titanium contained in the titanium oxide photocatalyst powder is used.

本発明では、酸化チタン光触媒粉末をアルカリ化合物および過酸化水素を含有する溶液に分散する。過酸化水素の使用量は、酸化チタン光触媒粉末の部分溶解の程度を考慮して適宜決定できるが、酸化チタン光触媒粉末に含まれるチタンに対して0.2モル倍以上の過酸化水素を用いることが適当である。より好ましくは、酸化チタン光触媒粉末に含まれるチタンに対して0.5〜4.0モル倍以上の過酸化水素を用いる。   In the present invention, the titanium oxide photocatalyst powder is dispersed in a solution containing an alkali compound and hydrogen peroxide. The amount of hydrogen peroxide to be used can be appropriately determined in consideration of the degree of partial dissolution of the titanium oxide photocatalyst powder. Is appropriate. More preferably, 0.5 to 4.0 mole times or more of hydrogen peroxide is used with respect to titanium contained in the titanium oxide photocatalyst powder.

本発明では、アルカリ化合物および過酸化水素の溶液中の濃度は、特に制限はなく、目的物である塗布剤中の光触媒濃度等を考慮して適宜決定できる。アルカリ化合物は、特に濃度において制限はない。過酸化水素は、特に濃度において制限はないが、安全性の点から好ましくは1〜40重量%の過酸化水素水を用いる。   In the present invention, the concentration of the alkali compound and hydrogen peroxide in the solution is not particularly limited, and can be appropriately determined in consideration of the concentration of the photocatalyst in the coating agent that is the object. The alkali compound is not particularly limited in concentration. The concentration of hydrogen peroxide is not particularly limited, but 1 to 40% by weight of hydrogen peroxide water is preferably used from the viewpoint of safety.

酸化チタン光触媒粉末は、粉末を構成する酸化チタン粒子の1%以上からほぼ全量(例えば、99%)を溶解するまで部分溶解を行う。部分溶解の温度は、例えば、室温〜60℃の範囲であり、時間は、部分溶解の程度に応じて適宜決定することができるが、通常、1分〜24時間の範囲である。酸化チタン光触媒粉末は、全量が溶解する前に、溶解を終了する。溶解した酸化チタンはバインダーとして機能し、未溶解の酸化チタン光触媒粉末は、光触媒として機能することから、両者のバランスを考慮して、部分溶解の程度は決定される。両者のバランスを考慮すれば、部分溶解の程度は好ましくは5〜90%、より好ましくは10〜80%、さらに好ましくは15〜30%の範囲であることが好ましい。   The titanium oxide photocatalyst powder is partially dissolved until 1% or more of the titanium oxide particles constituting the powder are dissolved in almost the entire amount (for example, 99%). The temperature of partial dissolution is, for example, in the range of room temperature to 60 ° C., and the time can be appropriately determined according to the degree of partial dissolution, but is usually in the range of 1 minute to 24 hours. Dissolution of the titanium oxide photocatalyst powder is completed before the entire amount is dissolved. Since the dissolved titanium oxide functions as a binder and the undissolved titanium oxide photocatalyst powder functions as a photocatalyst, the degree of partial dissolution is determined in consideration of the balance between the two. Considering the balance between them, the degree of partial dissolution is preferably in the range of 5 to 90%, more preferably 10 to 80%, and still more preferably 15 to 30%.

本発明の方法で製造した塗布剤は、酸化チタン光触媒粒子の一部を溶解し、その溶解部分を強力な接着層として利用するものであり、一般的な水ベースあるいは有機溶剤ベースの数%光触媒塗布剤とは異なり、分散液というよりクリーム色を呈したスラリーである。そのまま、あるいは水等で希釈した後に、光触媒固定化に用いることができる。水で薄めた場合、発泡を伴う淡いクリーム色の分散体となる。希釈の程度は、溶解した酸化チタンのバインダーとしての性能及び未溶解の酸化チタン光触媒粉末の光触媒としての性能を考慮して、適宜決定できる。   The coating agent produced by the method of the present invention dissolves a part of the titanium oxide photocatalyst particles and uses the dissolved part as a strong adhesive layer, and is a general water-based or organic solvent-based several percent photocatalyst. Unlike a coating agent, it is a slurry having a cream color rather than a dispersion. It can be used for immobilizing a photocatalyst as it is or after diluting with water or the like. When diluted with water, it becomes a pale cream dispersion with foaming. The degree of dilution can be appropriately determined in consideration of the performance of dissolved titanium oxide as a binder and the performance of undissolved titanium oxide photocatalyst powder as a photocatalyst.

酸化チタン光触媒粉末粒子の部分溶解は、結晶部分よりもアモルファス部分から優先して起こるため、アモルファス部分が除去された時点で溶解を止めることで、光触媒粒子中の結晶成分を高め、光触媒性能を改善できる。   Since partial dissolution of titanium oxide photocatalyst powder particles occurs in preference to the amorphous part over the crystalline part, stopping the dissolution when the amorphous part is removed increases the crystalline component in the photocatalyst particles and improves the photocatalytic performance. it can.

尚、特許文献1に記載された方法では、金属チタンあるいは酸化チタンを含むチタン化合物を過酸化水素水とアンモニアを反応させ、80℃以上において2時間以上の加熱処理を行っており、この場合、酸化チタン粒子は完全に溶解し、ゾルの状態になっていることから、本発明の部分溶解法とは区別される。   In the method described in Patent Document 1, a titanium compound containing titanium metal or titanium oxide is reacted with hydrogen peroxide water and ammonia, and heat treatment is performed at 80 ° C. or more for 2 hours or more. The titanium oxide particles are completely dissolved and are in a sol state, which is distinguished from the partial dissolution method of the present invention.

また、特許文献2に記載の方法では、用いるチタン化合物は金属チタンあるいは水素化チタン、酸化チタンとさまざまであるが、一度完全に溶解させる工程を経るため、本発明の部分溶解法とは区別される。   Further, in the method described in Patent Document 2, there are various titanium compounds to be used, such as metal titanium, titanium hydride, and titanium oxide. However, since the titanium compound is completely dissolved once, it is distinguished from the partial dissolution method of the present invention. The

[光触媒塗膜の製造方法]
本発明の光触媒塗膜の製造方法は、上記本発明の製造方法により製造された光触媒塗布剤を基材に塗布し、乾燥することを含む。
[Method for producing photocatalytic coating film]
The manufacturing method of the photocatalyst coating film of this invention includes apply | coating to the base material the photocatalyst coating agent manufactured by the manufacturing method of the said invention, and drying.

光触媒塗布剤は、上記本発明の塗布剤をそのまま、あるいは、水等の溶媒で希釈することもでき、あるいは、適当な添加剤や充填剤等を添加することもできる。追加で酸化チタン光触媒粉末を添加することもできる。また、界面活性剤、消泡剤、カップリング剤、染料、顔料、充填剤等を光触媒としての活性を損なわない程度に添加することも出来る。また、白金、ロジウム、ルテニウム、パラジウム、銀、銅、ニッケル、コバルトなどの、光触媒と組み合わせることで光触媒性能を向上させる助触媒を添加することもできる。   As the photocatalyst coating agent, the coating agent of the present invention can be diluted as it is or with a solvent such as water, or an appropriate additive or filler can be added. In addition, a titanium oxide photocatalyst powder can be added. Further, a surfactant, an antifoaming agent, a coupling agent, a dye, a pigment, a filler, and the like can be added to such an extent that the activity as a photocatalyst is not impaired. In addition, a promoter such as platinum, rhodium, ruthenium, palladium, silver, copper, nickel, cobalt, or the like that improves photocatalytic performance by combining with a photocatalyst can be added.

光触媒塗膜の形成において、基材は、特に制限がなく、例えば、ガラス、セラミックス、各種金属、及びこれらの複合材や、ポリカーボネート、アクリル樹脂、ポリエステル樹脂、ABS樹脂、ポリ塩化ビニール等の熱可塑性樹脂や熱硬化性樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、電子線硬化型樹脂等の有機基材などが挙げられる。   In the formation of the photocatalytic coating film, the substrate is not particularly limited. For example, glass, ceramics, various metals, and composite materials thereof, and thermoplastics such as polycarbonate, acrylic resin, polyester resin, ABS resin, and polyvinyl chloride. Examples thereof include organic base materials such as resins, thermosetting resins, ultraviolet curable resins, electron beam curable resins, and electron beam curable resins.

光触媒塗膜の製造方法は、光触媒塗布剤へ基材のディップコートあるいはスプレーコート、ハケ塗りなどにより基材へ塗布し、溶媒を乾燥させることで行われる。乾燥は常温で行うこともできるが、塗布後直ちに加熱し、強制的に溶媒を蒸発させることで溶解反応を停止することもできる。必要に応じて、ペルオキソチタン酸の重合が促進されやすい塩素イオンや硫酸イオンなどを塗布剤の液性である塩基性を変化させない範囲で添加し、基材への固定化速度を速めることもできる。   The photocatalyst coating film is produced by applying the photocatalyst coating agent to the base material by dip coating, spray coating or brush coating on the base material and drying the solvent. Drying can be performed at room temperature, but the dissolution reaction can also be stopped by heating immediately after coating and forcibly evaporating the solvent. If necessary, addition of chlorine ions or sulfate ions that facilitate the polymerization of peroxotitanic acid within a range that does not change the liquid basicity of the coating agent can also increase the rate of fixation to the substrate. .

塗布剤の塗布量は、十分な固着量を得る為には0.2mg/cm2以上あれば良く、0.1 〜25mg/cm2の範囲であることが好ましい。 The coating amount of the coating agent, in order to obtain a sufficient fixing the amount may, if 0.2 mg / cm 2 or more, and preferably in the range of 0.1 ~25mg / cm 2.

本発明で得られた光触媒固定化膜は、固着強度を向上する目的で、加熱あるいは紫外線を照射することもできる。加熱の場合の温度は基材との組み合わせで適宜決定できる。また、紫外線での場合、紫外線の照射量は、0.1mW/cm2以上、好ましくは0.5〜4mW/cm2で十分な固着強度を得ることができる。紫外線照射の方法としては、太陽光、蛍光灯、ブラックライト、高圧水銀灯などを用いることができるが、短時間で大量の紫外線が照射できること、装置の簡便なものが望ましい。 The photocatalyst-immobilized film obtained in the present invention can be heated or irradiated with ultraviolet rays for the purpose of improving the fixing strength. The temperature in the case of heating can be determined as appropriate in combination with the substrate. Also, when the ultraviolet irradiation amount of ultraviolet rays, 0.1 mW / cm 2 or more, preferably it is possible to obtain a sufficient fixing strength 0.5~4mW / cm 2. As a method of ultraviolet irradiation, sunlight, a fluorescent lamp, a black light, a high-pressure mercury lamp, or the like can be used. It is desirable that a large amount of ultraviolet rays can be irradiated in a short time and that the apparatus is simple.

本発明によって得られた光触媒固定化膜を設けた基材は、空気の浄化、水の浄化、防汚、抗菌、防かび、防藻、防臭、紫外線吸収機能、有機物分解機能のいずれかの機能あるいはこれらの複合機能を発揮でき、これらの機能を発揮できるすべての部材への利用が可能である。   The substrate provided with the photocatalyst immobilization film obtained by the present invention is a function of any one of air purification, water purification, antifouling, antibacterial, antifungal, algae, deodorant, ultraviolet absorption function, and organic matter decomposition function. Or these compound functions can be exhibited, and it can be used for all members capable of exhibiting these functions.

具体的な例としては、例えば、照明器具、空調機、清掃機、冷蔵庫、洗濯機等の家電品、浄水器、浄水場処理槽等の水処理施設、板ガラス、ガラス繊維、ガラス粉等の各種ガラス、道路壁パネル等の各種道路部材、建築用内外装材、タイル等が挙げられる。   Specific examples include, for example, household appliances such as lighting fixtures, air conditioners, cleaning machines, refrigerators, washing machines, water treatment facilities such as water purifiers, water treatment plant treatment tanks, plate glass, glass fiber, glass powder, and the like. Examples include various road members such as glass and road wall panels, architectural interior and exterior materials, tiles, and the like.

以下、本発明を実施例により詳細に説明するが、本発明は実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to an Example at all.

実施例1
原料として粉末状酸化チタン光触媒P25(日本アエロジル製)を2.0gビーカーに採取し、これにアンモニア水(28%、関東化学製、特級)3.5mLと過酸化水素水(関東化学製、特級、33%)8.5mLを加え、直ちに攪拌した。過酸化水素を加えて攪拌をはじめると系は発熱し、溶解が進行する。攪拌開始15分後にはおよそ30%の酸化チタンが溶解し、数時間経過後にはすべての酸化チタンは溶解する。したがって、基材への塗布は、過酸化水素添加後5〜15分以内に行うのが好ましく、塗布後は直ちにドライヤーにて強制的に溶媒を蒸発させることで溶解反応を停止できる。本実施例では、過酸化水素添加5分後の分散体を基材への塗布に用いた。
Example 1
Powdered titanium oxide photocatalyst P25 (Nippon Aerosil Co., Ltd.) as a raw material was collected in a 2.0 g beaker, and ammonia water (28%, manufactured by Kanto Chemical Co., Ltd., special grade) and 3.5 mL of hydrogen peroxide (manufactured by Kanto Chemical Co., Ltd., special grade) 33%) 8.5 mL was added and stirred immediately. When hydrogen peroxide is added and stirring is started, the system generates heat and dissolution proceeds. Approximately 15% of titanium oxide dissolves 15 minutes after the start of stirring, and all titanium oxide dissolves after several hours. Accordingly, the application to the substrate is preferably performed within 5 to 15 minutes after the addition of hydrogen peroxide, and the dissolution reaction can be stopped by forcibly evaporating the solvent with a dryer immediately after the application. In this example, the dispersion 5 minutes after the addition of hydrogen peroxide was used for coating on the substrate.

基材との強力な接着力と高い光触媒活性を両立するには、P25の場合は溶解の程度を5〜50%、好ましくは10〜30%以内とするのが好ましい。ここでは過酸化水素添加5分後の分散体の一部を採取し、基材となるガラス板(6×6cm)に10mg相当をスプレー塗布し、ドライヤーの温風を用いて80℃で乾燥させ、同15分以内に溶媒の蒸発を完了させ、同定化を終了した。ガラス板に固定化されたチタン化合物は沸騰した熱湯内に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は6mgであった。   In order to achieve both strong adhesion to the substrate and high photocatalytic activity, in the case of P25, the degree of dissolution is preferably 5 to 50%, preferably 10 to 30% or less. Here, a part of the dispersion 5 minutes after the addition of hydrogen peroxide is collected, 10 mg equivalent is spray-coated on a glass plate (6 × 6 cm) as a base material, and dried at 80 ° C. using warm air of a dryer. The evaporation of the solvent was completed within 15 minutes, and the identification was completed. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling hot water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 6 mg.

固着力の評価方法を以下に示す。はじめに、ガラス板へ光触媒の固着を行い、このときの固着量を測定後、2通りの方法にて固着力評価を行った。90℃の沸騰水に2時間浸漬し、その後80℃のホットプレート上で十分に乾燥させ、固着させた光触媒表面を、メラミン樹脂を用いて2往復させることで剥離させ、剥離後の重量を測定した。また、湯浴に浸すことなく十分に乾燥させた状態でのメラミン樹脂による剥離試験も行った。固着時の重量に対する剥離後の残存固着重量の割合を求め、評価した。結果は表1に示す。   A method for evaluating the fixing force is shown below. First, after fixing the photocatalyst to the glass plate and measuring the fixing amount at this time, the fixing strength was evaluated by two methods. Immerse in boiling water at 90 ° C for 2 hours, then dry it thoroughly on a hot plate at 80 ° C, peel off the fixed photocatalyst surface by reciprocating twice using melamine resin, and measure the weight after peeling did. In addition, a peel test using a melamine resin in a sufficiently dried state without being immersed in a hot water bath was also performed. The ratio of the remaining fixed weight after peeling to the weight at the time of fixing was determined and evaluated. The results are shown in Table 1.

チタン化合物を固定化したガラス板試料を550mLのパイレックスガラス製反応容器内に設置した。反応容器を5Torrまで脱気し、高純度空気(日本酸素製、CO2、0.5ppm以下)で大気圧まで戻した。反応容器内にアセトンを約550ppmになるように液体の状態で注入し、室温で気化させた。吸着平衡後にブラックライト(SANKYOU DENKI製、FL10LB、10W、1本、照射距離20cm、0.5mW/cm2)を照射させた。完全酸化反応によって生成するCO2濃度はガスクロマトグラフ(TCD)で測定した。ブラックライトを4時間照射後に生成したCO2濃度より、アセトンからのCO2への転化率を算出したところ85%であった。 The glass plate sample on which the titanium compound was immobilized was placed in a 550 mL Pyrex glass reaction vessel. The reaction vessel was degassed to 5 Torr, and returned to atmospheric pressure with high purity air (manufactured by Nippon Oxygen, CO 2 , 0.5 ppm or less). Acetone was injected into the reaction vessel in a liquid state to be about 550 ppm and vaporized at room temperature. After the adsorption equilibrium, black light (manufactured by SANKYOU DENKI, FL10LB, 10 W, one, irradiation distance 20 cm, 0.5 mW / cm 2 ) was irradiated. The CO 2 concentration produced by the complete oxidation reaction was measured by gas chromatograph (TCD). Than the CO 2 concentration of the generated black light after 4 hours irradiation, it was 85% was calculated conversion to CO 2 from acetone.

比較例1
実施例1で用いた粉末状酸化チタン光触媒P25(日本アエロジル製)を20mg採取し、ガラス板(5×5cm)に蒸留水を用いて塗布し、乾燥させたものを実施例1と同様に光触媒性能を評価した。この時のブラックライトを4時間照射後に生成したCO2濃度について、アセトンからのCO2への転化率を算出したところ95%であった。また、このガラス板表面の固着力を実施例1で示す方法で評価した(表1)。
Comparative Example 1
20 mg of powdered titanium oxide photocatalyst P25 (manufactured by Nippon Aerosil Co., Ltd.) used in Example 1 was collected, applied to a glass plate (5 × 5 cm) using distilled water, and dried, as in Example 1. Performance was evaluated. The conversion rate from acetone to CO 2 was calculated for the CO 2 concentration produced after 4 hours of irradiation with the black light at this time, and it was 95%. Further, the adhesion strength of the glass plate surface was evaluated by the method shown in Example 1 (Table 1).

実施例2
実施例1と同様に合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を4W直管型ブラックライト(東芝製、FL4BLB)1本の表面にスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。このとき、固定化された光触媒量は3mgであった。その後、電池式蛍光灯点灯器に装着後、光源を点灯させたままで、パイレックスガラス製反応容器(容積2000mL)内に設置した。反応容器を5Torrまで脱気し、高純度空気(日本酸素製、CO2、0.5ppm以下)で大気圧まで戻した。反応容器内にアセトンを約550ppmになるように液体の状態で注入し、室温で気化させた。光触媒反応で減少するアセトン濃度をガスクロマトグラフ(FID)にて測定し、完全酸化反応によって生成するCO2濃度はガスクロマトグラフ(TCD)で測定した。また、4W直管型ブラックライトから照射される紫外線の光強度を紫外線強度計(UM−10)に受光部(UM360)を取り付けたもの(いずれもコニカミノルタ製)で測定したところ、2500μW/cm2であったのに対し、固定化させたブラックライトから照射される紫外線の光強度は66μW/cm2であった。ブラックライトを90分照射後に生成したCO2濃度より、アセトンからCO2への転化率を算出したところ、100%であった。
Example 2
The titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) synthesized in the same manner as in Example 1 was spray-coated on the surface of one 4W straight tube type black light (Toshiba, FL4BLB), and applied to a dryer. And dried at 80 ° C. for immobilization. At this time, the amount of the immobilized photocatalyst was 3 mg. Then, after installing in a battery-type fluorescent lamp lighting device, it installed in the Pyrex glass reaction container (volume 2000mL) with the light source lighted. The reaction vessel was degassed to 5 Torr, and returned to atmospheric pressure with high purity air (manufactured by Nippon Oxygen, CO 2 , 0.5 ppm or less). Acetone was injected into the reaction vessel in a liquid state to be about 550 ppm and vaporized at room temperature. The acetone concentration decreased by the photocatalytic reaction was measured by a gas chromatograph (FID), and the CO 2 concentration produced by the complete oxidation reaction was measured by a gas chromatograph (TCD). Moreover, when the light intensity of the ultraviolet rays irradiated from the 4W straight tube type black light was measured with a UV intensity meter (UM-10) attached with a light receiving part (UM360) (all manufactured by Konica Minolta), 2500 μW / cm On the other hand, the intensity of the ultraviolet light emitted from the fixed black light was 66 μW / cm 2 . The conversion rate from acetone to CO 2 was calculated from the CO 2 concentration produced after 90 minutes of irradiation with black light, and was 100%.

比較例2
市販の光触媒スプレー(ミラクルチタン、大野石油製)を4W直管型ブラックライト(東芝製、FL4BLB)1本にスプレー塗布した。このとき、固定化された光触媒量は5mgであった。実施例2と同様にブラックライトを90分照射後に生成したCO2濃度よりアセトンからCO2への転化率を算出したところ、4.5%であった。本発明の光触媒体は市販の光触媒スプレーを塗布したブラックライトに比べ、非常に高い光触媒性能を示した。
Comparative Example 2
A commercially available photocatalyst spray (Miracle Titanium, manufactured by Ohno Oil Co., Ltd.) was spray applied to one 4 W straight tube type black light (Toshiba, FL4BLB). At this time, the amount of immobilized photocatalyst was 5 mg. Was calculated conversion of the similarly black light as in Example 2 from acetone than the CO 2 concentration of generated after irradiation 90 minutes to CO 2, was 4.5%. The photocatalyst of the present invention showed a very high photocatalytic performance as compared with a black light coated with a commercially available photocatalyst spray.

比較例3
実施例1で用いた粉末状酸化チタン光触媒P25(日本アエロジル製)500mgに水50mLを加え、あらかじめ分散機で水分散体を調製し、それに市販のバインダーであるリチウムシリケート35 LSS-35(日産化学製)を0.5mL加え、攪拌して分散体を得た。この分散体の一部を採取し、実施例1と同様にガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーの温風にて80℃で乾燥して固定化した。この場合のリチウムシリケートの固形成分は酸化チタンに対して20%である。この市販のバインダーを用いてガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求め、評価した(表1)。また、このガラス板表面の固着力を実施例1で示す方法で評価した(表1)。
Comparative Example 3
50 mL of water was added to 500 mg of powdered titanium oxide photocatalyst P25 (manufactured by Nippon Aerosil Co., Ltd.) used in Example 1, a water dispersion was prepared in advance by a disperser, and a commercially available binder, lithium silicate 35 LSS-35 (Nissan Chemical). 0.5 mL) was added and stirred to obtain a dispersion. A part of this dispersion was collected, and 10 mg equivalent was spray-coated on a glass plate (5 × 5 cm) in the same manner as in Example 1, and dried and fixed at 80 ° C. with hot air from a dryer. In this case, the solid component of lithium silicate is 20% with respect to titanium oxide. The photocatalytic performance of P25 immobilized on the glass plate surface using this commercially available binder was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container as in Example 1. Evaluation (Table 1). Further, the adhesion strength of the glass plate surface was evaluated by the method shown in Example 1 (Table 1).

比較例4
比較例3と同様にP25 500mgに水を50mL加え、あらかじめ分散機で水分散体を調製し、それに市販のバインダーであるリチウムシリケート45 LSS-45(日産化学製)を0.5mL加え、攪拌して分散体を得た。この分散体の一部を採取し、実施例1と同様にガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーの温風にて80℃で乾燥して固定化した。この場合のリチウムシリケートの固形成分は酸化チタンに対して20%である。この市販のバインダーを用いてガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求め、評価した(表1)。また、このガラス板表面の固着力を実施例1で示す方法で評価した(表1)。
Comparative Example 4
As in Comparative Example 3, 50 mL of water was added to 500 mg of P25, an aqueous dispersion was prepared in advance with a disperser, and 0.5 mL of a commercially available binder, lithium silicate 45 LSS-45 (manufactured by Nissan Chemical Industries), was added and stirred. To obtain a dispersion. A part of this dispersion was collected, and 10 mg equivalent was spray-coated on a glass plate (5 × 5 cm) in the same manner as in Example 1, and dried and fixed at 80 ° C. with hot air from a dryer. In this case, the solid component of lithium silicate is 20% with respect to titanium oxide. The photocatalytic performance of P25 immobilized on the glass plate surface using this commercially available binder was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container as in Example 1. Evaluation (Table 1). Further, the adhesion strength of the glass plate surface was evaluated by the method shown in Example 1 (Table 1).

比較例5
比較例3と同様にP25 500mgに水を50mL加え、あらかじめ分散機で水分散体を調製し、それに市販のバインダーであるリチウムシリケート75 LSS-75(日産化学製)を0.5mL加え、攪拌して分散体を得た。この分散体の一部を採取し、実施例1と同様にガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーの温風にて80℃で乾燥して固定化した。この場合のリチウムシリケートの固形成分は酸化チタンに対して20%である。この市販のバインダーを用いてガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求め、評価した(表1)。また、このガラス板表面の固着力を実施例1で示す方法で評価した(表1)。
Comparative Example 5
As in Comparative Example 3, 50 mL of water was added to 500 mg of P25, an aqueous dispersion was prepared in advance with a disperser, and 0.5 mL of a commercially available binder, lithium silicate 75 LSS-75 (manufactured by Nissan Chemical Industries), was added and stirred. To obtain a dispersion. A part of this dispersion was collected, and 10 mg equivalent was spray-coated on a glass plate (5 × 5 cm) in the same manner as in Example 1, and dried and fixed at 80 ° C. with hot air from a dryer. In this case, the solid component of lithium silicate is 20% with respect to titanium oxide. The photocatalytic performance of P25 immobilized on the glass plate surface using this commercially available binder was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container as in Example 1. Evaluation (Table 1). Further, the adhesion strength of the glass plate surface was evaluated by the method shown in Example 1 (Table 1).

比較例6
比較例3と同様にP25 500mgに水を50mL加え、あらかじめ分散機で水分散体を調製し、それに市販のバインダーであるリチウムシリケート35 LSS−35(日産化学製)を0.05mL加え、攪拌して分散体を得た。この分散体の一部を採取し、実施例1と同様にガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーの温風にて80℃で乾燥して固定化した。この場合のリチウムシリケートの固形成分は酸化チタンに対して2%である。この市販のバインダーを用いてガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求め、評価した(表1)。また、このガラス板表面の固着力を実施例1で示す方法で評価した(表1)。
Comparative Example 6
As in Comparative Example 3, 50 mL of water was added to 500 mg of P25, an aqueous dispersion was prepared in advance using a disperser, and 0.05 mL of a commercially available binder, lithium silicate 35 LSS-35 (manufactured by Nissan Chemical Industries), was added and stirred. To obtain a dispersion. A part of this dispersion was collected, and 10 mg equivalent was spray-coated on a glass plate (5 × 5 cm) in the same manner as in Example 1, and dried and fixed at 80 ° C. with hot air from a dryer. In this case, the solid component of lithium silicate is 2% with respect to titanium oxide. The photocatalytic performance of P25 immobilized on the glass plate surface using this commercially available binder was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container as in Example 1. Evaluation (Table 1). Further, the adhesion strength of the glass plate surface was evaluated by the method shown in Example 1 (Table 1).

比較例7
P25を500mg採取して水を50mL加え、あらかじめ分散機で水分散体を調製し、それにチタニアゾルTKC−301(テイカ製)を5mL加え、攪拌して分散体を得た。この分散体の一部を採取し、実施例1と同様にガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーの温風にて80℃で乾燥して固定化した。この場合のチタニアゾルの固形成分は酸化チタンに対して20%である。この市販のバインダーを用いてガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求め、評価した(表1)。また、このガラス板表面の固着力を実施例1で示す方法で評価した(表1)。
Comparative Example 7
500 mg of P25 was sampled, 50 mL of water was added, an aqueous dispersion was prepared in advance with a disperser, 5 mL of titania sol TKC-301 (manufactured by Teika) was added thereto, and the mixture was stirred to obtain a dispersion. A part of this dispersion was collected, and 10 mg equivalent was spray-coated on a glass plate (5 × 5 cm) in the same manner as in Example 1, and dried and fixed at 80 ° C. with hot air from a dryer. In this case, the solid component of the titania sol is 20% with respect to titanium oxide. The photocatalytic performance of P25 immobilized on the glass plate surface using this commercially available binder was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container as in Example 1. Evaluation (Table 1). Further, the adhesion strength of the glass plate surface was evaluated by the method shown in Example 1 (Table 1).

比較例3〜7の水分散体は、特開2004-351365号公報、特開2003-73610号公報、特開2001-098187号公報、特開2000-256580号公報などに記載の塗料をベースに作成したものである。   The aqueous dispersions of Comparative Examples 3 to 7 are based on the paints described in JP-A-2004-351365, JP-A-2003-73610, JP-A-2001-098187, JP-A-2000-256580, and the like. It was created.

バインダーの固形成分量は実施例1と比較例3〜5は同程度とみなされるが、この量の市販のバインダーを加えると固着力は優れているものの、光触媒機能は著しく低下してしまうことがわかる。比較例6のようにバインダーの固形成分量を2%に減少させると、光触媒性能は50%程度の低下ですむが、固着力が低下する。以上の結果より、実施例1のP25をアルカリ化合物と過酸化水素とで溶解し、溶解成分を接着成分として利用する方法が強固な固着力と高い光触媒性能を両立できることがわかる。   The amount of the solid component of the binder is considered to be about the same in Example 1 and Comparative Examples 3 to 5. However, when this amount of a commercially available binder is added, the adhesion is excellent, but the photocatalytic function may be significantly reduced. Recognize. When the solid content of the binder is reduced to 2% as in Comparative Example 6, the photocatalytic performance can be reduced by about 50%, but the fixing force is reduced. From the above results, it can be seen that the method of dissolving P25 of Example 1 with an alkali compound and hydrogen peroxide and using the dissolved component as an adhesive component can achieve both strong fixing force and high photocatalytic performance.

Figure 2007146138
Figure 2007146138

実施例3
[水酸化ナトリウムの場合:チタンに対して塩基成分が1/20モル量のとき]
実施例1においてアンモニア水を水酸化ナトリウム溶液(1mol/L)1.25mLとした以外は、同様にして行い、合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を基材となるガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。ガラス板に固定化されたチタン化合物は沸騰水に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は6.8mgであった。ガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、30%であった。ガラス板表面の固着力を実施例1で示す方法で評価した結果を表2に示す。
Example 3
[In the case of sodium hydroxide: When the base component is 1/20 mole amount relative to titanium]
A titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) was synthesized in the same manner as in Example 1 except that the aqueous ammonia was changed to 1.25 mL of sodium hydroxide solution (1 mol / L). A glass plate (5 × 5 cm) serving as a substrate was spray-coated with 10 mg equivalent, and dried and fixed at 80 ° C. with a dryer. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 6.8 mg. The photocatalytic performance of P25 immobilized on the surface of the glass plate was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1. The result was 30%. . Table 2 shows the results of evaluating the fixing force on the surface of the glass plate by the method shown in Example 1.

実施例4
[水酸化ナトリウムの場合:チタンに対して塩基成分が1/10モル量のとき]
実施例1においてアンモニア水を水酸化ナトリウム溶液(1mol/L)2.5mLとした以外は、同様にして行い、合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を基材となるガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。ガラス板に固定化されたチタン化合物は沸騰水に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は10.0mgであった。ガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、15%であった。ガラス板表面の固着力を実施例1で示す方法で評価した結果を表2に示す。
Example 4
[In the case of sodium hydroxide: When the base component is 1/10 molar amount relative to titanium]
A titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) was synthesized in the same manner as in Example 1 except that the aqueous ammonia was changed to 2.5 mL of sodium hydroxide solution (1 mol / L). A glass plate (5 × 5 cm) serving as a substrate was spray-coated with 10 mg equivalent, and dried and fixed at 80 ° C. with a dryer. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 10.0 mg. The photocatalytic performance of P25 immobilized on the surface of the glass plate was calculated by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1. The result was 15%. . Table 2 shows the results of evaluating the fixing force on the surface of the glass plate by the method shown in Example 1.

実施例5
[水酸化カリウムの場合:チタンに対して塩基成分が1/20モル量のとき]
実施例1においてアンモニア水を水酸化カリウム溶液(1mol/L)1.25mLとした以外は、同様にして行い、合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を基材となるガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。ガラス板に固定化されたチタン化合物は沸騰水に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は10.2mgであった。ガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、24%であった。ガラス板表面の固着力を実施例1で示す方法で評価した結果を表2に示す。
Example 5
[In the case of potassium hydroxide: When the base component is 1/20 mole amount with respect to titanium]
A titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) was synthesized in the same manner as in Example 1 except that the aqueous ammonia was changed to 1.25 mL of potassium hydroxide solution (1 mol / L). A glass plate (5 × 5 cm) serving as a substrate was spray-coated with 10 mg equivalent, and dried and fixed at 80 ° C. with a dryer. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 10.2 mg. The photocatalytic performance of P25 immobilized on the surface of the glass plate was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1. The result was 24%. . Table 2 shows the results of evaluating the fixing force on the surface of the glass plate by the method shown in Example 1.

実施例6
[水酸化カリウムの場合:チタンに対して塩基成分が1/10モル量のとき]
実施例1においてアンモニア水を水酸化カリウム溶液(1mol/L)2.5mLとした以外は、同様にして行い、合成したチタン水和物分散溶液を基材となるガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。ガラス板に固定化されたチタン化合物は沸騰水に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は9.7mgであった。ガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、14%であった。ガラス板表面の固着力を実施例1で示す方法で評価した結果を表2に示す。
Example 6
[In the case of potassium hydroxide: When the base component is 1/10 molar amount relative to titanium]
Except that ammonia water was changed to 2.5 mL of potassium hydroxide solution (1 mol / L) in Example 1, it was performed in the same manner, and the synthesized titanium hydrate dispersion solution was applied to a glass plate (5 × 5 cm) as a base material. 10 mg equivalent was applied by spraying, dried and fixed at 80 ° C. with a dryer. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 9.7 mg. The photocatalytic performance of P25 immobilized on the surface of the glass plate was calculated by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1. The result was 14%. . Table 2 shows the results of evaluating the fixing force on the surface of the glass plate by the method shown in Example 1.

実施例7
[炭酸水素アンモニウム:チタンに対して塩基成分が1/20モル量のとき]
実施例1においてアンモニア水を炭酸水素アンモニウム溶液(1mol/L)1.25mLとした以外は、同様にして行い、合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を基材となるガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。ガラス板に固定化されたチタン化合物は沸騰水に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は6.8mgであった。ガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、92%であった。ガラス板表面の固着力を実施例1で示す方法で評価した結果を表2に示す。
Example 7
[Ammonium bicarbonate: When the base component is 1/20 mole amount relative to titanium]
A titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) was synthesized in the same manner as in Example 1 except that the ammonia water was changed to 1.25 mL of ammonium hydrogen carbonate solution (1 mol / L). A glass plate (5 × 5 cm) serving as a substrate was spray-coated with 10 mg equivalent, and dried and fixed at 80 ° C. with a dryer. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 6.8 mg. The photocatalytic performance of P25 immobilized on the glass plate surface was found to be 92% by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1. . Table 2 shows the results of evaluating the fixing force on the surface of the glass plate by the method shown in Example 1.

実施例8
[炭酸水素アンモニウム:チタンに対して塩基成分が1/10モル量のとき]
実施例1においてアンモニア水を炭酸水素アンモニウム溶液(1mol/L)2.5mLとした以外は、同様にして行い、合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を基材となるガラス板(5×5cm)に10mg相当をスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。ガラス板に固定化されたチタン化合物は沸騰水に2時間以上浸漬しても剥離は認められないほどの強固な固着力を有していた。この時のガラス板に固定化された酸化チタン量は8.4mgであった。ガラス板表面に固定化したP25の光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、81%であった。ガラス板表面の固着力を実施例1で示す方法で評価した結果を表2に示す。
Example 8
[Ammonium bicarbonate: When the base component is 1/10 mole amount relative to titanium]
A titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) was synthesized in the same manner as in Example 1 except that the ammonia water was changed to 2.5 mL of ammonium hydrogen carbonate solution (1 mol / L). A glass plate (5 × 5 cm) serving as a substrate was spray-coated with 10 mg equivalent, and dried and fixed at 80 ° C. with a dryer. The titanium compound fixed on the glass plate had such a strong fixing force that no peeling was observed even when immersed in boiling water for 2 hours or more. The amount of titanium oxide immobilized on the glass plate at this time was 8.4 mg. The photocatalytic performance of P25 immobilized on the glass plate surface was found to be 81% by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1. . Table 2 shows the results of evaluating the fixing force on the surface of the glass plate by the method shown in Example 1.

Figure 2007146138
Figure 2007146138

実施例9
原料として粉末状酸化チタン光触媒ST-01(石原産業製)100mgをビーカーに採取し、これにアンモニア水(28%、関東化学製、特級)0.2mLと過酸化水素水(33%、関東化学製、特級)0.5mLを加え、直ちに攪拌した。攪拌5分後に、メンブレンフィルター(セルロース・混合エステルタイプ、孔径100nm、ADVANTEC製)を用いてろ過を行い、再度脱イオン水を通水することで洗浄を行った。その後、フィルター上に残った酸化チタンを回収し、80℃にて乾燥させた。上記の工程を数回行い、得られた酸化チタン200mgをガラス板(6cm×6cm)上に蒸留水を用いて塗布し、乾燥させた。この光触媒性能を、実施例1と同様に550mLのパイレックス容器を用いて、アセトンからのCO2への転化率を算出することによって求めたところ、63.0%であった。
Example 9
100 mg of powdered titanium oxide photocatalyst ST-01 (manufactured by Ishihara Sangyo) as a raw material was collected in a beaker, and 0.2 mL of aqueous ammonia (28%, manufactured by Kanto Chemical Co., Ltd.) and hydrogen peroxide (33%, Kanto Chemical) (Product made, special grade) 0.5 mL was added and immediately stirred. After 5 minutes of stirring, filtration was performed using a membrane filter (cellulose / mixed ester type, pore size 100 nm, manufactured by ADVANTEC), and washing was performed by passing deionized water again. Thereafter, the titanium oxide remaining on the filter was collected and dried at 80 ° C. The above process was performed several times, and 200 mg of the obtained titanium oxide was applied onto a glass plate (6 cm × 6 cm) using distilled water and dried. The photocatalytic performance was determined by calculating the conversion rate from acetone to CO 2 using a 550 mL Pyrex container in the same manner as in Example 1, and found to be 63.0%.

比較例8
上記の実験で用いた粉末状酸化チタン光触媒ST-01(石原産業製)を200mg採取し、ガラス板(6cm×6cm)に蒸留水を用いて塗布し、乾燥させたものを実施例1と同様の方法で光触媒の性能評価を行った。アセトンからのCO2への転化率を算出することによって求めたところ、35.1%であった。
Comparative Example 8
200 mg of powdered titanium oxide photocatalyst ST-01 (manufactured by Ishihara Sangyo) used in the above experiment was collected, applied to a glass plate (6 cm × 6 cm) using distilled water, and dried, as in Example 1. The performance of the photocatalyst was evaluated by this method. Was determined by calculating the conversion to CO 2 from acetone, it was 35.1%.

Figure 2007146138
Figure 2007146138

実施例10
実施例1と同様に合成したチタン水和物分散溶液(過酸化水素添加5分後の分散体)を6W直管型ブラックライト(東芝製、FL6BLB)1本の表面にスプレー塗布し、ドライヤーにて80℃で乾燥して固定化した。このとき、固定化された光触媒量は5mgであった。その後、蛍光灯点灯器に装着後、パイレックスガラス製反応容器(容積4000mL)内に設置した。反応容器を5Torrまで脱気し、硫化水素/水素混合ガス(日本酸素製,硫化水素濃度:4.95%)を硫化水素濃度として100ppmになるように導入させたのちに、高純度空気(日本酸素製、CO2、0.5ppm以下)で大気圧まで戻した。その後,ブラックライトを点灯させ、光触媒反応で減少する硫化水素濃度を北川式検知管にて測定した。ブラックライト点灯60分後の硫化水素濃度は0ppmであった。なお、ブラックライトを点灯させずに60分間暗所にて吸着させたときの硫化水素濃度は、85ppmであった。結果を図3に示す。
Example 10
A titanium hydrate dispersion solution (dispersion 5 minutes after addition of hydrogen peroxide) synthesized in the same manner as in Example 1 was spray-coated on the surface of one 6W straight tube type black light (Toshiba, FL6BLB) and applied to a dryer. And dried at 80 ° C. for immobilization. At this time, the amount of immobilized photocatalyst was 5 mg. Then, after mounting | wearing with a fluorescent lamp lighting device, it installed in the reaction container (volume 4000mL) made from Pyrex glass. After degassing the reaction vessel to 5 Torr and introducing hydrogen sulfide / hydrogen mixed gas (manufactured by Nippon Oxygen, hydrogen sulfide concentration: 4.95%) to a hydrogen sulfide concentration of 100 ppm, high purity air (Japan) The pressure was returned to atmospheric pressure with oxygen (CO 2 , 0.5 ppm or less). After that, the black light was turned on and the hydrogen sulfide concentration decreased by the photocatalytic reaction was measured with a Kitagawa type detector tube. The concentration of hydrogen sulfide 60 minutes after lighting the black light was 0 ppm. The hydrogen sulfide concentration when adsorbed in the dark for 60 minutes without turning on the black light was 85 ppm. The results are shown in FIG.

比較例9
市販の光触媒スプレー(ミラクルチタン、大野石油製)を6W直管型ブラックライト(東芝製、FL6BLB)1本にスプレー塗布し、実施例2と同様の測定を行った。このとき、塗布された光触媒量は10mgであった。ブラックライトを60分照射後の硫化水素濃度は45ppmであった。本発明の光触媒体は市販の光触媒スプレーを塗布したブラックライトに比べ、非常に高い光触媒性能を示した。結果を図3に示す。
Comparative Example 9
A commercially available photocatalyst spray (Miracle Titanium, manufactured by Ohno Oil Co., Ltd.) was spray-coated on one 6 W straight tube type black light (manufactured by Toshiba, FL6BLB), and the same measurement as in Example 2 was performed. At this time, the amount of the applied photocatalyst was 10 mg. The hydrogen sulfide concentration after irradiation with black light for 60 minutes was 45 ppm. The photocatalyst of the present invention showed a very high photocatalytic performance as compared with a black light coated with a commercially available photocatalyst spray. The results are shown in FIG.

本発明は、光触媒塗膜を有する物品の製造分野に利用可能である。   The present invention can be used in the field of manufacturing articles having a photocatalytic coating film.

実施例2および比較例2のガスクロマトグラフ(FID)によるアセトン濃度変化での光触媒評価結果。The photocatalyst evaluation result in the acetone concentration change by the gas chromatograph (FID) of Example 2 and Comparative Example 2. 実施例2および比較例2の光触媒反応によってアセトンから生成した二酸化炭素濃度の測定結果から算出したアセトンからの二酸化炭素への転化率。The conversion rate from acetone to carbon dioxide calculated from the measurement result of the carbon dioxide concentration produced from acetone by the photocatalytic reaction of Example 2 and Comparative Example 2. 実施例10および比較例9における、硫化水素の光触媒による分解結果を示す。The decomposition result by the photocatalyst of hydrogen sulfide in Example 10 and Comparative Example 9 is shown.

Claims (13)

酸化チタン光触媒粉末をアルカリ化合物および過酸化水素を含有する溶液に分散して、酸化チタン光触媒粉末粒子を部分的に溶解し、部分溶解液を得ることを含む、光触媒塗布剤の製造方法。 A method for producing a photocatalyst coating agent, comprising dispersing titanium oxide photocatalyst powder in a solution containing an alkali compound and hydrogen peroxide to partially dissolve titanium oxide photocatalyst powder particles to obtain a partially dissolved solution. 酸化チタン光触媒粉末が、アナタース型、ルチル型、ブルッカイト型またはこれらの混晶型である請求項1に記載の製造方法。 The production method according to claim 1, wherein the titanium oxide photocatalyst powder is an anatase type, a rutile type, a brookite type, or a mixed crystal type thereof. アルカリ化合物がアンモニアである請求項1または2に記載の製造方法。 The production method according to claim 1, wherein the alkali compound is ammonia. 酸化チタン光触媒粉末に含まれるチタンに対して等モル量以上のアンモニアを用いる請求項3に記載の製造方法。 The production method according to claim 3, wherein an equimolar amount or more of ammonia is used with respect to titanium contained in the titanium oxide photocatalyst powder. アルカリ化合物がアルカリ金属水酸化物である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the alkali compound is an alkali metal hydroxide. 酸化チタン光触媒粉末に含まれるチタンに対して0.05モル倍〜等モル倍のアルカリ金属水酸化物を用いる請求項5に記載の製造方法。 The manufacturing method of Claim 5 using 0.05 mol times-equimolar times alkali metal hydroxide with respect to the titanium contained in a titanium oxide photocatalyst powder. アルカリ化合物が炭酸水素アンモニウムである請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the alkali compound is ammonium hydrogen carbonate. 酸化チタン光触媒粉末に含まれるチタンに対して0.05モル倍〜等モル倍の炭酸水素アンモニウムを用いる請求項7に記載の製造方法。 The manufacturing method of Claim 7 using 0.05 mol times-equimolar times ammonium hydrogen carbonate with respect to the titanium contained in a titanium oxide photocatalyst powder. アルカリ化合物がアンモニア、アルカリ金属水酸化物および炭酸水素アンモニウムから成る群から選ばれる少なくとも2種の化合物である請求項1または2に記載の製造方法。 The process according to claim 1 or 2, wherein the alkali compound is at least two compounds selected from the group consisting of ammonia, alkali metal hydroxides and ammonium hydrogen carbonate. 酸化チタン光触媒粉末に含まれるチタンに対して0.2モル倍以上の過酸化水素を用いる請求項1〜9に記載の製造方法。 The manufacturing method of Claims 1-9 using hydrogen peroxide 0.2 mol times or more with respect to the titanium contained in a titanium oxide photocatalyst powder. 部分的溶解は、酸化チタン光触媒粉末の各粒子の1〜99%を溶解する請求項1〜10のいずれか1項に記載の製造方法。 The partial dissolution is the production method according to any one of claims 1 to 10, wherein 1 to 99% of each particle of the titanium oxide photocatalyst powder is dissolved. 部分溶解剤に酸化チタン光触媒粉末をさらに添加する請求項1〜11のいずれか1項に記載の製造方法。 The manufacturing method of any one of Claims 1-11 which further add a titanium oxide photocatalyst powder to a partial solubilizer. 請求項1〜12のいずれか1項に記載の製造方法により製造された光触媒塗布剤を基材に塗布し、乾燥することを含む光触媒塗膜の製造方法。 The manufacturing method of the photocatalyst coating film which apply | coats the photocatalyst coating agent manufactured by the manufacturing method of any one of Claims 1-12 on a base material, and dries.
JP2006289443A 2005-10-26 2006-10-25 Photocatalyst coating agent and method for producing coating film Active JP4613154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289443A JP4613154B2 (en) 2005-10-26 2006-10-25 Photocatalyst coating agent and method for producing coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005310713 2005-10-26
JP2006289443A JP4613154B2 (en) 2005-10-26 2006-10-25 Photocatalyst coating agent and method for producing coating film

Publications (2)

Publication Number Publication Date
JP2007146138A true JP2007146138A (en) 2007-06-14
JP4613154B2 JP4613154B2 (en) 2011-01-12

Family

ID=38207914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289443A Active JP4613154B2 (en) 2005-10-26 2006-10-25 Photocatalyst coating agent and method for producing coating film

Country Status (1)

Country Link
JP (1) JP4613154B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000412A (en) * 2008-06-18 2010-01-07 Shin-Etsu Chemical Co Ltd Method for producing thin film of titanium oxide-based photocatalyst
JP2010088964A (en) * 2008-10-03 2010-04-22 Saga Prefecture Method for producing oxidized titanium particle
JP2018002802A (en) * 2016-06-29 2018-01-11 日立化成株式会社 Polyamide-imide resin composition and coating
JP2021087937A (en) * 2019-12-06 2021-06-10 株式会社イリス Hydrophilic material and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971418A (en) * 1995-08-31 1997-03-18 Saga Pref Gov Method for forming titania film
JP2001048538A (en) * 1999-08-06 2001-02-20 Saga Prefecture Titanium oxide-forming solution and its production
JP2005105138A (en) * 2003-09-30 2005-04-21 Sustainable Titania Technology Inc Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971418A (en) * 1995-08-31 1997-03-18 Saga Pref Gov Method for forming titania film
JP2001048538A (en) * 1999-08-06 2001-02-20 Saga Prefecture Titanium oxide-forming solution and its production
JP2005105138A (en) * 2003-09-30 2005-04-21 Sustainable Titania Technology Inc Aqueous liquid for formation of photocatalyst film excellent in transparency and stability, method for producing the same and method for producing structure by using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000412A (en) * 2008-06-18 2010-01-07 Shin-Etsu Chemical Co Ltd Method for producing thin film of titanium oxide-based photocatalyst
JP2010088964A (en) * 2008-10-03 2010-04-22 Saga Prefecture Method for producing oxidized titanium particle
JP2018002802A (en) * 2016-06-29 2018-01-11 日立化成株式会社 Polyamide-imide resin composition and coating
JP2021087937A (en) * 2019-12-06 2021-06-10 株式会社イリス Hydrophilic material and method for producing the same
JP7089785B2 (en) 2019-12-06 2022-06-23 株式会社イリス Manufacturing method of hydrophilic material

Also Published As

Publication number Publication date
JP4613154B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP5196710B2 (en) Coating materials and their applications
CA2371166C (en) Photocatalyst composite comprising fluorinated polymer and process for producing same
US6770257B1 (en) Processes for producing anatase titanium oxide and titanium oxide coating material
KR101868192B1 (en) Photocatalytic coating film and method for producing same
JP6231550B2 (en) Titanium oxide dispersion, titanium oxide coating solution, and photocatalytic coating
BRPI0518835B1 (en) a process for preparing stable nanoparticulate tio2 dispersions in the anatase crystalline form, stable nanoparticulate tio2 dispersions in the anatase crystalline form and uses of said dispersions.
CN106660012B (en) Photochemical catalyst functional membrane and preparation method thereof
JP4613154B2 (en) Photocatalyst coating agent and method for producing coating film
Nguyen et al. Photocatalytic degradation and heat reflectance recovery of waterborne acrylic polymer/ZnO nanocomposite coating
AU2009202340A1 (en) Zirconium oxalate sol
JP4880914B2 (en) Transparent coating film
TWI291895B (en) Sol containing titanium oxide, thin film formed therefrom and production process of the sol
JP2006297350A (en) Photocatalyst film and manufacturing method
CN104768642B (en) Photocatalyst, and method for producing photocatalyst
JPH1192689A (en) Inorganic coating
CN100450622C (en) Transparent film-forming composition
JP2006297351A (en) Photocatalyst film and manufacturing method
JP2004244608A (en) Hydrolytic polycondensation product solution, method for producing the same and transparent film forming composition given by using the same
JP5888340B2 (en) Photocatalyst and method for producing photocatalyst
JP2003073585A (en) Liquid for forming titania film, method for forming titania film, titania film and photocatalytic material
Gunnarsson Self cleaning paint: Introduction of photocatalytic particles into a paint system
JP4055782B2 (en) Room temperature curable inorganic vehicle composition and room temperature curable inorganic paint or coating agent using the same
JP2003261330A (en) Liquid for forming titanium oxide film, method of forming titanium oxide film, titanium oxide film and photocatalytic member
JP3371104B2 (en) Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same
JP2000102733A (en) Use of photolysis catalyst and production of hydrogen

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4613154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250