JP2007146124A - Proton-exchanging membrane - Google Patents

Proton-exchanging membrane Download PDF

Info

Publication number
JP2007146124A
JP2007146124A JP2006274202A JP2006274202A JP2007146124A JP 2007146124 A JP2007146124 A JP 2007146124A JP 2006274202 A JP2006274202 A JP 2006274202A JP 2006274202 A JP2006274202 A JP 2006274202A JP 2007146124 A JP2007146124 A JP 2007146124A
Authority
JP
Japan
Prior art keywords
proton exchange
exchange membrane
polymer
sulfur
proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006274202A
Other languages
Japanese (ja)
Other versions
JP4931540B2 (en
Inventor
Takashi Misao
貴史 三竿
Hiroshi Murata
博 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006274202A priority Critical patent/JP4931540B2/en
Publication of JP2007146124A publication Critical patent/JP2007146124A/en
Application granted granted Critical
Publication of JP4931540B2 publication Critical patent/JP4931540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proton-exchanging membrane having high durability even under a high temperature and low humidified condition [e.g. 100°C operation temperature and 50°C humidification (corresponding to a relative humidity of 12%RH)]. <P>SOLUTION: This proton-exchanging membrane is characterized by containing a perfluorocarbon polymer compound A having an ion-exchanging group and sulfur B. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子型燃料電池用に適したプロトン交換膜に関するものである。   The present invention relates to a proton exchange membrane suitable for a polymer electrolyte fuel cell.

燃料電池は、電池内で、水素、メタノール等を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子形燃料電池は、他と比較して低温で作動することから、自動車代替動力源、家庭用コジェネレーションシステム、携帯用発電機等として期待されている。
このような固体高分子形燃料電池は、電極触媒層とガス拡散層とが積層されたガス拡散電極がプロトン交換膜の両面に接合された膜電極接合体を少なくとも備えている。ここでいうプロトン交換膜は、高分子鎖中にスルホン酸基、カルボン酸基等の強酸性基を有し、プロトンを選択的に透過する性質を有する材料である。このようなプロトン交換膜としては、化学的安定性の高いナフィオン(登録商標、デュポン社製)に代表されるパーフルオロ系プロトン交換膜が好適に用いられる。
A fuel cell is one that converts the chemical energy of fuel directly into electrical energy by electrochemically oxidizing hydrogen, methanol, etc. in the battery, and is attracting attention as a clean electrical energy supply source. ing. In particular, polymer electrolyte fuel cells are expected to be used as alternative power sources for automobiles, home cogeneration systems, portable generators, and the like because they operate at a lower temperature than others.
Such a polymer electrolyte fuel cell includes at least a membrane electrode assembly in which a gas diffusion electrode in which an electrode catalyst layer and a gas diffusion layer are laminated is bonded to both surfaces of a proton exchange membrane. The proton exchange membrane here is a material having a strong acidic group such as a sulfonic acid group and a carboxylic acid group in the polymer chain and a property of selectively transmitting protons. As such a proton exchange membrane, a perfluoro proton exchange membrane represented by Nafion (registered trademark, manufactured by DuPont) having high chemical stability is preferably used.

燃料電池の運転時においては、アノード側のガス拡散電極に燃料(例えば、水素)、カソード側のガス拡散電極に酸化剤(例えば、酸素や空気)をそれぞれ供給し、両電極間を外部回路で接続することにより作動する。具体的には、水素を燃料とした場合、アノード触媒上で水素が酸化されてプロトンが生じ、このプロトンがアノード触媒層内のプロトン伝導性ポリマーを通った後、プロトン交換膜内を移動し、カソード触媒層内のプロトン伝導性ポリマーを通ってカソード触媒上に達する。一方、水素の酸化によりプロトンと同時に生じた電子は、外部回路を通ってカソード側ガス拡散電極に到達し、カソード触媒上にて上記プロトンと酸化剤中の酸素と反応して水が生成され、このとき電気エネルギーを取り出すことができる。   During operation of the fuel cell, fuel (for example, hydrogen) is supplied to the gas diffusion electrode on the anode side, and an oxidant (for example, oxygen or air) is supplied to the gas diffusion electrode on the cathode side. Operates by connecting. Specifically, when hydrogen is used as a fuel, hydrogen is oxidized on the anode catalyst to generate protons, and after passing through the proton conductive polymer in the anode catalyst layer, the protons move in the proton exchange membrane, It reaches the cathode catalyst through the proton conducting polymer in the cathode catalyst layer. On the other hand, electrons generated simultaneously with protons by oxidation of hydrogen reach the cathode side gas diffusion electrode through an external circuit, and react with the protons and oxygen in the oxidant on the cathode catalyst to generate water, At this time, electric energy can be taken out.

この際、プロトン交換膜は、ガスバリアとしての役割も果たす必要があり、プロトン交換膜のガス透過率が高いと、アノード側水素のカソード側へのリークおよびカソード側酸素のアノード側へのリーク、すなわち、クロスリークが発生して、いわゆるケミカルショートの状態となって良好な電圧を取り出せなくなる。
このような固体高分子型燃料電池は、高出力特性を得るために80℃近辺で運転するのが通常である。しかしながら、自動車用途として用いる場合には、夏場の自動車走行を想定して、高温低加湿条件下(運転温度100℃付近で、50℃加湿(湿度12RH%に相当))でも燃料電池を運転できることが望まれている。
At this time, the proton exchange membrane also needs to play a role as a gas barrier. When the gas permeability of the proton exchange membrane is high, leakage of anode-side hydrogen to the cathode side and leakage of cathode-side oxygen to the anode side, that is, A cross leak occurs, so that a so-called chemical short circuit occurs and a good voltage cannot be taken out.
Such a polymer electrolyte fuel cell is usually operated near 80 ° C. in order to obtain high output characteristics. However, when used for automobiles, the fuel cell can be operated even under high-temperature and low-humidification conditions (operating temperature near 100 ° C., 50 ° C. humidification (corresponding to a humidity of 12 RH%)) assuming that the vehicle is driven in summer. It is desired.

ところが、従来のパーフルオロ系プロトン交換膜を用いて高温低加湿条件下で燃料電池を長時間運転すると、プロトン交換膜にピンホールが生じ、クロスリークが発生するという問題があり、十分な耐久性が得られていない。
パーフルオロ系プロトン交換膜の耐久性を向上させる方法として、フィブリル状のポリテトラフルオロエチレン(PTFE)を用いた補強(特許文献1,2)、延伸処理したPTFE多孔膜を用いた補強(特許文献3)、無機粒子を添加した補強(特許文献4,5,6)による検討が開示されている。また、強酸性架橋基を介してパーフルオロ系プロトン交換膜を架橋して耐久性を向上させる検討も開示されている(特許文献7)。さらに、ゾルゲル反応を利用してパーフルオロ系プロトン交換膜にシリカを含有させたプロトン交換膜による耐久性向上の検討も開示されている(非特許文献1)。しかしながら、これらの方法では、上記問題を解決するに充分な耐久性を得ることは達成されていない。
However, when a fuel cell is operated for a long time under a high temperature and low humidity condition using a conventional perfluoro proton exchange membrane, there is a problem that pinholes are generated in the proton exchange membrane, and cross leaks occur. Is not obtained.
As methods for improving the durability of perfluoro proton exchange membranes, reinforcement using fibrillar polytetrafluoroethylene (PTFE) (Patent Documents 1 and 2) and reinforcement using a stretched PTFE porous membrane (Patent Documents) 3) An investigation by reinforcement with addition of inorganic particles (Patent Documents 4, 5, and 6) is disclosed. In addition, a study for improving durability by crosslinking a perfluoro proton exchange membrane via a strongly acidic crosslinking group is also disclosed (Patent Document 7). Furthermore, the examination of the durability improvement by the proton exchange membrane which made the perfluoro type proton exchange membrane contain silica using the sol-gel reaction is also disclosed (nonpatent literature 1). However, in these methods, it has not been achieved to obtain a durability sufficient to solve the above problems.

一方、パーフルオロ系プロトン交換膜に低分子量のポリプロピレングリコール等をドープさせたプロトン交換膜(特許文献8)、パーフルオロ系プロトン交換膜に窒素を含有する膜を張り合わせた膜(特許文献9)も開示されている。しかしながら、これらの方法で得られた膜は、良好なプロトン伝導性を有さず、充分な電圧を取り出せるにいたっていない。   On the other hand, a proton exchange membrane (Patent Document 8) in which a perfluoro proton exchange membrane is doped with low molecular weight polypropylene glycol or the like, and a membrane (Patent Document 9) in which a membrane containing nitrogen is bonded to a perfluoro proton exchange membrane It is disclosed. However, the membranes obtained by these methods do not have good proton conductivity and have not been able to extract a sufficient voltage.

また、高耐熱性を有するポリベンズイミダゾールにリン酸等の強酸をドープしたプロトン交換膜(以下、強酸ドープ膜と称する)が、100℃以上の高温で燃料電池運転が可能であることが報告されている(特許文献10)。また、高耐熱性を有するポリベンズイミダゾールに低分子量の酸性ポリマーをドープした強酸ドープ膜が報告されている(特許文献11)。しかしながら、100℃未満での燃料電池運転では水が存在するため、強酸が膜から水へ溶出して出力が低下するため、高温低加湿条件下での燃料電池運転では高い電圧を長時間維持することができない。   In addition, it has been reported that a proton exchange membrane (hereinafter referred to as a strong acid-doped membrane) in which a polybenzimidazole having high heat resistance is doped with a strong acid such as phosphoric acid (hereinafter referred to as a strong acid doped membrane) can be operated at a high temperature of 100 ° C. or higher. (Patent Document 10). Further, a strong acid doped film in which polybenzimidazole having high heat resistance is doped with a low molecular weight acidic polymer has been reported (Patent Document 11). However, since there is water in the fuel cell operation at less than 100 ° C., the strong acid is eluted from the membrane into the water and the output is reduced. Therefore, the fuel cell operation under the high temperature and low humidification condition maintains a high voltage for a long time. I can't.

更に、イオン交換基を有する炭化水素系ポリマーにイオン交換基を有さないパーフルオロカーボン重合体をブレンドして得た膜をプロトン交換膜に用いること(特許文献12)、イオン交換基を有する炭化水素系ポリマーとしてスルホン化芳香族ポリエーテルケトンあるいはスルホン化芳香族ポリアミドと塩基性ポリマーをブレンドして得た膜をプロトン交換膜に用いること(特許文献13,14)、非プロトン性溶媒の存在下にイオン交換基を有する炭化水素系ポリマーと塩基性ポリマーとをブレンドした後にキャストして得たプロトン交換膜を用いることも検討されているが(特許文献15,16)、化学的安定性が不十分であり、充分な耐久性を達成するにいたっていない。   Furthermore, a membrane obtained by blending a perfluorocarbon polymer having no ion exchange group with a hydrocarbon polymer having an ion exchange group is used as a proton exchange membrane (Patent Document 12), and a hydrocarbon having an ion exchange group A membrane obtained by blending a sulfonated aromatic polyether ketone or a sulfonated aromatic polyamide and a basic polymer as a polymer is used as a proton exchange membrane (Patent Documents 13 and 14), in the presence of an aprotic solvent. The use of a proton exchange membrane obtained by blending a hydrocarbon polymer having an ion exchange group and a basic polymer and then casting it has been studied (Patent Documents 15 and 16), but the chemical stability is insufficient. However, sufficient durability has not been achieved.

特開昭53−149881号公報JP-A-53-149981 特公昭63−61337号公報Japanese Examined Patent Publication No. 63-61337 特開平8−162132号公報JP-A-8-162132 特開平6−111827号公報JP-A-6-1111827 特開平9−219206号公報JP-A-9-219206 米国特許第5523181号明細書US Pat. No. 5,523,181 特開2000−188013号公報JP 2000-188013 A 特開2001−236973号公報JP 2001-236773 A 特開2001−167775号公報JP 2001-167775 A 特表平11−503262号公報Japanese National Patent Publication No. 11-503262 特表2000−517462号公報Special Table 2000-517462 特開2002−294087号公報JP 2002-294087 A 特表2002−529546号公報JP 2002-529546 A 米国特許第5290884号明細書US Pat. No. 5,290,884 特表2002−512285号公報Japanese translation of PCT publication No. 2002-512285 特表2002−512291号公報Japanese translation of PCT publication No. 2002-512291 K.A.Mauritz, R.F.Storey and C.K.Jones, in Multiphase Polymer Materials: Blends and Ionomers, L.A.Utracki and R.A.Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989)K. A. Mauritz, R.A. F. Story and C.I. K. Jones, in Multiphase Polymer Materials: Blends and Ionomers, L .; A. Utracki and R. A. Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989)

本発明は、高温低加湿条件下(例えば、運転温度100℃で、50℃加湿(湿度12RH%に相当))でも高耐久性を有するプロトン交換膜を提供することを目的とする。   An object of the present invention is to provide a proton exchange membrane having high durability even under high temperature and low humidification conditions (for example, at an operating temperature of 100 ° C. and 50 ° C. humidification (corresponding to a humidity of 12 RH%)).

本発明者等は、前記課題を解決するため鋭意検討した結果、イオン交換基を有するパーフルオロカーボン高分子化合物Aと、硫黄Bとを含有することを特徴とするプロトン交換膜が、高温低加湿下でも高耐久性を有することを見出した。
すなわち、本発明は以下のとおりである。
(1)イオン交換基を有するパーフルオロカーボン高分子化合物(A)と、硫黄(B)を含有することを特徴とするプロトン交換膜。
(2)イオン交換基を有するパーフルオロカーボン高分子化合物(A)と、硫黄(B)との質量比(A/B)が50/50〜99.99/0.01であることを特徴とする前記(1)に記載のプロトン交換膜。
(3)前記(1)又は(2)に記載のプロトン交換膜を備えた膜電極接合体。
(4)前記(3)に記載の膜電極接合体を備えた固体高分子型燃料電池。
As a result of intensive studies to solve the above problems, the present inventors have found that a proton exchange membrane comprising a perfluorocarbon polymer compound A having an ion exchange group and sulfur B has a high temperature and low humidity. However, it has been found to have high durability.
That is, the present invention is as follows.
(1) A proton exchange membrane comprising a perfluorocarbon polymer compound (A) having an ion exchange group and sulfur (B).
(2) The mass ratio (A / B) between the perfluorocarbon polymer compound (A) having an ion exchange group and sulfur (B) is 50/50 to 99.99 / 0.01. The proton exchange membrane according to (1) above.
(3) A membrane electrode assembly including the proton exchange membrane according to (1) or (2).
(4) A polymer electrolyte fuel cell comprising the membrane electrode assembly according to (3).

本発明のプロトン交換膜は、運転温度100℃で、50℃加湿(湿度12RH%に相当)において、燃料電池運転を長期間行ってもクロスリークが発生せず、優れた耐久性を示す。
また、本発明により得られるプロトン交換膜は、ダイレクトメタノール型燃料電池、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いることも可能である。
The proton exchange membrane of the present invention exhibits excellent durability with no cross leak even when the fuel cell is operated for a long period of time at an operating temperature of 100 ° C. and humidified at 50 ° C. (equivalent to a humidity of 12 RH%).
The proton exchange membrane obtained by the present invention can also be used for direct methanol fuel cells, chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, and the like. .

以下に、本発明について詳細に説明する。
本発明に用いられるイオン交換基を有するパーフルオロカーボン高分子化合物Aとしては、パーフルオロカーボンのスルホン酸ポリマーをはじめカルボン酸ポリマー、リン酸ポリマー、もしくはこれらのアミン塩、金属塩等が好適に用いられ、代表例として一般式(1)で表される重合体が挙げられる。
−[CFCX−[CF−CF(−O−(CF−CF(CF))−O−(CFR−(CFR−(CF−X)]− (1)
(式中、X,XおよびXはそれぞれ独立にハロゲン元素または炭素数1以上3以下のパーフルオロアルキル基、0≦a<1、0<g≦1、a+g=1、bは0以上8以下の整数、cは、0または1であり、d、eおよびfはそれぞれ独立に0以上6以下の整数(ただし、d+e+fは0に等しくない)、RおよびRはそれぞれ独立にハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基またはフルオロクロロアルキル基であり、Xは、COOZ、SOZ、PO、POHZ(Zは水素原子、アルカリ金属原子、アルカリ土類金属原子、アミン類(NH、NHR、NH、NHR、NR(Rはアルキル基、またはアレーン基))
The present invention is described in detail below.
As the perfluorocarbon polymer compound A having an ion exchange group used in the present invention, a perfluorocarbon sulfonic acid polymer, a carboxylic acid polymer, a phosphoric acid polymer, or an amine salt or a metal salt thereof is preferably used. A polymer represented by the general formula (1) is given as a typical example.
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O c - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 4)] g - (1)
(Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, b is 0 An integer of 8 or less, c is 0 or 1, d, e and f are each independently an integer of 0 or more and 6 or less (where d + e + f is not equal to 0), and R 1 and R 2 are each independently A halogen element, a perfluoroalkyl group or a fluorochloroalkyl group having 1 to 10 carbon atoms, and X 4 is COOZ, SO 3 Z, PO 3 Z 2 , PO 3 HZ (Z is a hydrogen atom, an alkali metal atom, Alkaline earth metal atoms, amines (NH 4 , NH 3 R, NH 2 R 2 , NHR 3 , NR 4 (R is an alkyl group or arene group))

中でも、一般式(2)或いは(3)で表されるパーフルオロカーボンスルホン酸ポリマーもしくはその金属塩が特に好ましい。
−[CFCF−[CF−CF(−O−CF−CF(CF))−O−(CF−SOX]]− ・・・(2)
(式中、0≦a<1、0≦d<1、a+d=1、bは1以上8以下の整数、cは0以上10以下の整数、Xは水素原子またはアルカリ金属原子)
−[CFCF−[CF−CF(−O−(CF−SOY)]− ・・・(3)
(式中、0≦e<1、0≦g<1、e+g=1、fは0以上10以下の整数、Yは水素原子またはアルカリ金属原子)
Among these, a perfluorocarbon sulfonic acid polymer represented by the general formula (2) or (3) or a metal salt thereof is particularly preferable.
- [CF 2 CF 2] a - [CF 2 -CF (-O-CF 2 -CF (CF 3)) b -O- (CF 2) c -SO 3 X]] d - ··· (2)
(Wherein 0 ≦ a <1, 0 ≦ d <1, a + d = 1, b is an integer of 1 to 8, c is an integer of 0 to 10, and X is a hydrogen atom or an alkali metal atom)
- [CF 2 CF 2] e - [CF 2 -CF (-O- (CF 2) f -SO 3 Y)] g - ··· (3)
(Wherein 0 ≦ e <1, 0 ≦ g <1, e + g = 1, f is an integer of 0 to 10 and Y is a hydrogen atom or an alkali metal atom)

本発明のイオン交換基を有するパーフルオロカーボン高分子化合物Aは、例えば、化学式(4)に示される前駆体ポリマーを重合した後、アルカリ加水分解、酸処理等を行って製造することができる。
−[CFCX−[CF−CF(−O−(CF−CF(CF))−O−(CFR−(CFR−(CF−X)]− ・・・(4)
(式中、X、XおよびXは、それぞれ独立に、ハロゲン元素または炭素数1以上3以下のパーフルオロアルキル基、0≦a<1、0<g≦1、a+g=1、bは、0以上8以下の整数、cは、0または1、d、eおよびfは、それぞれ独立に、0以上6以下の整数(但し、d+e+fは、0に等しくない)、RおよびRは、それぞれ独立に、ハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基またはフルオロクロロアルキル基、Xは、COOR,CORまたはSO(Rは、炭素数1〜3の炭化水素系アルキル基、Rは、ハロゲン元素))
The perfluorocarbon polymer compound A having an ion exchange group of the present invention can be produced, for example, by polymerizing a precursor polymer represented by the chemical formula (4) and then performing alkali hydrolysis, acid treatment and the like.
- [CF 2 CX 1 X 2 ] a - [CF 2 -CF (-O- (CF 2 -CF (CF 2 X 3)) b -O c - (CFR 1) d - (CFR 2) e - ( CF 2) f -X 5)] g - ··· (4)
(Wherein X 1 , X 2 and X 3 are each independently a halogen element or a perfluoroalkyl group having 1 to 3 carbon atoms, 0 ≦ a <1, 0 <g ≦ 1, a + g = 1, b Is an integer of 0 to 8, c is 0 or 1, d, e and f are each independently an integer of 0 to 6 (where d + e + f is not equal to 0), R 1 and R 2 Are each independently a halogen element, a perfluoroalkyl group or fluorochloroalkyl group having 1 to 10 carbon atoms, X 5 is COOR 3 , COR 4 or SO 2 R 4 (R 3 is a carbon number of 1 to 3) Hydrocarbon alkyl group, R 4 is a halogen element))

本発明に用いることが可能な前駆体ポリマーは、フッ化オレフィン化合物とフッ化ビニル化合物とを共重合させることにより製造される。
具体的なフッ化オレフィン化合物としては、CF=CF,CF=CFCl,CF=CCl等が挙げられる。
また、具体的なフッ化ビニル化合物としては、
CF=CFO(CF−SOF,CF=CFOCFCF(CF)O(CF−SOF,CF=CF(CF−SOF,CF=CF(OCFCF(CF))−(CF−1−SOF,CF=CFO(CF−COR,CF=CFOCFCF(CF)O(CF−COR,CF=CF(CF−COR,CF=CF(OCFCF(CF))−(CF−COR(Zは1〜8の整数、Rは炭素数1〜3の炭化水素系アルキル基を表す)等が挙げられる。
The precursor polymer that can be used in the present invention is produced by copolymerizing a fluorinated olefin compound and a vinyl fluoride compound.
Specific examples of the fluorinated olefin compound include CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CCl 2 and the like.
In addition, as a specific vinyl fluoride compound,
CF 2 = CFO (CF 2) z -SO 2 F, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) z -SO 2 F, CF 2 = CF (CF 2) z -SO 2 F, CF 2 = CF (OCF 2 CF ( CF 3)) z - (CF 2) z -1-SO 2 F, CF 2 = CFO (CF 2) z -CO 2 R, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) z -CO 2 R, CF 2 = CF (CF 2) z -CO 2 R, CF 2 = CF (OCF 2 CF (CF 3)) z - (CF 2) 2 -CO 2 R ( Z represents an integer of 1 to 8, and R represents a hydrocarbon alkyl group having 1 to 3 carbon atoms).

前駆体ポリマーの重合方法としては、フッ化ビニル化合物をフロン等の溶媒に溶解した後、フッ化オレフィン化合物のガスと反応させ重合する溶液重合法、フロン等の溶媒を使用せずに重合する塊状重合法、フッ化ビニル化合物を界面活性剤とともに水中に仕込んで乳化させた後、フッ化オレフィン化合物のガスと反応させ重合する乳化重合法等の一般的な重合方法が挙げられる。
尚、本発明では、フッ化ビニル化合物、フッ化オレフィン化合物に加え、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のパーフルオロオレフィン、パーフルオロアルキルビニルエーテル等の第3成分を含む共重合体であってもよい。
As a polymerization method of the precursor polymer, a solution polymerization method in which a vinyl fluoride compound is dissolved in a solvent such as chlorofluorocarbon and then reacted with a gas of a fluorinated olefin compound to perform polymerization, or a block shape in which polymerization is performed without using a solvent such as chlorofluorocarbon General polymerization methods such as a polymerization method, an emulsion polymerization method in which a vinyl fluoride compound is mixed with a surfactant in water and emulsified, and then reacted with a gas of a fluorinated olefin compound for polymerization.
In the present invention, in addition to a vinyl fluoride compound and a fluorinated olefin compound, a copolymer containing a third component such as a perfluoroolefin such as hexafluoropropylene or chlorotrifluoroethylene or a perfluoroalkyl vinyl ether may be used. Good.

本発明に用いることが可能な前駆体ポリマーの、JIS K−7210に基づいた270℃、荷重21.2N、オリフィス内径2.09mmで測定されるメルトインデックスMI(g/10分)は、0.001以上1000以下が好ましく、より好ましくは0.01以上100以下、最も好ましくは0.1以上10以下である。   The melt index MI (g / 10 min) of the precursor polymer that can be used in the present invention, measured at 270 ° C., load 21.2 N, orifice inner diameter 2.09 mm based on JIS K-7210 is 0.00. 001 or more and 1000 or less are preferable, more preferably 0.01 or more and 100 or less, and most preferably 0.1 or more and 10 or less.

本発明に用いることが可能な前駆体ポリマーは、次に、塩基性反応液体に浸漬させてアルカリ加水分解処理を行う。反応液体は、水酸化カリウム、水酸化ナトリウム等のアルカリ金属またはアルカリ土類金属の水酸化物の水溶液が好ましい。アルカリ金属またはアルカリ土類金属の水酸化物の含有率は、10質量%以上30質量%以下であることが好ましい。上記反応液体は、ジメチルスルホキシド、メタノール等の膨潤性有機化合物を含有するのが好ましい。膨潤性有機化合物の含有率としては、1質量%以上30質量%以下であることが好ましい。
前駆体ポリマーをアルカリ加水分解処理した後、さらに必要に応じて塩酸等で酸処理を行うことにより、イオン交換基を有するパーフルオロカーボン高分子化合物Aが製造される。
Next, the precursor polymer that can be used in the present invention is immersed in a basic reaction liquid and subjected to an alkali hydrolysis treatment. The reaction liquid is preferably an aqueous solution of an alkali metal or alkaline earth metal hydroxide such as potassium hydroxide or sodium hydroxide. The content of alkali metal or alkaline earth metal hydroxide is preferably 10% by mass or more and 30% by mass or less. The reaction liquid preferably contains a swellable organic compound such as dimethyl sulfoxide or methanol. The content of the swellable organic compound is preferably 1% by mass or more and 30% by mass or less.
After the precursor polymer is subjected to an alkali hydrolysis treatment, the perfluorocarbon polymer compound A having an ion exchange group is produced by further performing an acid treatment with hydrochloric acid or the like as necessary.

次に、本発明に用いられる硫黄Bとしては、いずれの同位体、同素体でも好適に用いることが可能である。
同位体組成としては、32S、33S、34S、36Sなどがある。
同素体としては、固体の硫黄は環状硫黄と鎖状のカテナ硫黄(無定形硫黄)とに大別される。環状硫黄としては、斜方晶系硫黄や単斜晶系硫黄などがある。無定形硫黄としては、ゴム状硫黄、白色硫黄、沈降硫黄、コロイド状硫黄などがある。その他、固体の硫黄としては、硫黄華も含まれる。
Next, as the sulfur B used in the present invention, any isotope or allotrope can be suitably used.
Examples of isotope compositions include 32S, 33S, 34S, and 36S.
As an allotrope, solid sulfur is roughly classified into cyclic sulfur and chain catena sulfur (amorphous sulfur). Examples of cyclic sulfur include orthorhombic sulfur and monoclinic sulfur. Amorphous sulfur includes rubbery sulfur, white sulfur, precipitated sulfur, colloidal sulfur and the like. In addition, as the solid sulfur, sulfur white is also included.

また、人為的に合成されたシクロ−S6、シクロ−S7、シクロ−S9、シクロ−S10、シクロ−S11、シクロ−S12、シクロ−S18、シクロ−S20等もある。
固体以外に、液体硫黄、気体硫黄も本発明に好適に用いることが可能である。
次に、本発明のプロトン交換膜の組成比について説明する。イオン交換基を有するパーフルオロカーボン高分子化合物Aと、硫黄Bとの質量比(A/B)は50/50〜99.99/0.01であることが好ましく、より好ましくは70/30〜99.95/0.05、さらに好ましくは80/20〜99.9/0.1、最も好ましくは90/10〜99/1である。
There are also artificially synthesized cyclo-S6, cyclo-S7, cyclo-S9, cyclo-S10, cyclo-S11, cyclo-S12, cyclo-S18, cyclo-S20 and the like.
In addition to solids, liquid sulfur and gaseous sulfur can also be suitably used in the present invention.
Next, the composition ratio of the proton exchange membrane of the present invention will be described. The mass ratio (A / B) between the perfluorocarbon polymer compound A having an ion exchange group and sulfur B is preferably 50/50 to 99.99 / 0.01, more preferably 70/30 to 99. .95 / 0.05, more preferably 80/20 to 99.9 / 0.1, and most preferably 90/10 to 99/1.

高分子化合物Aの混合比が50wt%以上であれば、十分なプロトン導電性が得られ良好な電池特性を得ることが出来る。一方、硫黄Bの混合比が0.01wt%以上であれば、高温低加湿条件での電池運転における耐久性に有意な差が見られる。
本発明のプロトン交換膜については、必要に応じて酸化防止剤や老化防止剤、難燃剤等の各種添加剤を添加することが出来る。本発明のプロトン交換膜と添加剤との質量比(電解質組成物/添加剤)は80/20〜99.999/0.001であることが好ましく、より好ましくは90/10〜99.99/0.01、さらに好ましくは95/5〜99.9/0.1である。
When the mixing ratio of the polymer compound A is 50 wt% or more, sufficient proton conductivity can be obtained and good battery characteristics can be obtained. On the other hand, when the mixing ratio of sulfur B is 0.01 wt% or more, a significant difference is observed in durability in battery operation under high temperature and low humidification conditions.
About the proton exchange membrane of this invention, various additives, such as antioxidant, antioxidant, and a flame retardant, can be added as needed. The mass ratio (electrolyte composition / additive) of the proton exchange membrane and the additive of the present invention is preferably 80/20 to 99.999 / 0.001, more preferably 90/10 to 99.99 /. 0.01, more preferably 95/5 to 99.9 / 0.1.

次に、本発明のプロトン交換膜を作製するために必要な高分子電解質組成物の作製方法について説明する。本発明に用いる高分子電解質組成物を得る方法は特に限定されず、一般的な高分子組成物の混合方法が好適に適用できる。
例えば、パーフルオロカーボン高分子化合物Aまたはその前駆体ポリマーと硫黄Bを熱溶融して、混練押出機、ラボプラストミル、混練ロール、バンバリーミキサー等で混練する方法が挙げられる。但し、硫黄Bは250℃以上で発火する恐れがあるため、溶融する際は、窒素雰囲気下にするなどの対策が必要である。パーフルオロカーボン高分子化合物Aの代わりにその前駆体ポリマーを用いた場合は、混練後にアルカリ加水分解処理および酸処理を行ってイオン交換基を有する形態に変換することで本発明に用いる高分子電解質組成物を得ることが出来る。この場合も同様に、溶融する際は、窒素雰囲気下にするなどの対策が必要である。
Next, a method for producing a polymer electrolyte composition necessary for producing the proton exchange membrane of the present invention will be described. The method for obtaining the polymer electrolyte composition used in the present invention is not particularly limited, and a general method for mixing polymer compositions can be suitably applied.
Examples thereof include a method in which perfluorocarbon polymer compound A or its precursor polymer and sulfur B are heated and kneaded with a kneading extruder, a lab plast mill, a kneading roll, a Banbury mixer, or the like. However, since sulfur B may ignite at 250 ° C. or higher, it is necessary to take measures such as putting it in a nitrogen atmosphere when melting. When the precursor polymer is used in place of the perfluorocarbon polymer compound A, the polymer electrolyte composition used in the present invention is converted into a form having an ion exchange group by performing an alkali hydrolysis treatment and an acid treatment after kneading. You can get things. Similarly, in this case, when melting, it is necessary to take measures such as putting under a nitrogen atmosphere.

また、パーフルオロカーボン高分子化合物Aまたはその前駆体ポリマーと硫黄Bをそれぞれ適当な溶媒に溶解してから両者を混合して溶液を作成した後に、溶媒を除去する方法も挙げられる。この場合も、高分子化合物Aの代わりにその前駆体ポリマーを用いた場合は、溶媒を除去した後、アルカリ加水分解処理および酸処理を行ってイオン交換基を有する形態に変換することで本発明に用いる高分子電解質組成物を得ることが出来る。   Further, there may be mentioned a method of dissolving the perfluorocarbon polymer compound A or its precursor polymer and sulfur B in an appropriate solvent, mixing them together to prepare a solution, and then removing the solvent. Also in this case, when the precursor polymer is used instead of the polymer compound A, after removing the solvent, it is converted into a form having an ion exchange group by performing an alkali hydrolysis treatment and an acid treatment. The polymer electrolyte composition used in the above can be obtained.

次に、本発明のプロトン交換膜の作製方法について説明する。製膜手段は特に限定されず、一般的な高分子組成物の製膜方法が好適に適用できる。例えば、カレンダー成形、プレス成形、Tダイ押出、インフレーション押出などの公知の製膜方法が挙げられる。但し、硫黄Bは250℃以上で発火するため、溶融する際は、窒素雰囲気下にするなどの対策が必要である。また、パーフルオロカーボン高分子化合物Aの前駆体ポリマーと硫黄Bとからなる高分子組成物を、前述の製膜方法を用いて製膜した後に、適当な後処理、例えばアルカリ加水分解処理や酸処理を行ってイオン交換基を有する形態に変換することで、本発明のプロトン交換膜を得ることも出来る。この場合も同様に、溶融する際は、窒素雰囲気下にするなどの対策が必要である。   Next, a method for producing a proton exchange membrane of the present invention will be described. The film forming means is not particularly limited, and a general polymer composition film forming method can be suitably applied. For example, known film forming methods such as calendar molding, press molding, T-die extrusion, and inflation extrusion can be used. However, since sulfur B ignites at 250 ° C. or higher, it is necessary to take measures such as placing it in a nitrogen atmosphere when melting. In addition, after the polymer composition comprising the precursor polymer of perfluorocarbon polymer compound A and sulfur B is formed using the above-described film forming method, an appropriate post-treatment such as alkali hydrolysis treatment or acid treatment is performed. The proton exchange membrane of the present invention can also be obtained by converting to a form having an ion exchange group. Similarly, in this case, when melting, it is necessary to take measures such as putting under a nitrogen atmosphere.

また、パーフルオロカーボン高分子化合物Aと硫黄Bをそれぞれ適当な溶媒に溶解してからそれぞれを混合して溶液を作成し、その溶液をキャストした後、溶媒を除去することによってプロトン交換膜を得ることができる。但し、硫黄Bを液体として用いる場合は、溶媒に溶解する必要はなく、パーフルオロカーボン高分子化合物Aのみを溶媒に溶解すればよい。
キャスト方法としては、シャーレに流し込み製造する方法をはじめ、グラビアロールコータ−、ナチュラルロールコータ、リバースロールコータ、ナイフコータ−、ディップコータ−等の公知の塗工方法を用いることができる。キャスト法に用いる基材は、一般的なポリマーフィルム、金属箔、アルミナ、ケイ素等の基板、特許文献3に記載のPTFE膜を延伸処理した多孔質膜、特許文献1および特許文献2に示されるフィブリル化繊維等を用いることができる。
In addition, a perfluorocarbon polymer compound A and sulfur B are dissolved in an appropriate solvent and then mixed to prepare a solution. After casting the solution, the solvent is removed to obtain a proton exchange membrane. Can do. However, when sulfur B is used as a liquid, it is not necessary to dissolve in a solvent, and only the perfluorocarbon polymer compound A may be dissolved in the solvent.
As a casting method, a known coating method such as a method of casting into a petri dish, a gravure roll coater, a natural roll coater, a reverse roll coater, a knife coater, or a dip coater can be used. The base material used for the casting method is a general polymer film, a metal foil, a substrate made of alumina, silicon or the like, a porous film obtained by stretching a PTFE film described in Patent Document 3, and Patent Document 1 and Patent Document 2. A fibrillated fiber or the like can be used.

溶媒を除去する方法として、室温〜200℃で熱処理、減圧処理等の方法を用いることができる。また熱処理をする場合、段階的に昇温させ溶媒を除去することも可能である。
本発明のプロトン交換膜の製造において、上記記載の製法と併せて、ガラス繊維等の無機粒子を添加することによる補強や、架橋による補強等を施すこともできる。
また、横1軸延伸や同時2軸延伸、逐次2軸延伸を実施することによって延伸配向を付与することもできる。
また、本発明のプロトン交換膜において、空気中あるいは酸素雰囲気下にて例えば160℃以上で加熱処理することによって力学物性を向上させることも出来る。
As a method for removing the solvent, a method such as heat treatment or reduced pressure treatment at room temperature to 200 ° C. can be used. When heat treatment is performed, the solvent can be removed by raising the temperature stepwise.
In the production of the proton exchange membrane of the present invention, reinforcement by adding inorganic particles such as glass fiber, reinforcement by crosslinking, and the like can be performed in combination with the above production method.
In addition, stretching orientation can be imparted by carrying out lateral uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching.
In the proton exchange membrane of the present invention, the mechanical properties can also be improved by heat treatment at 160 ° C. or higher in air or in an oxygen atmosphere.

本発明により製造されるプロトン交換膜の当量質量EW(プロトン交換基1当量あたりのプロトン交換膜の乾燥質量グラム数)には、250以上2000以下が好ましく、より好ましくは400以上1200以下、最も好ましくは500以上1000以下である。より低いEW、つまりプロトン交換容量の大きいプロトン伝導性ポリマーを用いることにより、高温低加湿条件下においても優れたプロトン伝導性を示し、燃料電池に用いた場合、運転時に高い出力を得ることができる。
本発明により製造されるプロトン交換膜の厚みは、1μm以上500μm以下であることが好ましく、より好ましく0は2μm以上100μm以下、最も好ましくは5μm以上50μm以下である。
The equivalent mass EW of the proton exchange membrane produced according to the present invention (dry mass in grams of proton exchange membrane per equivalent of proton exchange group) is preferably 250 or more and 2000 or less, more preferably 400 or more and 1200 or less, most preferably. Is 500 or more and 1000 or less. By using a proton conductive polymer with a lower EW, that is, a large proton exchange capacity, it exhibits excellent proton conductivity even under high temperature and low humidity conditions, and when used in a fuel cell, a high output can be obtained during operation. .
The thickness of the proton exchange membrane produced according to the present invention is preferably 1 μm to 500 μm, more preferably 0 to 2 μm to 100 μm, and most preferably 5 μm to 50 μm.

本発明により製造されるプロトン交換膜の乾湿寸法変化は、好ましくは0%以上100%以下、より好ましくは0%以上50%以下、最も好ましくは0%以上10%以下である。ここでいう乾湿寸法変化とは、25℃20RH%で1時間放置した時の寸法に対する80℃水中で1時間放置した時の寸法の変化の割合のことをいう。寸法とは、プロトン交換膜の縦方向または横方向の長さのことであり、共に上記範囲を満たすことが好ましい。   The change in wet and dry dimensions of the proton exchange membrane produced according to the present invention is preferably 0% to 100%, more preferably 0% to 50%, and most preferably 0% to 10%. The term “wet and dry dimensional change” as used herein refers to the ratio of the change in dimension when left in water at 80 ° C. for 1 hour with respect to the dimension when left at 25 ° C. and 20 RH% for 1 hour. The dimension is the length in the vertical direction or the horizontal direction of the proton exchange membrane, and both preferably satisfy the above range.

本発明のプロトン交換膜の耐久性は燃料電池として評価するため、以下その評価方法について説明する。
(膜電極接合体)
本発明により得られるプロトン交換膜を固体高分子型燃料電池に用いる場合、アノードとカソード2種類の電極触媒層が接合した膜電極接合体(以下「MEA」と略称する)として使用される。電極触媒層のさらに外側に一対のガス拡散層を対向するように接合したものもMEAと呼ぶ。
電極触媒層は、触媒金属の微粒子とこれを担持した導電剤とから構成され、必要に応じて撥水剤が含まれる。電極に使用される触媒としては、水素の酸化反応および酸素による還元反応を促進する金属であれば良く、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、これらの合金等が挙げられ、その中では、主として白金が用いられる。
MEAの製造方法としては、例えば、次のような方法が行われる。まず、イオン交換樹脂をアルコールと水の混合溶液に溶解したものに、電極物質となる白金担持カーボンを分散させてペースト状にする。これをPTFEシートに一定量塗布して乾燥させる。次に、PTFEシートの塗布面を向かい合わせにして、その間に本発明のプロトン交換膜を挟み込み、100℃〜200℃で熱プレスにより転写接合してMEAを得ることができる。
In order to evaluate the durability of the proton exchange membrane of the present invention as a fuel cell, the evaluation method will be described below.
(Membrane electrode assembly)
When the proton exchange membrane obtained by the present invention is used in a polymer electrolyte fuel cell, it is used as a membrane electrode assembly (hereinafter abbreviated as “MEA”) in which two types of electrode catalyst layers are joined to an anode and a cathode. A structure in which a pair of gas diffusion layers are bonded to the outer side of the electrode catalyst layer so as to face each other is also called MEA.
The electrode catalyst layer is composed of fine particles of a catalytic metal and a conductive agent supporting the catalyst metal, and a water repellent is included as necessary. The catalyst used for the electrode may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction by oxygen. Platinum, gold, silver, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel, chromium, tungsten , Manganese, vanadium, alloys thereof, etc., among which platinum is mainly used.
As the MEA manufacturing method, for example, the following method is performed. First, a platinum-supported carbon serving as an electrode material is dispersed in a solution obtained by dissolving an ion exchange resin in a mixed solution of alcohol and water to form a paste. A certain amount of this is applied to a PTFE sheet and dried. Next, the application surface of the PTFE sheet faces each other, the proton exchange membrane of the present invention is sandwiched therebetween, and transfer bonding is performed by hot pressing at 100 ° C. to 200 ° C. to obtain an MEA.

(燃料電池)
上記で得られたMEA、場合によってはMEAを介して一対のガス拡散電極が対向した構造のものは、さらにバイポーラプレート、バッキングプレート等の一般的な固体高分子型燃料電池に用いる構成成分と組み合わせて固体高分子型燃料電池を構成する。
バイポーラプレートは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトまたは樹脂との複合材料、金属製のプレート等のことであり、電子を外部負荷回路へ伝達する他に、燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が製造される。
以上、本発明の燃料電池製造用の溶液から得られたプロトン交換膜の耐久性の評価方法について説明した。
(Fuel cell)
The MEA obtained above and, in some cases, a structure in which a pair of gas diffusion electrodes are opposed to each other via the MEA are further combined with components used for general solid polymer fuel cells such as bipolar plates and backing plates. Thus, a polymer electrolyte fuel cell is constructed.
Bipolar plates are graphite or resin composite materials, metal plates, etc. that have grooves on the surface for the flow of gas such as fuel and oxidant, and are used to transmit electrons to an external load circuit. In addition, it has a function as a flow path for supplying fuel and oxidant to the vicinity of the electrode catalyst. A fuel cell is manufactured by inserting and stacking a plurality of MEAs between such bipolar plates.
The method for evaluating the durability of the proton exchange membrane obtained from the solution for producing the fuel cell of the present invention has been described above.

以下、本発明を実施例により具体的に説明する。
尚、本発明に用いられる評価法および測定法は以下のとおりである。
(燃料電池評価)
(1)燃料電池の製造
まず、台紙上に塗布したガス拡散電極2枚の間にプロトン交換膜を挟み込み、180℃、圧力10MPaでホットプレスすることにより、プロトン交換膜にガス拡散電極を転写接合させてMEAを製造する。
ガス拡散電極としては、田中貴金属工業(株)製白金担持触媒、商品名、TEC10E40E(白金担持率40wt%)に、パーフルオロスルホン酸ポリマー溶液(ポリマー質量比5wt%、溶媒組成(質量比):エタノール/水=50/50)を12wt%に濃縮した溶液とエタノールを添加し、混合、攪拌してインク状にしたものをPTFEシート上に塗布した後、大気雰囲気中、150℃で乾燥・固定化したものを使用する。このガス拡散電極の白金担持量は0.4 mg/cm、ポリマー担持量は0.5mg/cmである。
このMEAの両側に撥水処理したカーボンペーパーまたはカーボンクロスを配置し、評価セルに組み込んで評価装置にセットする。燃料として水素ガス、酸化剤として空気ガスを用い、セル温度100℃、0.1MPaにて単セル特性試験を行う。ガス加湿には水バブリング方式を用い、水素ガス、空気ガスともに50℃で加湿してセルへ供給する。
Hereinafter, the present invention will be specifically described by way of examples.
The evaluation method and measurement method used in the present invention are as follows.
(Fuel cell evaluation)
(1) Manufacture of fuel cell First, a proton exchange membrane is sandwiched between two gas diffusion electrodes coated on a mount and hot pressed at 180 ° C. and a pressure of 10 MPa to transfer and bond the gas diffusion electrode to the proton exchange membrane. To produce an MEA.
As a gas diffusion electrode, a platinum-supported catalyst manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., trade name, TEC10E40E (platinum support ratio 40 wt%), perfluorosulfonic acid polymer solution (polymer mass ratio 5 wt%, solvent composition (mass ratio): Ethanol / water = 50/50) concentrated to 12 wt% and ethanol were added, mixed, stirred and applied in ink form on a PTFE sheet, then dried and fixed at 150 ° C in an air atmosphere Use the converted one. This gas diffusion electrode has a platinum loading of 0.4 mg / cm 2 and a polymer loading of 0.5 mg / cm 2 .
Carbon paper or carbon cloth subjected to water repellent treatment is disposed on both sides of the MEA, and is incorporated into an evaluation cell and set in an evaluation apparatus. A single cell characteristic test is performed using hydrogen gas as a fuel and air gas as an oxidizing agent at a cell temperature of 100 ° C. and 0.1 MPa. A water bubbling method is used for gas humidification, and both hydrogen gas and air gas are humidified at 50 ° C. and supplied to the cell.

(2)フッ素溶出速度の測定
単セル特性試験中のアノード排ガスおよびカソード排ガスと共に排出される排水を、それぞれ所定時間捕捉回収した後、秤量する。メディトリアル(株)製ベンチトップ型pHイオンメーター920Aplus(商品名)に同フッ素複合電極9609BNionplus(商品名)を取り付け、アノード排水中およびカソード排水中のフッ素イオン濃度を測定し、以下の式からフッ素溶出速度Gを導出する。
G=(Wa×Fa+Wc×Fc)/(T×A)
G:フッ素溶出速度(μg/Hr/cm
Wa:捕捉回収したアノード排水の質量(g)
Fa:アノード排水中のフッ素イオン濃度(ppm)
Wc:捕捉回収したカソード排水の質量(g)
Fc:カソード排水中のフッ素イオン濃度(ppm)
T:排水を捕捉回収した時間(Hr)
A:MEAの電極面積(cm
(2) Measurement of fluorine elution rate The waste water discharged together with the anode exhaust gas and the cathode exhaust gas during the single cell characteristic test is respectively collected for a predetermined time, and then weighed. The fluorine composite electrode 9609BNionplus (trade name) is attached to a bench top type pH ion meter 920Aplus (trade name) manufactured by Meditrial Co., Ltd., and the fluorine ion concentration in the anode drainage and the cathode drainage is measured. The elution rate G is derived.
G = (Wa × Fa + Wc × Fc) / (T × A)
G: Fluorine elution rate (μg / Hr / cm 2 )
Wa: Mass of captured and recovered anode drainage (g)
Fa: Fluorine ion concentration (ppm) in anode drainage
Wc: Mass of cathode drainage collected and recovered (g)
Fc: Fluorine ion concentration in the cathode drainage (ppm)
T: Time for collecting and collecting wastewater (Hr)
A: MEA electrode area (cm 2 )

(3)クロスリーク量の測定
単セル特性試験中のカソード排ガスの一部を、ジーエルサイエンス製マイクロガスクロマトグラフMicro GC CP−4900(商品名)に導入し、カソード排ガス中の水素ガス濃度を測定し、以下の式から水素ガス透過率を導出する。
L=(X×V×T)×(5−U/100)/(3×A×P)×10−8
L:水素ガス透過率(ml・cm/cm/sec/Pa)
X:カソード排ガス中の水素ガス濃度(ppm)
V:カソードガス流量(ml/min)
T:プロトン交換膜の膜厚(cm)
U:カソードガス利用率(%)
A:プロトン交換膜の水素透過面積(cm
P:カソード−アノード間の水素分圧差(Pa)
(3) Measurement of cross leak amount Part of the cathode exhaust gas during the single cell characteristic test was introduced into GL Sciences' micro gas chromatograph Micro GC CP-4900 (trade name), and the hydrogen gas concentration in the cathode exhaust gas was measured. The hydrogen gas permeability is derived from the following equation.
L = (X × V × T) × (5-U / 100) / (3 × A × P) × 10 −8
L: Hydrogen gas permeability (ml · cm / cm 2 / sec / Pa)
X: Hydrogen gas concentration (ppm) in cathode exhaust gas
V: Cathode gas flow rate (ml / min)
T: thickness of proton exchange membrane (cm)
U: Cathode gas utilization rate (%)
A: Hydrogen permeation area of the proton exchange membrane (cm 2 )
P: Hydrogen partial pressure difference between the cathode and anode (Pa)

[実施例1]
パーフルオロスルホン酸ポリマー溶液(ポリマー質量比5wt%、溶媒組成(質量比):エタノール/水=50/50)をイソプロピルアルコールで溶媒置換し、なおかつ9wt%に濃縮した溶液に、ブタノールにポリマー比5wt%の斜方晶系硫黄を溶解させたものを混ぜて十分撹拌した後に、シャーレに流し込み、最終的に160℃で乾燥させて、厚み50μmのキャスト膜を得た。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥してプロトン交換膜を得た。
このプロトン交換膜の燃料電池評価を行ったところ、開始時から200時間までの排水中のフッ素溶出速度の平均値は0.048(μg/Hr/cm2)と非常に低い値を示しており、また、200時間後のクロスリーク量が8.3×10−13 (ml×cm/cm2/sec/Pa)で、開始時のクロスリーク量(6.8×10−13(ml×cm/cm2/sec/Pa))とほとんど変わらず、優れた耐久性を示すことが判明した。
[Example 1]
Perfluorosulfonic acid polymer solution (polymer mass ratio 5 wt%, solvent composition (mass ratio): ethanol / water = 50/50) was solvent-substituted with isopropyl alcohol and concentrated to 9 wt% to butanol with a polymer ratio of 5 wt%. % Of orthorhombic sulfur dissolved therein was mixed and sufficiently stirred, then poured into a petri dish and finally dried at 160 ° C. to obtain a cast film having a thickness of 50 μm. Next, it was immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, washed with ion-exchanged water and dried to obtain a proton exchange membrane.
When the fuel cell evaluation of this proton exchange membrane was performed, the average value of the fluorine elution rate in the waste water from the start to 200 hours was as low as 0.048 (μg / Hr / cm 2), Further, the cross leak amount after 200 hours was 8.3 × 10 −13 (ml × cm / cm 2 / sec / Pa), and the cross leak amount at the start (6.8 × 10 −13 (ml × cm / cm 2). / Sec / Pa)) and was found to exhibit excellent durability.

[実施例2]
パーフルオロスルホン酸ポリマー溶液(ポリマー質量比5wt%、溶媒組成(質量比):エタノール/水=50/50)をイソプロピルアルコールで溶媒置換し、なおかつ9wt%に濃縮した溶液に、ブタノールにポリマー比1wt%のゴム状硫黄を溶解させたものを混ぜて十分撹拌した後に、シャーレに流し込み、最終的に160℃で乾燥させて、厚み50μmのキャスト膜を得た。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥してプロトン交換膜を得た。
このプロトン交換膜の燃料電池評価を行ったところ、開始時から200時間までの排水中のフッ素溶出速度の平均値は0.051(μg/Hr/cm)と非常に低い値を示しており、また、200時間後のクロスリーク量が8.5×10−13 (ml×cm/cm/sec/Pa)で、開始時のクロスリーク量(6.5×10−13(ml×cm/cm/sec/Pa))とほとんど変わらず、優れた耐久性を示すことが判明した。
[Example 2]
Perfluorosulfonic acid polymer solution (polymer mass ratio 5 wt%, solvent composition (mass ratio): ethanol / water = 50/50) was solvent-substituted with isopropyl alcohol, and the solution was concentrated to 9 wt% to butanol with a polymer ratio of 1 wt. % Of rubber-like sulfur dissolved therein was mixed and stirred sufficiently, then poured into a petri dish and finally dried at 160 ° C. to obtain a cast film having a thickness of 50 μm. Next, it was immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, washed with ion-exchanged water and dried to obtain a proton exchange membrane.
When the fuel cell evaluation of this proton exchange membrane was performed, the average value of the fluorine elution rate in the waste water from the start to 200 hours was as low as 0.051 (μg / Hr / cm 2 ). Moreover, the cross leak amount after 200 hours is 8.5 × 10 −13 (ml × cm / cm 2 / sec / Pa), and the cross leak amount at the start (6.5 × 10 −13 (ml × cm / Cm 2 / sec / Pa)), and it was found that excellent durability was exhibited.

[実施例3]
パーフルオロスルホン酸ポリマー溶液(ポリマー質量比5wt%、溶媒組成(質量比):エタノール/水=50/50)をイソプロピルアルコールで溶媒置換し、なおかつ9wt%に濃縮した溶液に、ポリマー比3wt%の液体硫黄を混ぜて十分撹拌した後に、シャーレに流し込み、最終的に160℃で乾燥させて、厚み50μmのキャスト膜を得た。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥してプロトン交換膜を得た。
このプロトン交換膜の燃料電池評価を行ったところ、開始時から200時間までの排水中のフッ素溶出速度の平均値は0.040(μg/Hr/cm)と非常に低い値を示しており、また、200時間後のクロスリーク量が7.5×10−13 (ml×cm/cm/sec/Pa)で、開始時のクロスリーク量(6.0×10−13(ml×cm/cm/sec/Pa))とほとんど変わらず、優れた耐久性を示すことが判明した。
[Example 3]
Perfluorosulfonic acid polymer solution (polymer mass ratio 5 wt%, solvent composition (mass ratio): ethanol / water = 50/50) was solvent-substituted with isopropyl alcohol, and the solution was concentrated to 9 wt% with a polymer ratio of 3 wt%. After liquid sulfur was mixed and sufficiently stirred, it was poured into a petri dish and finally dried at 160 ° C. to obtain a cast film having a thickness of 50 μm. Next, it was immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, washed with ion-exchanged water and dried to obtain a proton exchange membrane.
When the fuel cell evaluation of this proton exchange membrane was performed, the average value of the fluorine elution rate in the waste water from the start to 200 hours was as low as 0.040 (μg / Hr / cm 2 ). Moreover, the cross leak amount after 200 hours is 7.5 × 10 −13 (ml × cm / cm 2 / sec / Pa), and the cross leak amount at the start (6.0 × 10 −13 (ml × cm / Cm 2 / sec / Pa)), and it was found that excellent durability was exhibited.

[比較例1]
パーフルオロスルホン酸ポリマー溶液(ポリマー質量比5wt%、溶媒組成(質量比):エタノール/水=50/50)をイソプロピルアルコールで溶媒置換し、なおかつ9wt%に濃縮した溶液をシャーレに流し込み、最終的に160℃で乾燥させて、厚み50μmのキャスト膜を得た。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥してプロトン交換膜を得た。
このプロトン交換膜の燃料電池評価を行った結果、開始時から200時間までの排水中のフッ素溶出速度の平均値が0.506(μg/Hr/cm)と高く、また、200時間後のクロスリーク量が2.1×10−11(ml×cm/cm/sec/Pa)で開始時のクロスリーク量(6.0×10−13 (ml×cm/cm/sec/Pa)の30倍以上に増加しており、十分な耐久性が得られなかった。
[Comparative Example 1]
Perfluorosulfonic acid polymer solution (polymer mass ratio 5 wt%, solvent composition (mass ratio): ethanol / water = 50/50) was solvent-substituted with isopropyl alcohol, and the solution concentrated to 9 wt% was poured into a petri dish. And dried at 160 ° C. to obtain a cast film having a thickness of 50 μm. Next, it was immersed in a 2N hydrochloric acid aqueous solution at 60 ° C. for 3 hours, washed with ion-exchanged water and dried to obtain a proton exchange membrane.
As a result of the fuel cell evaluation of this proton exchange membrane, the average value of the fluorine elution rate in the waste water from the start to 200 hours was as high as 0.506 (μg / Hr / cm 2 ). Cross leak amount at the start when the cross leak amount is 2.1 × 10 −11 (ml × cm / cm 2 / sec / Pa) (6.0 × 10 −13 (ml × cm / cm 2 / sec / Pa)) Thus, sufficient durability was not obtained.

本発明は、高温下でも高耐久性を有するプロトン交換膜であり、イオン交換膜、燃料電池の分野に好適である。本発明により得られるプロトン交換膜は、クロルアルカリ、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサー、ガスセンサー等に用いることも可能である。   The present invention is a proton exchange membrane having high durability even at high temperatures, and is suitable for the fields of ion exchange membranes and fuel cells. The proton exchange membrane obtained by the present invention can also be used for chloralkali, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrator, humidity sensor, gas sensor and the like.

Claims (4)

イオン交換基を有するパーフルオロカーボン高分子化合物(A)と、硫黄(B)を含有することを特徴とするプロトン交換膜。   A proton exchange membrane comprising a perfluorocarbon polymer compound (A) having an ion exchange group and sulfur (B). イオン交換基を有するパーフルオロカーボン高分子化合物(A)と、硫黄(B)との質量比(A/B)が50/50〜99.99/0.01であることを特徴とする、請求項1に記載のプロトン交換膜。   The mass ratio (A / B) between the perfluorocarbon polymer compound (A) having an ion exchange group and sulfur (B) is 50/50 to 99.99 / 0.01. 1. The proton exchange membrane according to 1. 請求項1又は2に記載のプロトン交換膜を備えた膜電極接合体。   A membrane electrode assembly comprising the proton exchange membrane according to claim 1. 請求項3に記載の膜電極接合体を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 3.
JP2006274202A 2005-10-27 2006-10-05 Proton exchange membrane Active JP4931540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274202A JP4931540B2 (en) 2005-10-27 2006-10-05 Proton exchange membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005312814 2005-10-27
JP2005312814 2005-10-27
JP2006274202A JP4931540B2 (en) 2005-10-27 2006-10-05 Proton exchange membrane

Publications (2)

Publication Number Publication Date
JP2007146124A true JP2007146124A (en) 2007-06-14
JP4931540B2 JP4931540B2 (en) 2012-05-16

Family

ID=38207901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274202A Active JP4931540B2 (en) 2005-10-27 2006-10-05 Proton exchange membrane

Country Status (1)

Country Link
JP (1) JP4931540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026623A1 (en) * 2010-08-27 2012-03-01 住友化学株式会社 Polymer electrolyte composition and polymer electrolyte membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090945A (en) * 1998-09-11 2000-03-31 Aisin Seiki Co Ltd Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
JP2003201403A (en) * 2002-01-09 2003-07-18 Jsr Corp Polyelectrolyte composition and proton conductive membrane
JP2005213325A (en) * 2004-01-28 2005-08-11 Jsr Corp Polyarylene polymer composition and its use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090945A (en) * 1998-09-11 2000-03-31 Aisin Seiki Co Ltd Solid polymer electrolyte film, manufacture thereof and solid polymer electrolyte fuel cell
JP2003201403A (en) * 2002-01-09 2003-07-18 Jsr Corp Polyelectrolyte composition and proton conductive membrane
JP2005213325A (en) * 2004-01-28 2005-08-11 Jsr Corp Polyarylene polymer composition and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026623A1 (en) * 2010-08-27 2012-03-01 住友化学株式会社 Polymer electrolyte composition and polymer electrolyte membrane

Also Published As

Publication number Publication date
JP4931540B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP2012092345A (en) Liquid composition, method for producing the same, and method for manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
JP4799123B2 (en) Polymer electrolyte composition containing aromatic hydrocarbon resin
JP4447007B2 (en) Polymer electrolyte composition containing aromatic hydrocarbon resin
JP2006344578A (en) Solid electrolyte, electrode membrane assembly, and fuel cell
JP2009021230A (en) Membrane-electrode-gas diffusion layer-gasket assembly and manufacturing method thereof, and solid polymer fuel cell
Najmi et al. Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane
JPWO2010044436A1 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
JP4221164B2 (en) Polymer electrolyte fuel cell
KR20080017422A (en) Polymer electrolyte membrane having improved dimensional stability
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP4352878B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP2007031718A5 (en)
JP5233065B2 (en) Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
JP5465840B2 (en) Method for producing polymer electrolyte fuel cell
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP2009021234A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP4578174B2 (en) Polymer electrolyte composition, proton exchange membrane, membrane electrode assembly, and solid polymer fuel cell
JP4931540B2 (en) Proton exchange membrane
JP4664683B2 (en) Membrane-electrode assembly and fuel cell thereof
JP2002298868A (en) Solid polymer fuel cell
JP4530635B2 (en) Electrocatalyst layer for fuel cells
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JP3467476B2 (en) Solid polymer electrolyte membrane electrode structure, method of manufacturing the same, and fuel cell using the same
JP2006131745A (en) Polymer having ionic group, polyelectrolyte material, polyelectrolyte part, membrane-electrode composite and polyelectrolyte type fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350