JP2007146066A - Fuel gas production system - Google Patents

Fuel gas production system Download PDF

Info

Publication number
JP2007146066A
JP2007146066A JP2005345133A JP2005345133A JP2007146066A JP 2007146066 A JP2007146066 A JP 2007146066A JP 2005345133 A JP2005345133 A JP 2005345133A JP 2005345133 A JP2005345133 A JP 2005345133A JP 2007146066 A JP2007146066 A JP 2007146066A
Authority
JP
Japan
Prior art keywords
fuel gas
production system
pressure
gas production
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005345133A
Other languages
Japanese (ja)
Inventor
Yoshisuke Moriya
由介 守屋
Toichiro Sasaki
統一郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005345133A priority Critical patent/JP2007146066A/en
Publication of JP2007146066A publication Critical patent/JP2007146066A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel gas production system capable of obtaining a high-calory fuel gas by using an organic waste as a raw material. <P>SOLUTION: The fuel gas production system uses a water-containing organic waste such as sewage dewatered sludge as a raw material and the system is equipped with a high-temperature and high-pressure solubilizing part 1 for solubilizing the organic waste to a water-soluble organic material and a high-temperature and high-pressure gasifying part 2 for converting the solubilized water-soluble to a fuel gas. In the system, the rear end of the solubilizing part 1 is integrally connected through a filter 7 passing through only gas and liquid to the top of the gasifying part. The gas and the liquid discharged from the solubilizing part 1 are directly charged into the gasifying part 2 and a solid-like insolubilized material is taken out to the outside and dehydrated by a dehydrating machine 11 and burned in a hot air-generating furnace 12 and is used as an outside heat source for the gasifying part 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下水汚泥等の含水系の有機廃棄物を原料として高温高圧で分解処理し、燃料ガスを得る燃料ガス製造システムに関するものである。   The present invention relates to a fuel gas production system which obtains fuel gas by decomposing at high temperature and high pressure using water-containing organic waste such as sewage sludge as a raw material.

下水汚泥等の有機廃棄物中の有機分を高温高圧条件で分解処理し、メタンや水素等の燃料ガスに転換することは、例えば特許文献1に示されるように従来から知られている。燃料ガスの収率を高めるためには酸素比を抑える必要があるが、含水系の有機廃棄物を一般的な5〜15MPa,300〜600℃の高温高圧条件で分解処理して燃料ガス化する場合、有機分の熱分解が進んで難分解性のチャーが生成されてしまうという問題がある。   It has been conventionally known that organic components such as sewage sludge are decomposed under high temperature and high pressure conditions and converted into fuel gas such as methane and hydrogen as disclosed in Patent Document 1, for example. In order to increase the yield of fuel gas, it is necessary to suppress the oxygen ratio. However, water-containing organic waste is decomposed and processed into fuel gas under high temperature and high pressure conditions of 5 to 15 MPa and 300 to 600 ° C. In this case, there is a problem that the pyrolysis of the organic component proceeds and a hardly decomposable char is generated.

例えば、15MPa、520℃、酸素比0.5の条件で脱水下水汚泥のガス化を行うと、投入カーボンの15%程度が難分解性のチャーとして残渣に含まれ排出されてしまう。酸素比を1.2とすれば投入カーボンは100%分解されてチャーは発生しないが、生成ガスはCOのみとなって燃料ガスは得られない。また酸素比を0.7とすると燃料ガスのカロリーは酸素比0.5の場合と比較して44%も低下してしまう。このように、燃料ガスのカロリーを高めようとするとチャーとして排出されてしまうカーボン量が増え、カーボンガス化率を高めることができない。 For example, when dehydrated sewage sludge is gasified under the conditions of 15 MPa, 520 ° C., and oxygen ratio of 0.5, about 15% of the input carbon is included in the residue and discharged as hardly decomposable char. If the oxygen ratio is 1.2, the input carbon is decomposed 100% and char is not generated, but the produced gas is only CO 2 and fuel gas cannot be obtained. If the oxygen ratio is 0.7, the calorie of the fuel gas is reduced by 44% compared to the case where the oxygen ratio is 0.5. As described above, if the calorie of the fuel gas is increased, the amount of carbon discharged as char increases, and the carbon gasification rate cannot be increased.

この問題を解決するために、下水汚泥を前処理することによりカーボンガス化率を高める方法が検討されている。例えば脱水汚泥を10MPa,250℃で前処理すると、加水分解力が極大となった液相水の作用により汚泥内の有機物が速やかに分解、低分子化される。このようにして低分子化したうえでガス化部に導入すれば、ガス化に要する活性化エネルギーが低下するため、残渣中に残るカーボンの割合が低下すると期待される。   In order to solve this problem, a method for increasing the carbon gasification rate by pretreating sewage sludge has been studied. For example, when dehydrated sludge is pretreated at 10 MPa and 250 ° C., the organic matter in the sludge is rapidly decomposed and reduced in molecular weight by the action of liquid phase water having a maximum hydrolyzing power. Thus, if it introduce | transduces into a gasification part after making it low molecular, since the activation energy required for gasification will fall, it is anticipated that the ratio of the carbon which remains in a residue will fall.

しかし、加水分解の速度は極めて迅速であるうえ、下水汚泥中に有機分が均一に分布しているわけでもないため、100%の有機物に加水分解を作用させ、さらに二次分解や再重合が発生する前に反応を停止させることは困難である。例えば、昇温に1時間、降温に2時間程度を掛けても下水汚泥中の全カーボンの35%程度が可溶化されるに過ぎず、45%程度は残渣として排出されてしまう。   However, the rate of hydrolysis is extremely rapid and the organic content is not evenly distributed in the sewage sludge. Therefore, hydrolysis is applied to 100% of organic substances, and further secondary decomposition and repolymerization are performed. It is difficult to stop the reaction before it occurs. For example, even if it takes about 1 hour for temperature increase and about 2 hours for temperature decrease, only about 35% of the total carbon in the sewage sludge is solubilized, and about 45% is discharged as a residue.

この残渣は、加水分解を受ける前に熱分解によって生成したチャーと、一度可溶化したものの二次分解により親水性を失って析出した有機物や、再重合によって分子が大きくなって析出した有機物が含まれていると想定される。このように、前処理を行っても可溶化率を高めることは容易ではない。   This residue includes char generated by thermal decomposition before being hydrolyzed, organic matter that has been solubilized, but has lost its hydrophilicity due to secondary decomposition, and organic matter that has become larger due to re-polymerization. It is assumed that Thus, it is not easy to increase the solubilization rate even if pretreatment is performed.

上記した問題の解決策として、特許文献2にはバイオマスを可溶化したうえ脱水分離し、これをガス化反応装置の外部熱源として利用するシステムが記載されている。これによって酸素比を抑制し、高カロリーの燃料ガスを回収することができる。しかしこのシステムは、可溶化部とガス化部との間に固液分離機構や圧入ポンプが配置されているので、可溶化部から排出された高圧の可溶化液を一度圧力解放し、冷却して固液分離し、その後再びガス化反応装置に圧入する必要がある。このためエネルギー損失が大きく、可溶化部とガス化部とにそれぞれ圧入ポンプが必要となるなどの問題がある。
特開2005−205252号公報 特許第2961247号公報
As a solution to the above-described problem, Patent Document 2 describes a system that solubilizes and dehydrates biomass and uses this as an external heat source of a gasification reaction apparatus. As a result, the oxygen ratio can be suppressed and high-calorie fuel gas can be recovered. However, in this system, since a solid-liquid separation mechanism and a press-fitting pump are arranged between the solubilizing part and the gasifying part, the high-pressure solubilized liquid discharged from the solubilizing part is once released and cooled. Therefore, it is necessary to separate into solid and liquid and then press into the gasification reactor again. For this reason, there is a problem in that energy loss is large and a press-fitting pump is required for each of the solubilization part and the gasification part.
JP 2005-205252 A Japanese Patent No. 2961247

本発明は上記した従来の問題点を解決し、有機廃棄物を原料として高カロリーの燃料ガスを得ることができ、しかもカーボンガス化率が高く、エネルギー損失が小さく、複数台の圧入ポンプも必要としない燃料ガス製造システムを提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, can obtain a high-calorie fuel gas from organic waste as a raw material, has a high carbon gasification rate, low energy loss, and requires a plurality of press-fitting pumps. An object of the present invention is to provide a fuel gas production system that does not.

上記の課題を解決するためになされた本発明は、含水系の有機廃棄物を原料とする燃料ガス製造システムであって、有機廃棄物を水溶性有機物に可溶化する高温高圧の可溶化部と、可溶化された水溶性有機物を燃料ガスに転換する高温高圧のガス化部を備え、前記可溶化部とガス化部とが、気体及び液体のみを通過させるフィルタを介して一体に接続されていることを特徴とするものである。   The present invention made to solve the above-mentioned problems is a fuel gas production system using water-containing organic waste as a raw material, and a high-temperature and high-pressure solubilization section for solubilizing organic waste into water-soluble organic matter, A high-temperature and high-pressure gasification unit that converts the solubilized water-soluble organic substance into fuel gas, and the solubilization unit and the gasification unit are integrally connected through a filter that allows only gas and liquid to pass through. It is characterized by being.

なお、可溶化部の温度が80〜400℃、望ましくは200〜350℃であり、圧力が当該温度における水の飽和蒸気圧以上であり、ガス化部の温度が200〜650℃、望ましくは450〜650℃であり、圧力が水の臨界圧力以下、望ましくは4〜15MPaであることが好ましい。   The temperature of the solubilizing part is 80 to 400 ° C., preferably 200 to 350 ° C., the pressure is equal to or higher than the saturated vapor pressure of water at the temperature, and the temperature of the gasifying part is 200 to 650 ° C., preferably 450 It is ˜650 ° C. and the pressure is below the critical pressure of water, desirably 4 to 15 MPa.

また、可溶化部で生成された非可溶化物を可溶化物の一部と混合した形で取り出し、脱水分離する分離機構を備えること、フィルタに付着した非可溶化物の掻取り機構を備えること、分離機構で分離された非可溶化物を可溶化部またはガス化部の熱源として用いること、フィルタにガス化促進用の触媒を担持させること等の構成を採用することができる。   Also, a non-solubilized product generated in the solubilized part is taken out in a form mixed with a part of the solubilized product, and a separation mechanism for dehydrating and separating is provided, and a scraping mechanism for the non-solubilized product attached to the filter is provided. In addition, it is possible to employ a configuration in which the non-solubilized product separated by the separation mechanism is used as a heat source for the solubilization part or the gasification part, or a catalyst for promoting gasification is supported on the filter.

本発明によれば、可溶化部とガス化部とを気体及び液体のみを通過させるフィルタを介して一体に接続したので、ガス化部に不溶性有機物が投入されることがない。このためガス化部の酸素比を下げることができ、有機物の燃焼を抑えて高カロリーの燃料ガスを得ることができ、しかもカーボンガス化率を高めることができる。また本発明によれば、特許文献2とは異なり可溶化部とガス化部とが一体化されているので、固液分離のために圧力・温度を下げ、再び高める必要がなくなる。従って圧入ポンプは1台でよく、エネルギー損失も小さい。   According to the present invention, since the solubilization part and the gasification part are integrally connected via the filter that allows only gas and liquid to pass through, insoluble organic substances are not introduced into the gasification part. For this reason, the oxygen ratio of the gasification part can be lowered, the combustion of organic matter can be suppressed, a high-calorie fuel gas can be obtained, and the carbon gasification rate can be increased. Further, according to the present invention, unlike the patent document 2, the solubilizing part and the gasifying part are integrated, so that it is not necessary to lower the pressure / temperature for solid-liquid separation and increase it again. Therefore, only one press-fitting pump is required and energy loss is small.

以下に本発明の好ましい実施形態を説明する。
図1において、1は耐圧構造の円筒体からなる可溶化部、2は同じく耐圧構造の円筒体からなるガス化部である。可溶化部1は外部加熱用のジャケット3を備え、その内部は80〜400℃、望ましくは200〜350℃、圧力は当該温度における水の飽和蒸気圧以上に維持されている。下水脱水汚泥のような含水系の有機廃棄物は圧入ポンプ4により可溶化部1の入口に圧入され、螺旋状の送り羽根5によって可溶化部1の内部をガス化部2の方向に徐々に移送されながら水溶性有機物に可溶化される。なお、可溶化を促進するために可溶化部1にはアルカリを添加することが好ましい。
Hereinafter, preferred embodiments of the present invention will be described.
In FIG. 1, reference numeral 1 denotes a solubilizing part made of a pressure-resistant cylindrical body, and 2 denotes a gasifying part made of a pressure-resistant cylindrical body. The solubilization part 1 is provided with the jacket 3 for external heating, The inside is 80-400 degreeC, Preferably it is 200-350 degreeC, and the pressure is maintained more than the saturated vapor pressure of the water in the said temperature. Water-containing organic waste such as sewage dewatered sludge is pressed into the inlet of the solubilizing unit 1 by the press-fitting pump 4, and the inside of the solubilizing unit 1 is gradually moved toward the gasifying unit 2 by the spiral feed blade 5. It is solubilized in water-soluble organic matter while being transferred. In addition, it is preferable to add an alkali to the solubilization part 1 in order to promote solubilization.

ガス化部2は、可溶化された水溶性有機物を燃料ガスに転換するための高温高圧部であり、可溶化部1と同様に外部加熱用のジャケット3を備えた耐圧構造の円筒体からなる。その内部は200〜650℃、望ましくは450〜650℃であり、圧力が水の臨界圧力以下、望ましくは4〜15MPaに維持されている。このガス化部2の内部にも螺旋状の送り羽根6が設けられている。   The gasification unit 2 is a high-temperature and high-pressure unit for converting solubilized water-soluble organic substances into fuel gas, and is formed of a pressure-resistant cylindrical body having a jacket 3 for external heating similar to the solubilization unit 1. . The inside is 200 to 650 ° C., preferably 450 to 650 ° C., and the pressure is maintained below the critical pressure of water, preferably 4 to 15 MPa. A spiral feed blade 6 is also provided inside the gasification unit 2.

本発明においては、可溶化部1の後端とガス化部2の先端とは、気体及び液体のみを通過させるフィルタ7を介して一体に接続されている。このフィルタ7は上記のような高温高圧状態においても腐食せず強度を保つことができる焼結金属フィルタまたはセラミックフィルタを用いることができる。このように可溶化部1とガス化部2とは気体及び液体が通過可能なフィルタ7を介して接続されているので、両者の圧力はほぼ同一となり、例えば可溶化部1が10MPaであると、ガス化部2はフィルタ7の差圧分だけ低い9MPa程度となる。   In the present invention, the rear end of the solubilization unit 1 and the front end of the gasification unit 2 are integrally connected via a filter 7 that allows only gas and liquid to pass through. The filter 7 can be a sintered metal filter or a ceramic filter that does not corrode even in the above-described high temperature and high pressure state and can maintain strength. Thus, since the solubilization part 1 and the gasification part 2 are connected via the filter 7 which can pass gas and a liquid, both pressure becomes substantially the same, for example, the solubilization part 1 is 10 MPa. The gasification section 2 has a pressure of about 9 MPa which is lower by the differential pressure of the filter 7.

上記のように含水系の有機廃棄物は可溶化部1で水溶性有機物及びガスに可溶化されるが、一部は固体状の非可溶化物となってフィルタ7で分離される。水溶性有機物及びガスは高温高圧状態のままガス化部2に入り、より高温でガス化されてメタンや水素等の燃料ガスに転換される。本発明では可溶化部1の後端とガス化部2の先端とが直結されているので、特許文献2の方法とは異なりエネルギー損失が小さく、圧入ポンプ4は1台で済む。なおフィルタ7にガス化促進用の触媒を担持させておけば、より効率よくガス化させることができる。   As described above, the water-containing organic waste is solubilized in the water-soluble organic substance and gas by the solubilizing unit 1, but a part thereof becomes a solid insolubilized product and is separated by the filter 7. The water-soluble organic substance and gas enter the gasification section 2 while being in a high temperature and high pressure state, and are gasified at a higher temperature to be converted into a fuel gas such as methane or hydrogen. In the present invention, since the rear end of the solubilizing unit 1 and the front end of the gasifying unit 2 are directly connected, unlike the method of Patent Document 2, energy loss is small, and only one press-fitting pump 4 is required. If the filter 7 is loaded with a catalyst for promoting gasification, it can be more efficiently gasified.

一方、フィルタ7の可溶化部1側にはフィルタ7の表面に付着した非可溶化物を取り除くための機械的な掻取り機構8が設けられており、フィルタ7で分離された固体状の非可溶化物を可溶化物の一部とともに混合された状態で二重弁9,9を経由して外部に排出する。二重弁9,9の下方には冷却器10と脱水機11とが設けられており、フィルタ7の部分から排出された非可溶化物及び可溶化物を冷却、脱水する。脱水機11としては例えば遠心脱水機やベルトプレスなどを用いることができる。   On the other hand, a mechanical scraping mechanism 8 for removing non-solubilized material adhering to the surface of the filter 7 is provided on the solubilizing part 1 side of the filter 7. The solubilized product is discharged to the outside through the double valves 9 and 9 while being mixed with a part of the solubilized product. A cooler 10 and a dehydrator 11 are provided below the double valves 9 and 9 to cool and dehydrate the non-solubilized material and the solubilized material discharged from the filter 7. As the dehydrator 11, for example, a centrifugal dehydrator or a belt press can be used.

脱水機11で脱水された非可溶化物は、前記したように加水分解を受ける前に熱分解によって生成したチャーと、一度可溶化したものの二次分解により親水性を失って析出した有機物や、再重合によって分子が大きくなって析出した有機物を含むもので、多量のカーボンを含んでいる。そこでこれを熱風発生炉12において燃焼させ、その高温排ガスをガス化部2のジャケット3に送ってガス化部2の外部加熱に使用する。これにより有機廃棄物の含有カーボンを有効利用することができる。分離された水は少量であるから、含水系の有機廃棄物と混合して圧入ポンプ4に送ればよい。   As described above, the non-solubilized product dehydrated by the dehydrator 11 includes the char generated by thermal decomposition before being subjected to hydrolysis, the organic matter precipitated by losing the hydrophilicity by secondary decomposition of what was once solubilized, It contains organic matter that has grown due to repolymerization and has a large amount of carbon. Then, this is burned in the hot-air generator 12, and the high-temperature exhaust gas is sent to the jacket 3 of the gasification unit 2 and used for external heating of the gasification unit 2. Thereby, the carbon contained in the organic waste can be effectively used. Since the separated water is a small amount, it may be mixed with water-containing organic waste and sent to the press-in pump 4.

このようにして、ガス化部2では可溶化された水溶性有機物がガス化されるので、酸素比を低く抑えることができる。なおこのガス化部2でもガス化されなかったタール分等や固形残渣が発生するので、ガス化部2の出口側に設けた気固液分離器13でガスと残渣排液とを分離し、ガスは減圧弁14から取り出して燃料ガスとして用いる。   Thus, since the water-soluble organic substance solubilized is gasified in the gasification part 2, an oxygen ratio can be restrained low. In addition, since the tar content etc. and solid residue which were not gasified also generate | occur | produce in this gasification part 2, gas and residue waste liquid are isolate | separated with the gas-solid-liquid separator 13 provided in the exit side of the gasification part 2, The gas is taken out from the pressure reducing valve 14 and used as fuel gas.

以上に説明した本発明の燃料ガス製造システムにおいては、ガス化しにくい非可溶化物をフィルタ7で分離し、ガス化部2ではガス化し易い液状の可溶化物のみをガス化させる一方、非可溶化物はガス化部2の外部熱源として利用するようにしたので、原料となる有機廃棄物中のカーボンを有効に燃料ガスとして取り出すことができる。   In the fuel gas production system of the present invention described above, the non-solubilized product that is difficult to gasify is separated by the filter 7, and only the liquid solubilized product that is easily gasified is gasified in the gasification unit 2, while the Since the lysate is used as an external heat source of the gasification unit 2, carbon in the organic waste as a raw material can be effectively taken out as a fuel gas.

図2は本発明におけるカーボン収支を示す図であり、原料は脱水汚泥でその含有カーボン量を100%としてある。なお可溶化部1は温度が200〜300℃で圧力は10MPa、ガス化部2は温度が500〜600℃で圧力は9MPaである。フィルタ7を通過するガス中に20%のカーボンが含まれ、液状の可溶化物中に35%のカーボンが含まれる。残部の45%は熱風発生炉12において燃焼され、炭酸ガスとして放出される。   FIG. 2 is a diagram showing the carbon balance in the present invention, where the raw material is dehydrated sludge and the carbon content is 100%. The solubilization part 1 has a temperature of 200 to 300 ° C. and a pressure of 10 MPa, and the gasification part 2 has a temperature of 500 to 600 ° C. and a pressure of 9 MPa. The gas passing through the filter 7 contains 20% carbon, and the liquid solubilized product contains 35% carbon. The remaining 45% is burned in the hot air generator 12 and released as carbon dioxide.

またガス化部2に移行した55%のカーボンのうち30%が燃料ガスとして回収され、20%は炭酸ガスとなり、5%が残渣排液に移行する。このように、本発明によれば炭酸ガスの含有率が低い高カロリーの燃料ガスを得ることができる。   Further, 30% of the 55% carbon transferred to the gasification section 2 is recovered as fuel gas, 20% becomes carbon dioxide gas, and 5% moves to the residual liquid. Thus, according to the present invention, a high-calorie fuel gas having a low carbon dioxide content can be obtained.

一方、可溶化部1からの排出物をフィルタ7で分離せずに全てガス化部2に入れた場合には、ガス化部2の酸素比を高める必要があるため、図3に示すように原料となる有機廃棄物中のカーボンの60%は炭酸ガスとなり、燃料ガス中への移行率は20%である。このため取り出された燃料ガス中の炭酸ガス含有率は非常に高くなり、低カロリーの燃料ガスしか得られない。また15%のカーボンは残渣として排出される。   On the other hand, when all of the effluent from the solubilization unit 1 is put into the gasification unit 2 without being separated by the filter 7, it is necessary to increase the oxygen ratio of the gasification unit 2, so as shown in FIG. 60% of the carbon in the organic waste as a raw material is carbon dioxide, and the rate of transfer into the fuel gas is 20%. For this reason, the carbon dioxide content in the extracted fuel gas becomes very high, and only low-calorie fuel gas can be obtained. 15% of carbon is discharged as a residue.

このように、本発明によればガス化しにくい非可溶化物をフィルタ7で分離するため、ガス化部2の酸素比を下げることができ、有機物の燃焼を抑えて高カロリーの燃料ガスを得ることができ、カーボンガス化率を高めることができる。また本発明では圧入ポンプは1台でよく、エネルギー損失も小さい利点がある。   Thus, according to the present invention, the non-solubilized product that is difficult to gasify is separated by the filter 7, so that the oxygen ratio of the gasification unit 2 can be reduced, and the combustion of organic matter is suppressed to obtain a high calorie fuel gas. The carbon gasification rate can be increased. Further, in the present invention, there is an advantage that only one press-fitting pump is required and energy loss is small.

本発明の実施形態を示す概念的な断面図である。It is a conceptual sectional view showing an embodiment of the present invention. 本発明におけるカーボン収支の説明図である。It is explanatory drawing of the carbon balance in this invention. 可溶化部からの排出物を全てガス化部に入れた場合のカーボン収支の説明図である。It is explanatory drawing of the carbon balance at the time of putting all the discharge | emission from a solubilization part into a gasification part.

符号の説明Explanation of symbols

1 可溶化部
2 ガス化部
3 ジャケット
4 圧入ポンプ
5 送り羽根
6 送り羽根
7 フィルタ
8 掻取り機構
9 二重弁
10 冷却器
11 脱水機
12 熱風発生炉
13 気固液分離器
14 減圧弁
DESCRIPTION OF SYMBOLS 1 Solubilization part 2 Gasification part 3 Jacket 4 Press injection pump 5 Feeding blade 6 Feeding blade 7 Filter 8 Scraping mechanism 9 Double valve 10 Cooler 11 Dehydrator 12 Hot-air generator 13 Gas-solid-liquid separator 14 Pressure reducing valve

Claims (6)

含水系の有機廃棄物を原料とする燃料ガス製造システムであって、有機廃棄物を水溶性有機物に可溶化する高温高圧の可溶化部と、可溶化された水溶性有機物を燃料ガスに転換する高温高圧のガス化部を備え、前記可溶化部とガス化部とが、気体及び液体のみを通過させるフィルタを介して一体に接続されていることを特徴とする燃料ガス製造システム。   A fuel gas production system that uses hydrous organic waste as a raw material, and converts the solubilized water-soluble organic matter into fuel gas, and a high-temperature and high-pressure solubilization section that solubilizes the organic waste into water-soluble organic matter. A fuel gas production system comprising a high-temperature and high-pressure gasification unit, wherein the solubilization unit and the gasification unit are integrally connected via a filter that allows only gas and liquid to pass through. 可溶化部の温度が80〜400℃、望ましくは200〜350℃であり、圧力が当該温度における水の飽和蒸気圧以上であり、ガス化部の温度が200〜650℃、望ましくは450〜650℃であり、圧力が水の臨界圧力以下、望ましくは4〜15MPaであることを特徴とする請求項1記載の燃料ガス製造システム。   The temperature of the solubilizing part is 80 to 400 ° C., preferably 200 to 350 ° C., the pressure is equal to or higher than the saturated vapor pressure of water at the temperature, and the temperature of the gasifying part is 200 to 650 ° C., preferably 450 to 650. 2. The fuel gas production system according to claim 1, wherein the fuel gas production system is at 1 ° C. and the pressure is equal to or lower than the critical pressure of water, preferably 4 to 15 MPa. 可溶化部で生成された非可溶化物を可溶化物の一部と混合した形で取り出し、脱水分離する分離機構を備えたことを特徴とする請求項1または2記載の燃料ガス製造システム。   The fuel gas production system according to claim 1 or 2, further comprising a separation mechanism for taking out the non-solubilized product produced in the solubilized part in a form mixed with a part of the solubilized product, and dehydrating and separating it. フィルタに付着した非可溶化物の掻取り機構を備えたことを特徴とする請求項1〜3の何れかに記載の燃料ガス製造システム。   The fuel gas production system according to any one of claims 1 to 3, further comprising a scraping mechanism for non-solubilized material adhering to the filter. 分離機構で分離された非可溶化物を可溶化部またはガス化部の熱源として用いることを特徴とする請求項3に記載の燃料ガス製造システム。   4. The fuel gas production system according to claim 3, wherein the non-solubilized product separated by the separation mechanism is used as a heat source for the solubilization unit or the gasification unit. フィルタにガス化促進用の触媒を担持させたことを特徴とする請求項1〜5の何れかに記載の燃料ガス製造システム。   The fuel gas production system according to any one of claims 1 to 5, wherein a catalyst for gasification promotion is supported on the filter.
JP2005345133A 2005-11-30 2005-11-30 Fuel gas production system Pending JP2007146066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005345133A JP2007146066A (en) 2005-11-30 2005-11-30 Fuel gas production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005345133A JP2007146066A (en) 2005-11-30 2005-11-30 Fuel gas production system

Publications (1)

Publication Number Publication Date
JP2007146066A true JP2007146066A (en) 2007-06-14

Family

ID=38207854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005345133A Pending JP2007146066A (en) 2005-11-30 2005-11-30 Fuel gas production system

Country Status (1)

Country Link
JP (1) JP2007146066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133333A (en) * 2006-11-28 2008-06-12 Ngk Insulators Ltd Method for gasifying of water-containing biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172262A (en) * 1997-12-10 1999-06-29 Agency Of Ind Science & Technol Process for gasifying cellulosic biomass
JP2005169329A (en) * 2003-12-15 2005-06-30 Mitsubishi Kakoki Kaisha Ltd Treatment method for organic waste
JP2005272644A (en) * 2004-03-25 2005-10-06 Ngk Insulators Ltd Method for gasifying water-containing biomass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172262A (en) * 1997-12-10 1999-06-29 Agency Of Ind Science & Technol Process for gasifying cellulosic biomass
JP2005169329A (en) * 2003-12-15 2005-06-30 Mitsubishi Kakoki Kaisha Ltd Treatment method for organic waste
JP2005272644A (en) * 2004-03-25 2005-10-06 Ngk Insulators Ltd Method for gasifying water-containing biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133333A (en) * 2006-11-28 2008-06-12 Ngk Insulators Ltd Method for gasifying of water-containing biomass

Similar Documents

Publication Publication Date Title
JP5753253B2 (en) Method and system for producing synthesis gas from biomass by pyrolysis
US9670413B2 (en) Methods and apparatuses for thermally converting biomass
EP2390474B1 (en) Heat Integration In Coal Gasification And Methanation Reaction Process
US20150167026A1 (en) Method for converting biomass to methane
US11248184B2 (en) Gasification system
JP7167091B2 (en) Wastewater treatment method and wastewater treatment equipment
US20220290065A1 (en) Combination of anaerobic treatment of carbonaceous material with hydrothermal gasification to maximize value added product recovery
JPWO2010119972A1 (en) BTL manufacturing system and BTL manufacturing method
US20090077888A1 (en) Process and device for gasification of crude glycerol
KR20200097680A (en) Method and apparatus for hydrotreating pyrolysis oil
Attasophonwattana et al. Evolving circular economy in a palm oil factory: Integration of pilot-scale hydrothermal carbonization, gasification, and anaerobic digestion for valorization of empty fruit bunch
US20130232856A1 (en) Process for production of fuels and chemicals from biomass feedstocks
US20230013664A1 (en) Cost efficient integration of hydrothermal liquefaction and wet oxidation wastewater treatment.
KR100974324B1 (en) Apparatus of a successive treatment of organic sludges for producing solid-liquid slurry containing solids and secessional liquids from organic sludge
JP2007146066A (en) Fuel gas production system
JP4364684B2 (en) Method for producing gasified fuel
RU2632444C1 (en) System and method of processing wastewater sludge
JP2013112802A (en) Device for producing biomass-thermal-decomposition oil and method for producing the same
JP2006082075A (en) System for treating biomass
JP2010202689A (en) Gasification method, power generation method, gasification device, power generation device, and organic material
JP6364645B2 (en) Biomass processing system
JP3952806B2 (en) Gasification treatment method of organic matter
JP2013249427A (en) Method for producing biomass thermal decomposition oil and apparatus for producing the oil
Zhang et al. Alkali-catalyzed supercritical water gasification of sewage sludge: effect of liquid residue reuse as homogenous catalyst
KR101943747B1 (en) Recycling system of waste heat quantity of fine slag and recycling method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111202