JP2007144455A - Speed controller for multiple cylinder type press - Google Patents

Speed controller for multiple cylinder type press Download PDF

Info

Publication number
JP2007144455A
JP2007144455A JP2005341619A JP2005341619A JP2007144455A JP 2007144455 A JP2007144455 A JP 2007144455A JP 2005341619 A JP2005341619 A JP 2005341619A JP 2005341619 A JP2005341619 A JP 2005341619A JP 2007144455 A JP2007144455 A JP 2007144455A
Authority
JP
Japan
Prior art keywords
cylinder
cylinders
valve
hydraulic
pressure oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005341619A
Other languages
Japanese (ja)
Inventor
Nobuo Inoue
伸夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005341619A priority Critical patent/JP2007144455A/en
Publication of JP2007144455A publication Critical patent/JP2007144455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Presses (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a speed controller for a multiple cylinder type press capable of surely performing the synchronizing and tuning of operating speeds in a plurality of hydraulic cylinders of the same standard, and performing the parallel translation of a press member. <P>SOLUTION: In the speed controller for multiple cylinder type press where a movable hot plate 2 is translated in parallel by a plurality of cylinders 4 to 7 arranged side by side, the respective cylinders 4 to 7 are composed so as to be in both rod forms, further, the pressurized oil feed side and the pressurized oil exhaust side of these cylinders adjoining in the upstream step and downstream step (5A and 4B, 6A and 5B, 7A and 6B) are connected to each other; thus the working speed of the plurality of hydraulic cylinders 4 to 7 is made synchronous, and the movable hot plate 2 can be parallelly translated not only to the pressurizing direction but also to the releasing direction, and also, even if cylinders of the same standard are adopted, the pressure receiving areas on the pressurized oil feed side and the pressurized oil exhaust side between the adjoining cylinders for synchronous operation can easily be equalized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ゴム等のベルト部材をフレーム枠体と可動熱盤との間にて加熱プレスする加硫装置であって、併置した複数のシリンダにて前記可動熱盤を同時に平行移動させる複数シリンダ式プレスの速度調整装置に関する。   The present invention is a vulcanizing device for heating and pressing a belt member such as rubber between a frame frame and a movable heat plate, and a plurality of cylinders that simultaneously translate the movable heat plate by a plurality of cylinders arranged in parallel. The present invention relates to a speed adjusting device for a type press.

通常、ゴム製の無限軌道帯すなわちゴムクローラやベルトコンベアを加硫成形にて製造するには、平プレスにて長尺長方形の未加硫製品を一体に加硫成形した後にその両端部を接着加硫する接続加硫方法があるが、接続加硫方法では、端部同士を接着加硫するために、所定の接着代を設けねばならず、周長のプラスアルファ分の確保のためにさらに長大な平プレス加硫機を必要として、設備面積や初期設備投資が増大する他、両端接着用の加硫機も必要とした。その上、補強芯体であるワイヤー等のコード類をゴム部材の接着により接続するために、製品の性能が充分ではない。   Normally, in order to manufacture rubber endless belts, that is, rubber crawlers and belt conveyors, by vulcanization molding, long rectangular unvulcanized products are integrally vulcanized with a flat press and then bonded to both ends. There is a connection vulcanization method to vulcanize, but in the connection vulcanization method, in order to bond and vulcanize the ends, a predetermined bonding margin must be provided, and in order to secure a plus alpha portion of the circumference A long flat press vulcanizer was required, which increased the equipment area and initial capital investment, and also required a vulcanizer for bonding both ends. In addition, since cords such as wires that are reinforcing cores are connected by adhesion of rubber members, the performance of the product is not sufficient.

そのため、補強芯体であるワイヤー等のコード類を最初からリング状にセットした未加硫ゴムベルトを設置した後に所定周長毎に加硫を行う送り加硫方法が、耐久性が高く所定の性能を確保できるものとして広く採用されている。図4に示したものは、そのような送り加硫装置の概略図である。ゴムクローラやベルトコンベア等の未加硫のベルト部材3をフレーム枠体31における上部枠体31Aと可動熱盤32との間にて順次送り出して加熱プレスするものである。このような加硫装置では、前記可動熱盤32を併置した複数の例えば4つの油圧シリンダ34〜37にて移動させてプレス動作を行っているが、均一なプレス加硫により安定した品質を得るためには、前記複数の油圧シリンダ34〜37が可動熱盤32を同期させて同時に平行移動させる必要がある。   Therefore, the feed vulcanization method in which vulcanization is performed every predetermined circumference after installing an unvulcanized rubber belt in which cords such as wires that are reinforcing cores are set in a ring shape from the beginning is highly durable and has a predetermined performance. It is widely adopted as one that can secure What is shown in FIG. 4 is a schematic view of such a feed vulcanizer. The unvulcanized belt member 3 such as a rubber crawler or a belt conveyor is sequentially sent between the upper frame 31A and the movable heating plate 32 in the frame frame 31 and heated and pressed. In such a vulcanizing apparatus, a pressing operation is performed by moving the plurality of, for example, four hydraulic cylinders 34 to 37 along with the movable heating platen 32. However, stable quality is obtained by uniform press vulcanization. For this purpose, the plurality of hydraulic cylinders 34 to 37 need to move the movable heat plate 32 in parallel and simultaneously translate them.

図5はカウンターシャフト方式と称されるもので、フレーム枠体41内に配設された可動熱盤42を複数の油圧シリンダ44〜47により平行移動させるのに、カウンターシャフトに設置された強制的な同期歯車を用いたものである。可動熱盤42の両端部から垂設されたラック48、48に、カウンターシャフト50の両端部に設置した同期歯車49、49を噛合させた。このような構成により、カウンターシャフト50の両端部の同期歯車49、49と噛合する前記ラック48、48の送り出しにより、油圧シリンダ44〜47間に摩擦抵抗やポンプからの送油量に誤差等が生じても、可動熱盤42が平行に移動して安定したプレス動作が行える。しかしながら、このカウンターシャフト方式では、ラック48と同期歯車49との噛合精度が要求されるとともに、歯車機構自体が高い強度を要求されるとともに、肥大化を招き、実用的でなかった。   FIG. 5 shows what is called a countershaft system. In order to translate the movable heating plate 42 arranged in the frame 41 by a plurality of hydraulic cylinders 44 to 47, the forced heating plate 42 installed on the countershaft is forced. Using a synchronous gear. Synchronous gears 49, 49 installed at both ends of the countershaft 50 are meshed with racks 48, 48 suspended from both ends of the movable heat platen 42. With such a configuration, due to the feeding of the racks 48 and 48 that mesh with the synchronous gears 49 and 49 at both ends of the countershaft 50, there is an error in the friction resistance between the hydraulic cylinders 44 to 47 and the oil feed amount from the pump. Even if it occurs, the movable heating platen 42 moves in parallel and a stable pressing operation can be performed. However, this countershaft system is not practical because it requires meshing accuracy between the rack 48 and the synchronous gear 49, and the gear mechanism itself is required to have high strength and is enlarged.

そこで、装置の肥大化を招くことなく、油圧回路の工夫のみで複数の油圧シリンダの移動量を同期させる手段として下記特許文献1に開示されたものが提案された。
特開平7−248005号公報(公報請求項1参照)。
In view of this, the means disclosed in Patent Document 1 below has been proposed as means for synchronizing the movement amounts of a plurality of hydraulic cylinders only by devising the hydraulic circuit without causing enlargement of the apparatus.
Japanese Patent Application Laid-Open No. 7-248005 (see claim 1).

図6を用いて前記特許文献1に開示された加圧シリンダの同調装置を説明する。少なくとも2本の油圧シリンダ102と103とを備え、一方の油圧シリンダ102のロッド側受圧面積と他方の油圧シリンダ103のピストン側受圧面積とを同一に設定する。つまり、π( d1 /2)2 −π( d2 /2)2 =π( d3 /2)2 すなわち、d1 2 −d2 2 =d3 2 (d1 、d3 はシリンダ内径、d2 はロッド外径)の関係を成立させるとともに、一方の油圧シリンダ102のロッド側室122が他方の油圧シリンダ103のピストン側室131に連通されて構成したものである。このような構成により、第1油圧シリンダ102のロッド102aがΔsストロークすると、第2油圧シリンダ103のロッド103aも同様にΔsストロークすることになって、従来のもののような、2本の油圧シリンダを同調させるために用いられ、油圧ポンプからの圧油を分流させる高い精度の分流弁等が不要となり、各油圧シリンダに異なる負荷がかかった場合でも、各シリンダを確実に精度よく同調させて伸縮動作を行うことができることとなった。 The pressure cylinder tuning device disclosed in Patent Document 1 will be described with reference to FIG. At least two hydraulic cylinders 102 and 103 are provided, and the rod side pressure receiving area of one hydraulic cylinder 102 and the piston side pressure receiving area of the other hydraulic cylinder 103 are set to be the same. That is, π (d1 / 2) 2 −π (d2 / 2) 2 = π (d3 / 2) 2, that is, d1 2 −d2 2 = d3 2 (d1 and d3 are cylinder inner diameters and d2 are rod outer diameters). The relationship is established, and the rod side chamber 122 of one hydraulic cylinder 102 is configured to communicate with the piston side chamber 131 of the other hydraulic cylinder 103. With such a configuration, when the rod 102a of the first hydraulic cylinder 102 has a Δs stroke, the rod 103a of the second hydraulic cylinder 103 also has a Δs stroke in the same manner, so that two hydraulic cylinders like the conventional one can be installed. Used to synchronize and eliminate the need for high-precision diverter valves that divide the pressure oil from the hydraulic pump, and even when different loads are applied to each hydraulic cylinder, each cylinder is reliably tuned and expanded and contracted. It was possible to do.

しかしながら、このような従来の同調装置にあって、万一、各油圧シリンダ内の油が配管の一部から漏洩したり、各油圧シリンダを接続する油圧ホースの経年膨張を引き起こしたり、あるいは温度変化による作動油の膨張収縮等の外乱により、シリンダの位置同調が少しずつ狂いを生じる虞れがあった。そのため、複数の中の特定の油圧シリンダが充分な伸縮動作を行えなくなる虞れが生じた。しかも、前記従来例のものは、片シリンダ型であるが故に、一方の油圧シリンダ102のロッド側受圧面積と他方の油圧シリンダ103のピストン側受圧面積とを同一に設定する必要があって、2つの油圧シリンダ102、103の規格が異なった(シリンダ内径d1 ≠d3 )。   However, in such a conventional tuning device, in the unlikely event that the oil in each hydraulic cylinder leaks from a part of the piping, the hydraulic hose connecting each hydraulic cylinder causes aging, or the temperature changes Due to disturbances such as expansion and contraction of hydraulic oil due to the above, there is a possibility that the position synchronization of the cylinder may be gradually changed. For this reason, there is a possibility that specific hydraulic cylinders in the plurality cannot perform sufficient expansion and contraction operations. Moreover, since the conventional example is a single cylinder type, it is necessary to set the rod side pressure receiving area of one hydraulic cylinder 102 and the piston side pressure receiving area of the other hydraulic cylinder 103 to be the same. The specifications of the two hydraulic cylinders 102 and 103 were different (cylinder inner diameter d1 ≠ d3).

そこで本発明は、このような従来の油圧シリンダの同調装置の課題を解決し、簡素な構造の油圧回路を採用するだけで、同一規格の複数の油圧シリンダの動作速度の同期同調を確実に行って、プレス部材の平行移動が行える複数シリンダ式プレスの速度調整装置を提供することを目的とする。   Accordingly, the present invention solves the problems of the conventional hydraulic cylinder tuning device and reliably synchronizes the operating speeds of a plurality of hydraulic cylinders of the same standard by simply adopting a hydraulic circuit having a simple structure. An object of the present invention is to provide a speed adjusting device for a multi-cylinder press capable of parallel movement of a press member.

このため本発明は、ベルト部材をフレーム枠体と可動熱盤との間にて加熱プレスする加硫装置であって、併置した複数のシリンダにて前記可動熱盤を同時に平行移動させる複数シリンダ式プレスの速度調整装置において、前記各シリンダを両ロッド形式に構成するとともに、上流段と下流段に隣接するこれらシリンダ同士の圧油供給側と圧油排出側とを接続したことを特徴とする。また本発明は、前記上流段と下流段に隣接するシリンダ同士の各圧油排出側と各圧油供給側とを接続する管路にそれぞれ第1開閉弁を介設するとともに、これらの各第1開閉弁と各シリンダの圧油供給側との間に、油圧ポンプから分岐する各分岐点とを第2開閉弁を介して接続し、さらに、前記各第1開閉弁と各シリンダの圧油排出側との間に、油圧タンク等への各排出合流点とを第2開閉弁を介して接続したことを特徴とする。また本発明は、前記第1開閉弁および第2開閉弁のいずれか一方を開弁し、他方を閉弁することで、前記ロッドのいずれか一方への移動を行うとともに、それらの移動動作の最終点近傍にて前記第1および第2開閉弁の弁動作を逆にすることで、各シリンダの移動動作が各別に行われるように構成したことを特徴とするもので、これらを課題解決のための手段とする。   For this reason, the present invention is a vulcanizing apparatus that heats and presses a belt member between a frame body and a movable hot platen, and a multi-cylinder type in which the movable hot platen is simultaneously translated by a plurality of juxtaposed cylinders. In the press speed adjusting device, each cylinder is formed in a double rod type, and the pressure oil supply side and the pressure oil discharge side of these cylinders adjacent to the upstream stage and the downstream stage are connected to each other. In the present invention, a first on-off valve is provided in each pipe line connecting each pressure oil discharge side and each pressure oil supply side of the cylinders adjacent to the upstream stage and the downstream stage. A branch point branching from the hydraulic pump is connected between the 1 on-off valve and the pressure oil supply side of each cylinder via a second on-off valve, and the pressure oil on each of the first on-off valve and each cylinder is further connected. Each discharge junction to the hydraulic tank or the like is connected to the discharge side via a second on-off valve. Further, the present invention opens one of the first on-off valve and the second on-off valve and closes the other to move to one of the rods and to move them. By reversing the valve operations of the first and second on-off valves in the vicinity of the final point, the moving operation of each cylinder is performed separately. Means for this.

本発明によれば、ベルト部材をフレーム枠体と可動熱盤との間にて加熱プレスする加硫装置であって、併置した複数のシリンダにて前記可動熱盤を同時に平行移動させる複数シリンダ式プレスの速度調整装置において、前記各シリンダを両ロッド形式に構成するとともに、上流段と下流段に隣接するこれらシリンダ同士の圧油供給側と圧油排出側とを接続したことにより、複数の油圧シリンダの動作速度を同期させて可動熱盤を加圧方向のみならず離型方向にも確実かつ迅速に平行移動させることが可能となるばかりでなく、同一規格のシリンダを採用しても、隣接するシリンダ同士の圧油供給側と圧油排出側との受圧面積を容易に等しくできる。しかも、両ロッド形式により、可動熱盤を両ロッドのそれぞれの端部に設置することで、上下に配設した2つのベルト部材を同時的に加硫することが可能となる。   According to the present invention, there is provided a vulcanizing device for heating and pressing a belt member between a frame body and a movable heating plate, and a plurality of cylinder types in which the movable heating plate is simultaneously translated by a plurality of juxtaposed cylinders. In the press speed adjusting device, each cylinder is configured in a double rod type, and the pressure oil supply side and the pressure oil discharge side of these cylinders adjacent to the upstream stage and the downstream stage are connected to each other, thereby providing a plurality of hydraulic pressures. Synchronizing the operation speed of the cylinders makes it possible not only to move the movable heating plate in the direction of pressurization but also in the mold release direction reliably and quickly. The pressure receiving areas on the pressure oil supply side and the pressure oil discharge side of the cylinders to be made can be easily made equal. In addition, by installing the movable heating plate at the respective end portions of both rods by the double rod type, it becomes possible to vulcanize the two belt members disposed vertically.

また、前記上流段と下流段に隣接するシリンダ同士の各圧油排出側と各圧油供給側とを接続する管路にそれぞれ第1開閉弁を介設するとともに、これらの各第1開閉弁と各シリンダの圧油供給側との間に、油圧ポンプから分岐する各分岐点とを第2開閉弁を介して接続し、さらに、前記各第1開閉弁と各シリンダの圧油排出側との間に、油圧タンク等への各排出合流点とを第2開閉弁を介して接続した場合は、可動熱盤の加圧方向および離型方向のいずれの場合についても、簡素な構造の油圧シリンダと開閉弁とを組み合わせて油圧回路を構成して、作動油漏洩等に起因するストローク同期ずれを解消するところの、各油圧シリンダの各別の移動動作が可能となる。   In addition, a first on-off valve is provided in each pipe line connecting each pressure oil discharge side and each pressure oil supply side between the cylinders adjacent to the upstream stage and the downstream stage, and each of these first on-off valves And a branch point branched from the hydraulic pump via a second on-off valve, and further, the first on-off valve and the pressure oil discharge side of each cylinder, Between the discharge junctions to the hydraulic tank or the like via the second on-off valve between the two, the hydraulic pressure with a simple structure in both the pressurizing direction and the releasing direction of the movable heat disc A hydraulic circuit is configured by combining the cylinder and the on-off valve, and each of the hydraulic cylinders can be moved independently of each other in order to eliminate stroke synchronization deviation caused by hydraulic fluid leakage or the like.

さらに、前記第1開閉弁および第2開閉弁のいずれか一方を開弁し、他方を閉弁することで、前記ロッドのいずれか一方への移動を行うとともに、それらの移動動作の最終点近傍にて前記第1および第2開閉弁の弁動作を逆にすることで、各シリンダの移動動作が各別に行われるように構成した場合は、適宜の制御手段と組み合わせて、加圧方向および離型方向のいずれの場合についても、可動熱盤の動作途中は4倍速での同期動作を可能とし、最終ポイント近傍では、作動油漏洩等に起因するストローク同期ずれがキャンセルされる。すなわち、各油圧シリンダが各別に加圧動作等を行うので、同期ずれが生じて加圧動作途中にて停止してしまうシリンダを生じさせることが防止され、複数の油圧シリンダの均一な加圧動作が可能となり、かつ各油圧シリンダの所定の加圧力が得られる。   Further, by opening one of the first on-off valve and the second on-off valve and closing the other, the movement to one of the rods is performed, and the vicinity of the final point of the moving operation When the moving operation of each cylinder is performed separately by reversing the valve operations of the first and second on-off valves, the pressurizing direction and the release direction are combined with appropriate control means. In any case of the mold direction, a synchronous operation at a quadruple speed is possible during the operation of the movable hot platen, and the stroke synchronization deviation caused by hydraulic oil leakage or the like is canceled near the final point. That is, since each hydraulic cylinder performs a pressurizing operation, etc., it is possible to prevent the occurrence of cylinders that are out of synchronization and stop in the middle of the pressurizing operation. And a predetermined applied pressure of each hydraulic cylinder can be obtained.

以下、本発明の複数シリンダ式プレスの速度調整装置の実施例を図面に基づいて説明する。図1は本発明の複数シリンダ式プレスの速度調整装置の第1実施例を示すもので、速度調整装置を構成する油圧回路のブロック図、図2はその速度調整装置を用いた複数シリンダ式プレスの概略図、図3は本発明の複数シリンダ式プレスの速度調整装置の第2実施例を示す全体斜視図である。本発明の基本的な構成は図1に示すように、ベルト部材をフレーム枠体1と可動熱盤2との間にて加熱プレスする加硫装置であって、併置した複数のシリンダ4〜7にて前記可動熱盤2を同時に平行移動させる複数シリンダ式プレスの速度調整装置において、前記各シリンダ4〜7を両ロッド形式に構成するとともに、上流段と下流段に隣接するこれらシリンダ同士の圧油供給側と圧油排出側とを接続したことを特徴とする。   Embodiments of a speed adjusting device for a multi-cylinder press according to the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a speed adjusting device for a multi-cylinder press according to the present invention. FIG. 2 is a block diagram of a hydraulic circuit constituting the speed adjusting device, and FIG. 2 shows a multi-cylinder press using the speed adjusting device. FIG. 3 is an overall perspective view showing a second embodiment of the speed adjusting device for a multi-cylinder press according to the present invention. As shown in FIG. 1, the basic configuration of the present invention is a vulcanizing apparatus that heats and presses a belt member between a frame frame 1 and a movable heating platen 2, and a plurality of juxtaposed cylinders 4-7. In the multi-cylinder press speed adjustment device that simultaneously moves the movable hot platen 2 at the same time, the cylinders 4 to 7 are formed in a double rod form, and the pressure between these cylinders adjacent to the upstream stage and the downstream stage is set. The oil supply side and the pressure oil discharge side are connected.

図2に示すように、本発明の複数シリンダ式プレス装置は、例えば4角形のフレーム枠体1内に複数の(図示の例では4つ)油圧シリンダ4〜7が略等間隔にて併置して設置される。フレーム枠体1内の上部には適宜の熱源(電熱線や加熱蒸気管等)により加熱される可動熱盤2が上下に平行移動可能に設置される。前記油圧シリンダ4〜7は、フレーム枠体1の下部枠体1B上にそれぞれの底部が固定され、各下部側の第2ロッド4D〜7Dが対応して下部枠体1B上に穿設された各退避孔12内に嵌合される。各油圧シリンダ4〜7の上部側の第1ロッド4C〜7Cの上端部は、前記可動熱盤2の下部に連結される。したがって、フレーム枠体1の上部枠体1Aと可動熱盤2との間に形成される空間が、合成ゴムやゴム等の加硫ベルト3の加硫プレス部を構成する。   As shown in FIG. 2, the multi-cylinder press device of the present invention includes a plurality of (four in the illustrated example) hydraulic cylinders 4 to 7 arranged at substantially equal intervals in, for example, a rectangular frame 1. Installed. A movable heating platen 2 heated by an appropriate heat source (such as a heating wire or a heating steam pipe) is installed in the upper part of the frame body 1 so as to be movable in parallel up and down. The hydraulic cylinders 4 to 7 are fixed at the bottoms on the lower frame 1B of the frame 1 and the lower rods 4D to 7D on the lower side are correspondingly drilled on the lower frame 1B. It fits in each retraction hole 12. The upper ends of the first rods 4 </ b> C to 7 </ b> C on the upper side of the hydraulic cylinders 4 to 7 are connected to the lower part of the movable heating platen 2. Therefore, the space formed between the upper frame 1A of the frame frame 1 and the movable heating platen 2 constitutes a vulcanization press portion of the vulcanization belt 3 made of synthetic rubber or rubber.

図1に戻り、本発明の複数シリンダ式プレスの速度調整装置を構成する油圧回路を説明する。図中一点鎖線で示される可動熱盤2が複数の油圧シリンダ4、5、6、7により、各油圧シリンダが同期して上下方向にほぼ水平状態で平行移動するように構成される。各油圧シリンダ4、5、6、7は、同一規格の両ロッド形式のシリンダから構成される。1つの油圧シリンダ4を例にとって説明すると、ピストン4Pによって分離された圧油供給側である第1室4Aと圧油排出側である第2室4Bを貫通して両ロッド4D、4Cがそれぞれ延びる。油圧ポンンプPと各油圧シリンダ4〜7の各第1室4A、5A、6A、7Aとは切換弁8および分岐点S1、S2、S3を介して接続される。各分岐点S2、S3と各第1室5A、6Aとの間には供給側の第2開閉弁10A、10Aが介設される。各第2室4B、5B、6Bと次段の第1室5A、6A、7Aとが第1開閉弁9を介設して接続される。   Returning to FIG. 1, the hydraulic circuit constituting the speed adjusting device of the multi-cylinder press of the present invention will be described. A movable hot platen 2 indicated by a one-dot chain line in the figure is constituted by a plurality of hydraulic cylinders 4, 5, 6, 7 so that each hydraulic cylinder is synchronously translated in a substantially horizontal state in the vertical direction. Each hydraulic cylinder 4, 5, 6, 7 is composed of a double rod type cylinder of the same standard. For example, one hydraulic cylinder 4 is described. Both rods 4D and 4C extend through the first chamber 4A on the pressure oil supply side and the second chamber 4B on the pressure oil discharge side separated by the piston 4P. . The hydraulic pump P and each first chamber 4A, 5A, 6A, 7A of each hydraulic cylinder 4-7 are connected via a switching valve 8 and branch points S1, S2, S3. Supply-side second on-off valves 10A, 10A are interposed between the branch points S2, S3 and the first chambers 5A, 6A. The second chambers 4B, 5B, and 6B and the first chambers 5A, 6A, and 7A in the next stage are connected via the first on-off valve 9.

これら第1開閉弁9と各第2室4B、5B、6Bとの間からは排出側の第2開閉弁10B、10Bを介設して、油は合流点S4、S5、S6により合流して切換弁8の排出側から図示省略のタンクに排出される。切換弁8の8A側は、圧油を各油圧シリンダ4〜7の第1室4A、5A、6A、7Aに供給して可動熱盤2を上動させる加圧動作を行う。切換弁8を8A側とした図1の加圧動作例について説明する。全ての第2開閉弁10A、10Bを閉じるとともに、全ての第1開閉弁9を開いておき、油圧ポンプPから出た圧油は先ず、第1油圧シリンダ4の第1室4Aを拡張する。これにより、ピストン4Pは図面上方に移動して第2室4Bを縮小させ、それにより押し出された油を第1開閉弁9を介して次段の第2油圧シリンダ5の第1室5Aを拡張させる。これを順次繰り返して、第3、第4油圧シリンダ6、7の第1室6A、7Aを拡張させる。これらの各4つの油圧シリンダ4、5、6、7のシリンダ断面積、ロッド径等の諸元は全て同じに構成される。以上の油圧回路内での動作において、理論的に4つの油圧シリンダ4、5、6、7の各ロッドの速度は同期する。   Between the first on-off valve 9 and each of the second chambers 4B, 5B, 6B, the second on-off valves 10B, 10B on the discharge side are interposed, and the oil joins at the junctions S4, S5, S6. It is discharged from the discharge side of the switching valve 8 to a tank (not shown). On the 8A side of the switching valve 8, pressure oil is supplied to the first chambers 4 </ b> A, 5 </ b> A, 6 </ b> A, 7 </ b> A of the hydraulic cylinders 4 to 7 to perform a pressurizing operation for moving the movable heating plate 2 upward. An example of the pressurizing operation in FIG. 1 in which the switching valve 8 is on the 8A side will be described. All the second on-off valves 10A and 10B are closed, and all the first on-off valves 9 are opened. The pressure oil discharged from the hydraulic pump P first expands the first chamber 4A of the first hydraulic cylinder 4. As a result, the piston 4P moves upward in the drawing to reduce the second chamber 4B, and the oil pushed thereby expands the first chamber 5A of the second hydraulic cylinder 5 at the next stage via the first on-off valve 9. Let This is repeated sequentially to expand the first chambers 6A, 7A of the third and fourth hydraulic cylinders 6, 7. These four hydraulic cylinders 4, 5, 6, and 7 have the same specifications such as cylinder cross-sectional area and rod diameter. In the above operation in the hydraulic circuit, the speeds of the rods of the four hydraulic cylinders 4, 5, 6, and 7 are theoretically synchronized.

理論的には同期する以上の油圧回路構成にあって、各シリンダ内あるいは配管の一部からの油漏れ、各シリンダ間を接続する油圧ホースの経年膨張、温度による作動油の膨張収縮等により、各シリンダ間にストローク同期に乱れが生じる虞れが生じる。また、この方式では、独立の油圧シリンダ回路に比較して、一定量の油量で全シリンダが動作するので、図示の場合で、4倍速の動作速度が得られることになるが、発生する操作力は1/4になる。前記加圧動作における各油圧シリンダ4、5、6、7のロッドに同期のずれが生じた場合に、加圧動作の最終段階、例えば、シリンダによる加圧の最終ポイント近くの1mm程度まで第2室4B、5B、6B、7Bの油が押し出された位置において、同期ずれを解消する手段が講じられる。   Theoretically in the hydraulic circuit configuration more than synchronized, due to oil leakage from each cylinder or a part of the piping, aging expansion of the hydraulic hose connecting each cylinder, expansion and contraction of hydraulic oil due to temperature, etc. There is a risk that the stroke synchronization may be disturbed between the cylinders. Also, in this method, all cylinders operate with a fixed amount of oil compared to an independent hydraulic cylinder circuit, so in the case shown in the figure, an operating speed of 4 × speed can be obtained. The force becomes 1/4. When a synchronization shift occurs in the rods of the hydraulic cylinders 4, 5, 6, and 7 in the pressurizing operation, the second stage to the final stage of the pressurizing operation, for example, about 1 mm near the final point of pressurization by the cylinder. At the position where the oil in the chambers 4B, 5B, 6B, and 7B is pushed out, a means for eliminating the synchronization shift is taken.

各油圧シリンダ4、5、6、7におけるピストン4P、5P、6P、7Pが各シリンダ4、5、6、7の第2室4B、5B、6B、7Bの天井に近づいて、加圧の最終ポイント近くの1mm程度になると、可動熱版2が加圧動作の最終段階に達する。ストロークセンサ13がこれを検出すると、弁切換制御手段14によって、第1開閉弁9を全て閉じ、第2開閉弁10A、10Bを全て開ける。これにより、油圧ポンプPからの油圧は各分岐点S1、S2、S3を経て供給側第2開閉弁10Aを介して、直接に各油圧シリンダ4、5、6、7の第1室4A、5A、6A、7Aに供給される。それらの場合、第2室4B、5B、6B、7Bから押し出された油は、排出側第2開閉弁10Bならびに合流点S4、S5、S6を介してタンクに排出される。かくして、動作途中は4倍速での同期動作を可能とし、最終ポイント近傍では、作動油漏洩等に起因するストローク同期ずれがキャンセルされる。すなわち、各油圧シリンダ4、5、6、7が各別に加圧動作を行うので、同期ずれが生じて加圧動作途中にて停止してしまうシリンダを生じさせることが防止される。   The pistons 4P, 5P, 6P, and 7P in the hydraulic cylinders 4, 5, 6, and 7 approach the ceiling of the second chambers 4B, 5B, 6B, and 7B of the cylinders 4, 5, 6, and 7, and the final pressurization is performed. When it becomes about 1 mm near the point, the movable hot plate 2 reaches the final stage of the pressurizing operation. When the stroke sensor 13 detects this, the valve switching control means 14 closes all the first on-off valves 9 and opens all the second on-off valves 10A, 10B. As a result, the hydraulic pressure from the hydraulic pump P passes through the branch points S1, S2, S3 and directly through the supply-side second on-off valve 10A to the first chambers 4A, 5A of the hydraulic cylinders 4, 5, 6, 7 directly. , 6A, 7A. In those cases, the oil pushed out from the second chambers 4B, 5B, 6B, 7B is discharged to the tank via the discharge side second on-off valve 10B and the junctions S4, S5, S6. Thus, a synchronous operation at a quadruple speed is possible in the middle of the operation, and the stroke synchronization deviation due to hydraulic oil leakage or the like is canceled near the final point. That is, since the hydraulic cylinders 4, 5, 6, and 7 perform the pressurizing operation separately, it is possible to prevent a cylinder that is out of synchronization and stops in the middle of the pressurizing operation.

次に、可動熱版2を下方に後退させる離型動作を行うには、切換弁8を8B側に切り換えることで、合流点S4、S5、S6が分岐点となり、分岐点S1、S2、S3が合流点となる。ポンプPからの圧油は、第4油圧シリンダ7の第2室7Bに圧力油が供給されてピストン7Pを下方に強力に確実で迅速に移動させて離型動作がなされる。第1室7Aから押し出された油は、第1開閉弁9を介して第3油圧シリンダ6の第2室6Bに圧力油が供給される。以下順次繰り返される。そして、可動熱盤2が離型動作の最終ポイント近傍に達すると、ストロークセンサ13がこれを検出し、弁切換制御手段14によって、第1開閉弁9が全て閉じられ、第2開閉弁10が全て開けられて、各油圧シリンダ4、5、6、7が各別に離型動作を行うので、同期ずれが生じて離型動作途中にて停止してしまうシリンダを生じさせることが防止される。すなわち、作動油漏洩等に起因するストローク同期ずれがキャンセルされる。   Next, in order to perform the mold release operation for retracting the movable thermal plate 2 downward, the switching valve 8 is switched to the 8B side so that the junction points S4, S5, S6 become branch points, and the branch points S1, S2, S3. Becomes the confluence. The pressure oil from the pump P is supplied to the second chamber 7B of the fourth hydraulic cylinder 7 to move the piston 7P downward strongly and reliably, and the mold release operation is performed. The oil pushed out from the first chamber 7 </ b> A is supplied to the second chamber 6 </ b> B of the third hydraulic cylinder 6 through the first on-off valve 9. Thereafter, the process is repeated sequentially. When the movable hot platen 2 reaches the vicinity of the final point of the mold release operation, the stroke sensor 13 detects this, and the valve switching control means 14 closes all the first on-off valves 9 and the second on-off valves 10 Since all the hydraulic cylinders 4, 5, 6, and 7 perform the releasing operation separately, it is possible to prevent the cylinders that are out of synchronization and stop in the middle of the releasing operation. That is, the stroke synchronization deviation due to hydraulic fluid leakage or the like is cancelled.

図3は本発明の複数シリンダ式プレスの速度調整装置の第2実施例を示す全体斜視図である。本実施例のものは、油圧シリンダが両ロッド形式であることを利用して、両ロッドのそれぞれの端部に可動熱盤2を配設することで、上下2段にて加硫ベルト部材を加圧加硫できるように構成したものである。例えば4角形のフレーム枠体1内の高さのほぼ中央に渡設した固定桟11に、複数の(図示の例では4つ)油圧シリンダ4〜7の中間部を略等間隔にて併置して固定設置する。これら油圧シリンダを挟んで上下に、フレーム枠体1内の上部には適宜の熱源(電熱線や加熱蒸気管等)により加熱される上部可動熱盤2Aが、フレーム枠体1内の下部には同様の下部可動熱盤2Bが平行移動可能に設置される。前記油圧シリンダ4〜7における上部側の第1ロッド4C〜7Cの上端部は上部可動熱盤2Aの下部に連結され、下部側の第2ロッド4D〜7Dの下端部は下部可動熱盤2Bの上部に連結される。したがって、フレーム枠体1の上部枠体1Aと上部可動熱盤2Aとの間、およびフレーム枠体1の下部枠体1Bと下部可動熱盤2Bとの間に形成される空間が、加硫ベルト3Aおよび3Bの加硫プレス部を構成する。   FIG. 3 is an overall perspective view showing a second embodiment of the speed adjusting device for a multi-cylinder press according to the present invention. The thing of a present Example utilizes a hydraulic cylinder being a double rod type | mold, and arrange | positions the movable heat | fever plate | board 2 to each edge part of both rods, A vulcanization belt member is carried out in two steps up and down. It is configured so that it can be vulcanized under pressure. For example, intermediate portions of a plurality of (four in the illustrated example) hydraulic cylinders 4 to 7 are juxtaposed at substantially equal intervals on a fixed bar 11 provided at approximately the center of the height in the rectangular frame 1. To fix. An upper movable heat platen 2A heated by an appropriate heat source (such as a heating wire or a heating steam pipe) is provided above and below the hydraulic cylinder, and an upper part in the frame frame 1 is provided at a lower part in the frame frame 1. A similar lower movable heating platen 2B is installed so as to be movable in parallel. The upper ends of the first rods 4C to 7C on the upper side in the hydraulic cylinders 4 to 7 are connected to the lower portion of the upper movable heat plate 2A, and the lower ends of the second rods 4D to 7D on the lower side are connected to the lower movable heat plate 2B. Connected to the top. Therefore, the space formed between the upper frame 1A of the frame frame 1 and the upper movable heating platen 2A and between the lower frame 1B and the lower movable heating platen 2B of the frame frame 1 is a vulcanizing belt. 3A and 3B vulcanizing press sections are constructed.

かくして、油圧シリンダ4〜7におけるロッド4C〜7Cおよび4D〜7Dの上動時には、上部可動熱盤2Aによる加圧加硫動作を行うと同時に、下部可動熱盤2Bの離型動作を行う。そして、油圧シリンダ4〜7におけるロッド4C〜7Cおよび4D〜7Dの下動時には、下部可動熱盤2Bによる加圧加硫動作を行うと同時に、上部可動熱盤2Aの離型動作を行う。これらの動作により、フレーム枠体1における上部枠体1Aと上部可動熱盤2Aとの間、および下部枠体1Bと下部可動熱盤2Bとの間にて、それぞれ上部加硫ベルト部材3Aおよび下部加硫ベルト部材3Bの加硫加圧および離型を同時的に行うことができる。なお、油圧シリンダ4〜7の構造および油圧回路ならびに油圧シリンダの動作は前記図1のものと同様であるので詳細な説明は省略する。   Thus, when the rods 4C to 7C and 4D to 7D in the hydraulic cylinders 4 to 7 are moved upward, the pressure movable vulcanization operation by the upper movable heat platen 2A is performed and the mold release operation of the lower movable heat platen 2B is performed at the same time. When the rods 4C to 7C and 4D to 7D in the hydraulic cylinders 4 to 7 are moved downward, a pressure vulcanizing operation by the lower movable hot platen 2B is performed, and at the same time, a release operation of the upper movable hot platen 2A is performed. By these operations, the upper vulcanizing belt member 3A and the lower part are respectively provided between the upper frame 1A and the upper movable heating platen 2A in the frame frame 1 and between the lower frame 1B and the lower movable heating platen 2B. Vulcanizing pressure and releasing of the vulcanizing belt member 3B can be performed simultaneously. The structure of the hydraulic cylinders 4 to 7, the hydraulic circuit, and the operation of the hydraulic cylinder are the same as those in FIG.

以上、本発明の実施例について説明してきたが、本発明の趣旨の範囲内で、加硫されるべきゴムクローラやベルトコンベア等のベルト部材の形状(駆動突起や接地ラグの配設形態等)、形式(補強コード等の配列形態等)、フレーム枠体の形状(加硫送り方向のフレームの長さをある程度長くする場合には、油圧シリンダについても、長さ方向に複数列設置され得る)、形式、可動熱盤の形状(ベルト部材の表面の形式駆動突起や接地ラグの配設形態等に対応する形状が可動熱盤の表面に付され得る)、形式(熱源としては電熱線や加熱蒸気管の埋設等)およびその油圧シリンダにおけるロッドとの連結形態、油圧シリンダの形状、形式(両ロッド形式)および数ならびにフレーム枠体や固定桟への設置形態、開閉弁、切換弁および分岐点ならびに合流点の形状、形式、油圧ポンプの形状、形式、ストロークセンサの形状、形式およびその設置部位、弁切換制御手段の形状、形式およびその制御手段による開閉弁の切換形態(機械的、電気的、流体的のいずれにても可能)、油圧シリンダと各弁間を接続する管路の形状、形式およびそれらの接続形態等については適宜選定することができる。   The embodiment of the present invention has been described above. However, within the scope of the present invention, the shape of a belt member such as a rubber crawler or a belt conveyor to be vulcanized (arrangement of driving protrusions and grounding lugs, etc.) , Type (arrangement of reinforcing cords, etc.), shape of frame frame (if the length of the frame in the vulcanization feed direction is increased to some extent, hydraulic cylinders can also be installed in multiple rows in the length direction) , Type, shape of movable heat plate (shape corresponding to the form of driving protrusions and grounding lugs on the surface of the belt member can be attached to the surface of the movable heat plate), type (heat line or heating as the heat source) (Embedded steam pipe, etc.) and its connection with the rod in the hydraulic cylinder, the shape, type (double rod type) and number of the hydraulic cylinder, as well as the installation form on the frame and fixed frame, on-off valve, switching valve and branch point Na The shape of the junction, the type, the shape of the hydraulic pump, the type, the shape of the stroke sensor, the type and installation location, the shape and type of the valve switching control means, and the switching mode of the on-off valve by the control means (mechanical, electrical It is possible to select any one of fluid shape), and the shape and type of the pipe line connecting between the hydraulic cylinder and each valve, and their connection form can be selected as appropriate.

本発明の複数シリンダ式プレスの速度調整装置の第1実施例を示すもので、速度調整装置を構成する油圧回路のブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a hydraulic circuit constituting a speed adjusting device according to a first embodiment of a speed adjusting device for a multi-cylinder press according to the present invention. 同、その速度調整装置を用いた複数シリンダ式プレスの概略図である。FIG. 2 is a schematic view of a multi-cylinder press using the speed adjusting device. 本発明の複数シリンダ式プレスの速度調整装置の第2実施例を示す全体斜視図である。It is a whole perspective view which shows 2nd Example of the speed adjustment apparatus of the multiple cylinder type press of this invention. 一般的な送り加硫装置の概略図である。1 is a schematic view of a general feed vulcanizing apparatus. カウンターシャフト方式を採用した送り加硫装置の概略図である。It is the schematic of the feed vulcanizer which employ | adopted the countershaft system. 従来の油圧シリンダの同調装置における油圧回路図である。It is a hydraulic circuit diagram in the conventional tuning apparatus of a hydraulic cylinder.

符号の説明Explanation of symbols

1 フレーム枠体
2 可動熱盤
3 加硫ベルト部材
4〜7 油圧シリンダ
4A〜7A 第1室(圧油供給側:加圧加硫時)
4B〜7B 第2室(圧油排出側:加圧加硫時)
4P〜7P ピストン
8 切換弁
9 第1開閉弁
10A 第2開閉弁(圧油供給側:加圧加硫時)
10B 第2開閉弁(圧油排出側:加圧加硫時)
13 ストロークセンサ
14 弁切換制御手段
P 油圧ポンプ
S1〜S3 分岐点(加圧加硫時)
S4〜S6 合流点(加圧加硫時
DESCRIPTION OF SYMBOLS 1 Frame frame 2 Movable heating board 3 Vulcanization belt member 4-7 Hydraulic cylinder 4A-7A 1st chamber (pressure oil supply side: At the time of pressure vulcanization)
4B-7B second chamber (pressure oil discharge side: during pressure vulcanization)
4P to 7P piston 8 switching valve 9 first on-off valve 10A second on-off valve (pressure oil supply side: during pressure vulcanization)
10B Second on-off valve (pressure oil discharge side: during pressure vulcanization)
13 Stroke sensor 14 Valve switching control means P Hydraulic pump S1 to S3 Branch point (during pressure vulcanization)
S4 to S6 Junction point (at pressure vulcanization)

Claims (3)

ベルト部材をフレーム枠体と可動熱盤との間にて加熱プレスする加硫装置であって、併置した複数のシリンダにて前記可動熱盤を同時に平行移動させる複数シリンダ式プレスの速度調整装置において、前記各シリンダを両ロッド形式に構成するとともに、上流段と下流段に隣接するこれらシリンダ同士の圧油供給側と圧油排出側とを接続したことを特徴とする複数シリンダ式プレスの速度調整装置。 In a vulcanizing apparatus that heats and presses a belt member between a frame and a movable heat plate, and a speed adjusting device for a multi-cylinder press that simultaneously translates the movable heat plate by a plurality of juxtaposed cylinders. The speed adjustment of the multi-cylinder press characterized in that each cylinder is configured in a double rod type and the pressure oil supply side and the pressure oil discharge side of these cylinders adjacent to the upstream stage and the downstream stage are connected to each other. apparatus. 前記上流段と下流段に隣接するシリンダ同士の各圧油排出側と各圧油供給側とを接続する管路にそれぞれ第1開閉弁を介設するとともに、これらの各第1開閉弁と各シリンダの圧油供給側との間に、油圧ポンプから分岐する各分岐点とを第2開閉弁を介して接続し、さらに、前記各第1開閉弁と各シリンダの圧油排出側との間に、油圧タンク等への各排出合流点とを第2開閉弁を介して接続したことを特徴とする請求項1に記載の複数シリンダ式プレスの速度調整装置。 A first on-off valve is provided in each pipe line connecting each pressure oil discharge side and each pressure oil supply side between the cylinders adjacent to the upstream stage and the downstream stage, and each of these first on-off valves and Each branch point branched from the hydraulic pump is connected to the pressure oil supply side of the cylinder via a second on-off valve, and further between the first on-off valve and the pressure oil discharge side of each cylinder. The multi-cylinder press speed adjusting device according to claim 1, wherein each discharge confluence to the hydraulic tank or the like is connected via a second on-off valve. 前記第1開閉弁および第2開閉弁のいずれか一方を開弁し、他方を閉弁することで、前記ロッドのいずれか一方への移動を行うとともに、それらの移動動作の最終点近傍にて前記第1および第2開閉弁の弁動作を逆にすることで、各シリンダの移動動作が各別に行われるように構成したことを特徴とする請求項2に記載の複数シリンダ式プレスの速度調整装置。
By opening either one of the first on-off valve and the second on-off valve and closing the other, the movement to any one of the rods is performed and in the vicinity of the final point of the movement operation. The speed adjustment of the multi-cylinder press according to claim 2, wherein each cylinder is moved separately by reversing the valve operations of the first and second on-off valves. apparatus.
JP2005341619A 2005-11-28 2005-11-28 Speed controller for multiple cylinder type press Pending JP2007144455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341619A JP2007144455A (en) 2005-11-28 2005-11-28 Speed controller for multiple cylinder type press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341619A JP2007144455A (en) 2005-11-28 2005-11-28 Speed controller for multiple cylinder type press

Publications (1)

Publication Number Publication Date
JP2007144455A true JP2007144455A (en) 2007-06-14

Family

ID=38206481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341619A Pending JP2007144455A (en) 2005-11-28 2005-11-28 Speed controller for multiple cylinder type press

Country Status (1)

Country Link
JP (1) JP2007144455A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107545A (en) * 2010-12-21 2011-06-29 湖州机床厂有限公司 Multi-cylinder conversion flexible control system for hydraulic press
JP2013184195A (en) * 2012-03-08 2013-09-19 Kurimoto Ltd Press machine
CN103847128A (en) * 2012-11-30 2014-06-11 江苏沃得机电集团有限公司 Hydraulic control system
CN104196810A (en) * 2014-09-18 2014-12-10 芜湖高昌液压机电技术有限公司 Multi-cylinder synchronous loop for gantry lifter proportional flow distribution and collecting valve
CN105020192A (en) * 2015-07-30 2015-11-04 中国重型机械研究院股份公司 Novel steel ladle lifting synchronous control system
CN105545848A (en) * 2016-01-05 2016-05-04 广东思豪液压机械有限公司 Hydraulic control system for precisely synchronizing two side cylinders of tube hydroforming hydraulic machine
CN106194869A (en) * 2016-09-18 2016-12-07 中国林业科学研究院木材工业研究所 A kind of many group hydraulic cylinder dynamic synchronization motion control methods
CN107288959A (en) * 2017-08-09 2017-10-24 江苏理工学院 A kind of large hydraulic press crossbeam leveling hydraulic system
CN108273952A (en) * 2017-12-29 2018-07-13 南京埃斯顿自动化股份有限公司 A kind of control method of multi-cylinder synchronous
CN117006119A (en) * 2023-08-22 2023-11-07 埃锡尔(山东)智能设备有限公司 Multi-cylinder servo synchronous hydraulic device
CN117920980A (en) * 2024-03-21 2024-04-26 中国机械总院集团云南分院有限公司 Synchronous jacking device of non-ferrous metal ingot casting automatic demolding oil cylinder

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107545A (en) * 2010-12-21 2011-06-29 湖州机床厂有限公司 Multi-cylinder conversion flexible control system for hydraulic press
JP2013184195A (en) * 2012-03-08 2013-09-19 Kurimoto Ltd Press machine
CN103847128A (en) * 2012-11-30 2014-06-11 江苏沃得机电集团有限公司 Hydraulic control system
CN104196810A (en) * 2014-09-18 2014-12-10 芜湖高昌液压机电技术有限公司 Multi-cylinder synchronous loop for gantry lifter proportional flow distribution and collecting valve
CN105020192A (en) * 2015-07-30 2015-11-04 中国重型机械研究院股份公司 Novel steel ladle lifting synchronous control system
CN105545848A (en) * 2016-01-05 2016-05-04 广东思豪液压机械有限公司 Hydraulic control system for precisely synchronizing two side cylinders of tube hydroforming hydraulic machine
CN106194869A (en) * 2016-09-18 2016-12-07 中国林业科学研究院木材工业研究所 A kind of many group hydraulic cylinder dynamic synchronization motion control methods
CN106194869B (en) * 2016-09-18 2017-12-19 中国林业科学研究院木材工业研究所 A kind of multigroup hydraulic cylinder dynamic synchronization motion control method
CN107288959A (en) * 2017-08-09 2017-10-24 江苏理工学院 A kind of large hydraulic press crossbeam leveling hydraulic system
CN107288959B (en) * 2017-08-09 2019-06-11 江苏理工学院 A kind of large hydraulic press crossbeam leveling hydraulic system
CN108273952A (en) * 2017-12-29 2018-07-13 南京埃斯顿自动化股份有限公司 A kind of control method of multi-cylinder synchronous
CN117006119A (en) * 2023-08-22 2023-11-07 埃锡尔(山东)智能设备有限公司 Multi-cylinder servo synchronous hydraulic device
CN117006119B (en) * 2023-08-22 2024-01-23 埃锡尔(山东)智能设备有限公司 Multi-cylinder servo synchronous hydraulic device
CN117920980A (en) * 2024-03-21 2024-04-26 中国机械总院集团云南分院有限公司 Synchronous jacking device of non-ferrous metal ingot casting automatic demolding oil cylinder
CN117920980B (en) * 2024-03-21 2024-06-11 中国机械总院集团云南分院有限公司 Control method of synchronous jacking device of automatic demolding oil cylinder for nonferrous metal ingot casting

Similar Documents

Publication Publication Date Title
JP2007144455A (en) Speed controller for multiple cylinder type press
CN1471456B (en) Injection molding machine having a mold plate for uniform distribution of mold clamping forces
CN101896329A (en) Method and device for producing tube-shaped structural components
US9919905B2 (en) Lift apparatus for lifting heavy loads
CA2898694A1 (en) Injection mold of a plastic preform
ITRM20130033A1 (en) INJECT-COMPRESSION APPARATUS FOR THE PRODUCTION OF THERMOPLASTIC CONTAINERS
CA2898691C (en) Rotary joint for transferring melted plastic from an extruder to molds of a rotary machine for molding preforms
RU2009107010A (en) METHOD FOR PRODUCING PRODUCTS FROM FIBER COMPOSITE MATERIAL AND PROFILED COMPONENT FROM SUCH MATERIAL HAVING A VARIABLE CROSS CROSS SECTION IN LENGTH
CA3153216A1 (en) Pultrusion device for curved profiled articles
CN103950264A (en) Thermoplastic cellular board and production method thereof, and double-steel-strip continuous press
CN203792851U (en) Double-steel-belt continuous press for producing thermoplastic honeycomb plates and steel belt mechanism of double-steel-belt continuous press
EP2327523B1 (en) Vulcanization machine comprising two vulcanizers having right and left paired columns in v-configuration
EP1854622A2 (en) High-productivity multidaylight press for bonding flat elements, particularly for the hot or cold bonding of veneers, laminates or the like on sandwich, chipwood, honeycomb panels or the like and for producing plywoods, chipwood panels and the like
JP3883859B2 (en) Bellows tube manufacturing method and apparatus
KR101164425B1 (en) Press and press system
ITTO20000858A1 (en) RADIAL PRESS TO PRODUCE HIGH PRESSURE FLEXIBLE HOSES WITH CABLES ELEMENTS PROVIDED WITH ROTATION SYMMETRY AND USED IN THE FITTINGS
JP4837341B2 (en) Rubber crawler manufacturing method and apparatus
CA3033049C (en) Multistage conveyance method, multistage conveyance apparatus, and multistage press apparatus for sheet material to be treated
CN105729687A (en) Hot plate horizontal-moving type tire vulcanizing machine
CN203792842U (en) Double-steel-belt continuous pressing machine for producing thermoplastic honeycomb panel and cooling sizing mechanism thereof
CN103950263B (en) Honeycomb board and preparation, two Steel-belt Continuous Press and cooling and shaping mechanism thereof
KR102179633B1 (en) Sealed load unit
US20220344077A1 (en) Hot Pressing Machine and Method for Continuously Hot Pressing Flexible Flat Cable
JP3696968B2 (en) Sheet metal forming machine
US20240051216A1 (en) Closed profile made of a thermoplastic composite material